Datasets:

inputs
stringlengths
50
14k
targets
stringlengths
4
655k
Given a string, you have to return a string in which each character (case-sensitive) is repeated once. ```python double_char("String") ==> "SSttrriinngg" double_char("Hello World") ==> "HHeelllloo WWoorrlldd" double_char("1234!_ ") ==> "11223344!!__ " ``` Good Luck!
def double_char(s): new_string = '' for c in s: new_string = new_string + c + c return new_string
Given a string, you have to return a string in which each character (case-sensitive) is repeated once. ```python double_char("String") ==> "SSttrriinngg" double_char("Hello World") ==> "HHeelllloo WWoorrlldd" double_char("1234!_ ") ==> "11223344!!__ " ``` Good Luck!
def double_char(s): return ''.join(''.join(i) for i in zip(s, s))
Given a string, you have to return a string in which each character (case-sensitive) is repeated once. ```python double_char("String") ==> "SSttrriinngg" double_char("Hello World") ==> "HHeelllloo WWoorrlldd" double_char("1234!_ ") ==> "11223344!!__ " ``` Good Luck!
def double_char(s): final_str = "" for char in s: final_str += (char + char) return final_str
Given a string, you have to return a string in which each character (case-sensitive) is repeated once. ```python double_char("String") ==> "SSttrriinngg" double_char("Hello World") ==> "HHeelllloo WWoorrlldd" double_char("1234!_ ") ==> "11223344!!__ " ``` Good Luck!
def double_char(s): new_str = '' for i in s: new_str = new_str + i + i return new_str
Given a string, you have to return a string in which each character (case-sensitive) is repeated once. ```python double_char("String") ==> "SSttrriinngg" double_char("Hello World") ==> "HHeelllloo WWoorrlldd" double_char("1234!_ ") ==> "11223344!!__ " ``` Good Luck!
def double_char(s): solution = '' for char in s: solution += char * 2 return solution
Given a string, you have to return a string in which each character (case-sensitive) is repeated once. ```python double_char("String") ==> "SSttrriinngg" double_char("Hello World") ==> "HHeelllloo WWoorrlldd" double_char("1234!_ ") ==> "11223344!!__ " ``` Good Luck!
def double_char(s): res = map(lambda x: x *2, s) res = ''.join(res) return res
Given a string, you have to return a string in which each character (case-sensitive) is repeated once. ```python double_char("String") ==> "SSttrriinngg" double_char("Hello World") ==> "HHeelllloo WWoorrlldd" double_char("1234!_ ") ==> "11223344!!__ " ``` Good Luck!
def double_char(s): return "".join(map(lambda i: i+i, s))
Given a string, you have to return a string in which each character (case-sensitive) is repeated once. ```python double_char("String") ==> "SSttrriinngg" double_char("Hello World") ==> "HHeelllloo WWoorrlldd" double_char("1234!_ ") ==> "11223344!!__ " ``` Good Luck!
from itertools import repeat def double_char(s): return ''.join([x for item in s for x in repeat(item, 2)])
Given a string, you have to return a string in which each character (case-sensitive) is repeated once. ```python double_char("String") ==> "SSttrriinngg" double_char("Hello World") ==> "HHeelllloo WWoorrlldd" double_char("1234!_ ") ==> "11223344!!__ " ``` Good Luck!
def double_char(s): a="" for i in s: i=i*2 a+=i return a
Given a string, you have to return a string in which each character (case-sensitive) is repeated once. ```python double_char("String") ==> "SSttrriinngg" double_char("Hello World") ==> "HHeelllloo WWoorrlldd" double_char("1234!_ ") ==> "11223344!!__ " ``` Good Luck!
def double_char(s): x = '' return x.join(i * 2 for i in s)
Given a string, you have to return a string in which each character (case-sensitive) is repeated once. ```python double_char("String") ==> "SSttrriinngg" double_char("Hello World") ==> "HHeelllloo WWoorrlldd" double_char("1234!_ ") ==> "11223344!!__ " ``` Good Luck!
def double_char(s): aç = "" for a in s: aç += a*2 return aç
Given a string, you have to return a string in which each character (case-sensitive) is repeated once. ```python double_char("String") ==> "SSttrriinngg" double_char("Hello World") ==> "HHeelllloo WWoorrlldd" double_char("1234!_ ") ==> "11223344!!__ " ``` Good Luck!
def double_char(s): return ''.join(x * 2 for x in list(s[:]))
A circle is defined by three coplanar points that are not aligned. You will be given a list of circles and a point [xP, yP]. You have to create a function, ```count_circles()``` (Javascript ```countCircles()```), that will count the amount of circles that contains the point P inside (the circle border line is included). ```python list_of_circles = ([[[-3,2], [1,1], [6,4]], [[-3,2], [1,1], [2,6]], [[1,1], [2,6], [6,4]], [[[-3,2],[2,6], [6,4]]] point1 = [1, 4] # P1 count_circles(list_of_circles, point1) == 4 #(The four circles have P1 inside) ``` It may happen that the point may be external to all the circles. ```python list_of_circles = ([[[-3,2], [1,1], [6,4]], [[-3,2], [1,1], [2,6]], [[1,1], [2,6], [6,4]], [[-3,2],[2,6], [6,4]]] point2 = [10, 6] # P2 count_circles(list_of_circles, point2) == 0 #(P2 is exterior to the four circles) ``` The point may be in the circle line and that will be consider as an internal point of it, too. For practical purposes a given point ```P``` will be in the circle line if: |r - d|/r < 10^(-10) ```r```: radius of the circle that should be calculated from the coordinates of the three given points. ```d```: distance from the point ```P``` to the center of the circle. Again we have to do a calculation, the coordinates of the center should be calculated using the coordinates of the three given points. Let's see a case when the pints is in the circle line. ```python list_of_circles = ([[[-3,2], [1,1], [6,4]], [[-3,2], [1,1], [2,6]], [[1,1], [2,6], [6,4]], [[[-3,2],[2,6], [6,4]]] point3 = point2 = [2, 6] # P3 count_circles(list_of_circles, point3) == 4 #(P3 is an internal point of the four circles) ``` All these three cases are shown in the image below: Your code should be able to skip these cases: - inexistent circle when we have three points aligned - undefined circles when two or three of given points coincides. First ten people to solve it will receive extra points. Hints: This kata will give you important formulas: ```Give The Center And The Radius of Circumscribed Circle. (A warm up challenge)``` ```http://www.codewars.com/kata/give-the-center-and-the-radius-of-circumscribed-circle-a-warm-up-challenge``` Features of the tests: ```N: amount of Tests``` ```n: amount of given circles``` ```x, y: coordinates of the points that define the circle``` ```xP, yP: coordinates of the point P``` ```N = 500``` ```10 < n < 500``` ```-500 < x < 500, -500 < y < 500``` ```-750 < xP < -750, -750 < yP < -750```
def circum_curvat(points): A, B, C = [complex(*p) for p in points] BC, CA, AB = B - C, C - A, A - B D = 2. * (A.real * BC + B.real * CA + C.real * AB).imag if not D: return D, D U = (abs(A)**2 * BC + abs(B)**2 * CA + abs(C)**2 * AB) / D radius = (abs(BC) * abs(CA) * abs(AB)) / abs(D) return -1j * U, radius def count_circles(circles, point): return sum(abs(complex(*point) - center) < radius for center, radius in map(circum_curvat, circles))
A circle is defined by three coplanar points that are not aligned. You will be given a list of circles and a point [xP, yP]. You have to create a function, ```count_circles()``` (Javascript ```countCircles()```), that will count the amount of circles that contains the point P inside (the circle border line is included). ```python list_of_circles = ([[[-3,2], [1,1], [6,4]], [[-3,2], [1,1], [2,6]], [[1,1], [2,6], [6,4]], [[[-3,2],[2,6], [6,4]]] point1 = [1, 4] # P1 count_circles(list_of_circles, point1) == 4 #(The four circles have P1 inside) ``` It may happen that the point may be external to all the circles. ```python list_of_circles = ([[[-3,2], [1,1], [6,4]], [[-3,2], [1,1], [2,6]], [[1,1], [2,6], [6,4]], [[-3,2],[2,6], [6,4]]] point2 = [10, 6] # P2 count_circles(list_of_circles, point2) == 0 #(P2 is exterior to the four circles) ``` The point may be in the circle line and that will be consider as an internal point of it, too. For practical purposes a given point ```P``` will be in the circle line if: |r - d|/r < 10^(-10) ```r```: radius of the circle that should be calculated from the coordinates of the three given points. ```d```: distance from the point ```P``` to the center of the circle. Again we have to do a calculation, the coordinates of the center should be calculated using the coordinates of the three given points. Let's see a case when the pints is in the circle line. ```python list_of_circles = ([[[-3,2], [1,1], [6,4]], [[-3,2], [1,1], [2,6]], [[1,1], [2,6], [6,4]], [[[-3,2],[2,6], [6,4]]] point3 = point2 = [2, 6] # P3 count_circles(list_of_circles, point3) == 4 #(P3 is an internal point of the four circles) ``` All these three cases are shown in the image below: Your code should be able to skip these cases: - inexistent circle when we have three points aligned - undefined circles when two or three of given points coincides. First ten people to solve it will receive extra points. Hints: This kata will give you important formulas: ```Give The Center And The Radius of Circumscribed Circle. (A warm up challenge)``` ```http://www.codewars.com/kata/give-the-center-and-the-radius-of-circumscribed-circle-a-warm-up-challenge``` Features of the tests: ```N: amount of Tests``` ```n: amount of given circles``` ```x, y: coordinates of the points that define the circle``` ```xP, yP: coordinates of the point P``` ```N = 500``` ```10 < n < 500``` ```-500 < x < 500, -500 < y < 500``` ```-750 < xP < -750, -750 < yP < -750```
def count_circles(circles, point): return sum(inside(circle_xyr(circle), point) for circle in circles) def inside(xyr, pt): if xyr is None: return False x, y, r = xyr return dist(pt, (x, y)) <= r def circle_xyr(pts): if len(pts) != 3: return None m1, c1 = perpbisector(pts[0], pts[1]) m2, c2 = perpbisector(pts[0], pts[2]) if m1 == m2: return None x, y = (c1, m2*c1 + c2) if m1 is None else (c2, m1*c2 + c1) if m2 is None else ((c2 - c1)/(m1 - m2), m1*(c2 - c1)/(m1 - m2) + c1) return x, y, dist(pts[0], (x, y)) def perpbisector(a, b): ax, ay = a bx, by = b mpx, mpy = (ax + bx) / 2.0, (ay + by) / 2.0 if ax == bx: return 0, mpy if ay == by: return None, mpx m = (ax - bx) / float(by - ay) c = mpy - m * mpx return m, c def dist(a, b): return round(((a[0] - b[0])**2 + (a[1] - b[1])**2)**0.5, 8)
A circle is defined by three coplanar points that are not aligned. You will be given a list of circles and a point [xP, yP]. You have to create a function, ```count_circles()``` (Javascript ```countCircles()```), that will count the amount of circles that contains the point P inside (the circle border line is included). ```python list_of_circles = ([[[-3,2], [1,1], [6,4]], [[-3,2], [1,1], [2,6]], [[1,1], [2,6], [6,4]], [[[-3,2],[2,6], [6,4]]] point1 = [1, 4] # P1 count_circles(list_of_circles, point1) == 4 #(The four circles have P1 inside) ``` It may happen that the point may be external to all the circles. ```python list_of_circles = ([[[-3,2], [1,1], [6,4]], [[-3,2], [1,1], [2,6]], [[1,1], [2,6], [6,4]], [[-3,2],[2,6], [6,4]]] point2 = [10, 6] # P2 count_circles(list_of_circles, point2) == 0 #(P2 is exterior to the four circles) ``` The point may be in the circle line and that will be consider as an internal point of it, too. For practical purposes a given point ```P``` will be in the circle line if: |r - d|/r < 10^(-10) ```r```: radius of the circle that should be calculated from the coordinates of the three given points. ```d```: distance from the point ```P``` to the center of the circle. Again we have to do a calculation, the coordinates of the center should be calculated using the coordinates of the three given points. Let's see a case when the pints is in the circle line. ```python list_of_circles = ([[[-3,2], [1,1], [6,4]], [[-3,2], [1,1], [2,6]], [[1,1], [2,6], [6,4]], [[[-3,2],[2,6], [6,4]]] point3 = point2 = [2, 6] # P3 count_circles(list_of_circles, point3) == 4 #(P3 is an internal point of the four circles) ``` All these three cases are shown in the image below: Your code should be able to skip these cases: - inexistent circle when we have three points aligned - undefined circles when two or three of given points coincides. First ten people to solve it will receive extra points. Hints: This kata will give you important formulas: ```Give The Center And The Radius of Circumscribed Circle. (A warm up challenge)``` ```http://www.codewars.com/kata/give-the-center-and-the-radius-of-circumscribed-circle-a-warm-up-challenge``` Features of the tests: ```N: amount of Tests``` ```n: amount of given circles``` ```x, y: coordinates of the points that define the circle``` ```xP, yP: coordinates of the point P``` ```N = 500``` ```10 < n < 500``` ```-500 < x < 500, -500 < y < 500``` ```-750 < xP < -750, -750 < yP < -750```
def count_circles(list_of_circles, point, count = 0): return sum(1 for circle in list_of_circles if point_in(circle, point)) def point_in(points, point): helper = lambda x,y: (-1)**y*(points[(x+1)%3][(y+1)%2] - points[(x+2)%3][(y+1)%2]) D = 2*sum(points[i][0]*helper(i,0) for i in range(3)) U = [1.0 * sum(sum(points[i][j]**2 for j in range(2))*helper(i,k) for i in range(3))/D for k in range(2)] return compare(point, U, radius(points,D)) if (not invalid(points, D)) else False compare = lambda p, U, r: ((distance(U,p) < r) or (abs(r-distance(U,p))/r < 10**-10)) distance = lambda p1, p2: ((p2[0] - p1[0])**2 + (p2[1] - p1[1])**2)**0.5 invalid = lambda p, D: ((D == 0) or (p[0] == p[1]) or (p[0] == p[2]) or (p[1] == p[2])) radius = lambda p, D: distance(p[0],p[1])*distance(p[0],p[2])*distance(p[1],p[2])/abs(D)
A circle is defined by three coplanar points that are not aligned. You will be given a list of circles and a point [xP, yP]. You have to create a function, ```count_circles()``` (Javascript ```countCircles()```), that will count the amount of circles that contains the point P inside (the circle border line is included). ```python list_of_circles = ([[[-3,2], [1,1], [6,4]], [[-3,2], [1,1], [2,6]], [[1,1], [2,6], [6,4]], [[[-3,2],[2,6], [6,4]]] point1 = [1, 4] # P1 count_circles(list_of_circles, point1) == 4 #(The four circles have P1 inside) ``` It may happen that the point may be external to all the circles. ```python list_of_circles = ([[[-3,2], [1,1], [6,4]], [[-3,2], [1,1], [2,6]], [[1,1], [2,6], [6,4]], [[-3,2],[2,6], [6,4]]] point2 = [10, 6] # P2 count_circles(list_of_circles, point2) == 0 #(P2 is exterior to the four circles) ``` The point may be in the circle line and that will be consider as an internal point of it, too. For practical purposes a given point ```P``` will be in the circle line if: |r - d|/r < 10^(-10) ```r```: radius of the circle that should be calculated from the coordinates of the three given points. ```d```: distance from the point ```P``` to the center of the circle. Again we have to do a calculation, the coordinates of the center should be calculated using the coordinates of the three given points. Let's see a case when the pints is in the circle line. ```python list_of_circles = ([[[-3,2], [1,1], [6,4]], [[-3,2], [1,1], [2,6]], [[1,1], [2,6], [6,4]], [[[-3,2],[2,6], [6,4]]] point3 = point2 = [2, 6] # P3 count_circles(list_of_circles, point3) == 4 #(P3 is an internal point of the four circles) ``` All these three cases are shown in the image below: Your code should be able to skip these cases: - inexistent circle when we have three points aligned - undefined circles when two or three of given points coincides. First ten people to solve it will receive extra points. Hints: This kata will give you important formulas: ```Give The Center And The Radius of Circumscribed Circle. (A warm up challenge)``` ```http://www.codewars.com/kata/give-the-center-and-the-radius-of-circumscribed-circle-a-warm-up-challenge``` Features of the tests: ```N: amount of Tests``` ```n: amount of given circles``` ```x, y: coordinates of the points that define the circle``` ```xP, yP: coordinates of the point P``` ```N = 500``` ```10 < n < 500``` ```-500 < x < 500, -500 < y < 500``` ```-750 < xP < -750, -750 < yP < -750```
import math def count_circles(loc, point): c=0; px,py=point for i in range (0,len(loc)): circle=circum_curvat(loc[i][0],loc[i][1],loc[i][2]) if circle!=False: x,y,r=circle d=((x-px)**2+(y-py)**2)**.5 if d<=r+1e-10: c+=1 return c def circum_curvat(pointA, pointB, pointC): xA,yA=pointA; xB,yB=pointB; xC,yC=pointC if pointA==pointB or pointA==pointC or pointC==pointB: return False x=(xA**2+yA**2)*(yB-yC)+(xB**2+yB**2)*(yC-yA)+(xC**2+yC**2)*(yA-yB) y=(xA**2+yA**2)*(xC-xB)+(xB**2+yB**2)*(xA-xC)+(xC**2+yC**2)*(xB-xA) AB=((xB-xA)**2+(yB-yA)**2)**.5; BC=((xC-xB)**2+(yC-yB)**2)**.5; AC=((xC-xA)**2+(yC-yA)**2)**.5 D=2.0*(xA*(yB-yC)+xB*(yC-yA)+xC*(yA-yB)) if D==0: return False Ux=x/D; Uy=y/D if D<0: D=-D diam=AB*BC*AC/D return [Ux,Uy,diam]
A circle is defined by three coplanar points that are not aligned. You will be given a list of circles and a point [xP, yP]. You have to create a function, ```count_circles()``` (Javascript ```countCircles()```), that will count the amount of circles that contains the point P inside (the circle border line is included). ```python list_of_circles = ([[[-3,2], [1,1], [6,4]], [[-3,2], [1,1], [2,6]], [[1,1], [2,6], [6,4]], [[[-3,2],[2,6], [6,4]]] point1 = [1, 4] # P1 count_circles(list_of_circles, point1) == 4 #(The four circles have P1 inside) ``` It may happen that the point may be external to all the circles. ```python list_of_circles = ([[[-3,2], [1,1], [6,4]], [[-3,2], [1,1], [2,6]], [[1,1], [2,6], [6,4]], [[-3,2],[2,6], [6,4]]] point2 = [10, 6] # P2 count_circles(list_of_circles, point2) == 0 #(P2 is exterior to the four circles) ``` The point may be in the circle line and that will be consider as an internal point of it, too. For practical purposes a given point ```P``` will be in the circle line if: |r - d|/r < 10^(-10) ```r```: radius of the circle that should be calculated from the coordinates of the three given points. ```d```: distance from the point ```P``` to the center of the circle. Again we have to do a calculation, the coordinates of the center should be calculated using the coordinates of the three given points. Let's see a case when the pints is in the circle line. ```python list_of_circles = ([[[-3,2], [1,1], [6,4]], [[-3,2], [1,1], [2,6]], [[1,1], [2,6], [6,4]], [[[-3,2],[2,6], [6,4]]] point3 = point2 = [2, 6] # P3 count_circles(list_of_circles, point3) == 4 #(P3 is an internal point of the four circles) ``` All these three cases are shown in the image below: Your code should be able to skip these cases: - inexistent circle when we have three points aligned - undefined circles when two or three of given points coincides. First ten people to solve it will receive extra points. Hints: This kata will give you important formulas: ```Give The Center And The Radius of Circumscribed Circle. (A warm up challenge)``` ```http://www.codewars.com/kata/give-the-center-and-the-radius-of-circumscribed-circle-a-warm-up-challenge``` Features of the tests: ```N: amount of Tests``` ```n: amount of given circles``` ```x, y: coordinates of the points that define the circle``` ```xP, yP: coordinates of the point P``` ```N = 500``` ```10 < n < 500``` ```-500 < x < 500, -500 < y < 500``` ```-750 < xP < -750, -750 < yP < -750```
def dist(pointA, pointB): return ((pointB[0] - pointA[0])**2 + (pointB[1] - pointA[1])**2)**.5 def contains(circle, point): return circle and 0 <= circle['r'] - dist(point, circle['c']) <= circle['r'] or abs(circle['r'] - dist(point, circle['c'])) / circle['r'] < 1e-10 def circum_curvat(points): if len(set(map(tuple, points))) != 3: return None xa, ya, xb, yb, xc, yc = points[0][0], points[0][1], points[1][0], points[1][1], points[2][0], points[2][1] D = 2. * (xa * (yb - yc) + xb * (yc - ya) + xc * (ya - yb)) if not D: return None Ux = ((xa**2 + ya**2)*(yb - yc) + (xb**2 + yb**2)*(yc - ya) + (xc**2 + yc**2)*(ya - yb)) / D Uy = ((xa**2 + ya**2)*(xc - xb) + (xb**2 + yb**2)*(xa - xc) + (xc**2 + yc**2)*(xb - xa)) / D rad = dist(points[0], points[1]) * dist(points[1], points[2]) * dist(points[0], points[2]) / abs(D) return {'c': (Ux, Uy), 'r': rad} def count_circles(list_of_circles, point): return len(filter(None, (contains(circum_curvat(p), point) for p in list_of_circles)))
A circle is defined by three coplanar points that are not aligned. You will be given a list of circles and a point [xP, yP]. You have to create a function, ```count_circles()``` (Javascript ```countCircles()```), that will count the amount of circles that contains the point P inside (the circle border line is included). ```python list_of_circles = ([[[-3,2], [1,1], [6,4]], [[-3,2], [1,1], [2,6]], [[1,1], [2,6], [6,4]], [[[-3,2],[2,6], [6,4]]] point1 = [1, 4] # P1 count_circles(list_of_circles, point1) == 4 #(The four circles have P1 inside) ``` It may happen that the point may be external to all the circles. ```python list_of_circles = ([[[-3,2], [1,1], [6,4]], [[-3,2], [1,1], [2,6]], [[1,1], [2,6], [6,4]], [[-3,2],[2,6], [6,4]]] point2 = [10, 6] # P2 count_circles(list_of_circles, point2) == 0 #(P2 is exterior to the four circles) ``` The point may be in the circle line and that will be consider as an internal point of it, too. For practical purposes a given point ```P``` will be in the circle line if: |r - d|/r < 10^(-10) ```r```: radius of the circle that should be calculated from the coordinates of the three given points. ```d```: distance from the point ```P``` to the center of the circle. Again we have to do a calculation, the coordinates of the center should be calculated using the coordinates of the three given points. Let's see a case when the pints is in the circle line. ```python list_of_circles = ([[[-3,2], [1,1], [6,4]], [[-3,2], [1,1], [2,6]], [[1,1], [2,6], [6,4]], [[[-3,2],[2,6], [6,4]]] point3 = point2 = [2, 6] # P3 count_circles(list_of_circles, point3) == 4 #(P3 is an internal point of the four circles) ``` All these three cases are shown in the image below: Your code should be able to skip these cases: - inexistent circle when we have three points aligned - undefined circles when two or three of given points coincides. First ten people to solve it will receive extra points. Hints: This kata will give you important formulas: ```Give The Center And The Radius of Circumscribed Circle. (A warm up challenge)``` ```http://www.codewars.com/kata/give-the-center-and-the-radius-of-circumscribed-circle-a-warm-up-challenge``` Features of the tests: ```N: amount of Tests``` ```n: amount of given circles``` ```x, y: coordinates of the points that define the circle``` ```xP, yP: coordinates of the point P``` ```N = 500``` ```10 < n < 500``` ```-500 < x < 500, -500 < y < 500``` ```-750 < xP < -750, -750 < yP < -750```
import math def get_center_radius(points): x = [pt[0] for pt in points] y = [pt[1] for pt in points] A = x[0]*(y[1]-y[2]) - y[0]*(x[1]-x[2]) + x[1]*y[2] - x[2]*y[1] B = (x[0]**2 + y[0]**2)*(y[2]-y[1]) + (x[1]**2 + y[1]**2)*(y[0]-y[2]) + (x[2]**2 + y[2]**2)*(y[1]-y[0]) C = (x[0]**2 + y[0]**2)*(x[1]-x[2]) + (x[1]**2 + y[1]**2)*(x[2]-x[0]) + (x[2]**2 + y[2]**2)*(x[0]-x[1]) D = (x[0]**2 + y[0]**2)*(x[2]*y[1]-x[1]*y[2]) + (x[1]**2 + y[1]**2)*(x[0]*y[2]-x[2]*y[0]) + (x[2]**2 + y[2]**2)*(x[1]*y[0]-x[0]*y[1]) return -B/(2*A), -C/(2*A), ((B**2+C**2-4*A*D)/(4*A**2))**.5 def count_circles(list_of_circles, point): counter = 0 for circle in list_of_circles: xc, yc, r = get_center_radius(circle) d = math.hypot(xc - point[0], yc - point[1]) counter += 1 if d < r or abs(d-r)/r < 10**-10 else 0 return counter
A circle is defined by three coplanar points that are not aligned. You will be given a list of circles and a point [xP, yP]. You have to create a function, ```count_circles()``` (Javascript ```countCircles()```), that will count the amount of circles that contains the point P inside (the circle border line is included). ```python list_of_circles = ([[[-3,2], [1,1], [6,4]], [[-3,2], [1,1], [2,6]], [[1,1], [2,6], [6,4]], [[[-3,2],[2,6], [6,4]]] point1 = [1, 4] # P1 count_circles(list_of_circles, point1) == 4 #(The four circles have P1 inside) ``` It may happen that the point may be external to all the circles. ```python list_of_circles = ([[[-3,2], [1,1], [6,4]], [[-3,2], [1,1], [2,6]], [[1,1], [2,6], [6,4]], [[-3,2],[2,6], [6,4]]] point2 = [10, 6] # P2 count_circles(list_of_circles, point2) == 0 #(P2 is exterior to the four circles) ``` The point may be in the circle line and that will be consider as an internal point of it, too. For practical purposes a given point ```P``` will be in the circle line if: |r - d|/r < 10^(-10) ```r```: radius of the circle that should be calculated from the coordinates of the three given points. ```d```: distance from the point ```P``` to the center of the circle. Again we have to do a calculation, the coordinates of the center should be calculated using the coordinates of the three given points. Let's see a case when the pints is in the circle line. ```python list_of_circles = ([[[-3,2], [1,1], [6,4]], [[-3,2], [1,1], [2,6]], [[1,1], [2,6], [6,4]], [[[-3,2],[2,6], [6,4]]] point3 = point2 = [2, 6] # P3 count_circles(list_of_circles, point3) == 4 #(P3 is an internal point of the four circles) ``` All these three cases are shown in the image below: Your code should be able to skip these cases: - inexistent circle when we have three points aligned - undefined circles when two or three of given points coincides. First ten people to solve it will receive extra points. Hints: This kata will give you important formulas: ```Give The Center And The Radius of Circumscribed Circle. (A warm up challenge)``` ```http://www.codewars.com/kata/give-the-center-and-the-radius-of-circumscribed-circle-a-warm-up-challenge``` Features of the tests: ```N: amount of Tests``` ```n: amount of given circles``` ```x, y: coordinates of the points that define the circle``` ```xP, yP: coordinates of the point P``` ```N = 500``` ```10 < n < 500``` ```-500 < x < 500, -500 < y < 500``` ```-750 < xP < -750, -750 < yP < -750```
import math def circum_curvat(pointA, pointB, pointC): #if len({pointA, pointB, pointC})<3: # return (0,0,0) D = 2*(pointA[0]*(pointB[1]-pointC[1])+pointB[0]*(pointC[1]-pointA[1])+pointC[0]*(pointA[1]-pointB[1])) if abs(D)<1e-10: return (0,0,0) x = ((pointA[0]**2+pointA[1]**2)*(pointB[1]-pointC[1])+ (pointB[0]**2+pointB[1]**2)*(pointC[1]-pointA[1])+ (pointC[0]**2+pointC[1]**2)*(pointA[1]-pointB[1]) )/D y = ((pointA[0]**2+pointA[1]**2)*(pointC[0]-pointB[0])+ (pointB[0]**2+pointB[1]**2)*(pointA[0]-pointC[0])+ (pointC[0]**2+pointC[1]**2)*(pointB[0]-pointA[0]) )/D ab = math.hypot(pointB[0]-pointA[0],pointB[1]-pointA[1]) bc = math.hypot(pointB[0]-pointC[0],pointB[1]-pointC[1]) ac = math.hypot(pointC[0]-pointA[0],pointC[1]-pointA[1]) radius = ab*bc*ac/abs(D) return (x, y, radius) def count_circles(list_of_circles, point): result = 0 for circles in list_of_circles: x,y,r = circum_curvat(*circles) if r-math.hypot(point[0]-x,point[1]-y)>-1e-10: result += 1 return result
A circle is defined by three coplanar points that are not aligned. You will be given a list of circles and a point [xP, yP]. You have to create a function, ```count_circles()``` (Javascript ```countCircles()```), that will count the amount of circles that contains the point P inside (the circle border line is included). ```python list_of_circles = ([[[-3,2], [1,1], [6,4]], [[-3,2], [1,1], [2,6]], [[1,1], [2,6], [6,4]], [[[-3,2],[2,6], [6,4]]] point1 = [1, 4] # P1 count_circles(list_of_circles, point1) == 4 #(The four circles have P1 inside) ``` It may happen that the point may be external to all the circles. ```python list_of_circles = ([[[-3,2], [1,1], [6,4]], [[-3,2], [1,1], [2,6]], [[1,1], [2,6], [6,4]], [[-3,2],[2,6], [6,4]]] point2 = [10, 6] # P2 count_circles(list_of_circles, point2) == 0 #(P2 is exterior to the four circles) ``` The point may be in the circle line and that will be consider as an internal point of it, too. For practical purposes a given point ```P``` will be in the circle line if: |r - d|/r < 10^(-10) ```r```: radius of the circle that should be calculated from the coordinates of the three given points. ```d```: distance from the point ```P``` to the center of the circle. Again we have to do a calculation, the coordinates of the center should be calculated using the coordinates of the three given points. Let's see a case when the pints is in the circle line. ```python list_of_circles = ([[[-3,2], [1,1], [6,4]], [[-3,2], [1,1], [2,6]], [[1,1], [2,6], [6,4]], [[[-3,2],[2,6], [6,4]]] point3 = point2 = [2, 6] # P3 count_circles(list_of_circles, point3) == 4 #(P3 is an internal point of the four circles) ``` All these three cases are shown in the image below: Your code should be able to skip these cases: - inexistent circle when we have three points aligned - undefined circles when two or three of given points coincides. First ten people to solve it will receive extra points. Hints: This kata will give you important formulas: ```Give The Center And The Radius of Circumscribed Circle. (A warm up challenge)``` ```http://www.codewars.com/kata/give-the-center-and-the-radius-of-circumscribed-circle-a-warm-up-challenge``` Features of the tests: ```N: amount of Tests``` ```n: amount of given circles``` ```x, y: coordinates of the points that define the circle``` ```xP, yP: coordinates of the point P``` ```N = 500``` ```10 < n < 500``` ```-500 < x < 500, -500 < y < 500``` ```-750 < xP < -750, -750 < yP < -750```
from __future__ import division from numpy import * def find_circle(a, b, c): if any(map(array_equal, (a, b, c), (b, c, a))): return (ax, ay), (bx, by), (cx, cy) = a, b, c d = ax * (by - cy) + bx * (cy - ay) + cx * (ay - by) << 1 if not d: return t1, t2, t3 = (ax**2 + ay**2), (bx**2 + by**2), (cx**2 + cy**2) x = (t1*(by - cy) + t2*(cy - ay) + t3*(ay - by)) / d y = (t1*(cx - bx) + t2*(ax - cx) + t3*(bx - ax)) / d ab, bc, ca = linalg.norm(a - b), linalg.norm(b - c), linalg.norm(c - a) return x, y, ab*bc*ca / abs(d) def count_circles(list_of_circles, point): (px, py), result = point, 0 for circle in list_of_circles: if point in circle: result += 1 else: res = find_circle(*map(array, circle)) result += res and (px - res[0])**2 + (py - res[1])**2 <= res[2]**2 return result
A circle is defined by three coplanar points that are not aligned. You will be given a list of circles and a point [xP, yP]. You have to create a function, ```count_circles()``` (Javascript ```countCircles()```), that will count the amount of circles that contains the point P inside (the circle border line is included). ```python list_of_circles = ([[[-3,2], [1,1], [6,4]], [[-3,2], [1,1], [2,6]], [[1,1], [2,6], [6,4]], [[[-3,2],[2,6], [6,4]]] point1 = [1, 4] # P1 count_circles(list_of_circles, point1) == 4 #(The four circles have P1 inside) ``` It may happen that the point may be external to all the circles. ```python list_of_circles = ([[[-3,2], [1,1], [6,4]], [[-3,2], [1,1], [2,6]], [[1,1], [2,6], [6,4]], [[-3,2],[2,6], [6,4]]] point2 = [10, 6] # P2 count_circles(list_of_circles, point2) == 0 #(P2 is exterior to the four circles) ``` The point may be in the circle line and that will be consider as an internal point of it, too. For practical purposes a given point ```P``` will be in the circle line if: |r - d|/r < 10^(-10) ```r```: radius of the circle that should be calculated from the coordinates of the three given points. ```d```: distance from the point ```P``` to the center of the circle. Again we have to do a calculation, the coordinates of the center should be calculated using the coordinates of the three given points. Let's see a case when the pints is in the circle line. ```python list_of_circles = ([[[-3,2], [1,1], [6,4]], [[-3,2], [1,1], [2,6]], [[1,1], [2,6], [6,4]], [[[-3,2],[2,6], [6,4]]] point3 = point2 = [2, 6] # P3 count_circles(list_of_circles, point3) == 4 #(P3 is an internal point of the four circles) ``` All these three cases are shown in the image below: Your code should be able to skip these cases: - inexistent circle when we have three points aligned - undefined circles when two or three of given points coincides. First ten people to solve it will receive extra points. Hints: This kata will give you important formulas: ```Give The Center And The Radius of Circumscribed Circle. (A warm up challenge)``` ```http://www.codewars.com/kata/give-the-center-and-the-radius-of-circumscribed-circle-a-warm-up-challenge``` Features of the tests: ```N: amount of Tests``` ```n: amount of given circles``` ```x, y: coordinates of the points that define the circle``` ```xP, yP: coordinates of the point P``` ```N = 500``` ```10 < n < 500``` ```-500 < x < 500, -500 < y < 500``` ```-750 < xP < -750, -750 < yP < -750```
def count_circles(list_of_circles, point): c=0 for circle in list_of_circles: (x1,y1),(x2,y2),(x3,y3)=circle[0],circle[1],circle[2] x=(x2**2+y2**2-x1**2-y1**2)*(y3-y1)-(x3**2+y3**2-x1**2-y1**2)*(y2-y1) x/=2.0*((x2-x1)*(y3-y1)-(x3-x1)*(y2-y1)) y=(x2**2+y2**2-x1**2-y1**2)*(y3-y1)-2*(x2-x1)*(y3-y1)*x y/=2.0*(y2-y1)*(y3-y1) r=((x1-x)**2+(y1-y)**2)**0.5 d=((x-point[0])**2+(y-point[1])**2)**0.5 if d<=r or abs(r-d)<=10e-10: c+=1 return c
A circle is defined by three coplanar points that are not aligned. You will be given a list of circles and a point [xP, yP]. You have to create a function, ```count_circles()``` (Javascript ```countCircles()```), that will count the amount of circles that contains the point P inside (the circle border line is included). ```python list_of_circles = ([[[-3,2], [1,1], [6,4]], [[-3,2], [1,1], [2,6]], [[1,1], [2,6], [6,4]], [[[-3,2],[2,6], [6,4]]] point1 = [1, 4] # P1 count_circles(list_of_circles, point1) == 4 #(The four circles have P1 inside) ``` It may happen that the point may be external to all the circles. ```python list_of_circles = ([[[-3,2], [1,1], [6,4]], [[-3,2], [1,1], [2,6]], [[1,1], [2,6], [6,4]], [[-3,2],[2,6], [6,4]]] point2 = [10, 6] # P2 count_circles(list_of_circles, point2) == 0 #(P2 is exterior to the four circles) ``` The point may be in the circle line and that will be consider as an internal point of it, too. For practical purposes a given point ```P``` will be in the circle line if: |r - d|/r < 10^(-10) ```r```: radius of the circle that should be calculated from the coordinates of the three given points. ```d```: distance from the point ```P``` to the center of the circle. Again we have to do a calculation, the coordinates of the center should be calculated using the coordinates of the three given points. Let's see a case when the pints is in the circle line. ```python list_of_circles = ([[[-3,2], [1,1], [6,4]], [[-3,2], [1,1], [2,6]], [[1,1], [2,6], [6,4]], [[[-3,2],[2,6], [6,4]]] point3 = point2 = [2, 6] # P3 count_circles(list_of_circles, point3) == 4 #(P3 is an internal point of the four circles) ``` All these three cases are shown in the image below: Your code should be able to skip these cases: - inexistent circle when we have three points aligned - undefined circles when two or three of given points coincides. First ten people to solve it will receive extra points. Hints: This kata will give you important formulas: ```Give The Center And The Radius of Circumscribed Circle. (A warm up challenge)``` ```http://www.codewars.com/kata/give-the-center-and-the-radius-of-circumscribed-circle-a-warm-up-challenge``` Features of the tests: ```N: amount of Tests``` ```n: amount of given circles``` ```x, y: coordinates of the points that define the circle``` ```xP, yP: coordinates of the point P``` ```N = 500``` ```10 < n < 500``` ```-500 < x < 500, -500 < y < 500``` ```-750 < xP < -750, -750 < yP < -750```
from math import sqrt, hypot def count_circles(list_of_circles, point): count = int(any(point in c for c in list_of_circles)) for [[x1, y1], [x2, y2], [x3, y3]] in list_of_circles: A = x1 * (y2 - y3) - y1 * (x2 - x3) + x2 * y3 - x3 * y2 B = (x1 * x1 + y1 * y1) * (y3 - y2) + (x2 * x2 + y2 * y2) * (y1 - y3) + (x3 * x3 + y3 * y3) * (y2 - y1) C = (x1 * x1 + y1 * y1) * (x2 - x3) + (x2 * x2 + y2 * y2) * (x3 - x1) + (x3 * x3 + y3 * y3) * (x1 - x2) D = (x1 * x1 + y1 * y1) * (x3 * y2 - x2 * y3) + (x2 * x2 + y2 * y2) * (x1 * y3 - x3 * y1) + (x3 * x3 + y3 * y3) * (x2 * y1 - x1 * y2) [A, B, C, D] = map(float, [A, B, C, D]) xc, yc = -B / (2 * A), -C / (2 * A) r = sqrt((B * B + C * C - 4 * A * D) / (4 * A * A)) d = hypot(point[0] - xc, point[1] - yc) if d <= r: count += 1 return count
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(s): return "\n".join(line[::-1] for line in s.split("\n")) def hor_mirror(s): return "\n".join(s.split("\n")[::-1]) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): return map(reversed, strng) def hor_mirror(strng): return reversed(strng) def oper(fct, s): return '\n'.join(map(''.join, fct(s.split('\n'))))
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def hor_mirror(s): return '\n'.join(reversed(s.split('\n'))) def vert_mirror(s): return '\n'.join(a[::-1] for a in s.split('\n')) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
vert_mirror,hor_mirror,oper=lambda s:[e[::-1]for e in s],lambda s:s[::-1],lambda f,s:'\n'.join(f(s.split()))
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): return "\n".join(w[::-1] for w in strng.split("\n")) def hor_mirror(strng): return "\n".join(strng.split("\n")[::-1]) def oper(fct, strng): return fct(strng)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): lst_string = strng.split('\n') i = 0 while i < len(lst_string): lst_string[i] = lst_string[i][::-1] i += 1 return '\n'.join(lst_string) def hor_mirror(strng): lst_string = strng.split('\n') i = 0 l = len(lst_string) while i < l//2: fst_s = lst_string[i] lst_string[i] = lst_string[l-1-i] lst_string[l-1-i] = fst_s i += 1 return '\n'.join(lst_string) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): return '\n'.join(s[::-1] for s in strng.split('\n')) def hor_mirror(strng): return'\n'.join(strng.split('\n')[::-1]) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
hor_mirror = reversed vert_mirror = lambda st: (i[::-1] for i in st) def oper(fct, s): return '\n'.join(fct(s.split('\n')))
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(st): return (i[::-1] for i in st) def hor_mirror(st): return st[::-1] def oper(fct, s): return '\n'.join(fct(s.split('\n')))
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): return [x[::-1] for x in strng.split("\n")] def hor_mirror(strng): return strng.split("\n")[::-1] def oper(fct, s): return '\n'.join(list(map(fct, [s]))[0])
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): return (s[::-1] for s in strng.split('\n')) def hor_mirror(strng): return strng.split('\n')[::-1] def oper(fct, s): return '\n'.join(fct(s))
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def format_to_list(string): return string.split('\n') def stitch(array): return '\n'.join(array) def vert_mirror(string): matrix = format_to_list(string) mirrored_matrix = [] for row in matrix: mirrored_row = row[::-1] mirrored_matrix.append(mirrored_row) return stitch(mirrored_matrix) def hor_mirror(string): matrix = format_to_list(string) matrix.reverse() return stitch(matrix) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(str_): return "\n".join(word[::-1] for word in str_.split("\n")) def hor_mirror(str_): return "\n".join(str_.split("\n")[::-1]) def oper(fct, str_): return fct(str_)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): return '\n'.join(s[::-1] for s in strng.split('\n')) def hor_mirror(strng): return '\n'.join(reversed(strng.split('\n'))) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): return '\n'.join([s[::-1] for s in strng.split('\n')]) def hor_mirror(strng): return '\n'.join(strng.split('\n')[::-1]) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(lines): return '\n'.join(line[::-1] for line in lines.split('\n')) def hor_mirror(lines): return '\n'.join(lines.split('\n')[::-1]) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): return "\n".join([x[::-1] for x in strng.split("\n")]) def hor_mirror(strng): return "\n".join(strng.split("\n")[::-1]) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
hor_mirror, vert_mirror, oper = reversed, lambda m: map(reversed, m), lambda f, s: "\n".join(map("".join, f(s.split("\n"))))
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): s = strng.split("\n") rs = ["".join(reversed(x)) for x in s] return "\n".join(rs) def hor_mirror(strng): s = strng.split("\n") rs = [x for x in reversed(s)] return "\n".join(rs) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(l): return [x[::-1] for x in l] def hor_mirror(l): return l[::-1] def oper(fct, s): return '\n'.join(fct(s.split()))
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): # your code x = [i[::-1] for i in strng.split('\n')] return '\n'.join(x) def hor_mirror(strng): # your code a = strng[::-1] x = [i[::-1] for i in a.split('\n')] return '\n'.join(x) def oper(fct, s): # your code if fct == hor_mirror: return hor_mirror(s) else: return vert_mirror(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): k=[i[::-1] for i in strng.split('\n')] return '\n'.join(k) def hor_mirror(strng): l=strng.split('\n')[::-1] return '\n'.join(l) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): return "\n".join(word[::-1] for word in strng.split('\n')) def hor_mirror(strng): return "\n".join(reversed(strng.split('\n'))) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): return "\n".join("".join(word[i] for i in range(len(word)-1, -1, -1)) for word in strng.split('\n')) def hor_mirror(strng): return "\n".join(word for word in reversed(strng.split('\n'))) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): return '\n'.join(i[::-1] for i in strng) def hor_mirror(strng): return '\n'.join(i for i in strng[::-1]) def oper(fct, s): return fct(s.split('\n'))
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): return '\n'.join(i[::-1] for i in strng.split('\n')) def hor_mirror(strng): return '\n'.join(''.join(i) for i in [(c for c in word) for word in strng.split('\n')][::-1]) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
import unittest def vert_mirror(strng): return '\n'.join(word[::-1] for word in strng.split('\n')) def hor_mirror(strng): return '\n'.join(strng.split('\n')[::-1]) def oper(fct, s): return fct(s) class TestVertAndHorMirror(unittest.TestCase): def test_vert_mirror(self): fct, s = vert_mirror, "hSgdHQ\nHnDMao\nClNNxX\niRvxxH\nbqTVvA\nwvSyRu" actual = oper(fct, s) self.assertEqual(actual, "QHdgSh\noaMDnH\nXxNNlC\nHxxvRi\nAvVTqb\nuRySvw") def test_hor_mirror(self): fct, s = hor_mirror, "lVHt\nJVhv\nCSbg\nyeCt" actual = oper(fct, s) self.assertEqual(actual, "yeCt\nCSbg\nJVhv\nlVHt")
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def reverse_str(str): return str[::-1] def vert_mirror(strng): string_list = strng.split("\n") result = "" for i, element in enumerate(string_list): result = result + reverse_str(element) if i != len(string_list) - 1: result += "\n" return result def hor_mirror(strng): string_list = strng.split("\n") result = "" for i, element in enumerate(string_list): result = element + result if i != len(string_list) - 1: result = "\n" + result return result def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): strng = strng.split("\n") res = [] for substr in strng: res.append(substr[::-1]) res = '\n'.join(res) return res def hor_mirror(strng): strng = strng.split("\n") res = [] for index in range(len(strng)): res.append(strng[len(strng) - index - 1]) res = '\n'.join(res) return res def oper(fct, s): if (fct == vert_mirror): return vert_mirror(s) elif (fct == hor_mirror): return hor_mirror(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
vert_mirror = lambda strng: '\n'.join(i[::-1] for i in strng.split()) hor_mirror = lambda strng: '\n'.join(strng.split()[::-1]) oper = lambda fct, s: fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): return '\n'.join(chunk[::-1] for chunk in strng.split('\n')) def hor_mirror(strng): return '\n'.join(strng.split('\n')[::-1]) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
from string import ascii_letters def vert_mirror(strng): return "\n".join(w[::-1] for w in strng.split('\n')) def hor_mirror(strng): return "\n".join(w for w in strng.split('\n')[::-1]) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): return (line[::-1] for line in strng.split('\n')) def hor_mirror(strng): return strng.split('\n')[::-1] # your code def oper(fct, s): return '\n'.join(fct(s))
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): segments = strng.split('\n') for i in range(len(segments)): segments[i] = segments[i][::-1] return segments # your code def hor_mirror(strng): segments = strng.split('\n') s = segments[::-1] return s # your code def oper(fct, s): return '\n'.join(fct(s)) # your code
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(s): return '\n'.join(list(map(lambda x: x[::-1],s.split('\n')))) def hor_mirror(s): return '\n'.join(s.split('\n')[::-1]) def oper(f, s): if str(f).split()[1] == 'vert_mirror': return vert_mirror(s) return hor_mirror(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): return "\n".join([strng.split('\n')[i][::-1] for i in range(len(strng.split('\n')))]) def hor_mirror(strng): return "\n".join(strng.split('\n')[::-1]) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): v_mirror = [] for row in strng.split("\n"): v_mirror.append(row[::-1]) return "\n".join(v_mirror) def hor_mirror(strng): return "\n".join(list(reversed(strng.split("\n")))) def oper(fct, s): if fct == vert_mirror: return vert_mirror(s) else: return hor_mirror(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): s = strng.split('\n') return '\n'.join([x[::-1] for x in s]) def hor_mirror(strng): s = strng.split('\n') return '\n'.join(s[::-1]) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): L=[] str = strng.split("\n") for s in str: L.append(s[::-1]) return "\n".join(L) def hor_mirror(strng): str = strng.split("\n") return "\n".join(str[::-1]) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng: str): return "\n".join(el[::-1] for el in strng.split()) def hor_mirror(strng: str): return "\n".join(reversed(strng.split())) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
vert_mirror = lambda S : '\n'.join(s[::-1] for s in S.split('\n')) hor_mirror = lambda S : '\n'.join(S.split('\n')[::-1]) oper = lambda f, S: f(S)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): strng = strng.split('\n') strng = [i[::-1] for i in strng] return '\n'.join(strng) def hor_mirror(strng): strng = strng.split('\n') strng = strng[::-1] return '\n'.join(strng) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def oper(fct, s): return fct(s) def vert_mirror(strng): vert = strng.split() vert1 = [] vert2 = '\n' for i in range(len(vert)): vert1.append(vert[i][::-1]) return (vert2.join(vert1)) def hor_mirror(strng): hor = strng.split() hor1 = hor[::-1] hor2 = '\n' return hor2.join(hor1)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(st): a = st.split("\n") for i in range(len(a)): a[i] = list(a[i]) a[i].reverse() a[i] = ''.join(a[i]) return "\n".join(a) def hor_mirror(st): a = st.split('\n') a.reverse() return "\n".join(a) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): lst = strng.split()[::-1] return "\n".join(lst)[::-1] def hor_mirror(strng): lst = strng.split()[::-1] return "\n".join(lst) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
from typing import Callable def oper(callback: Callable[[str], str], string: str) -> str: return callback(string) def vert_mirror(string: str) -> str: return '\n'.join([ line[::-1] for line in string.split('\n') ]) def hor_mirror(string: str) -> str: return '\n'.join( string.split('\n')[::-1] )
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): strs=strng.split('\n') for s in range(len(strs)): strs[s] = strs[s][::-1] return '\n'.join(strs) def hor_mirror(strng): stsrs=strng.split('\n') return '\n'.join(stsrs[::-1]) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): return '\n'.join(w[::-1] for w in strng.split()) def hor_mirror(strng): return '\n'.join(strng.split()[::-1]) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): ans = "" sq = strng.split("\n") dim = len(sq) for i in range (0,dim,1): print(i) ans += str(sq[i][::-1]) + "\n" return ans.rstrip("\n") def hor_mirror(strng): ans = "" sq = strng.split("\n") dim = len(sq) for i in range (dim,0,-1): ans += str(sq[i-1]) + "\n" return ans.rstrip("\n") def oper(fct, s): return vert_mirror(s) if fct == vert_mirror else hor_mirror(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(string): mylist = string.split('\n') #splits into list of the parts for x in range(len(mylist)): mylist[x] = mylist[x][::-1] mystring = '\n'.join(mylist) return mystring def hor_mirror(string): mylist = string.split('\n') mylist = mylist[::-1] mystring = '\n'.join(mylist) return mystring def oper(fct, s): if fct == vert_mirror: return vert_mirror(s) elif fct==hor_mirror: return hor_mirror(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): return [x[::-1] for x in strng] def hor_mirror(strng): return strng[::-1] def oper(fct, s): strng=s.split("\n") return "\n".join(fct(strng))
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): return "\n".join(["".join(list(word)[::-1]) for word in strng.split()]) def hor_mirror(strng): return "\n".join(strng.split()[::-1]) def oper(fct, s): return eval('fct(s)')
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): return "\n".join(cs[::-1] for cs in strng.split("\n")) def hor_mirror(strng): return "\n".join(strng.split("\n")[::-1]) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): return "\n".join(cs[::-1] for cs in strng.split("\n")) def hor_mirror(strng): return "\n".join(strng.split("\n")[::-1]) def oper(fct, s): return vert_mirror(s) if fct == vert_mirror else hor_mirror(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): strng = strng.split('\n') return '\n'.join(i[::-1] for i in strng) def hor_mirror(strng): strng = strng.split('\n') return '\n'.join(i for i in reversed(strng)) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): l = strng.split('\n') p = [] for i in l: p.append(i[::-1]) return '\n'.join(p) def hor_mirror(strng): l = list(reversed(strng.split('\n'))) return '\n'.join(l) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(str): return '\n'.join([i[::-1] for i in str.split('\n')]) def hor_mirror(str): return '\n'.join(str.split('\n')[::-1]) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): lines = strng.split("\n") transformed_lines = ["".join(reversed(line)) for line in lines] return "\n".join(transformed_lines) def hor_mirror(strng): lines = strng.split("\n") return "\n".join(reversed(lines)) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(s): return '\n'.join(m[::-1] for m in s.split('\n')) def hor_mirror(s): return '\n'.join(s.split('\n')[::-1]) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(s): return '\n'.join([s.split('\n')[0][::-1]] + [m[1:][::-1]+m[0] for m in s.split('\n')[1:]]) def hor_mirror(s): return '\n'.join(s.split('\n')[::-1]) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): strng = strng.split("\n") output = [] for word in strng: output.append(word[::-1]) return '\n'.join(output) def hor_mirror(strng): strng = strng.split("\n") output = [] return '\n'.join(strng[::-1]) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(string): return [s[::-1] for s in string] def hor_mirror(string): return string[::-1] def oper(fct, s): return '\n'.join(fct(s.split('\n')))
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): sub_list = strng.split("\n") for index, substr in enumerate(sub_list): sub_list[index] = substr[::-1] return "\n".join(sub_list) def hor_mirror(strng): sub_list = strng.split("\n") sub_list.reverse() return "\n".join(sub_list) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): return '\n'.join([text[::-1] for text in strng.split('\n')]) def hor_mirror(strng): return '\n'.join(strng.split('\n')[::-1]) def oper(fct, s): return vert_mirror(s) if fct is vert_mirror else hor_mirror(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(value: str): return '\n'.join([s[::-1] for s in value.split('\n')]) def hor_mirror(value): return '\n'.join(value.split('\n')[::-1]) def oper(func, value): return func(value)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): lst = strng.split("\n") return "\n".join("".join(i[::-1]) for i in lst) def hor_mirror(strng): lst = strng.split("\n") return "\n".join(lst[::-1]) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(s): lst = s.split('\n') return '\n'.join([x[::-1] for x in lst]) def hor_mirror(s): lst = s.split('\n') return '\n'.join(lst[::-1]) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): s = strng.split("\n") l = list() for i in s: l.append(i[::-1]) return "\n".join(str(i) for i in l) def hor_mirror(strng): s = strng.split("\n") return "\n".join(str(i) for i in s[::-1]) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): return "\n".join([x[::-1] for x in strng.split("\n")]) def hor_mirror(strng): return "\n".join(x for x in strng.split("\n")[::-1]) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): strng = strng.split("\n") return "\n".join(s[::-1] for s in strng) def hor_mirror(strng): strng = strng.split("\n") return "\n".join(strng[::-1]) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
from typing import Callable def vert_mirror(strng: str) -> str: return '\n'.join(s[::-1] for s in strng.splitlines()) def hor_mirror(strng: str) -> str: return '\n'.join(strng.splitlines()[::-1]) def oper(fct: Callable[[str], str], s) -> str: return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
import re def vert_mirror(strng): x=re.split("\s",strng) y=[i[::-1] for i in x] return '\n'.join(y) def hor_mirror(strng): x=re.split('\s',strng) a=x[::-1] return '\n'.join(a) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): return '\n'.join([a[::-1] for a in strng.split('\n')]) def hor_mirror(strng): return '\n'.join(reversed(strng.split('\n'))) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
vert_mirror = lambda s: '\n'.join(r[::-1] for r in s.split('\n')) hor_mirror = lambda s: '\n'.join(s.split('\n')[::-1]) oper = lambda f, s: f(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): return '\n'.join(''.join(reversed(line)) for line in strng.split('\n')) def hor_mirror(strng): return '\n'.join(reversed(strng.split('\n'))) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): # your code p=[] s=strng.split("\n") for i in s: p.append(i[::-1]) return "\n".join(p) def hor_mirror(strng): # your code s=strng.split("\n") p=s[::-1] return "\n".join(p) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): return '\n'.join(list(map(lambda x: x[::-1], strng.split('\n')))) def hor_mirror(strng): return '\n'.join(list(map(lambda x: x[::-1], strng[::-1].split('\n')))) def oper(fct, s): return fct(s)
This kata is the first of a sequence of four about "Squared Strings". You are given a string of `n` lines, each substring being `n` characters long: For example: `s = "abcd\nefgh\nijkl\nmnop"` We will study some transformations of this square of strings. - Vertical mirror: vert_mirror (or vertMirror or vert-mirror) ``` vert_mirror(s) => "dcba\nhgfe\nlkji\nponm" ``` - Horizontal mirror: hor_mirror (or horMirror or hor-mirror) ``` hor_mirror(s) => "mnop\nijkl\nefgh\nabcd" ``` or printed: ``` vertical mirror |horizontal mirror abcd --> dcba |abcd --> mnop efgh hgfe |efgh ijkl ijkl lkji |ijkl efgh mnop ponm |mnop abcd ``` # Task: - Write these two functions and - high-order function `oper(fct, s)` where - fct is the function of one variable f to apply to the string `s` (fct will be one of `vertMirror, horMirror`) # Examples: ``` s = "abcd\nefgh\nijkl\nmnop" oper(vert_mirror, s) => "dcba\nhgfe\nlkji\nponm" oper(hor_mirror, s) => "mnop\nijkl\nefgh\nabcd" ``` # Note: The form of the parameter `fct` in oper changes according to the language. You can see each form according to the language in "Sample Tests". # Bash Note: The input strings are separated by `,` instead of `\n`. The output strings should be separated by `\r` instead of `\n`. See "Sample Tests". Forthcoming katas will study other transformations.
def vert_mirror(strng): arr = [s[::-1] for s in strng.split('\n')] return('\n'.join(arr)) def hor_mirror(strng): print('there') return('\n'.join([s for s in strng.split('\n')][::-1])) def oper(fct, s): return(fct(s))