Datasets:

inputs
stringlengths
50
14k
targets
stringlengths
4
655k
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: m_res = [None for i in range(len(A)-M+1)] m = 0 for i in range(len(A)-L+1): ts = sum(A[i:i+L]) for j in range(len(A)-M+1): if j+M <= i or j >= i+L: if m_res[j] is None: m_res[j] = sum(A[j:j+M]) m = max(m, ts+m_res[j]) return m
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: ''' O(n^2) ''' long = L if L > M else M short = M if M < L else L global_max = 0 for i in range(0, len(A)-long+1): temp1 = sum(A[i:i+long]) # subA = A[:i] + A[i+long:] # check left part left = A[:i] right = A[i+long:] if len(left) >= short: # check right part for j in range(0, len(left)-short+1): temp2 = sum(left[j:j+short]) if temp1 + temp2 > global_max: global_max = temp1 + temp2 if len(right) >= short: for j in range(0, len(right)-short+1): temp2 = sum(right[j:j+short]) if temp1 + temp2 > global_max: global_max = temp1 + temp2 return global_max
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: # Let's try a relatively naive solution first. # Compute the cumsums. Let cumsum(k) be the cumsum upto and incl. A[k] # Now, V(i,j) = cumsum(i+L-1) - cumsum(i-1) + cumsum(j+M-1) - cumsum(j-1) # With i and j satisfying the constraints. # Then we simply have to maximize this value over all possible values of i and j # subject to the constraint. n = len(A) # Corner cases if L + M == n: return sum(A) # We'll use array with cumsum[k] equivalent to cumsum(k-1) being the cumsum of the first # k elements (i.e. upto and including A[k-1]). A[0] = 0, being the cumsum of the first zero elements. cumsum = [0]*(n+1) for i in range(n): cumsum[i+1] = cumsum[i] + A[i] def good_combo(i, j): # Return True <=> L-length subarray at i intersects with M-length subarry starting at j return i+L-1 < j or j+M-1 < i res = -float('inf') for i in range(n-L+1): for j in range(n-M+1): if good_combo(i, j): res = max(res, cumsum[i+L] - cumsum[i] + cumsum[j+M] - cumsum[j]) return res
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: maxi = 0 n = len(A) dp = {} dp[(0,L)] = sum(A[0:L])+sum(A[L:L+M]) dp[(M,0)] = sum(A[0:M])+sum(A[M:L+M]) for i in range(n-L+1): for j in range(n-M+1): if (i>=j and i-j < M) or (i < j and j-i < L): continue else: if (i,j-1) in dp: dp[(i,j)] = dp[(i,j-1)] - A[j-1] + A[j+M-1] elif (i-1,j) in dp: dp[(i,j)] = dp[(i-1,j)] - A[i-1] + A[i+L-1] maxi = max(maxi,dp[(i,j)]) return maxi
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: acc=[0]+[*itertools.accumulate(A)] def getmaxfrom(i, x): return max(acc[j+x]-acc[j] for j in range(i,len(acc)-x)) # s = 0 # res = 0 # for j in range(i, len(A)): # s+=A[j] # if j-i==x: # s-=A[i] # i+=1 # res = max(res, s) # return res ans = 0 s = 0 i = 0 for j in range(len(A)-M): s+=A[j] if j-i == L: s-=A[i] i+=1 ans = max(ans, s + getmaxfrom(j+1, M)) s = 0 i = 0 for j in range(len(A)-L): s+=A[j] if j-i == M: s-=A[i] i+=1 ans = max(ans, s + getmaxfrom(j+1, L)) return ans
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: l=len(A) if L<M: M,L=L,M # L 大 ans=0 for i in range(l-L+1): tmp=sum(A[i:i+L]) j=0 while j<(l-M+1): if i<j+M<i+L: j=i+L else: ans=max(ans,tmp+sum(A[j:j+M])) j+=1 return ans
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: if L + M > len(A): assert False l = [] s = 0 for i in range(len(A) - L + 1): if i == 0: s = sum(A[:L]) else: s -= A[i - 1] s += A[i + L - 1] l.append((-s, (i, i + L - 1))) l = sorted(l, key=lambda tup : tup[0]) #print(l) m = [] s = 0 for i in range(len(A) - M + 1): if i == 0: s = sum(A[:M]) else: s -= A[i - 1] s += A[i + M - 1] m.append((-s, (i, i + M - 1))) m = sorted(m, key=lambda tup : tup[0]) maximum = 0 for i in range(len(l)): for j in range(len(m)): sl, (il, jl) = l[i] sm, (im, jm) = m[j] sl, sm = -sl, -sm if sl + sm > maximum: if jl < im or jm < il: maximum = sl + sm else: break return maximum
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: LList, MList = [], [] thisSum = sum(A[:L]) LList.append((thisSum, 0)) for idx in range(L, len(A)): thisSum += A[idx] - A[idx - L] LList.append((thisSum, idx - L + 1)) thisSum = sum(A[:M]) MList.append((thisSum, 0)) for idx in range(M, len(A)): thisSum += A[idx] - A[idx - M] MList.append((thisSum, idx - M + 1)) # LList.sort(reverse=True) # MList.sort(reverse=True) allHeap = [] for LEle in LList: for MEle in MList: heapq.heappush(allHeap, (- LEle[0] - MEle[0], LEle[1], MEle[1])) while allHeap: twoSum, lidx, midx = heapq.heappop(allHeap) if lidx + L - 1 < midx or midx + M - 1 < lidx: return -twoSum
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: def slidingWindow(windowLength): windowMap = {} currSum = sum(A[:windowLength]) windowMap[(0, windowLength - 1)] = currSum for i in range(windowLength, len(A)): currSum -= A[i - windowLength] currSum += A[i] windowMap[(i - windowLength + 1, i)] = currSum return windowMap firstWindowMap = slidingWindow(L) secondWindowMap = slidingWindow(M) first = [] second = [] for x in firstWindowMap: first.append([firstWindowMap[x], x]) for x in secondWindowMap: second.append([secondWindowMap[x], x]) most = 0 for i in range(len(first)): for j in range(len(second)): val1 = first[i][0] val2 = second[j][0] range1 = first[i][1] range2 = second[j][1] r1x = range1[0] r1y = range1[1] r2x = range2[0] r2y = range2[1] if not ((r2x <= r1x <= r2y) or (r1x <= r2x <= r1y)): most = max(most, val1 + val2) return most
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: acc=[0]+[*itertools.accumulate(A)] def getmaxfrom(i, x): return max(acc[j+x]-acc[j] for j in range(i,len(acc)-x)) ans = 0 s = 0 i = 0 for j in range(len(A)-M): s+=A[j] if j-i == L: s-=A[i] i+=1 ans = max(ans, s + getmaxfrom(j+1, M)) s = 0 i = 0 for j in range(len(A)-L): s+=A[j] if j-i == M: s-=A[i] i+=1 ans = max(ans, s + getmaxfrom(j+1, L)) return ans
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: length = len(A) if length < L + M: return 0 if length == L + M: return sum(A) res = 0 for i in range(length - L + 1): s1 = sum(A[i:i+L]) if i >= M: for j in range(i-M+1): s2 = sum(A[j:j+M]) if res < s1 + s2: res = s1 + s2 for j in range(i + L, length - M + 1): s2 = sum(A[j:j+M]) if res < s1 + s2: res = s1 + s2 else: for j in range(i + L, length - M + 1): s2 = sum(A[j:j+M]) if res < s1 + s2: res = s1 + s2 return res
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: if not A: return 0 n = len(A) m_sum = 0 for i in range(n-L+1): i_sum = sum(A[i:i+L]) for j in range(i+L, n-M+1): m_sum = max(m_sum, (i_sum + sum(A[j:j+M]))) for j in range(i-M+1): m_sum = max(m_sum, (i_sum + sum(A[j:j+M]))) return m_sum
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: n = len(A) out = 0 for i in range(n-L + 1): l = sum(A[i:i+L]) m = [sum(A[j:j+M]) for j in range(i + L, n-M+1) ] + [sum(A[j:j+M]) for j in range(i-M)] if l and m: out = max(out, l + max(m)) return out
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: max_sum = 0 @lru_cache def _calculateSumFromIndex(i, length): return sum(A[i:i+length]) for l in range(len(A)-L+1): l_sum = _calculateSumFromIndex(l, L) if l >= M: for m in range(0, l-M+1): m_sum = _calculateSumFromIndex(m, M) max_sum = max(max_sum, l_sum+m_sum) if len(A) - l+1 >= M: for m in range(l+L, len(A)-M+1): m_sum = _calculateSumFromIndex(m, M) max_sum = max(max_sum, l_sum+m_sum) return max_sum
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: def findMaxSum(A: List[int], L: int, M: int) -> int: max_num = 0 for i in range(len(A)-L): L_slice = A[i:L+i] L_sum = sum(L_slice) for j in range(L+i,len(A)-M+1): M_slice = A[j:M+j] M_sum = sum(M_slice) max_num = max(L_sum + M_sum, max_num) return max_num forwards_sum = findMaxSum(A,L,M) A.reverse() backwards_sum = findMaxSum(A,L,M) return max(forwards_sum,backwards_sum)
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: N = len(A) res = 0 for i in range(N - L + 1): l_sum = sum(A[i:i + L]) for j in list(range(i-M+1)) + list(range(i+L, N-M+1)): res = max(res, l_sum + sum(A[j:j + M])) return res
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: if not A: return 0 ldp = [0 for i in range(len(A))] mdp = [0 for j in range(len(A))] sum_l = sum(A[len(A)-L:]) for i in range(len(A)-L, -1, -1): sum_l = max(sum_l, sum(A[i:i+L])) ldp[i] = sum_l sum_m = sum(A[len(A)-M:]) for i in range(len(A)-M, -1, -1): sum_m = max(sum_m, sum(A[i:i+M])) mdp[i] = sum_m print(ldp) print(mdp) ret = float('-inf') for i in range(len(A)-L-M+1): ret = max(ret, sum(A[i:i+L]) + mdp[i+L], sum(A[i:i+M]) + ldp[i+M]) return ret
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: def findMaxSum(A: List[int], L: int, M: int) -> int: max_num = 0 for i in range(len(A)-L): L_slice = A[i:L+i] L_sum = sum(L_slice) for j in range(L+i,len(A)-M+1): M_slice = A[j:M+j] M_sum = sum(M_slice) max_num = max(L_sum + M_sum, max_num) return max_num forwards_sum = findMaxSum(A,L,M) A.reverse() backwards_sum = findMaxSum(A,L,M) return max(forwards_sum,backwards_sum)
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
from typing import List class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: def findMaxSum(A, L, M): max_sum = 0 for i in range(len(A) - L): L_slice = A[i: L + i] L_sum = sum(L_slice) for j in range(L + i, len(A) - M + 1): M_slice = A[j: M + j] M_sum = sum(M_slice) max_sum = max(max_sum, L_sum + M_sum) return max_sum forward_sum = findMaxSum(A, L, M) A.reverse() backward_sum = findMaxSum(A, L, M) return max(forward_sum, backward_sum)
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: def findMaxSum(A,L,M): max_num = 0 for i in range(len(A)-L): L_slice = A[i:L+i] L_sum = sum(L_slice) for j in range(L+i,len(A)-M+1): M_slice = A[j:M+j] M_sum = sum(M_slice) max_num = max(L_sum + M_sum, max_num) return max_num forwards_sum = findMaxSum(A,L,M) A.reverse() backwards_sum = findMaxSum(A,L,M) return max(forwards_sum,backwards_sum)
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: def findMaxSum(A: List[int], L: int, M: int) -> int: max_num = 0 for i in range(len(A)-L): L_slice = A[i:L+i] L_sum = sum(L_slice) for j in range(L+i,len(A)-M+1): M_slice = A[j:M+j] M_sum = sum(M_slice) max_num = max(L_sum + M_sum, max_num) return max_num forwards_sum = findMaxSum(A,L,M) A.reverse() backwards_sum = findMaxSum(A,L,M) return max(forwards_sum,backwards_sum)
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: def find_maxsum(arr,l,m): max_sum = 0 for i in range(len(arr)-l): l_slice = arr[i:i+l] l_sum = sum(l_slice) for j in range(i+l,len(arr)-m+1): m_slice = arr[j:j+m] m_sum = sum(m_slice) max_sum = max(max_sum, l_sum+m_sum) return max_sum def maximum_sum(arr, l, m): rev_arr = list(reversed(arr)) return max(find_maxsum(arr,l,m), find_maxsum(rev_arr,l,m)) return maximum_sum(A,L,M)
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: def traversal(A, L, M): maxi = 0 for i in range(len(A)-L): L_slice = A[i:L+i] L_sum = sum(L_slice) for j in range(L+i,len(A)-M+1): M_slice = A[j:M+j] M_sum = sum(M_slice) maxi = max(maxi, L_sum+M_sum) return maxi forwards_sum = traversal(A,L,M) A.reverse() backwards_sum = traversal(A,L,M) return max(forwards_sum,backwards_sum)
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: S = [0] * (len(A) + 1) for i in range(1, len(A)+1): S[i] += S[i-1] + A[i-1] lmax, rmax = 0, 0 for j in range(L, len(S)-M): lmax = max(lmax, S[j] - S[j-L]) rmax = max(rmax, S[j+M] - S[j] + lmax) lmax2, rmax2 = 0, 0 for j in range(M, len(S)-L): lmax2 = max(lmax2, S[j] - S[j-M]) rmax2 = max(rmax2, S[j+L] - S[j] + lmax2) return max(rmax, rmax2)
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: l_subarray_sums = [sum(A[i:i + L]) for i in range(0, len(A) - L + 1)] m_subarray_sums = [sum(A[i:i + M]) for i in range(0, len(A) - M + 1)] max_sum = 0 for i, l_subarray_sum in enumerate(l_subarray_sums): if not m_subarray_sums[i + L:]: continue max_complement = max(m_subarray_sums[i + L:]) if l_subarray_sum + max_complement > max_sum: max_sum = l_subarray_sum + max_complement print(f'l sum : {l_subarray_sum} | m sum : {max_complement}') for i, m_subarray_sum in enumerate(m_subarray_sums): if not l_subarray_sums[i + M:]: continue max_complement = max(l_subarray_sums[i + M:]) if m_subarray_sum + max_complement > max_sum: max_sum = m_subarray_sum + max_complement print(f'm sum : {m_subarray_sum} | m sum : {max_complement}') return max_sum
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
from functools import reduce class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: def leftRight(lst, l, m): presum = reduce(lambda cum, cur: cum + [cur + cum[-1]], lst, [0]) res = float('-inf') curL = presum[l] mxL = float('-inf') for i in range(l+m-1, len(lst)): if i > l + m - 1: curL = curL - lst[i - (l+m)] + lst[i-m] mxL = max(mxL, curL) res = max(res, mxL + presum[i+1] - presum[i-m+1]) return res return max(leftRight(A, L, M), leftRight(A[::-1], L, M)) # better: fix the middle part, keep track of the max of the left and right part of the middle part. # def maxSumTwoNoOverlap(self, A, L, M): # for i in xrange(1, len(A)): # A[i] += A[i - 1] # res, Lmax, Mmax = A[L + M - 1], A[L - 1], A[M - 1] # for i in xrange(L + M, len(A)): # Lmax = max(Lmax, A[i - M] - A[i - L - M]) # Mmax = max(Mmax, A[i - L] - A[i - L - M]) # res = max(res, Lmax + A[i] - A[i - M], Mmax + A[i] - A[i - L]) # return res
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: M_sum_greater_than = [0]*len(A) M_sum_smaller_than = [0]*len(A) prefix_sum = [A[0]] for n in A[1:]: prefix_sum.append(prefix_sum[-1]+n) for i in range(M-1, len(A)): if i < M: M_sum_smaller_than[i] = max(M_sum_smaller_than[i-1], prefix_sum[i]) else: M_sum_smaller_than[i] = max(M_sum_smaller_than[i-1], prefix_sum[i]-prefix_sum[i-M]) for j in range(len(A)-M, -1, -1): if j == 0: M_sum_greater_than[j] = max(M_sum_greater_than[j+1], prefix_sum[j+M-1]) else: M_sum_greater_than[j] = max(M_sum_greater_than[min(j+1, len(A)-1)], prefix_sum[j+M-1]-prefix_sum[j-1]) max_sum = 0 for start in range(len(A)-L+1): if start == 0: sum_L = prefix_sum[start+L-1] else: sum_L = prefix_sum[start+L-1] - prefix_sum[start-1] if start-1 >= M-1: max_sum = max(max_sum, sum_L + M_sum_smaller_than[start-1]) if start+L <= len(A)-M: max_sum = max(max_sum, sum_L + M_sum_greater_than[start+L]) return max_sum
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: i=0 maxL = [] maxM = [] maxSum = 0 while i<=len(A)-L: maxL.append(sum(A[i:i+L])) i+=1 i = 0 while i<=len(A)-M: maxM.append(sum(A[i:i+M])) i+=1 for i,elem in enumerate(maxL): if i-M<=0: prefix = [] else: prefix = maxM[0:i-M] if len(maxM[i+L:]+prefix)== 0: continue maxSum = max(maxSum,elem+max(prefix+maxM[i+L:])) return maxSum
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: prefix_sum = [0] * (len(A)+1) for i in range(len(A)): prefix_sum[i+1] = prefix_sum[i] + A[i] maxL = maxM = result = 0 for i in range(M, len(prefix_sum) - L): # optimal when L-list start at i+1 and occur after M-list maxM = max(maxM, prefix_sum[i] - prefix_sum[i-M]) result = max(result, maxM + prefix_sum[i+L] - prefix_sum[i]) for i in range(L, len(prefix_sum) - M): # optimal when M-list start at i+1 and occur after L-list maxL = max(maxL, prefix_sum[i] - prefix_sum[i-L]) result = max(result, maxL + prefix_sum[i+M] - prefix_sum[i]) return result
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: L, M = min(L, M), max(L, M) lSums = [0] * len(A) mSums = [0] * len(A) lSums[L-1] = sum(A[:L]) mSums[M-1] = sum(A[:M]) for i in range(L, len(A)): lSums[i] = lSums[i-1] + A[i] - A[i-L] for i in range(M, len(A)): mSums[i] = mSums[i-1] + A[i] - A[i-M] print(lSums) print(mSums) greatest = 0 for i in range(L-1, len(A)-M): greatest = max(greatest, max(lSums[:i+1]) + max(mSums[i+M:])) for i in range(M-1, len(A)-L): greatest = max(greatest, max(mSums[:i+1]) + max(lSums[i+L:])) return greatest
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: if L + M > len(A): return 0 max_end = [0 for i in range(len(A))] max_start = [0 for i in range(len(A))] def max_sum(L, M): sum1, sum2, max_sum1, max_sum2, max_sum = 0, 0, 0, 0, 0 for i in range(len(A)): max_sum2 = max(sum2, max_sum2) max_start[len(A)-i-1] = max_sum2 if i >= L: sum1 -= A[i-L] if i >= M: sum2 -= A[len(A)-i+M-1] sum1 += A[i] sum2 += A[len(A)-1-i] max_sum1 = max(sum1, max_sum1) max_end[i] = max_sum1 for i in range(L-1, len(A)-M): max_sum = max(max_sum, max_end[i]+max_start[i]) return max_sum return max(max_sum(L, M), max_sum(M, L))
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: n = len(A) dp1,dp2 = [0]*n,[0]*n for i in range(n-L+1): if i==0: dp1[i] = sum(A[i:i+L]) else: dp1[i] = dp1[i-1]+A[i+L-1]-A[i-1] maxy = 0 for i in range(n-M+1): if i==0: dp2[i] = sum(A[i:i+M]) else: dp2[i] = dp2[i-1]+A[i+M-1]-A[i-1] if i>=L: maxy = max(maxy,dp2[i]+max(dp1[:i-L+1])) if i+M<n: maxy = max(maxy,dp2[i]+max(dp1[i+M:])) return maxy # maxy = 0 # for a,b,d1,d2 in [(L,M,dp1,dp2), (M,L,dp2,dp1)]: # i,j = 0,n-b # while i+a<j: # maxy = max(maxy,d1[i]+d2[j]) # if d1[i+1]>d1[i]: i+=1 # else: j-=1 # print(L,dp1) # print(M,dp2) # return maxy
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: dp = [[0, 0, 0] for _ in range(len(A))] L, M = min(L, M), max(L, M) l_sum, m_sum = 0, 0 for idx in range(L + M): if idx <= L - 1: l_sum += A[idx] if idx == L - 1: dp[idx][0] = l_sum else: l_sum += A[idx] - A[idx - L] dp[idx][0] = l_sum if dp[idx - 1][0] < l_sum else dp[idx - 1][0] if idx <= M - 1: m_sum += A[idx] if idx == M - 1: dp[idx][1] = m_sum else: m_sum += A[idx] - A[idx - M] dp[idx][1] = m_sum if dp[idx - 1][1] < m_sum else dp[idx - 1][1] dp[L + M - 1][2] = max(l_sum + dp[idx - L][1], m_sum + dp[idx - M][0]) for idx in range(L + M, len(A)): l_sum += A[idx] - A[idx - L] dp[idx][0] = l_sum if dp[idx - 1][0] < l_sum else dp[idx - 1][0] m_sum += A[idx] - A[idx - M] dp[idx][1] = m_sum if dp[idx - 1][1] < m_sum else dp[idx - 1][1] print((idx, l_sum, m_sum, dp[idx - L], dp[idx - M])) dp[idx][2] = max(dp[idx - 1][2], l_sum + dp[idx - L][1], m_sum + dp[idx - M][0]) print(dp) return dp[len(A) - 1][2]
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: seg_sum_l = [] seg_sum_m = [] cum_sum = [0] n = len(A) for i, a in enumerate(A): cum_sum.append(a + cum_sum[-1]) if i >= L-1: seg_sum_l.append(cum_sum[i+1] - cum_sum[i-L+1]) else: seg_sum_l.append(-1) if i >= M-1: seg_sum_m.append(cum_sum[i+1] - cum_sum[i-M+1]) else: seg_sum_m.append(-1) max_sum = -1 for i in range(L-1, n): for j in range(M-1, i-L): cur_sum = seg_sum_l[i] + seg_sum_m[j] if cur_sum > max_sum: max_sum = cur_sum for j in range(i+M, n): cur_sum = seg_sum_l[i] + seg_sum_m[j] if cur_sum > max_sum: max_sum = cur_sum return max_sum
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: largestSum = 0 LList, MList = [0] * len(A), [0] * len(A) thisSum = sum(A[:L]) LList[0] = thisSum for idx in range(len(A) - L): thisSum += A[idx + L] - A[idx] LList[idx + 1] = thisSum thisSum = sum(A[:M]) MList[0] = thisSum for idx in range(len(A) - M): thisSum += A[idx + M] - A[idx] MList[idx + 1] = thisSum for idx in range(len(A) - M + 1): largestSum = max(largestSum, MList[idx] + max([0] + LList[:max(0, idx - L + 1)] + LList[idx + M:])) return largestSum
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
from functools import reduce class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: def leftRight(lst, l, m): presum = reduce(lambda cum, cur: cum + [cur + cum[-1]], lst, [0]) res = float('-inf') curL = presum[l] mxL = float('-inf') for i in range(l+m-1, len(lst)): if i > l + m - 1: curL = curL - lst[i - (l+m)] + lst[i-m] mxL = max(mxL, curL) res = max(res, mxL + presum[i+1] - presum[i-m+1]) return res return max(leftRight(A, L, M), leftRight(A[::-1], L, M))
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: Lsum = [(sum(A[:L]), 0)] Msum = [(sum(A[:M]), 0)] for i in range(1, len(A) - L + 1): Lsum.append((Lsum[-1][0] - A[i-1] + A[i+L-1], i)) for i in range(1, len(A) - M + 1): Msum.append((Msum[-1][0] - A[i-1] + A[i+M-1], i)) Lsum.sort(reverse=True) Msum.sort(reverse=True) ret = sum(A[:L+M]) for li in range(len(Lsum)): breakFlag = True for mi in range(len(Msum)): if (Lsum[li][1] <= Msum[mi][1] and Lsum[li][1] + L > Msum[mi][1]) or (Msum[mi][1] <= Lsum[li][1] and Msum[mi][1] + M > Lsum[li][1]): breakFlag = False continue ret = max(ret, Lsum[li][0] + Msum[mi][0]) break if breakFlag: break return ret
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: for i in range(1, len(A)): A[i] += A[i - 1] res, Lmax, Mmax = A[L + M - 1], A[L - 1], A[M - 1] for i in range(L + M, len(A)): Lmax = max(Lmax, A[i - M] - A[i - L - M]) Mmax = max(Mmax, A[i - L] - A[i - L - M]) res = max(res, Lmax + A[i] - A[i - M], Mmax + A[i] - A[i - L]) return res
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: n = len(A) dp = [[0,0] for _ in range(n)] for i in range(L-1,n): # scan from left to right, get all dp[i][0] first if i>0: dp[i][0] = max(dp[i-1][0], sum(A[i-L+1:i+1:+1])) else: dp[i][0] = A[0] for i in range(n-L,-1,-1): # scan from left to right, get all dp[i][0] first if i<n-1: dp[i][1] = max(dp[i+1][1], sum(A[i:i+L:+1])) else: dp[i][1] = A[n-1] #print(dp) maximum = float('-inf') # Then for subarray M for i in range(0,n-M+1): s = sum(A[i:i+M:1]) left = dp[i-1][0] if i-1>0 else 0 right = dp[i+M][1] if i+M<n else 0 #print(i,s, left, right) maximum = max(maximum, s+left, s+right) return maximum
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: import heapq n = len(A) def get_subsum(L): Lsum = [sum(A[:L])] for i in range(1, n-L+1): Lsum.append(Lsum[i-1] + A[i+L-1] - A[i-1]) return [(s, i) for i, s in enumerate(Lsum)] Lsum = get_subsum(L) # print(Lsum) Lsum.sort(reverse=True) Msum = get_subsum(M) # print(Msum) Msum.sort(reverse=True) def overlap(i, j, L=L, M=M): #i, i+L-1 #j, j+M-1 return j <= i < j+M or i <= j < i + L i = j = 0 Llen = len(Lsum) Mlen = len(Msum) visited = set() stack = [] heapq.heappush(stack, (0, (0,0))) while stack: _, (i, j) = heapq.heappop(stack) # visited.add((i,j)) # print(i, j, Lsum[i], Msum[j]) if not overlap(Lsum[i][1], Msum[j][1]): return Lsum[i][0] + Msum[j][0] if i < Llen - 1 and not (i+1, j) in visited: visited.add((i+1,j)) heapq.heappush(stack, (-(Lsum[i+1][0] + Msum[j][0]), (i+1, j))) if j < Mlen - 1 and not (i,j+1) in visited: visited.add((i,j+1)) heapq.heappush(stack, (-(Lsum[i][0] + Msum[j+1][0]), (i, j+1)))
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: result = 0 lsum = sum(A[0:L]) msum = sum(A[L:L+M]) psum = 0 j = 0 result = max(result, max(lsum + msum, lsum + psum)) # print(lsum, msum, psum, result) prefix = [0]*len(A) for i in range(0, len(A) - M + 1): prefix[i+M-1] = sum(A[i:i+M]) # For the first run the below is imp for k in range(L+M-1, len(A)): result = max(result, lsum + prefix[k]) for i in range(L, len(A)): lsum = lsum - A[i-L] + A[i] if i+M <= len(A) - 1: for k in range(i+M, len(A)): result = max(result, lsum + prefix[k]) if i-L > M-1: # print(i) for k in range(M-1, i-L): result = max(result, lsum + prefix[k]) # print(lsum, result) return result
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: Len = len(A) + 1 prefix = [0] + A maxSum = 0 for i in range(1, Len): prefix[i] = prefix[i - 1] + A[i - 1] i = L while i < Len: LSum = prefix[i] - prefix[i - L] j = M while j < i - L: MSum = prefix[j] - prefix[j - M] temp = LSum + MSum if temp > maxSum: maxSum = LSum + MSum j += 1 j = i + M while j < Len: MSum = prefix[j] - prefix[j - M] temp = LSum + MSum if temp > maxSum: maxSum = temp j += 1 i += 1 return maxSum
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: pref = [0] * (len(A)+1) for i in range(1, len(A)+1): pref[i] = pref[i-1] + A[i-1] l = [0] * (len(A)-L+1) m = [0] * (len(A)-M+1) for i in range(len(A)-L+1): l[i] = pref[i+L] - pref[i] for i in range(len(A)-M+1): m[i] = pref[i+M] - pref[i] ans = 0 for i in range(len(l)): for j in range(i-M+1): ans = max(ans, l[i]+m[j]) for j in range(i+L, len(A)-M+1): ans = max(ans, l[i]+m[j]) return ans
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: n = len(A) res = 0 psum = [0] * (n + 1) for i in range(n): psum[i+1] = psum[i] + A[i] for i in range(0, n - L + 1): ls = psum[i+L] - psum[i] lm = max(self._max_m(0, i, M, psum), self._max_m(i+L, n, M, psum)) res = max(res, ls + lm) return res def _max_m(self, s, e, M, psum): res = 0 for i in range(s, e - M + 1): res = max(res, psum[i+M] - psum[i]) return res
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: tmp_sum = sum(A[:L]) i = L L_sum = [tmp_sum] while i<len(A): tmp_sum -= A[i-L] tmp_sum += A[i] L_sum.append(tmp_sum) i += 1 tmp_sum = sum(A[:M]) i = M M_sum = [tmp_sum] while i<len(A): tmp_sum -= A[i-M] tmp_sum += A[i] M_sum.append(tmp_sum) i += 1 max_sum = 0 # L before M for i, lsum in enumerate(L_sum): for j in range(i+L, len(M_sum)): max_sum = max(max_sum, lsum+M_sum[j]) # M before L for i, msum in enumerate(M_sum): for j in range(i+M, len(L_sum)): max_sum = max(max_sum, msum+L_sum[j]) return max_sum
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: dp = [[-1, -1] for i in range(len(A))] # print(dp) l = L-1 dp[l][0] = sum(A[0:L]) l += 1 while l < len(A): dp[l][0] = dp[l-1][0] - A[l-L] + A[l] l += 1 m = M-1 dp[m][1] = sum(A[0:M]) m += 1 while m < len(A): dp[m][1] = dp[m-1][1] - A[m-M] + A[m] m += 1 # dp.sort(reverse=True, key=lambda x: x[0]) maxSum = -math.inf for i, sums in enumerate(dp): if sums[0] == -1: continue eligible_M = dp[:i-L+1] + dp[i+M:] # print (sums[0], eligible_M, max(eligible_M, key=lambda x: x[1])[1]) maxSum = max(maxSum, sums[0] + max(eligible_M, key=lambda x: x[1])[1]) # print(maxSum) # print(dp) return maxSum
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: ''' 2:35 # prefix sum O(n) # for each L subarray: O(n) check all M subarrays in its left or right, O(n) # O(n^2) ''' N = len(A) prefix = [0] * (N+1) # prefix[i]: sum(A[0:i]) for i in range(1,N+1): prefix[i] = prefix[i-1] + A[i-1] res = 0 for Li in range(N-L+1): # 0..N-L Lj = Li + L # L..N sumL = prefix[Lj] - prefix[Li] sumM = 0 for Mi in range(Lj, N-M+1): # Lj..N-M Mj = Mi + M # Lj+M..N sumM = max(sumM, prefix[Mj] - prefix[Mi]) for Mi in range(0, Li-M+1): Mj = Mi + M sumM = max(sumM, prefix[Mj] - prefix[Mi]) res = max(res, sumL+sumM) return res
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: resL = [] resM = [] for i in range(len(A) - L + 1): resL.append(sum(A[i:i + L])) for i in range(len(A) - M + 1): resM.append(sum(A[i:i + M])) print(resL) print(resM) i = 0 maxValue = -1 while i < len(resL): # right for j in range(i + L, len(resM)): maxValue = max(resL[i] + resM[j], maxValue) for j in range(min(i - M, len(resM))): maxValue = max(resL[i] + resM[j], maxValue) i += 1 return maxValue
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: if not A: return 0 cumulatedSum = [0] * (len(A) + 1) result = 0 for i in range(len(A)): cumulatedSum[i + 1] = cumulatedSum[i] + A[i] # L before M for i in range(len(A) - L + 1): # sum[i: i + L - 1] lSum = cumulatedSum[i + L] - cumulatedSum[i] for j in range(i + L, len(A) - M + 1): # sum[j, j + M -1] mSum = cumulatedSum[j + M] - cumulatedSum[j] result = max(result, lSum + mSum) for i in range(len(A) - M + 1): mSum = cumulatedSum[i + M] - cumulatedSum[i] for j in range(i + M, len(A) - L + 1): lSum = cumulatedSum[j + L] - cumulatedSum[j] result = max(result, lSum + mSum) return result
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: prefixSum = [0] * (len(A)+1) for i in range(1, len(A)+1): prefixSum[i] = prefixSum[i-1] + A[i-1] # print(prefixSum) # print(M, L) ans = 0 for i in range(M-1, len(A)): # print('i', i, i-(M-1)) sumM = prefixSum[i+1] - prefixSum[i+1-M] sumL = 0 for j in range(L-1, i-(M-1)): sumL = max(sumL, prefixSum[j+1] - prefixSum[j+1-L]) # print('sumleft', sumL, L-1, i-(M-1)) for j in range(i+1+L-1, len(A)): sumL = max(sumL, prefixSum[j+1] - prefixSum[j+1-L]) # print('sumright', sumL) # print('sumM', sumM) ans = max(ans, sumM + sumL) return ans
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: cumsum = [] N = len(A) for i in range(N): if i == 0: cumsum.append(A[i]) else: cumsum.append(cumsum[i-1]+ A[i]) l_sums = [] i = 0 while(i+L <= N): l_sums.append(cumsum[i+L-1]-cumsum[i] + A[i]) i += 1 m_sums = [] i = 0 while(i+M <= N): m_sums.append(cumsum[i+M-1]-cumsum[i] + A[i]) i += 1 # print(cumsum) # print(l_sums) # print(m_sums) i = 0 j = len(m_sums)-1 ans = 0 for i in range(len(l_sums)): for j in range(i+L,len(m_sums)): curr_sum = l_sums[i] + m_sums[j] ans = max(ans,curr_sum) for i in range(len(m_sums)): for j in range(i+M,len(l_sums)): curr_sum = m_sums[i] + l_sums[j] ans = max(ans,curr_sum) return ans
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: n = len(A) prefix = [0] * (n + 1) res = 0 for i in range(0, n): prefix[i + 1] = prefix[i] + A[i] for i in range(0, n - L + 1): l_sum = prefix[i + L] - prefix[i] j, m_sum = i, 0 while j - M >= 0: m_sum = max(m_sum, prefix[j] - prefix[j - M]) j -= 1 j = i + L while j + M <= n: m_sum = max(m_sum, prefix[j + M] - prefix[j]) j += 1 res = max(res, l_sum + m_sum) return res
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: n, cur_sum, max_sum = len(A), 0, 0 max_l = [[0,0] for _ in range(n+2)] for i in range(n): cur_sum += A[i] if i >= L - 1: max_l[i+1][0] = max(max_l[i][0], cur_sum) cur_sum -= A[i-L+1] cur_sum = 0 for i in range(n-1, -1, -1): cur_sum += A[i] if i <= n - L: max_l[i+1][1] = max(max_l[i+2][1], cur_sum) cur_sum -= A[i+L-1] cur_sum = 0 for i in range(n): cur_sum += A[i] if i >= M - 1: max_sum = max(max_sum, cur_sum + max_l[i-M+1][0], cur_sum + max_l[i+2][1]) cur_sum -= A[i-M+1] return max_sum
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: prefixSum = [0] * (len(A)+1) for i in range(1, len(A)+1): prefixSum[i] = prefixSum[i-1] + A[i-1] ans = 0 for i in range(M-1, len(A)): sumM = prefixSum[i+1] - prefixSum[i+1-M] sumL = 0 for j in range(L-1, i-(M-1)): sumL = max(sumL, prefixSum[j+1] - prefixSum[j+1-L]) for j in range(i+1+L-1, len(A)): sumL = max(sumL, prefixSum[j+1] - prefixSum[j+1-L]) ans = max(ans, sumM + sumL) return ans
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: # i think u have to do smaller numbers first because the smaller set is contained within the larger set # returns indices # Greedy does not work; need to do this in n^2 time i think # def solve(size, a): # i= 0 # j = i + size # m = [i,j] #max indices # s = sum(a[i:j]) # current sum # max_sum = s # max sum # while(j != len(a)): # i+=1 # j+=1 # s -= a[i-1] # s += a[j-1] # if s > max_sum: # max_sum = s # m[0] = i # m[1] = j # return m, max_sum # m, ms = solve(min(L,M), A) # # print(m, ms) # # A = A[:m[0]] + A[m[1]:] # # print(A) # m2, ms2 = solve(max(L,M), A[:m[0]] + A[m[1]:]) # print(m, ms, m2, ms2) # m3, ms3 = solve(max(L,M), A) # m4, ms4 = solve(min(L,M), A[:m3[0]] + A[m3[1]:]) # print(m3, ms3, m4, ms4) # return max(ms + ms2, ms3 + ms4) # On^2 time too slow # def solve(size1, size2, a): # # current max # curr = sum(a[0:0+size1]) + sum(a[size1: size1+size2]) # for i in range(len(a)-size2-size1+1): # for j in range(i+size1, len(a)): # temp = sum(a[i:i+size1]) + sum(a[j: j+size2]) # make this faster # # temp = curr - a[j-1] + a[j+size2] # # print(temp, i, i + size1, j, j + size2) # if temp> curr: # curr = temp # return curr # m = solve(L, M, A) # m2 = solve(M, L, A) # return max(m, m2) A = [0] + A for i in range(1,len(A)): A[i] += A[i-1] # print(A[1]-A[0]) # print(len(A)) def solve(l,m,a): curr = 0 # for i in range(len(a)-l-m+1): for i in range(len(a) - l+1): for j in range(i+l,len(a)-m): # print(i, i+l, j, j+m, a[i+l] - a[i], a[j+m] - a[j]) temp = a[i+l] - a[i] + a[j+m] - a[j] if temp > curr: curr = temp return curr m2 = solve(M, L, A) m = solve(L, M, A) # return m2 # print(m, m2) return max(m, m2)
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: N = len(A) # generate prefix sum array prefix = [0] * (N + 1) for i in range(1, N + 1): prefix[i] = prefix[i - 1] + A[i - 1] max_sum = 0 for end_l in range(L, N + 1): start_l = end_l - L sum1 = prefix[end_l] - prefix[start_l] for end_m in range(M, start_l): sum2 = prefix[end_m] - prefix[end_m - M] max_sum = max(max_sum, sum1 + sum2) for start_m in range(end_l, N - M + 1): sum2 = prefix[start_m + M] - prefix[start_m] max_sum = max(max_sum, sum1 + sum2) return max_sum
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: sum = [0 for i in range(len(A))] sum[0] = A[0] for i in range(1, len(A)): sum[i] = sum[i-1] + A[i] res = -math.inf # L before M for i in range(len(A) - L): r = -math.inf for j in range(i + L, len(A) - M + 1): r = max(r, sum[j + M - 1] - sum[j-1]) r += sum[i + L - 1] - (sum[i-1] if i - 1 > -1 else 0) res = max(res, r) # M before L for i in range(len(A) - M): r = -math.inf for j in range(i + M, len(A) - L + 1): r = max(r, sum[j + L - 1] - sum[j-1]) r += sum[i + M - 1] - (sum[i-1] if i - 1 > -1 else 0) res = max(res, r) return res
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: n = len(A) prefix = [0] * (n + 1) for i in range(n): prefix[i+1] = prefix[i] + A[i] maxi = float('-inf') for startL in range(n-L+1): endL = startL + L - 1 sumL = prefix[endL+1] - prefix[startL] for startM in range(startL-M+1): endM = startM + M - 1 sumM = prefix[endM+1] - prefix[startM] maxi = max(maxi, sumM + sumL) for startM in range(endL+1, n-M+1): endM = startM + M - 1 sumM = prefix[endM+1] - prefix[startM] maxi = max(maxi, sumM + sumL) return maxi
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: cumSum = [0]*(len(A)+1) for i,a in enumerate(A): cumSum[i+1] = cumSum[i]+a max_sum = 0 for i in range(len(A)-L+1): sum_sub1 = 0 sum_sub1 = cumSum[i+L] - cumSum[i] if i >= M: for j in range(i-M+1): sum_sub2 = 0 sum_sub2 = cumSum[j+M] - cumSum[j] sum_sub2 = sum_sub1 + sum_sub2 max_sum = max(max_sum, sum_sub2) if i+L <= len(A)-M: for j in range(i+L, len(A)-M+1): sum_sub2 = 0 sum_sub2 = cumSum[j+M] - cumSum[j] sum_sub2 = sum_sub1 + sum_sub2 max_sum = max(max_sum, sum_sub2) return max_sum
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: n = len(A) prefix = [0] * (n + 1) for i in range(n): prefix[i+1] = prefix[i] + A[i] maxi = float('-inf') for startL in range(n-L+1): endL = startL + L - 1 sumL = prefix[endL+1] - prefix[startL] for startM in range(startL+1-M): endM = startM + M - 1 sumM = prefix[endM+1] - prefix[startM] maxi = max(maxi, sumL + sumM) for startM in range(endL+1, n-M+1): endM = startM + M - 1 sumM = prefix[endM+1] - prefix[startM] maxi = max(maxi, sumL + sumM) return maxi
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: sumL = sum(A[:L]) sumM = sum(A[L:(L+M)]) res = sumL + sumM for j in range(L+M, len(A)): sumM += A[j]-A[j-M] res = max(res, sumL+sumM) for i in range(L, len(A)): sumL += A[i]-A[i-L] if i-L+1 >= M: sumM = sum(A[:M]) res = max(res, sumL+sumM) for j in range(M, i-L+1): sumM += A[j]-A[j-M] res = max(res, sumL+sumM) if i <= len(A)-M-1: sumM = sum(A[(i+1):(i+1+M)]) for j in range(i+1+M, len(A)): sumM += A[j]-A[j-M] res = max(res, sumL+sumM) return res
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: result = 0 lsum = sum(A[0:L]) msum = sum(A[L:L+M]) psum = 0 j = 0 result = max(result, max(lsum + msum, lsum + psum)) # print(lsum, msum, psum, result) prefix = [0]*len(A) for i in range(0, len(A) - M + 1): prefix[i+M-1] = sum(A[i:i+M]) for k in range(L+M-1, len(A)): result = max(result, lsum + prefix[k]) for i in range(L, len(A)): lsum = lsum - A[i-L] + A[i] if i+M <= len(A) - 1: for k in range(i+M, len(A)): result = max(result, lsum + prefix[k]) if i-L > M-1: # print(i) for k in range(0, i-L): result = max(result, lsum + prefix[k]) # print(lsum, result) return result
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: result = 0 lsum = sum(A[0:L]) msum = sum(A[L:L+M]) psum = 0 j = 0 result = max(result, max(lsum + msum, lsum + psum)) # print(lsum, msum, psum, result) prefix = [0]*len(A) for i in range(0, len(A) - M + 1): prefix[i+M-1] = sum(A[i:i+M]) for k in range(L+M-1, len(A)): result = max(result, lsum + prefix[k]) for i in range(L, len(A)): lsum = lsum - A[i-L] + A[i] if i+M <= len(A) - 1: for k in range(i+M, len(A)): result = max(result, lsum + prefix[k]) if i-L > M-1: # print(i) for k in range(0, i-L): result = max(result, lsum + prefix[k]) # print(lsum, result) return result
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: result = 0 lsum = sum(A[0:L]) msum = sum(A[L:L+M]) psum = 0 j = 0 result = max(result, max(lsum + msum, lsum + psum)) # print(lsum, msum, psum, result) prefix = [0]*len(A) for i in range(0, len(A) - M + 1): prefix[i+M-1] = sum(A[i:i+M]) # For the first run the below is imp for k in range(L+M-1, len(A)): result = max(result, lsum + prefix[k]) for i in range(L, len(A)): lsum = lsum - A[i-L] + A[i] if i+M <= len(A) - 1: for k in range(i+M, len(A)): result = max(result, lsum + prefix[k]) if i-L > M-1: # print(i) for k in range(0, i-L): result = max(result, lsum + prefix[k]) # print(lsum, result) return result
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: prefix_sum = [0] * (len(A)+1) for i in range(1, len(prefix_sum)): prefix_sum[i] = A[i-1] + prefix_sum[i-1] max_sum = 0 # start with L for i in range(L, len(prefix_sum)): L_sum = prefix_sum[i] - prefix_sum[i-L] for j in range(i+M, len(prefix_sum)): M_sum = prefix_sum[j] - prefix_sum[j-M] max_sum = max(max_sum, L_sum + M_sum) # start with M for i in range(M, len(prefix_sum)): M_sum = prefix_sum[i] - prefix_sum[i-M] for j in range(i+L, len(prefix_sum)): L_sum = prefix_sum[j] - prefix_sum[j-L] max_sum = max(max_sum, L_sum + M_sum) return max_sum
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: lhash, mhash = dict(), dict() for i in range(len(A) - L + 1): if i == 0: lhash[i] = sum(A[:L]) else: lhash[i] = lhash[i - 1] - A[i - 1] + A[i + L -1] for i in range(len(A) - M + 1): if i == 0: mhash[i] = sum(A[:M]) else: mhash[i] = mhash[i - 1] - A[i - 1] + A[i + M - 1] res = 0 for i in range(0 , len(A) - L + 1): if i > len(A) - M: break for j in range(i + L - 1 + 1, len(A) - M + 1 ): res = max(res, lhash[i] + mhash[j]) for j in range(0, len(A) - M + 1): if j > len(A) - L: break for i in range(j + M - 1 + 1, len(A) - L + 1): res = max(res, lhash[i] + mhash[j]) return res
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: ans = 0 sub1 = 0 for i in range(L-1): sub1 += A[i] for i in range(L-1, len(A)): sub1 += A[i] if i >= L+M-1: sub2 = 0 for j in range(M-1): sub2 += A[j] for j in range(M-1, i-L+1): sub2 += A[j] ans = max(ans, sub1+sub2) sub2 -= A[j-M+1] if i <= len(A)-M-1: sub2 = 0 for j in range(i+1, i+M): sub2 += A[j] for j in range(i+M, len(A)): sub2 += A[j] ans = max(ans, sub1+sub2) sub2 -= A[j-M+1] sub1 -= A[i-L+1] return ans
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: prefix_sum, current_sum = [], 0 for num in A: current_sum += num prefix_sum.append(current_sum) #print(prefix_sum) i, j = -1, L-1 max_m, sub = float('-inf'), 0 sum_l, max_tot = 0, 0 while j < len(prefix_sum): sum_l = prefix_sum[j] - sub sum_m = max(self.findM(prefix_sum[:i+1], M, 0),self.findM(prefix_sum[j+1:], M, prefix_sum[j])) max_tot = max(max_tot, sum_m+sum_l) i += 1 j += 1 sub = prefix_sum[i] return max_tot def findM(self, prefix_sum, M, sub): if not prefix_sum or len(prefix_sum) < M: return 0 max_m = float('-inf') sum_m = 0 i, j = -1, M-1 while j < len(prefix_sum): sum_m = (prefix_sum[j] - sub) i += 1 j += 1 sub = prefix_sum[i] max_m = max(sum_m, max_m) #print(sum_m, prefix_sum) return max_m
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
from typing import List class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: sum_up_to = [0] total = 0 for n in A: total += n sum_up_to.append(total) lsum = [] msum = [] for i in range(1,len(A)+1): if i >= L: lsum.append(sum_up_to[i]-sum_up_to[i-L]) else: lsum.append(None) if i >= M: msum.append(sum_up_to[i]-sum_up_to[i-M]) else: msum.append(None) max_sum = 0 for i in range(len(lsum)): if lsum[i] is None: continue for j in list(range(i-L))+list(range(i+M, len(msum))): if msum[j] is None: continue max_sum = max(max_sum, lsum[i]+msum[j]) return max_sum
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: # for each array of length L we need to find the max sum array of length M # we keep an array of cummulative sum so that we do not need to calculate them again and again if L+M > len(A): # no such array is possible return 0 answer = [0] max_sum = -float('inf') for i in range(len(A)): answer.append(answer[-1] + A[i]) for i in range(len(A)-L+1): if i >= M: # then only we can find non overlapping subarray in the beginning for j in range(i-M+1): # print(i,j, answer[i+L] - answer[i], answer[j+M] - answer[j]) max_sum = max(max_sum,answer[i+L] - answer[i] + answer[j+M] - answer[j]) if i + L <= len(A) - M: # then only we can find non overlapping subarray in the end for j in range(i + L, len(A) - M + 1): # print(i,j,answer[i+L] - answer[i], answer[j+M] - answer[j]) max_sum = max(max_sum,answer[i+L] - answer[i] + answer[j+M] - answer[j]) return max_sum
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: cumsums = [] cumsum = 0 cumsums.append(cumsum) for num in A: cumsum += num cumsums.append(cumsum) n = len(A) ans = -float('inf') print(cumsums) for i in range(0, n - L - M + 1): for j in range(i + L, n - M + 1): ans = max(ans, cumsums[i + L] - cumsums[i] + cumsums[j + M] - cumsums[j]) for i in range(0, n - M - L + 1): for j in range(i + M, n - L + 1): ans = max(ans, cumsums[i + M] - cumsums[i] + cumsums[j + L] - cumsums[j]) return ans
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: if L + M == len(A): return sum(A) max_sum2 = 0 cur_sum2 = 0 total_len = len(A) def find_max_subarray(start_idx, end_idx, l): nonlocal A max_sum = 0 cur_sum = 0 for idx in range(start_idx, l + start_idx): max_sum += A[idx] cur_sum = max_sum for idx in range(l + start_idx, end_idx): cur_sum = cur_sum + A[idx] - A[idx - l] max_sum = max(max_sum, cur_sum) return max_sum cur_sum2 = 0 for idx in range(L): cur_sum2 += A[idx] max_sum2 = cur_sum2 + find_max_subarray(L, total_len, M) for idx in range(L, total_len - M): cur_sum2 = cur_sum2 + A[idx] - A[idx - L] max_sum2 = max(max_sum2, cur_sum2 + find_max_subarray(idx+1, total_len, M)) if L != M: cur_sum2 = 0 for idx in range(M): cur_sum2 += A[idx] max_sum2 = max(max_sum2, cur_sum2 + find_max_subarray(M, total_len, L)) for idx in range(M, total_len - L): cur_sum2 = cur_sum2 + A[idx] - A[idx - M] max_sum2 = max(max_sum2, cur_sum2 + find_max_subarray(idx+1, total_len, L)) return max_sum2
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: preSum = [0] acc = 0 for i in range(len(A)): acc += A[i] preSum.append(acc) #preSum[j] = A[0] + A[1] + ...+ A[j - 1] # preSum[j] - preSum[i] = A[j - 1] + ... + A[i] length = j - i # preSum[i] - preSum[i - L] = A[i - 1] + .... + A[i - L] # preSum[j + M] - preSum[j] = A[j + M - 1] + ...+ A[j] mx = 0 for i in range(L, len(preSum)): for j in range(i, len(preSum) - M): left = preSum[i] - preSum[i - L] right = preSum[j + M] - preSum[j] mx = max(mx, left + right) for i in range(M, len(preSum)): for j in range(i, len(preSum) - L): left = preSum[i] - preSum[i - M] right = preSum[j + L] - preSum[j] mx = max(mx, left + right) return mx
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: ans = 0 for f, l in zip([L, M], [M, L]): max_first = first = sum(A[:f]) ans = max(ans, first + sum(A[f:f+l])) for i in range(f, len(A) - l): first = first + A[i] - A[i-f] max_first = max(max_first, first) ans = max(ans, max_first + sum(A[i+1:i+1+l])) return ans
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: sums = list(itertools.accumulate(A)) def get_sums(n): return [(sums[i]-sums[i-n] if i-n >= 0 else sums[i], i-n+1, i) for i in range(n-1, len(sums))] l_sums = get_sums(L) m_sums = get_sums(M) max_sum = float('-inf') for l_sum, l_i, l_j in l_sums: for m_sum, m_i, m_j in m_sums: if m_j < l_i or l_j < m_i: max_sum = max(max_sum, m_sum + l_sum) return max_sum # we know there will be len - (L+M) elements excluded # there will a stretch between before them # iterate through looking for the larger array sum # search in the left and right remainders for the smaller array sum of size x
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: ''' Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 9 + (6+5) = 20 A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 (8+9)+ (3+8+1) = 29 A = [3,8,1,3,2,1,8,9,3], L = 3, M = 2 (3+8)+(8+9+3) = 31 3,8,1 + 3,2 3,8,1 + 2,1 - try all possibilities (A[i:i+L], A[i+L: i+L+M]) (A[i:i+M], A[i+M: i+L+M]) - get the max value - memoize L = 3 M = 2 preprocess [0, 6, 11, 13, 15, 20, 21, 30, 34] ^ ^ (11-0)+(20-11)=20 (11-0)+(21-13)=19 (11-0)+(21-13)=19 (11-0)+(30-15)=26 (11-0)+(34-20)=25 (13-0)+(21-13)=21 (13-0)+(30-15)=28 (13-0)+(30-20)=23 (13-0)+(30-20)=23 (15-6)+(30-15)=24 (15-6)+(34-20)=23 (20-11)+(34-20)=23 O(n^2) 0 6 5 2 2 5 1 9 4, 1, 2 ''' arr = self.preprocess(A) def helper(arr, n1, n2): max_val = 0 for i in range(n1-1, len(arr)-n2): for j in range(i+n2, len(arr)): val1 = arr[i] if i-n1 < 0 else arr[i]-arr[i-n1] val2 = arr[j]-arr[j-n2] max_val = max(val1+val2, max_val) return max_val return max(helper(arr, L, M), helper(arr, M, L)) def preprocess(self, A): total = 0 result = [0 for _ in range(len(A))] for i in range(len(A)): total+=A[i] result[i]=total return result
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: self.cum = [A[0]] for i in range(1, len(A)): self.cum.append(self.cum[i-1] + A[i]) largest = 0 for i in range(len(A) - L + 1): l_sum = self.cum[i+L-1] - self.cum[i] + A[i] m_sum = 0 for j in range(i - M + 1): m_sum = max(m_sum, self.cum[j+M-1] - self.cum[j] + A[j]) for j in range(i+L, len(A) - M +1): m_sum = max(m_sum, self.cum[j+M-1] - self.cum[j] + A[j]) largest = max(largest, l_sum + m_sum) return largest
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: l=len(A) presum=[0]*(l+1) for i in range(l): presum[i+1]=presum[i]+A[i] if L<M: M,L=L,M ans=0 for i in range(l-L+1): tmp=presum[i+L]-presum[i] j=0 while j<(l-M+1): if i<j+M<i+L: j=i+L else: ans=max(ans,tmp+presum[j+M]-presum[j]) j+=1 return ans
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: ''' [0,6,5,2,2,5,1,9,4] [0,6,11,13,15,20,21,30,34] i i max_sum = -? ''' summ = 0 for i in range(len(A)): summ += A[i] A[i] = summ max_sum = -float('inf') for i in range(len(A) - L + 1): if i - 1 > -1: L_sum = A[i+L - 1] - A[i - 1] else: L_sum = A[i+L - 1] M_max_sum = -float('inf') for j in range(i - M + 1): if j - 1 > -1: M_sum = A[j+M-1] - A[j - 1] else: M_sum = A[j+M-1] M_max_sum = max(M_max_sum, M_sum) for j in range(i+L, len(A) - M + 1): if j - 1 > -1: M_sum = A[j+M-1] - A[j - 1] else: M_sum = A[j+M-1] M_max_sum = max(M_max_sum, M_sum) max_sum = max(max_sum, L_sum + M_max_sum) return max_sum
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: presum = [0] for a in A: presum.append(presum[-1] + a) def helper(A, l1, l2): res = 0 N = len(A) for i in range(N - l1 + 1 - l2): for j in range(i + l1, N - l2 + 1): s1 = presum[i + l1 - 1 + 1] - presum[i] s2 = presum[j + l2 - 1 + 1] - presum[j] res = max(res, s1 + s2) return res r1 = helper(A, L, M) r2 = helper(A, M, L) return max(r1, r2)
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: cur_max_l = max_l = sum(A[:L]) ans = max_l + sum(A[L:L+M]) for i in range(L, len(A) - M): cur_max_l = cur_max_l + A[i] - A[i-L] max_l = max(max_l, cur_max_l) ans = max(ans, max_l + sum(A[i+1:i+1+M])) cur_max_m = max_m = sum(A[:M]) ans = max(ans, max_m + sum(A[M:L+M])) for i in range(M, len(A) - L): cur_max_m = cur_max_m + A[i] - A[i-M] max_m = max(max_m, cur_max_m) ans = max(ans, max_m + sum(A[i+1:i+1+L])) return ans
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
from itertools import accumulate from functools import lru_cache class Solution: def maxSumTwoNoOverlap(self, A: List[int], L0: int, M0: int) -> int: #lru_cache(None) def range_sum(i,j): return accum[j-1] - (accum[i-1] if i > 0 else 0) if not A: return 0 max_sum = 0 accum = list(accumulate(A,lambda x,y:x+y)) for L,M in ((L0,M0),(M0,L0)): for i in range(len(A)-L+1): sum1 = range_sum(i,i+L) for j in range(i+L,len(A)-M+1): sum2 = range_sum(j,j+M) max_sum = max(max_sum, sum1+sum2) return max_sum
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: cumul = [0] for a in A: cumul.append(cumul[-1] + a) best = 0 for i in range(len(A) - L - M + 1): for j in range(i + L, len(A) - M + 1): best = max(best, cumul[i + L] - cumul[i] + cumul[j + M] - cumul[j]) for j in range(i + M, len(A) - L + 1): best = max(best, cumul[i + M] - cumul[i] + cumul[j + L] - cumul[j]) return best
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
from itertools import accumulate class Solution: def maxSumTwoNoOverlap(self, A: List[int], L0: int, M0: int) -> int: def range_sum(i,j): return accum[j-1] - (accum[i-1] if i > 0 else 0) if not A: return 0 max_sum = 0 accum = list(accumulate(A,lambda x,y:x+y)) for L,M in ((L0,M0),(M0,L0)): for i in range(len(A)-L+1): sum1 = range_sum(i,i+L) for j in range(i+L,len(A)-M+1): sum2 = range_sum(j,j+M) max_sum = max(max_sum, sum1+sum2) return max_sum
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
from itertools import accumulate class Solution: def maxSumTwoNoOverlap(self, A: List[int], L0: int, M0: int) -> int: def range_sum(i,j): return accum[j-1] - (accum[i-1] if i > 0 else 0) if not A: return 0 max_sum = 0 accum = list(accumulate(A,lambda x,y:x+y)) for L,M in ((L0,M0),(M0,L0)): for i in range(len(A)-L+1): sum1 = range_sum(i,i+L) for j in range(i+L,len(A)-M+1): sum2 = range_sum(j,j+M) max_sum = max(max_sum, sum1+sum2) return max_sum
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: if len(A)< M+L: return -1 def getSumM(start, end): if end-start<M: return 0 preSumM=sum(A[start:start+M]) maxM=preSumM for i in range(start+1,end-M+1): preSumM=preSumM-A[i-1]+A[i+M-1] maxM=max(maxM,preSumM) return maxM preSumL=sum(A[:L-1]) maxSum=-sys.maxsize for i in range(len(A)-L+1): preSumL=preSumL+A[i+L-1] leftSumM=getSumM(0,i) rightSumM=getSumM(i+L,len(A)) maxSum= max(maxSum,preSumL+max(leftSumM,rightSumM)) preSumL=preSumL-A[i] return maxSum
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, arr: List[int], L: int, M: int) -> int: Lsum = [0]*len(arr) Msum = [0]*len(arr) def makeWindow(arr,res,size): window = 0 for i in range(0,size): window += arr[i] res[i] = window for i in range(size,len(arr)): res[i] = res[i-1] -arr[i-size] +arr[i] makeWindow(arr,Lsum,L) makeWindow(arr,Msum,M) res = 0 for i in range(L-1,len(arr)): for j in range(0,i-L): res = max(res,Lsum[i]+Msum[j]) for j in range(i+M,len(arr)): res = max(res,Lsum[i]+Msum[j]) return res
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: ''' 1. create cumsum arr 2. create arr of subarry sums from cumsum for L and M 3. N^2 mix and match while ensuring the nums don't overlap ''' cumsum = [] for num in A: if not cumsum: cumsum.append(num) else: cumsum.append(cumsum[-1]+num) Lsums = [0]*len(A) Msums = [0]*len(A) if M>L: L,M = M,L # makes M smaller for j in range(L-1,len(A)): if j==L-1: Lsums[j] = cumsum[j] else: Lsums[j] = cumsum[j]-cumsum[j-L] for j in range(M-1,len(A)): if j==M-1: Msums[j] = cumsum[j] else: Msums[j] = cumsum[j]-cumsum[j-M] out = 0 for l in range(L-1,len(A)): for m in range(M-1,len(A)): # M is before L completely # M is after L completely if m <= l-L or m-M>=l: out = max(out,Lsums[l]+Msums[m]) return out
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
from typing import List class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: prefix_sums = [0] current_sum = 0 for right in range(len(A)): current_sum += A[right] prefix_sums.append(current_sum) # print(prefix_sums) best = 0 left = 0 memo = dict() while left+L <= len(A) and left+L < len(prefix_sums): limits = ((0, left), (left+L, len(prefix_sums))) best_m = self.get_max_subarray(prefix_sums, M, limits, memo) subarray_sum = best_m[0] + prefix_sums[left+L]-prefix_sums[left] # if subarray_sum > best: # print(f'{A[best_m[1]:best_m[2]]}={best_m[0]}') # print(f'{A[left:left+L]}={subarray_sum-best_m[0]}') best = max(best, subarray_sum) left += 1 return best def get_max_subarray(self, sums, length, limits, memo): # stores highest sum as tuple of (sum, left, right (exclusive)) if (length, limits) in memo: return memo[(length, limits)] high_score = (0,0,0) for limit in limits: left = limit[0] # test subarrays of length within limit[0] and limit[1] (excluding limit[1]) while left + length <= limit[1] and left + length < len(sums): subarray_sum = sums[left+length] - sums[left] # print(f'{left}:{left+length}={subarray_sum}') high_score = max(high_score, (subarray_sum, left, left+length)) # print(f'high: {high_score}') left+=1 memo[(length, limits)] = high_score return high_score
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: prefix = [0] for num in A: prefix.append(num+prefix[-1]) n = len(A) ans = 0 for i in range(n-L+1): a = prefix[i+L]-prefix[i] for j in range(n-M+1): if j+M<=i or i+L<=j: b = prefix[j+M]-prefix[j] ans = max(ans, a+b) return ans
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: def solve(arr, la, lb): n = len(arr) post = [0] * n pre = [0] * n ans = 0 curr = 0 for i in range(n-1, -1, -1): curr += arr[i] if i < n-lb: curr -= arr[i+lb] post[i] = max(curr, post[i+1]) else: post[i] = curr curr = 0 for i in range(n): curr += arr[i] if i >= la: curr -= arr[i-la] pre[i] = max(curr, pre[i-1]) else: pre[i] = curr if i < n-1: ans = max(ans, pre[i] + post[i+1]) return ans return max(solve(A, L, M), solve(A, M, L))
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: N = len(A) sum_l = [sum(A[i:i+L]) for i in range(N-L+1)] sum_m = [sum(A[i:i+M]) for i in range(N-M+1)] max_sum = 0 for i in range(len(sum_l)): for j in range(len(sum_m)): if (i <= j and j < (i+L)) or (i >= j and i < (j+M)): continue max_sum = max(max_sum, sum_l[i]+sum_m[j]) return max_sum
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: temp, prefix_sums = 0, [0] N = len(A) maxsum = 0 # define prefix_sums[i] as: A[0] + A[1] + ... + A[i-1] for i in range(N): prefix_sums.append(temp + A[i]) temp += A[i] # the last subarray = A[i] + A[i+1] + ... + A[N-1], so maximum i = N - L for i in range(0, N - L + 1): for j in range(0, i - M + 1): # print(\"i=\",i,\"; j=\",j) if j < 0: continue sum1 = prefix_sums[i + L] - prefix_sums[i] sum2 = prefix_sums[j + M] - prefix_sums[j] maxsum = max(maxsum, sum1+sum2) for j in range(i + L, N - M + 1): # print(\"i=\",i,\"; j=\",j) if j + M -1 >= N: continue sum1 = prefix_sums[i + L] - prefix_sums[i] sum2 = prefix_sums[j + M] - prefix_sums[j] maxsum = max(maxsum, sum1+sum2) return maxsum
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: l_sums = [] m_sums = [] flag_l = 0 flag_m = 0 l_sum_tmp = 0 r_sum_tmp = 0 for i in range(len(A)): if flag_l < L: flag_l += 1 l_sum_tmp += A[i] else: l_sums.append(l_sum_tmp) l_sum_tmp += A[i] - A[i-L] if flag_m < M: flag_m += 1 r_sum_tmp += A[i] else: m_sums.append(r_sum_tmp) r_sum_tmp += A[i] - A[i-M] m_sums.append(r_sum_tmp) l_sums.append(l_sum_tmp) max_sum = -1 for i in range(len(m_sums)): for j in range(len(l_sums)): if i+M<=j or j+L<=i: # print(m_sums[i], l_sums[j]) max_sum = max(m_sums[i]+l_sums[j], max_sum) return max_sum return 1
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: sum_l = [] sum_m = [] for i in range(len(A) - L + 1): sum_l.append(sum(A[i: i+L])) for i in range(len(A) - M + 1): sum_m.append(sum(A[i: i+M])) res = 0 for i in range(len(A) - L + 1): for j in range(len(A) - M + 1): if i + L <= j or i >= j + M: res = max(res, sum_l[i] + sum_m[j]) return res
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: if L + M == len(A): return sum(A) prefixSums = [0] * len(A) prefixSums[0] = A[0] for i in range(1, len(A)): prefixSums[i] = prefixSums[i-1] + A[i] #print(prefixSums) maxSum = -1 tempSum = None secondTemp = None for i in range(0, len(A) - L + 1): if i == 0: tempSum = prefixSums[i + L - 1] else: tempSum = prefixSums[i + L - 1] - prefixSums[i - 1] for j in range(0, len(A) - M + 1): if j + M - 1 < i or j > i + L - 1: if j == 0: secondTemp = prefixSums[j + M - 1] else: secondTemp = prefixSums[j + M - 1] - prefixSums[j - 1] if maxSum < tempSum + secondTemp: maxSum = tempSum + secondTemp return maxSum
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: la = [] ma = [] i = 0 for i in range(len(A) - L + 1): la.append(sum(A[i:i+L])) for i in range(len(A) - M + 1): ma.append(sum(A[i:i+M])) print((la, ma)) maxi = 0 for i in range(len(la)): for j in range(len(ma)): if i < j: if i + L > j: continue if j < i: if j + M > i: continue if j == i: continue maxi = max(maxi, la[i]+ma[j]) return maxi
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxSubarrayOfLengthK(self,A,start,end,K): if end-start < K: return (float('-inf'),0,len(A)+1) total_sum = 0 for i in range(start,start+K): total_sum += A[i] opt_sum = (total_sum,start,start+K-1) for j in range(start+K,end): total_sum += (A[j]-A[j-K]) if total_sum > opt_sum[0]: opt_sum = (total_sum,j-K+1,j) return opt_sum def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: prefix_sums = [0 for _ in A+[0]] for i in range(1,len(A)+1): prefix_sums[i] = A[i-1] + prefix_sums[i-1] def solve(prefix_sums,L,M): res = 0 for i in range(len(A)-L): total_sum = prefix_sums[i+L] - prefix_sums[i] l1,r1 = 0,i l2,r2 = i+L,len(A) other = max(self.maxSubarrayOfLengthK(A,l1,r1,M)[0],self.maxSubarrayOfLengthK(A,l2,r2,M)[0]) res = max(total_sum+other,res) return res return max(solve(prefix_sums,L,M),solve(prefix_sums,M,L))
Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping (contiguous) subarrays, which have lengths L and M.  (For clarification, the L-length subarray could occur before or after the M-length subarray.) Formally, return the largest V for which V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) and either: 0 <= i < i + L - 1 < j < j + M - 1 < A.length, or 0 <= j < j + M - 1 < i < i + L - 1 < A.length.   Example 1: Input: A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2 Output: 20 Explanation: One choice of subarrays is [9] with length 1, and [6,5] with length 2. Example 2: Input: A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2 Output: 29 Explanation: One choice of subarrays is [3,8,1] with length 3, and [8,9] with length 2. Example 3: Input: A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3 Output: 31 Explanation: One choice of subarrays is [5,6,0,9] with length 4, and [3,8] with length 3.   Note: L >= 1 M >= 1 L + M <= A.length <= 1000 0 <= A[i] <= 1000
class Solution: def maxWindowSum(self, A, M): acc = [A[0]] for i in range(1, len(A)): acc.append(acc[i-1] + A[i]) maxSum = sum(A[:M]) for i in range(M, len(A)): maxSum = max(maxSum, acc[i] - acc[i-M]) return maxSum def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int: n = len(A) if not A or L+M > n: return 0 left = [] right = [] maxSum = 0 for i in range(n - L + 1): maxL = sum(A[i:i+L]) maxM = 0 if i >= M: left = A[:i] maxM = max(maxM,self.maxWindowSum(left, M)) if n - i - L >= M: right = A[i+L:] maxM = max(maxM, self.maxWindowSum(right, M)) maxSum = max(maxSum, maxL + maxM) return maxSum
Given a wooden stick of length n units. The stick is labelled from 0 to n. For example, a stick of length 6 is labelled as follows: Given an integer array cuts where cuts[i] denotes a position you should perform a cut at. You should perform the cuts in order, you can change the order of the cuts as you wish. The cost of one cut is the length of the stick to be cut, the total cost is the sum of costs of all cuts. When you cut a stick, it will be split into two smaller sticks (i.e. the sum of their lengths is the length of the stick before the cut). Please refer to the first example for a better explanation. Return the minimum total cost of the cuts.   Example 1: Input: n = 7, cuts = [1,3,4,5] Output: 16 Explanation: Using cuts order = [1, 3, 4, 5] as in the input leads to the following scenario: The first cut is done to a rod of length 7 so the cost is 7. The second cut is done to a rod of length 6 (i.e. the second part of the first cut), the third is done to a rod of length 4 and the last cut is to a rod of length 3. The total cost is 7 + 6 + 4 + 3 = 20. Rearranging the cuts to be [3, 5, 1, 4] for example will lead to a scenario with total cost = 16 (as shown in the example photo 7 + 4 + 3 + 2 = 16). Example 2: Input: n = 9, cuts = [5,6,1,4,2] Output: 22 Explanation: If you try the given cuts ordering the cost will be 25. There are much ordering with total cost <= 25, for example, the order [4, 6, 5, 2, 1] has total cost = 22 which is the minimum possible.   Constraints: 2 <= n <= 10^6 1 <= cuts.length <= min(n - 1, 100) 1 <= cuts[i] <= n - 1 All the integers in cuts array are distinct.
class Solution: def minCost(self, n: int, cuts: List[int]) -> int: cuts.sort() from functools import lru_cache @lru_cache(None) def helper(i = 0, j = n): ans = math.inf for c in cuts: if c <= i: continue if c >= j: break ans = min(ans, j - i + helper(i, c) + helper(c, j)) if ans == math.inf: return 0 return ans return helper()