Datasets:

inputs
stringlengths
50
14k
targets
stringlengths
4
655k
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: n=len(arr) i=0 for i in range(n-1): if arr[i+1]<arr[i]: break left=i for i in range(n-1,0,-1): if arr[i-1]>arr[i]: break right=i if right<=left: return 0 i=0 j=right ans=min(n-left-1,right) while i<=left and j<n: if arr[i]<=arr[j]: ans=min(ans,j-i-1) i+=1 elif arr[j]<arr[i]: j+=1 return n-1 if ans==n+1 else ans
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: stack = [(len(arr)-1, arr[-1])] for i in range(len(arr)-2, -1, -1): if arr[i] <= arr[i+1]: stack.append([i, arr[i]]) else: break min_len = len(arr)-len(stack) for i in range(len(arr)): if i == 0 or arr[i] >= arr[i-1]: while len(stack) > 0 and (stack[-1][1] < arr[i] or stack[-1][0] == i): stack.pop() if len(stack) > 0: min_len = min(min_len, stack[-1][0]-i-1) else: min_len = min(min_len, len(arr)-i-1) else: break return min_len
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: l,r = 0,len(arr) - 1 while l < r and arr[l] <= arr[l + 1]: l += 1 if l == len(arr) - 1: return 0 while r >= 0 and arr[r] >= arr[r - 1]: r -= 1 toRemove = min(len(arr) - l - 1,r) for iL in range(l + 1): if arr[iL] <= arr[r]: toRemove = min(toRemove,r - iL - 1) l += 1 elif r < len(arr) - 1: r += 1 else: break return toRemove
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: #https://leetcode.com/problems/shortest-subarray-to-be-removed-to-make-array-sorted/discuss/830480/C%2B%2B-O(N)-Sliding-window-Explanation-with-Illustrations #这道题是two pointer类型题目 #大体的逻辑就是左边一个pointer,右边一个pointer left = 0 right = len(arr) - 1 #left向右走,如果left+1指向的数字大于等于left就一直走 #如果left一路走到了end,那就说明原list就是sorted的,那就直接return while left + 1 <= len(arr) - 1 and arr[left] <= arr[left+1]: left += 1 if left == right: return 0 #right同理向左走,如果right-1小于等于right就继续走 while right - 1 >= 0 and arr[right] >= arr[right - 1]: right -= 1 #然后先处理两边 就是当0到right-1 或者 left+1到end 其中一个去掉,也就是去掉两边 #在这种情况下 无论怎么移除中间的部分 都没有办法使两边组合起来成为递增 #这种情况就像[6,7,8,9,10,3,5,20,4,1,2,3] #left指向10,right指向1 -- 因为只能移除一个subarry所以要从 6到20 和 3到3 中选一个 #所以如果是这种case,那就先要计算两个边较小的那个 #right就是0到right -1 index的长度 #len(arr)- 1 - left 就是 end - left 也就是 left + 1到end index的长度 min_sublen = min(right, len(arr)- 1 - left) #然后就可以开始进行中间情况的运算 #大概就是在这种情况下我们left和right要进行移动,然后找到最短的中间subarray,使得该array去掉后左右两边能成为递增array #大概的操作就是比较 两个指针lp和rp 从0到left 和 从right到end #如果lp小于rp了,那就说明去掉lp和rp中间范围就是递增,此时就可以计算下subarr长度,然后进行比较,留下最小的那个。然后lp向右移动一位再继续比较 #知道lp到达了left,或者rp到达了end,就停止 返回最短的subarry长度 lp = 0 rp = right #如果lp大于rp,那就说明lp太大了,rp向右移动一位 while lp <= left and rp <= len(arr) - 1: if arr[lp] > arr[rp]: rp += 1 #如果lp小于rp了,那就说明去掉lp和rp中间范围就是递增,此时就可以计算下subarr长度,然后进行比较,留下最小的那个。然后lp向右移动一位再继续比较 else: min_sublen = min(min_sublen, rp-lp-1) lp += 1 return min_sublen
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: l,r = 0, len(arr)-1 while l < r and arr[l+1] >= arr[l]: l += 1 if l == len(arr)-1: return 0 while r > 0 and arr[r-1] <= arr[r]: r -= 1 toRemove = min(len(arr)-1-l,r) for iL in range(l+1): if arr[iL] <= arr[r]: toRemove = min(toRemove, r-iL-1) elif r < len(arr)-1: r += 1 else: break return toRemove
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: stack = [(len(arr)-1, arr[-1])] for i in range(len(arr)-2, -1, -1): if arr[i] <= arr[i+1]: stack.append([i, arr[i]]) else: break min_len = len(arr)-len(stack) for i in range(len(arr)): if i == 0 or arr[i] >= arr[i-1]: while len(stack) > 0 and (stack[-1][1] < arr[i] or stack[-1][0] <= i): stack.pop() if len(stack) > 0: min_len = min(min_len, stack[-1][0]-i-1) else: min_len = min(min_len, len(arr)-i-1) else: break return min_len
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: n = len(arr) i = 1 if len(arr) <= 1: return 0 while i < n: if arr[i] < arr[i-1]: break i += 1 max_len = i if max_len == n: return 0 ini_ind = i - 1 end_ind = 1 while ini_ind >= 0: if arr[ini_ind] <= arr[-1]: break ini_ind -= 1 max_len = max(max_len, ini_ind + end_ind + 1) while arr[-end_ind-1] <= arr[-end_ind]: while ini_ind >= 0: if arr[ini_ind] <= arr[-end_ind-1]: break ini_ind -= 1 end_ind += 1 max_len = max(max_len, ini_ind + end_ind + 1) return n - max_len
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: start, end = 0, 0 for i in range(1, len(arr)): if arr[i] < arr[i - 1] or (start and arr[i] < arr[start - 1]): if not start: start = i end = i if start > 0: if arr[end] >= arr[start - 1]: end -= 1 curr_opt = end - start + 1 else: curr_opt = end - start for i in range(start): start -= 1 while (end == len(arr) - 1 or arr[end] <= arr[end + 1]) and ((start and arr[end] >= arr[start - 1]) or not start): end -= 1 curr_opt = min(curr_opt, end - start + 1) return curr_opt
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: n = len(arr) l, r = 0, n-1 while 0 < r and arr[r-1] <= arr[r]: r -= 1 ret = r while l == 0 or l < n and arr[l-1] <= arr[l]: while r<=l or r < n and arr[r] < arr[l]: r += 1 ret = min(ret, r - l - 1) l += 1 return ret
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
from typing import * class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: n = len(arr) i, j = 0, n - 1 while i < n - 1 and arr[i] <= arr[i + 1]: i += 1 if i == n - 1: return 0 while j > i and arr[j - 1] <= arr[j]: j -= 1 res = min(n - i - 1, j) oldi = i oldj = j i = 0 while i <= oldi and j < n: if arr[i] <= arr[j]: res = min(res, j - i - 1) i += 1 else: j += 1 return res print(Solution().findLengthOfShortestSubarray([1,3,2,4])) # 1 print(Solution().findLengthOfShortestSubarray([1,2,3,10,4,2,3,5])) # 3
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: desc_idx = [] for idx in range(len(arr)): if idx > 0 and arr[idx] < arr[idx - 1]: desc_idx.append(idx-1) if len(desc_idx) == 0: return 0 ans = len(arr) start, end = desc_idx[0], desc_idx[-1] shift_range = [0 , 1] for shift1 in shift_range: for shift2 in shift_range: left = arr[:start+shift1] right = arr[end+1+shift2:] left_extend = -1 right_extend = -1 if len(left) == 0: right_extend = 0 else: for idx in range(len(right)): if right[idx] >= left[-1]: right_extend = idx break if right_extend == -1: right_extend = len(right) if len(right) == 0: left_extend = 0 else: for idx in range(len(left)): if left[-(idx+1)] <= right[0]: left_extend = idx break if left_extend == -1: left_extend = len(left) ans = min(ans, min(left_extend, right_extend) + (end+1+shift2) - (start + shift1)) #extend.append(left_extend) #extend.append(right_extend) #print(extend, ans, desc_idx) #ans += min(extend) return ans
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: # [1,2,3,10,4,2,3,5] r = len(arr) - 1 while r >0 and arr[r] >= arr[r-1]: r -= 1 ret = r # worst case, remove all left l = 0 for l in range(len(arr)): if l>0 and arr[l] < arr[l-1]: break if l >= r: r += 1 while r < len(arr) and arr[l] > arr[r] : r +=1 ret = min(ret, r-l-1) return ret
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: n = len(arr) for i in range(n): if i+1 >= n or arr[i] > arr[i+1]: l_end = i break for i in range(n-1,-1,-1): if i-1 < 0 or arr[i-1] > arr[i]: r_start = i break if r_start <= l_end: return 0 i, j = 0, r_start res = min(n-(l_end+1),r_start) for i in range(l_end+1): while j < n and arr[i] > arr[j]: j += 1 res = min(res, j-i-1) return res
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: ''' [1,2,3,10,4,2,3,5] 3 ''' def doesExist(arr, size, prefix, suffix): if size >= suffix or (len(arr) -1 - size) <= prefix: return True for i in range(len(arr) - size - 1): if prefix < i: break else: j = i + size + 1 if arr[i] <= arr[j] and j >= suffix: return True return False prefix = 0 suffix = len(arr) - 1 for i in range(1, len(arr)): if arr[i-1] <= arr[i]: prefix = i else: break for i in range(len(arr) - 1, 0, -1): if arr[i-1] <= arr[i]: suffix = i - 1 else: break l = 0 r = len(arr) - 1 optimal = r while l <= r: mid = (l + r) // 2 if doesExist(arr, mid, prefix, suffix): optimal = mid r = mid - 1 else: l = mid + 1 return optimal
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: #sliding window #find the first element which is smaller than the previous one start_f = 0 while start_f<len(arr)-1: if arr[start_f+1] >= arr[start_f]: start_f += 1 else: break # if already sorted, end_f is the last element if start_f == len(arr)-1: return 0 #find the end point that let end+1 element > start_f element end_f = len(arr)-1 if arr[-1] < arr[start_f]: end_f = len(arr) else: while end_f-1 >= 0 and arr[end_f-1] >= arr[start_f]: if arr[end_f-1] <= arr[end_f]: # 逐渐在变小 end_f -= 1 else: #not sorted, 前面一个数比较大了,那么在往前退,会导致第二部分不是sort的 break #start,end 是需要remove的 start, end = start_f+1, end_f-1 ans = end-start+1 #逐渐把start往前1,看能不能得到更小的值 while start >= 0: start -= 1 while start ==0 or arr[end] >= arr[start-1]: # start ==0的时候就没有第一部分了 if end == len(arr)-1 or arr[end] <= arr[end+1]: # end最大时,就没有第二部分了 end -= 1 ans = min(ans, end-start+1) else: break return ans
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
import bisect class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: start, end = 0, len(arr)-1 while start < len(arr)-1: if arr[start] > arr[start+1]: break start += 1 if start == len(arr)-1: return 0 while end > 0: if arr[end] < arr[end-1]: break end -= 1 best_dist = end for i in range(start, -1, -1): j = bisect.bisect_left(arr, arr[i], end, len(arr)) dist = j - i - 1 best_dist = min(best_dist, dist) return best_dist
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution(object): def findLengthOfShortestSubarray(self, A): N = len(A) j = N - 1 while j and A[j] >= A[j - 1]: j -= 1 # A[j:] is monotone increasing ans = j for i in range(j): if i and A[i] < A[i-1]: break # A[..i] is monotone increasing while j < N and A[i] > A[j]: j += 1 # j is the smallest such that A[i] <= A[j] # Remove A[i+1..j-1] which has length j - i - 1 ans = min(ans, j - i - 1) return ans
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: # find the first inst in left side where arr[i] < arr[i-1] # next, find the first inst in right side where arr[j] < arr[j-1] # next, we start i from 0, j at j # we shrink window if arr[i] <= arr[j] # we expand window if arr[i] > arr[j] # we store the size of the window to ans n = len(arr) left = 0 while (left + 1 < n and arr[left] <= arr[left + 1]): left += 1 if left == n - 1: return 0 right = n-1 while (right > left and arr[right - 1] <= arr[right]): right -= 1; ans = min(n - left - 1, right) i, j = 0, right while i <= left and j < n: if arr[i] <= arr[j]: ans = min(ans, j - i - 1) i += 1 else: j+=1 return ans
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: def lowerbound(left, right, target): while left < right: mid = left + (right - left) // 2 if arr[mid] == target: right = mid elif arr[mid] < target: left = mid + 1 else: right = mid return left N = len(arr) i = 0 while i + 1 < N and arr[i] <= arr[i + 1]: i += 1 if i == N - 1: return 0 j = N - 1 while j - 1 >= 0 and arr[j] >= arr[j - 1]: j -=1 if j == 0: return N - 1 result = min(N - (N-j), N - i - 1) for k in range(i + 1): l = lowerbound(j, len(arr), arr[k]) result = min(result, l - (k + 1)) return result
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: l = 0 longest_array = 0 while l < len(arr)-1 and arr[l+1] >= arr[l]: l += 1 longest_array = l+1 r = len(arr)-1 while r > 0 and arr[r] >= arr[r-1]: r -= 1 longest_array = max(longest_array, len(arr)-r) #print(f'{l} {r}') p1 = 0 p2 = r while p1 <= l and p2 < len(arr): if arr[p1] <= arr[p2]: longest_array = max(longest_array, p1 + len(arr)-p2+1) p1 += 1 else: p2 += 1 if len(arr)-longest_array < 0: return 0 return len(arr) - longest_array
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: arr = [0] + arr + [float('inf')] left = 0 right = len(arr) - 1 while left != right: if arr[left + 1] < arr[left]: break left += 1 while left != right: if arr[right - 1] > arr[right]: break right -= 1 if right == left: return 0 return search(left, right, arr) def search(leftidx, rightidx, arr): if arr[rightidx] >= arr[leftidx]: return rightidx - leftidx - 1 leftsearch = rightsearch = midsearch = len(arr) if leftidx > 0: leftsearch = search(leftidx - 1, rightidx, arr) if rightidx < len(arr) - 1: rightsearch = search(leftidx, rightidx + 1, arr) if leftidx > 0 and rightidx < len(arr) - 1: midsearch = search(leftidx - 1, rightidx + 1, arr) return min(leftsearch, rightsearch, midsearch)
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: n=len(arr) left,right=-1,-1 for i in range(n-1): if arr[i]>arr[i+1]: left=i+1 break if left==-1: return 0 for j in range(n-1, 0, -1): if arr[j]<arr[j-1]: right=j-1 break if right==-1: return 0 ans=min(right+1, n-left) i=0 for j in range(right+1,n): while i<left and arr[i]<=arr[j]: i+=1 ans=min(ans, j-i) if i==left: break return ans
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: n=len(arr) ndpreflen=1 for i in range(1,n): if arr[i]<arr[i-1]: break ndpreflen+=1 ndsufflen=1 for i in range(1,n): if arr[n-1-i]>arr[n-i]: break ndsufflen+=1 if ndpreflen+ndsufflen>n: return 0 sufffirstkeep_idx=n-ndsufflen ans=min(n-ndpreflen,n-ndsufflen) for preflastkeep_idx in range(ndpreflen): while sufffirstkeep_idx<n and arr[sufffirstkeep_idx]<arr[preflastkeep_idx]: sufffirstkeep_idx+=1 if sufffirstkeep_idx==n: break ans=min(ans,sufffirstkeep_idx-preflastkeep_idx-1) return ans
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: ''' https://leetcode.com/problems/shortest-subarray-to-be-removed-to-make-array-sorted/discuss/830480/C%2B%2B-O(N)-Sliding-window-Explanation-with-Illustrations 1,2,3,10,4,2,3,5] 1 2 2 3 3 4 5 10 ''' def findLengthOfShortestSubarray(self, A: List[int]) -> int: N = len(A) left, right = 0, N - 1 while left + 1 < N and A[left] <= A[left + 1]: left += 1 if left == N - 1: # not decreasing already return 0 while right > left and A[right - 1] <= A[right]: right -= 1 ans = min(N - left - 1, right) i, j = 0, right while i <= left and j < N: if A[j] >= A[i]: # can remove ans = min(ans, j - i - 1) i += 1 # then shrink silde window else: # enlarge slide window j += 1 return ans
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
from bisect import bisect_right class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: arr = [float('-inf')] + arr + [float('inf')] if arr == sorted(arr): return 0 N = len(arr) negatives = [None, None] for i in range(1, N): diff = arr[i] - arr[i-1] if diff < 0: if negatives[0] is None: negatives[0] = i negatives[1] = i ans = float('inf') for j in range(negatives[1], N): idx = bisect_right(arr, arr[j], hi=negatives[0]) ans = min(ans, j - idx) return ans
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: n = len(arr) if n==0: return 0 l, r = 0,n-1 while l < n-1 and arr[l] <= arr[l+1]: l += 1 while r > 0 and arr[r-1] <= arr[r]: r -= 1 nums_to_rm = min(n - 1 - l, r) for c in range(l+1): if arr[c] <= arr[r]: nums_to_rm = min(nums_to_rm, max(0,r-c-1)) else: if r < n-1: r += 1 else: break return nums_to_rm
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: if not arr: return 0 a,temp= [],[] temp.append(arr[0]) for i in range(1,len(arr)): if arr[i] - arr[i - 1] >= 0: temp.append(arr[i]) else: a.append(temp) temp = [] temp.append(arr[i]) if temp: a.append(temp) if len(a)<=1: return 0 else: deletelen=[] a0,a_1=a[0],a[-1] deletelen.append(len(arr)-len(a0)) deletelen.append(len(arr)-len(a_1)) if a0[-1]<=a_1[0]: deletelen.append(len(arr)-len(a0)-len(a_1)) else: for i in range(len(a_1)): for j in range(len(a0)-1,-1,-1): if a_1[i]>=a0[j]: deletelen.append(len(arr) - len(a0) - len(a_1)+i+(len(a0)-j-1)) break return min(deletelen)
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: if arr == sorted(arr): return 0 L = len(arr) left = [arr[0]] right = [arr[-1]] for i in range(1, L): if arr[i] >= left[-1]: left += [arr[i]] else: break for i in range(L-2, -1, -1): if arr[i] <= right[0]: right.insert(0, arr[i]) else: break while len(left)-1 >= L-len(right) and left[-1] == right[0]: left.pop(-1) print((left, right, L)) ret = 0 arr_len = 0 for i in range(len(left)): for j in range(len(right)): temp = 0 if left[i] <= right[j]: temp = i+1+len(right)-j break # if left[i] in right: # idx_right = right.index(left[i]) # temp = i+1+len(right)-idx_right # else: # idx_right = len(right)-1 # temp = 0 arr_len = max(arr_len, temp) return L-max(len(left), len(right), arr_len)
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: # O(n) def findLengthOfShortestSubarray(self, arr: List[int]) -> int: # determine right sorted subarray r = len(arr) - 1 while r >0 and arr[r] >= arr[r-1]: r -= 1 # r == 0 means array is sorted if r == 0: return 0 # now determine left sorted subarray that can be merged with right ret = r # set ret to worst case, remove all left l = 0 for l in range(len(arr)): # if left subarry is not in order anymore, stop, can't do better if l>0 and arr[l] < arr[l-1]: break # if arr[l] is larger than the left edge of right sorted subarray, # push the edge to the right # why this work? Is it OK to push to the right? We won't consider # arr[i+1] and arr[r]. # It's OK! We don't have to consider arr[i+1] and arr[r]. # if arr[i] is larger than the left edge, arr[next i] is larger too! # so it won't be the possible answer while r < len(arr) and arr[l] > arr[r] : r +=1 ret = min(ret, r-l-1) return ret
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
from collections import deque import bisect class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: l, r = deque([]), deque([]) for i, x in enumerate(arr): if len(l) == 0 or x >= l[-1]: l.append(x) else: break for i, x in enumerate(arr[::-1]): if len(r) == 0 or x <= r[0]: r.appendleft(x) else: break if len(l) == len(arr): return 0 a, b = len(l), len(r) ans = b for i, x in enumerate(l): idx = bisect.bisect_left(r, x) ans = max(ans, i + 1 + b - idx) return len(arr) - ans
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
import bisect class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: start = None for i in range(0, len(arr)-1): if arr[i] > arr[i+1]: start = i break if start == None: return 0 for i in range(len(arr)-1, 0, -1): if arr[i] < arr[i-1]: end = i break best_dist = end for i in range(start, -1, -1): j = bisect.bisect_left(arr, arr[i], end, len(arr)) dist = j - i - 1 best_dist = min(best_dist, dist) return best_dist
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: # Find the longest monotonically non-decreasing prefix array in [0, i] n = len(arr) l = 1 while l < n and arr[l-1] <= arr[l]: l += 1 l -= 1 if l >= n - 2: return n - 1 - l # Find the longest monotonically non-decreasing suffix array in [j, n - 1] r = n - 2 while r >= 0 and arr[r] <= arr[r+1]: r -= 1 r += 1 if r <= 1: return r # Start off with min of either left or right side removed as the min_to_move min_to_remove = min(n - 1, n - 1 - (l + 1) + 1, r) # Try to merge [0..i] from the left into [r..n-1]. If it doesn't work, # push r forward and try again, until we run out of either room for i to expand # toward the right or for r to push forward to the right. i = 0 while i < l + 1: if arr[i] <= arr[r]: min_to_remove = min(min_to_remove, r - i - 1) i += 1 elif r < n - 1: r += 1 # i += 1 # More intuitive and less subtle to NOT increment i # Why? Because if after i gets incremented a few times to # i' such that arr[i'] <= arr[r], then arr[r] must be >= # all elements in [i..i'-1] because elements in [0..l] are # non-decreasing. In other words as soon we hit line # `if arr[i] <= arr[r]:` (after incrementing i a few times # without successfully finding some arr[r], arr[i] <= arr[r]), # all those values behind arr[i] can now be included in the merged # result. else: break return min_to_remove def findLengthOfShortestSubarray_bruteforce_bsearch(self, arr: List[int]) -> int: # Returns the smallest index `idx` such that arr[idx] >= val def bsearch(val, low, high): while low < high: mid = (low + high) // 2 if arr[mid] >= val: high = mid else: low = mid + 1 if val > arr[high]: return high + 1 return high # Find the longest monotonically non-decreasing prefix array in [0, i] n = len(arr) curr_max = float('-inf') i = 0 while i < n: if arr[i] < curr_max: break curr_max = arr[i] i += 1 i -= 1 if i >= n - 2: return n - 1 - i # Find the longest monotonically non-decreasing suffix array in [j, n - 1] curr_min = float('inf') j = n - 1 while j >= 0: if arr[j] > curr_min: break curr_min = arr[j] j -= 1 j += 1 if j <= 1: return j # For each value arr[k], in [0, i], find the `right_idx` into the suffix array in [j, n - 1] # such that arr[k] >= arr[right_idx]. We want to find the one that results in the longest # sequence [0..k] + [right_idx..n-1] min_to_remove = float('inf') for k in range(i, -1, -1): right_idx = bsearch(arr[k], j, n - 1) l = k + 1 + n - right_idx to_remove = n - l min_to_remove = min(min_to_remove, to_remove) # For each value arr[k], in [j, n-1], find the `left_idx` into the prefix array in [0, i] # such that arr[k] >= arr[left_idx - 1]. We want to find the one that results in the longest # sequence [0..left_idx-1] + [k..n-1] for k in range(j, n): left_idx = bsearch(arr[k], 0, i) l = left_idx + n - k to_remove = n - l min_to_remove = min(min_to_remove, to_remove) return min_to_remove
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: arr = [-float('inf')] + arr + [float('inf')] sorted_to = [False for _ in range(len(arr))] sorted_from = [False for _ in range(len(arr))] rev_arr = arr[::-1] last_sorted_to = -1 first_sorted_from = -1 shortest = float('inf') for idx, val in enumerate(arr): if idx == 0 or val >= arr[idx - 1]: sorted_to[idx] = True last_sorted_to = idx else: break for idx, val in enumerate(rev_arr): if idx == 0 or val <= rev_arr[idx - 1]: sorted_from[len(arr) - 1 - idx] = True first_sorted_from = len(arr) - 1 - idx else: break if arr == sorted(arr): return 0 for i in range(last_sorted_to + 1): for j in range(first_sorted_from, len(arr)): if arr[j] >= arr[i]: shortest = min(shortest, j - i - 1) break shortest = min(shortest, len(arr) - i - 1) return shortest
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: if arr == sorted(arr): return 0 l = [arr[0]] r = [arr[-1]] for i in range(len(arr)): if arr[i + 1] >= arr[i]: l.append(arr[i + 1]) else: break for i in range(len(arr) - 1, -1, -1): if arr[i] >= arr[i - 1]: r.insert(0, arr[i - 1]) else: break res1 = len(arr) - len(r) res2 = len(arr) - len(l) j = 0 for i in range(len(l)): while j < len(r) and l[i] > r[j]: j += 1 if j == len(r): j -= 1 p = i while p < len(l) and l[p] <= r[j]: p += 1 p -= 1 return min(res1, res2, len(arr) - (p + 1 + len(r) - j))
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: l,r = 0,len(arr) - 1 while l < r and arr[l] <= arr[l + 1]: l += 1 if l == len(arr) - 1: return 0 while r >= 0 and arr[r] >= arr[r - 1]: r -= 1 toRemove = min(len(arr) - l - 1,r) for iL in range(l + 1): if arr[iL] <= arr[r]: toRemove = min(toRemove,r - iL - 1) elif r < len(arr) - 1: r += 1 return toRemove
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: def lowerbound(left, right, target): while left < right: mid = left + (right - left) // 2 if arr[mid] == target: right = mid elif arr[mid] < target: left = mid + 1 else: right = mid return left N = len(arr) # find the longest ascending array on the left side i = 0 while i + 1 < N and arr[i] <= arr[i+1]: i += 1 if i == N - 1: # it is already in ascending order return 0 # find the longest ascending array on the right side j = N - 1 while j - 1 >= 0 and arr[j] >= arr[j-1]: j -= 1 if j == 0: # the entire array is in decending order return N - 1 # keep ascending array on right side or left side result = min(N - (N - j), N - i -1) # find the shortest unordered subarray in the middle for k in range(i+1): l = lowerbound(j, len(arr), arr[k]) result = min(result, l - (k + 1)) return result
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: if arr == sorted(arr): return 0 l = [arr[0]] r = [arr[-1]] for i in range(len(arr)): if arr[i + 1] >= arr[i]: l.append(arr[i + 1]) else: break for i in range(len(arr) - 1, -1, -1): if arr[i] >= arr[i - 1]: r.insert(0, arr[i - 1]) else: break res1 = len(arr) - len(r) res2 = len(arr) - len(l) res3 = len(arr) if l[-1] <= r[0]: res3 = len(arr) - len(l) - len(r) res = min(res1, res2, res3) j = 0 for i in range(len(l)): while j < len(r) and l[i] > r[j]: j += 1 if j == len(r): j -= 1 p = i while p < len(l) and l[p] <= r[j]: p += 1 p -= 1 return min(res, len(arr) - (p + 1 + len(r) - j))
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, A): # For each i, let's look at the best answer A[..i] + A[j..] # This requires: # A[..i] monotone increasing; (1) # A[j..] monotone increasing; (2) # A[i] <= A[j] (3) # For each i, lets say the lowest (ie. best) such j = opt(i). # It turns out that opt(i) is monotone increasing, so we can use # two pointers. N = len(A) j = N - 1 while j and A[j - 1] <= A[j]: j -= 1 ans = j # j is lowest such that A[j..] is monotone increasing for i in range(j): if i and A[i-1] > A[i]: break while j < N and A[i] > A[j]: j += 1 # Now, j = opt(i): ie., the lowest j such that # all 3 conditions (1), (2), (3) above are satisified. ans = min(ans, j - i - 1) return ans
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: n = len(arr) answer = n curr = arr[0] start = 1 while start < n: if arr[start] >= curr: curr = arr[start] start += 1 else: break start -= 1 if start == n-1: return 0 curr = arr[n-1] end = n-2 while end >= 0: if arr[end] <= curr: curr = arr[end] end -= 1 else: break end += 1 answer = min(answer, n-start-1, end) l, r = 0, end while r < n and l <= start: if arr[l] <= arr[r]: answer = min(answer, r-l-1) l += 1 else: r += 1 return answer
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr): n = len(arr) left, right = 0, n - 1 while left < n - 1 and arr[left] <= arr[left + 1]: left += 1 if left == n - 1: return 0 while right > 0 and arr[right - 1] <= arr[right]: right -= 1 res = min(n - left - 1, right) j = right for i in range(left + 1): while j <= n - 1 and arr[i] > arr[j]: j += 1 if j <= n - 1: res = min(res, j - i - 1) return res
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, a: List[int]) -> int: n = len(a) if all(a[i] >= a[i - 1] for i in range(1, n)): return 0 d = {x: i + 1 for i, x in enumerate(sorted(set(a)))} a = [d[x] for x in a] last = [0] * (len(d) + 1) prev = -1 for i, x in enumerate(a): if x < prev: break last[x] = i + 1 prev = x for i in range(1, len(d) + 1): if last[i] == 0: last[i] = last[i - 1] ans = last[-1] prev = 1e100 for i, x in enumerate(a[::-1]): if prev < x: break ans = max(ans, i + 1 + last[x]) prev = x return n - ans
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: N = len(arr) left_idx = 0 while left_idx < N - 1 and arr[left_idx] <= arr[left_idx+1]: left_idx += 1 if left_idx == N - 1: return 0 right_idx = N - 1 while right_idx > 1 and arr[right_idx] >= arr[right_idx - 1]: right_idx -= 1 r = min(N - 1 - left_idx, right_idx) i = 0 j = right_idx while i <= left_idx and j <= N - 1: if arr[j] >= arr[i]: r = min(r, j - i - 1) i += 1 else: j += 1 return r
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: inc_idx = 0 for i in range(1, len(arr)): if arr[i] >= arr[i-1]: inc_idx += 1 else: break if inc_idx == len(arr) - 1: return 0 dec_idx = len(arr) - 1 for i in range(len(arr) - 2, -1, -1): if arr[i] <= arr[i+1]: dec_idx -= 1 else: break l = self.helper(arr[:inc_idx+1], arr[dec_idx:]) return len(arr) - l def helper(self, arr1: List[int], arr2: List[int]): print((arr1, arr2)) i, j = 0, 0 l = 0 while i < len(arr1) and j < len(arr2): while j < len(arr2) and arr1[i] > arr2[j]: j += 1 if j == len(arr2): break l = max(l, i + 1 + len(arr2) - j) i += 1 return max(len(arr1), len(arr2), l)
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
# 1040 class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: n = len(arr) left_good = [True,] right_good = [True,] for i in range(1, n): if arr[i] >= arr[i-1]: left_good.append(True) else: break left_good.extend([False] * (n - len(left_good))) for i in range(n-2, -1, -1): if arr[i] <= arr[i+1]: right_good.append(True) else: break right_good.extend([False] * (n - len(right_good))) right_good.reverse() high = n low = 0 def enough(sz): if sz == n: return True if sz == 0: return left_good[n-1] for begin in range(n): end = begin + sz - 1 if end >= n: return False a = begin - 1 b = end + 1 if (a < 0 or left_good[a]) and (b == n or right_good[b]) and ((not 0 <= a < b < n) or (arr[a] <= arr[b])): #print('found ', begin, sz) return True return False #print(left_good, right_good) while low <= high: cur = int((low + high) / 2) # low + (high - low) / 2 #print('trying', cur, enough(cur), low, high) if enough(cur): high = cur - 1 else: low = cur + 1 return low
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: l = 0 r = len(arr)-1 while l < len(arr)-1 and arr[l+1] >= arr[l]: l +=1 if l == len(arr)-1: return 0 while r > 0 and arr[r-1] <= arr[r]: r -=1 res = min(len(arr)-l-1, r) i, j = 0, r while i <= l and j < len(arr): if arr[i] <= arr[j]: res = min(res, j - i - 1) i +=1 else: j +=1 return res
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: # [1,2,3,10,4,2,3,5] r = len(arr) - 1 while r >0 and arr[r] >= arr[r-1]: r -= 1 ret = r # worst case, remove all left l = 0 for l in range(len(arr)): if l>0 and arr[l] < arr[l-1]: break if l == r: r += 1 while r < len(arr) and arr[l] > arr[r] : r +=1 ret = min(ret, r-l-1) return ret
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: l = 0 r = len(arr) - 1 while l < r and arr[l] <= arr[l + 1]: l += 1 if l == r: return 0 while r > 0 and arr[r] >= arr[r - 1]: r -= 1 min_remove = min(len(arr) - l - 1, r) for i in range(l + 1): if arr[i] <= arr[r]: min_remove = min(min_remove, r - i - 1) elif r < len(arr) - 1: r += 1 else: break return min_remove
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: inc_idx = 0 for i in range(1, len(arr)): if arr[i] >= arr[i-1]: inc_idx += 1 else: break if inc_idx == len(arr) - 1: return 0 dec_idx = len(arr) - 1 for i in range(len(arr) - 2, -1, -1): if arr[i] <= arr[i+1]: dec_idx -= 1 else: break l = self.helper(arr[:inc_idx+1], arr[dec_idx:]) return len(arr) - l def helper(self, arr1: List[int], arr2: List[int]): print((arr1, arr2)) i, j = 0, 0 l = 0 while i < len(arr1) and j < len(arr2): while j < len(arr2) and arr1[i] > arr2[j]: j += 1 if j == len(arr2): break l = max(l, i + 1 + len(arr2) - j) print((i, j, l)) i += 1 return max(len(arr1), len(arr2), l)
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, a: List[int]) -> int: n = len(a) if all(a[i] >= a[i - 1] for i in range(1, n)): return 0 d = {x: i + 1 for i, x in enumerate(sorted(set(a)))} a = [d[x] for x in a] last = [0] * (len(d) + 1) prev = -1 for i, x in enumerate(a): if x < prev: break last[x] = i + 1 prev = x # print(last) for i in range(1, len(d) + 1): if last[i] == 0: last[i] = last[i - 1] # print(a) # print(last) ans = last[-1] prev = 1e100 for i, x in enumerate(a[::-1]): if prev < x: break print(prev, x, last[x], i) ans = max(ans, i + 1 + last[x]) prev = x return n - ans
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: n = len(arr) p1 = p2 = -1 for i in range(1, n): if arr[i] < arr[i - 1]: p2 = i if p1 == -1: p1 = i if p1 == -1: return 0 def chk(l): nonlocal p1 nonlocal p2 # print (p1, p2) if l >= p2: return True n = len(arr) for i in range(n): if i > p1: return False if i + l >= n: return True if i + l < p2: continue if arr[i - 1] <= arr[i + l]: return True return False # print (chk(8)) # return 0 l = 0 r = n while l < r: mid = (l + r) // 2 if chk(mid): r = mid else: l = mid + 1 return l
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: n = len(arr) l = 0 r = n-1 ans = 0 while l < n-1 and arr[l] <= arr[l+1]: l+=1 if l == n-1: return 0 ans = n - l - 1 while r >= l and arr[r] >= arr[r-1]: r-=1 if r == 0: return n-1 ans = min(ans,r) i = 0 j = r while i <= l and j < n: if arr[i] <= arr[j]: ans = min(ans, j-i-1) i+=1 else: j+=1 return ans
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: n = len(arr) i, j = 0, n - 1 while i < n - 1 and arr[i] <= arr[i + 1]: i += 1 if i == n - 1: return 0 # sorted while j > 0 and arr[j] >= arr[j - 1]: j -= 1 if j == 0: return n - 1 # reversely sorted res = min(n - 1 - i, j) # leaving prefix, or suffix after removing # to merge prefix and suffix # binary search also works here but worse time complexity: # need to search each of prefix in suffix (or the other way) # checking only end of prefix and head of suffix is not enough for k in range(i + 1): if arr[k] <= arr[j]: res = min(res, j - k - 1) elif j < n - 1: j += 1 else: break return res
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: first, last = -1, -1 length = len(arr) prev = float('-inf') for i in range(length): if arr[i] < prev: first = i break prev = arr[i] if first == -1: return 0 after = float('inf') for i in range(length - 1, -1, -1): if arr[i] > after: last = i break after = arr[i] def helper(size): for i in range(length - size + 1): if i <= first and i + size > last: if i + size == length or i == 0: return True if arr[i + size] >= arr[i - 1]: return True return False low, high = 1, length - 1 res = float('inf') while low <= high: mid = low + (high - low) // 2 if helper(mid): res = min(res, mid) high = mid - 1 else: low = mid + 1 return res
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: i = 0 pref = 1 while i<len(arr)-1: if arr[i]<=arr[i+1]: pref+=1 else: break i+=1 j = len(arr)-1 suff = 1 while j>0: if arr[j]>=arr[j-1]: suff+=1 else: break j-=1 ans = min(len(arr)-pref,len(arr)-suff) pref = i suff = j i = 0 j = suff while i<=pref and j<len(arr): if arr[i]<=arr[j]: ans = min(ans,j-i-1) i+=1 elif arr[j]<arr[i]: j+=1 # ans = min(ans,j-i-1) return max(0,ans)
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: # 1 4 5 2 3 2 1 5 6 7 # can be removed only in 3 types # last, middle, front #front - what is the longest sorted array in the suffix #last - what is the longest sorted array in the prefix #middle - find the prefix and sufix sorting then see if then can be merged else 0 n = len(arr) if n==1 or n==0: return 0 front = 0 a = -1 b = -1 last = 0 middle = 0 c = 1 for i in range(1, n): if arr[i]>=arr[i-1]: c += 1 else : a = i-1 front = c break if c == n: a = n-1 front = c c = 1 for i in range(n-1,1,-1): if arr[i-1]<=arr[i]: c += 1 else : last = c b = i break if c == n: b = 0 last = c print((front, a, last, b)) if b !=-1 and a!= -1 : for i in range(b,n): if arr[a] <= arr[i]: middle = max(middle, front+(n-i)) print((1,a,i)) for i in range(0,a+1): if arr[i] <= arr[b]: middle = max(middle, last+i+1) print((2,i, b)) return n-max(last,max(front,middle))
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
from typing import List class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: # 1. formulate two non-decreasing arr pre_len = 1 while pre_len < len(arr): if arr[pre_len] < arr[pre_len - 1]: break pre_len += 1 arr_a = arr[:pre_len] if len(arr_a) == len(arr): return 0 arr_b = [arr[-1]] for j in range(len(arr) - 2, -1, -1): if arr[j] <= arr[j + 1]: arr_b.insert(0, arr[j]) else: break # print(arr_a, arr_b) # 2. Loop through arr_a to find the ans ans = len(arr) - 1 for i in range(len(arr_a)): j = self.binary_search(arr_b, arr_a[i]) cut_length = len(arr) - (i + 1) - (len(arr_b) - j) ans = min(ans, cut_length) ans = min(ans, len(arr) - len(arr_a)) ans = min(ans, len(arr) - len(arr_b)) return ans # need to return the index i such that arr[i] >= num def binary_search(self, arr, num): low = 0 high = len(arr) - 1 ans = len(arr) while low <= high: mid = (low + high) // 2 if arr[mid] >= num: ans = min(ans, mid) high = mid - 1 else: low = mid + 1 return ans # leetcode submit region end(Prohibit modification and deletion) def __starting_point(): solution = Solution() assert (solution.findLengthOfShortestSubarray([1, 2, 3, 10, 4, 2, 3, 5]) == 3) assert (solution.findLengthOfShortestSubarray([5, 4, 3, 2, 1]) == 4) assert (solution.findLengthOfShortestSubarray([1, 2, 3]) == 0) assert (solution.findLengthOfShortestSubarray([13, 0, 14, 7, 18, 18, 18, 16, 8, 15, 20]) == 8) assert (solution.findLengthOfShortestSubarray([16, 10, 0, 3, 22, 1, 14, 7, 1, 12, 15]) == 8) __starting_point()
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: A=arr N = len(A) j = N-1 while j >= 1 and A[j-1] <= A[j]: j -= 1 res = j for i in range(N): if i >= j or (i > 0 and A[i] < A[i-1]): break while j < N and A[i] > A[j]: j += 1 res = min(res, j-i-1) return res
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: # [1,2,3,10,4,2,3,5] r = len(arr) - 1 while r >0 and arr[r] >= arr[r-1]: r -= 1 ret = r # worst case, remove all left l = 0 for l in range(len(arr)): if l>0 and arr[l] < arr[l-1]: break if l >= r: break while r < len(arr) and arr[l] > arr[r] : r +=1 print((l,r)) ret = min(ret, r-l-1) return ret
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
from sortedcontainers import SortedList class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: last = -float('inf') sl = SortedList() for i, n in enumerate(arr): if n < last: break sl.add(n) last = n ans = len(arr) - len(sl) last = float('inf') for i in range(len(arr)-1, 0, -1): if arr[i] > last: break last = arr[i] sl_idx = sl.bisect_right(arr[i]) ans = min(ans, i - sl_idx) return max(0, ans)
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: n = len(arr) left_idx, right_idx = 0, n - 1 # edge case # left side while left_idx < n - 1 and arr[left_idx] <= arr[left_idx + 1]: left_idx += 1 # right side while right_idx > 0 and arr[right_idx - 1] <= arr[right_idx]: right_idx -= 1 nums_to_rm = min(n - left_idx - 1, right_idx) # print(nums_to_rm) # general case for curr_idx in range(left_idx + 1): if arr[curr_idx] <= arr[right_idx]: nums_to_rm = min(nums_to_rm, max(0, right_idx - curr_idx - 1)) # print(nums_to_rm) else: # arr[curr_idx] > arr[right_idx] if right_idx < n - 1: right_idx += 1 else: break # [1,2,3,10,4,2,3,5] # [5,4,3,2,1] # [1] return nums_to_rm
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: pre = [True] pst = [True] for i in range(1, len(arr)): if pre[-1] and arr[i]>=arr[i-1]: pre.append(True) else: pre.append(False) if pst[-1] and arr[len(arr)-i-1]<=arr[len(arr)-i]: pst.append(True) else: pst.append(False) pst = pst[::-1] # print (pre) # print (pst) def isPoss(slen): for i in range(len(arr)-slen+1): j = i+slen if not i: if pst[j]: return True elif j>len(arr)-1: if pre[i-1]: return True else: if pre[i-1] and pst[j] and arr[i-1]<=arr[j]: return True return False # print (isPoss(1)) l, r = 0, len(arr) res = r while l<=r: m = l + (r-l)//2 if isPoss(m): res = min(m, res) r = m - 1 else: l = m + 1 return res
Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing. A subarray is a contiguous subsequence of the array. Return the length of the shortest subarray to remove.   Example 1: Input: arr = [1,2,3,10,4,2,3,5] Output: 3 Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted. Another correct solution is to remove the subarray [3,10,4]. Example 2: Input: arr = [5,4,3,2,1] Output: 4 Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1]. Example 3: Input: arr = [1,2,3] Output: 0 Explanation: The array is already non-decreasing. We do not need to remove any elements. Example 4: Input: arr = [1] Output: 0   Constraints: 1 <= arr.length <= 10^5 0 <= arr[i] <= 10^9
class Solution: def findLengthOfShortestSubarray(self, arr: List[int]) -> int: # [start_f, end_f] is the first sorting part start_f, end_f = 0, 0 while end_f+1 < len(arr): if arr[end_f+1] >= arr[end_f]: end_f += 1 else: break # the entire array is sorted if end_f == len(arr)-1: return 0 start_b, end_b = len(arr)-1, len(arr)-1 # the last part is smaller than first part if arr[-1] < arr[end_f]: start_b = len(arr) else: while start_b-1 >= 0 and arr[start_b-1] >= arr[end_f]: if arr[start_b-1] <= arr[start_b]: start_b -= 1 else: break print((start_f, end_f, start_b, end_b)) start, end = end_f+1, start_b-1 ans = end-start+1 while start >= 0: start -= 1 while start == 0 or arr[end] >= arr[start-1]: if end == len(arr)-1 or arr[end] <= arr[end+1]: end -= 1 ans = min(ans, end-start+1) else: break return ans
Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product. Example 1: Input: [2,3,-2,4] Output: 6 Explanation: [2,3] has the largest product 6. Example 2: Input: [-2,0,-1] Output: 0 Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
class Solution: def maxProduct(self, nums): """ :type nums: List[int] :rtype: int """ def prod(nums): #function to calculate product prod = 1 for i in nums: prod*=i return prod def listsplit(ls1,index): result = [] st = -1 for i in index: if i == 0: st = i else: result.append(ls1[st+1:i]) st = i if st<len(ls1)-1: result.append(ls1[st+1:]) return result #main starts here if not nums: return 0 if len(nums) == 1: return nums[0] #find zeros: if zeros are included the result would be zeros only result=[] if 0 in nums: zeros = [i for i in range(len(nums)) if nums[i] ==0] sublist = listsplit(nums,zeros) result.append(0) else: sublist = [nums] #find negative numbers. consider even or odd sublist = [i for i in sublist if i] for i in sublist: if prod(i) <0: #there is negative number in the list negative = [j for j in range(len(i)) if i[j] < 0] left,right = negative[0],negative[-1] if len(i) == 1: result_t = i[0] elif left == 0 or right == len(i) -1: result_t = max(prod(i[left+1:]),prod(i[:right])) else: left_p,right_p = prod(i[:left]),prod(i[right+1:]) if left_p <= right_p: result_t = prod(i[left+1:]) else: result_t = prod(i[:right]) else: result_t = prod(i) result.append(result_t) return max(result)
Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product. Example 1: Input: [2,3,-2,4] Output: 6 Explanation: [2,3] has the largest product 6. Example 2: Input: [-2,0,-1] Output: 0 Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
class Solution: def maxProduct(self, nums): self._prod_cache = {} m_value = None if len(nums)==1: return nums[0] if len(nums)==0: return 0 for i in range(len(nums)): a_value = self.get_max_prod(nums, i, 1) if m_value is None or a_value>m_value: m_value = a_value return m_value def get_max_prod(self, nums, i, acc_p): if i<0: return None if (i, acc_p) in self._prod_cache: return self._prod_cache[(i, acc_p)] val = nums[i] if i>0: max_p = max(self.get_max_prod(nums, i-1, acc_p*val), acc_p*val) else: max_p = acc_p*val self._prod_cache[(i, acc_p)]=max_p return max_p
Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product. Example 1: Input: [2,3,-2,4] Output: 6 Explanation: [2,3] has the largest product 6. Example 2: Input: [-2,0,-1] Output: 0 Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
class Solution: def maxProduct(self, nums): """ :type nums: List[int] :rtype: int """ n=len(nums) if n==0: return 0 if n==1: return nums[0] ans=nums[0] l=0 r=n-1 prod=1 i=0 while i<n: if nums[i]==0: zero_idx=i return max(self.maxProduct(nums[(zero_idx+1):]), max(0,self.maxProduct(nums[0:zero_idx]))) else: prod=prod*nums[i] i=i+1 if prod>0: return prod prod_right=prod max_prod_right=prod prod_left=prod max_prod_left=prod if prod<0: #print(max_prod_right) while 0<=r: prod_right=prod_right//nums[r] r=r-1 if prod_right>max_prod_right: if prod_right>0: max_prod_right=prod_right break else: max_prod_right=prod_right print(max_prod_left) while l<n: prod_left=prod_left//nums[l] l=l+1 #print(l, prod_left,"----", nums[l], nums[l:]) if prod_left>max_prod_left: if prod_left>0: max_prod_left=prod_left break else: max_prod_left=prod_left #print(max_prod_left, max_prod_right) return max(max_prod_left, max_prod_right)
Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product. Example 1: Input: [2,3,-2,4] Output: 6 Explanation: [2,3] has the largest product 6. Example 2: Input: [-2,0,-1] Output: 0 Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
class Solution: def maxProduct(self, nums): """ :type nums: List[int] :rtype: int """ if not nums: return 0 res = premax = premin = nums[0] curmax = curmin = None for n in nums[1:]: curmax, curmin = max(premax*n, premin*n, n), min(premax*n, premin*n, n) premax, premin = curmax, curmin res = max(res, curmax) return res
Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product. Example 1: Input: [2,3,-2,4] Output: 6 Explanation: [2,3] has the largest product 6. Example 2: Input: [-2,0,-1] Output: 0 Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
class Solution: def maxProduct(self, nums): """ :type nums: List[int] :rtype: int """ glo_max = nums[0] imax = glo_max imin = glo_max i = 1 while i < len(nums): if nums[i] < 0: temp = imax imax = imin imin = temp imax = max(nums[i], nums[i] * imax) imin = min(nums[i], nums[i] * imin) glo_max = max(glo_max, imax) i += 1 return glo_max
Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product. Example 1: Input: [2,3,-2,4] Output: 6 Explanation: [2,3] has the largest product 6. Example 2: Input: [-2,0,-1] Output: 0 Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
class Solution(object): def maxProduct(self, nums): """ :type nums: List[int] :rtype: int """ # track min_negative_product and max_positive_product if len(nums) == 0: return nums if len(nums) == 1: return nums[0] curr_min = curr_max = best_max = nums[0] for i in range(1,len(nums)): curr_min,curr_max = min(nums[i],nums[i]*curr_min,nums[i]*curr_max),max(nums[i],nums[i]*curr_min,nums[i]*curr_max) best_max = max(curr_max,best_max) return best_max
Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product. Example 1: Input: [2,3,-2,4] Output: 6 Explanation: [2,3] has the largest product 6. Example 2: Input: [-2,0,-1] Output: 0 Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
class Solution: def maxProduct(self, nums): """ :type nums: List[int] :rtype: int """ dp_max=[0]*len(nums) dp_min=[0]*len(nums) res=dp_max[0]=dp_min[0]=nums[0] for i in range(1,len(nums)): dp_max[i]=max(nums[i],dp_max[i-1]*nums[i],dp_min[i-1]*nums[i]) dp_min[i]=min(nums[i],dp_max[i-1]*nums[i],dp_min[i-1]*nums[i]) res=max(res,dp_max[i]) return res
Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product. Example 1: Input: [2,3,-2,4] Output: 6 Explanation: [2,3] has the largest product 6. Example 2: Input: [-2,0,-1] Output: 0 Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
class Solution: def maxProduct(self, nums): """ :type nums: List[int] :rtype: int """ max_val = -float("inf") product = 1 for num in nums: product *= num max_val = max(product, max_val) if num == 0: product = 1 product = 1 for num in nums[::-1]: product *= num max_val = max(product, max_val) if num == 0: product = 1 return max_val
Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product. Example 1: Input: [2,3,-2,4] Output: 6 Explanation: [2,3] has the largest product 6. Example 2: Input: [-2,0,-1] Output: 0 Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
class Solution: def maxProduct(self, nums): """ :type nums: List[int] :rtype: int """ if not nums: return 0 res = loc_min = loc_max = nums[0] for i in nums[1:]: if i < 0: loc_min, loc_max = loc_max, loc_min loc_min = min(i, loc_min * i) loc_max = max(i, loc_max * i) res = max(loc_min, loc_max, res) return res
Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product. Example 1: Input: [2,3,-2,4] Output: 6 Explanation: [2,3] has the largest product 6. Example 2: Input: [-2,0,-1] Output: 0 Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
class Solution: def maxProduct(self, nums): """ :type nums: List[int] :rtype: int """ if len(nums) == 1: return nums[0] else: result = big = small = nums[0] for i in nums[1:]: big, small = max(i, i*big, i*small), min (i,i*small, i*big) result = max(result, big) return result
Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product. Example 1: Input: [2,3,-2,4] Output: 6 Explanation: [2,3] has the largest product 6. Example 2: Input: [-2,0,-1] Output: 0 Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
class Solution: def maxProduct(self, nums): """ :type nums: List[int] :rtype: int """ n = len(nums) dp = [[nums[0], nums[0]]] * n ans = nums[0] for i in range(1, n): temp = [dp[i-1][0] * nums[i], dp[i-1][1] * nums[i], nums[i]] dp[i][0], dp[i][1] = max(temp), min(temp) if dp[i][0] > ans: ans = dp[i][0] return ans
Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product. Example 1: Input: [2,3,-2,4] Output: 6 Explanation: [2,3] has the largest product 6. Example 2: Input: [-2,0,-1] Output: 0 Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
class Solution: def maxProduct(self, nums): """ :type nums: List[int] :rtype: int """ n = len(nums) dp = [[nums[0], nums[0]] for _ in range(n)] ans = nums[0] for i in range(1, n): temp = [dp[i-1][0] * nums[i], dp[i-1][1] * nums[i], nums[i]] dp[i][0], dp[i][1] = max(temp), min(temp) if dp[i][0] > ans: ans = dp[i][0] return ans # n = len(nums) # dp = [[nums[0], nums[0]]] * n 尽量不要使用乘法 # ans = nums[0] # for i in range(1, n): # temp = [dp[i-1][0] * nums[i], dp[i-1][1] * nums[i], nums[i]] # dp[i][0], dp[i][1] = max(temp), min(temp) 这样赋值会改变所有值 # if dp[i][0] > ans: # ans = dp[i][0] # return dp[-1][0]
Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product. Example 1: Input: [2,3,-2,4] Output: 6 Explanation: [2,3] has the largest product 6. Example 2: Input: [-2,0,-1] Output: 0 Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
class Solution: def maxProduct(self, nums): """ :type nums: List[int] :rtype: int """ f = [[nums[0], nums[0]]] ans = nums[0] for i in range(1, len(nums)): f.append([0, 0]) f[i][0] = min(f[i-1][0]*nums[i], f[i-1][1]*nums[i], nums[i]) f[i][1] = max(f[i-1][0]*nums[i], f[i-1][1]*nums[i], nums[i]) ans = max(ans, f[i][1]) return ans
Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product. Example 1: Input: [2,3,-2,4] Output: 6 Explanation: [2,3] has the largest product 6. Example 2: Input: [-2,0,-1] Output: 0 Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
class Solution: def maxProduct(self, nums): """ :type nums: List[int] :rtype: int """ largestproduct = [] smallestproduct = [] n =len(nums) largestproduct.append(nums[0]) smallestproduct.append(nums[0]) for i in range(n-1): lp = max(max(largestproduct[i]*nums[i+1],smallestproduct[i]*nums[i+1]),nums[i+1]) sp = min(min(largestproduct[i]*nums[i+1],smallestproduct[i]*nums[i+1]),nums[i+1]) largestproduct.append(lp) smallestproduct.append(sp) sol = largestproduct[0] for i in range(n): sol = max(sol,largestproduct[i]) return sol
Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product. Example 1: Input: [2,3,-2,4] Output: 6 Explanation: [2,3] has the largest product 6. Example 2: Input: [-2,0,-1] Output: 0 Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
class Solution: def maxProduct(self, nums): """ :type nums: List[int] :rtype: int """ maxPos = nums[0] maxNeg = -nums[0] p = 1 result = nums[0] while p < len(nums): if nums[p] >= 0: tmp1 = max(nums[p], nums[p] * maxPos) tmp2 = max(-nums[p], nums[p] * maxNeg) maxPos = tmp1 maxNeg = tmp2 else: tmp1 = max(nums[p], -nums[p] * maxNeg) tmp2 = max(-nums[p], -nums[p] * maxPos) maxPos = tmp1 maxNeg = tmp2 print((nums[p], maxPos, maxNeg)) result = max(result, maxPos) p += 1 return result
Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product. Example 1: Input: [2,3,-2,4] Output: 6 Explanation: [2,3] has the largest product 6. Example 2: Input: [-2,0,-1] Output: 0 Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
class Solution: def maxProduct(self, nums): """ :type nums: List[int] :rtype: int """ maxP = nums[0] minP = nums[0] p = 1 result = nums[0] while p < len(nums): tmp1 = max(nums[p], nums[p] * maxP, nums[p] * minP) tmp2 = min(nums[p], nums[p] * maxP, nums[p] * minP) maxP = tmp1 minP = tmp2 print((nums[p], maxP, minP)) result = max(result, maxP) p += 1 return result
You are given an integer num. You will apply the following steps exactly two times: Pick a digit x (0 <= x <= 9). Pick another digit y (0 <= y <= 9). The digit y can be equal to x. Replace all the occurrences of x in the decimal representation of num by y. The new integer cannot have any leading zeros, also the new integer cannot be 0. Let a and b be the results of applying the operations to num the first and second times, respectively. Return the max difference between a and b.   Example 1: Input: num = 555 Output: 888 Explanation: The first time pick x = 5 and y = 9 and store the new integer in a. The second time pick x = 5 and y = 1 and store the new integer in b. We have now a = 999 and b = 111 and max difference = 888 Example 2: Input: num = 9 Output: 8 Explanation: The first time pick x = 9 and y = 9 and store the new integer in a. The second time pick x = 9 and y = 1 and store the new integer in b. We have now a = 9 and b = 1 and max difference = 8 Example 3: Input: num = 123456 Output: 820000 Example 4: Input: num = 10000 Output: 80000 Example 5: Input: num = 9288 Output: 8700   Constraints: 1 <= num <= 10^8
class Solution: def maxDiff(self, num: int) -> int: if num < 10: return 8 a = b = str(num) i = 0 while i < len(a): if a[i] == '9': i += 1 else: a = a.replace(a[i], '9') break if b[0] != '1': b = b.replace(b[0], '1') else: i = 1 while i < len(b): if b[i] == '1' or b[i] == '0': i += 1 else: b = b.replace(b[i], '0') break #print(a,b) return int(a) - int(b)
You are given an integer num. You will apply the following steps exactly two times: Pick a digit x (0 <= x <= 9). Pick another digit y (0 <= y <= 9). The digit y can be equal to x. Replace all the occurrences of x in the decimal representation of num by y. The new integer cannot have any leading zeros, also the new integer cannot be 0. Let a and b be the results of applying the operations to num the first and second times, respectively. Return the max difference between a and b.   Example 1: Input: num = 555 Output: 888 Explanation: The first time pick x = 5 and y = 9 and store the new integer in a. The second time pick x = 5 and y = 1 and store the new integer in b. We have now a = 999 and b = 111 and max difference = 888 Example 2: Input: num = 9 Output: 8 Explanation: The first time pick x = 9 and y = 9 and store the new integer in a. The second time pick x = 9 and y = 1 and store the new integer in b. We have now a = 9 and b = 1 and max difference = 8 Example 3: Input: num = 123456 Output: 820000 Example 4: Input: num = 10000 Output: 80000 Example 5: Input: num = 9288 Output: 8700   Constraints: 1 <= num <= 10^8
class Solution: def maxDiff(self, num: int) -> int: num = [int(c) for c in str(num)] max_num, min_num = num[:], num[:] for v in num: if v < 9: max_num = [digit if digit != v else 9 for digit in num] break if num[0] != 1: min_num = [digit if digit != num[0] else 1 for digit in num] else: for v in num[1:]: if v > 1: min_num = [digit if digit != v else 0 for digit in num] break print((max_num, min_num)) return int(''.join([str(digit) for digit in max_num]))-int(''.join([str(digit) for digit in min_num]))
You are given an integer num. You will apply the following steps exactly two times: Pick a digit x (0 <= x <= 9). Pick another digit y (0 <= y <= 9). The digit y can be equal to x. Replace all the occurrences of x in the decimal representation of num by y. The new integer cannot have any leading zeros, also the new integer cannot be 0. Let a and b be the results of applying the operations to num the first and second times, respectively. Return the max difference between a and b.   Example 1: Input: num = 555 Output: 888 Explanation: The first time pick x = 5 and y = 9 and store the new integer in a. The second time pick x = 5 and y = 1 and store the new integer in b. We have now a = 999 and b = 111 and max difference = 888 Example 2: Input: num = 9 Output: 8 Explanation: The first time pick x = 9 and y = 9 and store the new integer in a. The second time pick x = 9 and y = 1 and store the new integer in b. We have now a = 9 and b = 1 and max difference = 8 Example 3: Input: num = 123456 Output: 820000 Example 4: Input: num = 10000 Output: 80000 Example 5: Input: num = 9288 Output: 8700   Constraints: 1 <= num <= 10^8
class Solution: def maxDiff(self, num: int) -> int: replaces = [] num = str(num) for i in range(0, 10): for j in range(0, 10): rep_num = num.replace(str(i), str(j)) if rep_num[0] != '0': replaces.append(int(rep_num)) return max(replaces) - min(replaces)
You are given an integer num. You will apply the following steps exactly two times: Pick a digit x (0 <= x <= 9). Pick another digit y (0 <= y <= 9). The digit y can be equal to x. Replace all the occurrences of x in the decimal representation of num by y. The new integer cannot have any leading zeros, also the new integer cannot be 0. Let a and b be the results of applying the operations to num the first and second times, respectively. Return the max difference between a and b.   Example 1: Input: num = 555 Output: 888 Explanation: The first time pick x = 5 and y = 9 and store the new integer in a. The second time pick x = 5 and y = 1 and store the new integer in b. We have now a = 999 and b = 111 and max difference = 888 Example 2: Input: num = 9 Output: 8 Explanation: The first time pick x = 9 and y = 9 and store the new integer in a. The second time pick x = 9 and y = 1 and store the new integer in b. We have now a = 9 and b = 1 and max difference = 8 Example 3: Input: num = 123456 Output: 820000 Example 4: Input: num = 10000 Output: 80000 Example 5: Input: num = 9288 Output: 8700   Constraints: 1 <= num <= 10^8
class Solution: def maxDiff(self, num: int) -> int: numStr1 = list(str(num)) numStr2 = list(str(num)) numStrLen = len(numStr1) firstChar = numStr1[0] for i, char in enumerate(numStr1): if char != firstChar and char > '0': for j in range(i, numStrLen): if numStr1[j] == char: numStr1[j] = '0' break if char == firstChar and char > '1': for j in range(i, numStrLen): if numStr1[j] == char: numStr1[j] = '1' break for i, char in enumerate(numStr2): if char < '9': for j in range(i, numStrLen): if numStr2[j] == char: numStr2[j] = '9' break # print(numStr1, numStr2) return int(''.join(numStr2)) - int(''.join(numStr1))
You are given an integer num. You will apply the following steps exactly two times: Pick a digit x (0 <= x <= 9). Pick another digit y (0 <= y <= 9). The digit y can be equal to x. Replace all the occurrences of x in the decimal representation of num by y. The new integer cannot have any leading zeros, also the new integer cannot be 0. Let a and b be the results of applying the operations to num the first and second times, respectively. Return the max difference between a and b.   Example 1: Input: num = 555 Output: 888 Explanation: The first time pick x = 5 and y = 9 and store the new integer in a. The second time pick x = 5 and y = 1 and store the new integer in b. We have now a = 999 and b = 111 and max difference = 888 Example 2: Input: num = 9 Output: 8 Explanation: The first time pick x = 9 and y = 9 and store the new integer in a. The second time pick x = 9 and y = 1 and store the new integer in b. We have now a = 9 and b = 1 and max difference = 8 Example 3: Input: num = 123456 Output: 820000 Example 4: Input: num = 10000 Output: 80000 Example 5: Input: num = 9288 Output: 8700   Constraints: 1 <= num <= 10^8
class Solution: def maxDiff(self, num: int) -> int: return self.findMax(num) - self.findMin(num) def findMax(self, num): s = str(num) org = None new_s = '' for c in s: if c == '9': new_s += c continue if org is None: org = c if c == org: new_s += '9' else: new_s += c return int(new_s) def findMin(self, num): s = str(num) org = None rep = None new_s = '' for i in range(len(s)): if s[i] == '0': new_s += s[i] continue if i == 0: if s[0] == '1': new_s += s[0] else: org = s[0] rep = '1' new_s += rep else: if org is None and s[i] != '1': org = s[i] rep = '0' new_s += rep elif s[i] == org: new_s += rep else: new_s += s[i] return int(new_s)
You are given an integer num. You will apply the following steps exactly two times: Pick a digit x (0 <= x <= 9). Pick another digit y (0 <= y <= 9). The digit y can be equal to x. Replace all the occurrences of x in the decimal representation of num by y. The new integer cannot have any leading zeros, also the new integer cannot be 0. Let a and b be the results of applying the operations to num the first and second times, respectively. Return the max difference between a and b.   Example 1: Input: num = 555 Output: 888 Explanation: The first time pick x = 5 and y = 9 and store the new integer in a. The second time pick x = 5 and y = 1 and store the new integer in b. We have now a = 999 and b = 111 and max difference = 888 Example 2: Input: num = 9 Output: 8 Explanation: The first time pick x = 9 and y = 9 and store the new integer in a. The second time pick x = 9 and y = 1 and store the new integer in b. We have now a = 9 and b = 1 and max difference = 8 Example 3: Input: num = 123456 Output: 820000 Example 4: Input: num = 10000 Output: 80000 Example 5: Input: num = 9288 Output: 8700   Constraints: 1 <= num <= 10^8
class Solution: def maxDiff(self, num: int) -> int: s = str(num) a = True i = 0 while i<len(s): if a and int(s[i])<9: n = s[i] a = False if not a: if s[i] == n: s = s[:i]+'9'+s[i+1:] i+=1 n1 = int(s) s = str(num) a = True if int(s[0])>1: n = s[0] y = '1' s = y+s[1:] a = False i = 1 while i<len(s): if a and int(s[i])>0: if s[i]!=s[0]: n = s[i] y = '0' a = False if not a: if s[i] == n: s = s[:i]+y+s[i+1:] i+=1 n2 = int(s) return n1-n2
You are given an integer num. You will apply the following steps exactly two times: Pick a digit x (0 <= x <= 9). Pick another digit y (0 <= y <= 9). The digit y can be equal to x. Replace all the occurrences of x in the decimal representation of num by y. The new integer cannot have any leading zeros, also the new integer cannot be 0. Let a and b be the results of applying the operations to num the first and second times, respectively. Return the max difference between a and b.   Example 1: Input: num = 555 Output: 888 Explanation: The first time pick x = 5 and y = 9 and store the new integer in a. The second time pick x = 5 and y = 1 and store the new integer in b. We have now a = 999 and b = 111 and max difference = 888 Example 2: Input: num = 9 Output: 8 Explanation: The first time pick x = 9 and y = 9 and store the new integer in a. The second time pick x = 9 and y = 1 and store the new integer in b. We have now a = 9 and b = 1 and max difference = 8 Example 3: Input: num = 123456 Output: 820000 Example 4: Input: num = 10000 Output: 80000 Example 5: Input: num = 9288 Output: 8700   Constraints: 1 <= num <= 10^8
class Solution: def maxDiff(self, num: int) -> int: if num<10: return 8 numStr=str(num) a,b=[],[] for i in range(len(numStr)): a.append(numStr[i]) b.append(numStr[i]) for i in range(len(a)): temp=a[i] if not a[i]=='9': for j in range(len(a)): if a[j]==temp: a[j]='9' break for i in range(len(b)): if i==0: temp=b[0] if not b[0]=='1': for j in range(len(b)): if b[j]==temp: b[j]='1' break else: temp=b[i] if not b[i]=='0' and not b[i]=='1': for j in range(len(b)): if b[j]==temp: b[j]='0' break c,d='','' for i in range(len(numStr)): c,d=c+a[i],d+b[i] return int(c)-int(d)
You are given an integer num. You will apply the following steps exactly two times: Pick a digit x (0 <= x <= 9). Pick another digit y (0 <= y <= 9). The digit y can be equal to x. Replace all the occurrences of x in the decimal representation of num by y. The new integer cannot have any leading zeros, also the new integer cannot be 0. Let a and b be the results of applying the operations to num the first and second times, respectively. Return the max difference between a and b.   Example 1: Input: num = 555 Output: 888 Explanation: The first time pick x = 5 and y = 9 and store the new integer in a. The second time pick x = 5 and y = 1 and store the new integer in b. We have now a = 999 and b = 111 and max difference = 888 Example 2: Input: num = 9 Output: 8 Explanation: The first time pick x = 9 and y = 9 and store the new integer in a. The second time pick x = 9 and y = 1 and store the new integer in b. We have now a = 9 and b = 1 and max difference = 8 Example 3: Input: num = 123456 Output: 820000 Example 4: Input: num = 10000 Output: 80000 Example 5: Input: num = 9288 Output: 8700   Constraints: 1 <= num <= 10^8
class Solution: def maxDiff(self, num: int) -> int: maxi = '-inf' mini = 'inf' num = str(num) leading = num[0] for a in set(num): a = str(a) for b in range(10): if (not b) and (a == leading): continue b = str(b) temp = num.replace(a, b) mini = min(mini, temp) maxi = max(maxi, temp) return int(maxi) - int(mini)
You are given an integer num. You will apply the following steps exactly two times: Pick a digit x (0 <= x <= 9). Pick another digit y (0 <= y <= 9). The digit y can be equal to x. Replace all the occurrences of x in the decimal representation of num by y. The new integer cannot have any leading zeros, also the new integer cannot be 0. Let a and b be the results of applying the operations to num the first and second times, respectively. Return the max difference between a and b.   Example 1: Input: num = 555 Output: 888 Explanation: The first time pick x = 5 and y = 9 and store the new integer in a. The second time pick x = 5 and y = 1 and store the new integer in b. We have now a = 999 and b = 111 and max difference = 888 Example 2: Input: num = 9 Output: 8 Explanation: The first time pick x = 9 and y = 9 and store the new integer in a. The second time pick x = 9 and y = 1 and store the new integer in b. We have now a = 9 and b = 1 and max difference = 8 Example 3: Input: num = 123456 Output: 820000 Example 4: Input: num = 10000 Output: 80000 Example 5: Input: num = 9288 Output: 8700   Constraints: 1 <= num <= 10^8
class Solution: def maxDiff(self, num: int) -> int: a = [] s = str(num) for i in range(0, 10): for j in s: n = s.replace(j, str(i)) m = int(n) if m != 0 and n[0] != '0': a.append(m) diff = max(a) - min(a) return diff
Given an array of integers arr of even length n and an integer k. We want to divide the array into exactly n / 2 pairs such that the sum of each pair is divisible by k. Return True If you can find a way to do that or False otherwise.   Example 1: Input: arr = [1,2,3,4,5,10,6,7,8,9], k = 5 Output: true Explanation: Pairs are (1,9),(2,8),(3,7),(4,6) and (5,10). Example 2: Input: arr = [1,2,3,4,5,6], k = 7 Output: true Explanation: Pairs are (1,6),(2,5) and(3,4). Example 3: Input: arr = [1,2,3,4,5,6], k = 10 Output: false Explanation: You can try all possible pairs to see that there is no way to divide arr into 3 pairs each with sum divisible by 10. Example 4: Input: arr = [-10,10], k = 2 Output: true Example 5: Input: arr = [-1,1,-2,2,-3,3,-4,4], k = 3 Output: true   Constraints: arr.length == n 1 <= n <= 10^5 n is even. -10^9 <= arr[i] <= 10^9 1 <= k <= 10^5
class Solution: def canArrange(self, arr: List[int], k: int) -> bool: freq = [0] * k for n in arr: freq[n%k] += 1 if freq[0] % 2: return False for i in range(1, (k//2)+1): if freq[i] != freq[k-i]: return False if k%2 is 0: if freq[k//2]%2: return False return True
Given an array of integers arr of even length n and an integer k. We want to divide the array into exactly n / 2 pairs such that the sum of each pair is divisible by k. Return True If you can find a way to do that or False otherwise.   Example 1: Input: arr = [1,2,3,4,5,10,6,7,8,9], k = 5 Output: true Explanation: Pairs are (1,9),(2,8),(3,7),(4,6) and (5,10). Example 2: Input: arr = [1,2,3,4,5,6], k = 7 Output: true Explanation: Pairs are (1,6),(2,5) and(3,4). Example 3: Input: arr = [1,2,3,4,5,6], k = 10 Output: false Explanation: You can try all possible pairs to see that there is no way to divide arr into 3 pairs each with sum divisible by 10. Example 4: Input: arr = [-10,10], k = 2 Output: true Example 5: Input: arr = [-1,1,-2,2,-3,3,-4,4], k = 3 Output: true   Constraints: arr.length == n 1 <= n <= 10^5 n is even. -10^9 <= arr[i] <= 10^9 1 <= k <= 10^5
class Solution: def canArrange(self, arr, k): rem = [0] * k for a in arr: rem[a % k] += 1 if rem[0] % 2 != 0: return False for i in range(1, (k - 1) // 2 + 1): if rem[k - i] != rem[i]: return False return True
Given an array of integers arr of even length n and an integer k. We want to divide the array into exactly n / 2 pairs such that the sum of each pair is divisible by k. Return True If you can find a way to do that or False otherwise.   Example 1: Input: arr = [1,2,3,4,5,10,6,7,8,9], k = 5 Output: true Explanation: Pairs are (1,9),(2,8),(3,7),(4,6) and (5,10). Example 2: Input: arr = [1,2,3,4,5,6], k = 7 Output: true Explanation: Pairs are (1,6),(2,5) and(3,4). Example 3: Input: arr = [1,2,3,4,5,6], k = 10 Output: false Explanation: You can try all possible pairs to see that there is no way to divide arr into 3 pairs each with sum divisible by 10. Example 4: Input: arr = [-10,10], k = 2 Output: true Example 5: Input: arr = [-1,1,-2,2,-3,3,-4,4], k = 3 Output: true   Constraints: arr.length == n 1 <= n <= 10^5 n is even. -10^9 <= arr[i] <= 10^9 1 <= k <= 10^5
class Solution: def canArrange(self, arr: List[int], k: int) -> bool: if len(arr)==1: return False arr = collections.Counter(([i%k for i in arr])) if arr[0]%2 ==1: return False i = 1 j = k - 1 while i<=j: if i==j: if arr[i]%2==1: return False if arr[i]!=arr[j]: return False i+=1 j-=1 return True
Given an array of integers arr of even length n and an integer k. We want to divide the array into exactly n / 2 pairs such that the sum of each pair is divisible by k. Return True If you can find a way to do that or False otherwise.   Example 1: Input: arr = [1,2,3,4,5,10,6,7,8,9], k = 5 Output: true Explanation: Pairs are (1,9),(2,8),(3,7),(4,6) and (5,10). Example 2: Input: arr = [1,2,3,4,5,6], k = 7 Output: true Explanation: Pairs are (1,6),(2,5) and(3,4). Example 3: Input: arr = [1,2,3,4,5,6], k = 10 Output: false Explanation: You can try all possible pairs to see that there is no way to divide arr into 3 pairs each with sum divisible by 10. Example 4: Input: arr = [-10,10], k = 2 Output: true Example 5: Input: arr = [-1,1,-2,2,-3,3,-4,4], k = 3 Output: true   Constraints: arr.length == n 1 <= n <= 10^5 n is even. -10^9 <= arr[i] <= 10^9 1 <= k <= 10^5
class Solution: def canArrange(self, arr: List[int], k: int) -> bool: if len(arr) % 2 != 0: return False import collections ans = [] lookup = collections.defaultdict(list) for i, num in enumerate(arr): if (num % k) in lookup: ans.append((arr[lookup[(num % k)].pop(0)], num)) if lookup[num % k] == []: del lookup[num % k] continue if num % k == 0: lookup[0].append(i) else: lookup[(k - (num % k))].append(i) return len(ans) == len(arr)//2
Given an array of integers arr of even length n and an integer k. We want to divide the array into exactly n / 2 pairs such that the sum of each pair is divisible by k. Return True If you can find a way to do that or False otherwise.   Example 1: Input: arr = [1,2,3,4,5,10,6,7,8,9], k = 5 Output: true Explanation: Pairs are (1,9),(2,8),(3,7),(4,6) and (5,10). Example 2: Input: arr = [1,2,3,4,5,6], k = 7 Output: true Explanation: Pairs are (1,6),(2,5) and(3,4). Example 3: Input: arr = [1,2,3,4,5,6], k = 10 Output: false Explanation: You can try all possible pairs to see that there is no way to divide arr into 3 pairs each with sum divisible by 10. Example 4: Input: arr = [-10,10], k = 2 Output: true Example 5: Input: arr = [-1,1,-2,2,-3,3,-4,4], k = 3 Output: true   Constraints: arr.length == n 1 <= n <= 10^5 n is even. -10^9 <= arr[i] <= 10^9 1 <= k <= 10^5
class Solution: def canArrange(self, A: List[int], k: int) -> bool: A.sort(key=lambda x: x%k, reverse=True) i, n = 1, len(A) while i < len(A) and A[-i] % k == 0: if A[-i - 1] % k: return False else: i += 2 if i < len(A): j = 0 i0 = i while A[-i] % k and j < (n - i0 + 1) // 2: if (A[-i] + A[j]) % k: return False i += 1 j += 1 return True
Given an array of integers arr of even length n and an integer k. We want to divide the array into exactly n / 2 pairs such that the sum of each pair is divisible by k. Return True If you can find a way to do that or False otherwise.   Example 1: Input: arr = [1,2,3,4,5,10,6,7,8,9], k = 5 Output: true Explanation: Pairs are (1,9),(2,8),(3,7),(4,6) and (5,10). Example 2: Input: arr = [1,2,3,4,5,6], k = 7 Output: true Explanation: Pairs are (1,6),(2,5) and(3,4). Example 3: Input: arr = [1,2,3,4,5,6], k = 10 Output: false Explanation: You can try all possible pairs to see that there is no way to divide arr into 3 pairs each with sum divisible by 10. Example 4: Input: arr = [-10,10], k = 2 Output: true Example 5: Input: arr = [-1,1,-2,2,-3,3,-4,4], k = 3 Output: true   Constraints: arr.length == n 1 <= n <= 10^5 n is even. -10^9 <= arr[i] <= 10^9 1 <= k <= 10^5
class Solution: def canArrange(self, arr: List[int], k: int) -> bool: recDict = {} for i in range(0, k): recDict[i] = 0 for i in arr: recDict[i%k] += 1 for i in range(1, k): if recDict[i] !=recDict[k-i]: return False if recDict[0]%2 !=0: return False return True
Given an array of integers arr of even length n and an integer k. We want to divide the array into exactly n / 2 pairs such that the sum of each pair is divisible by k. Return True If you can find a way to do that or False otherwise.   Example 1: Input: arr = [1,2,3,4,5,10,6,7,8,9], k = 5 Output: true Explanation: Pairs are (1,9),(2,8),(3,7),(4,6) and (5,10). Example 2: Input: arr = [1,2,3,4,5,6], k = 7 Output: true Explanation: Pairs are (1,6),(2,5) and(3,4). Example 3: Input: arr = [1,2,3,4,5,6], k = 10 Output: false Explanation: You can try all possible pairs to see that there is no way to divide arr into 3 pairs each with sum divisible by 10. Example 4: Input: arr = [-10,10], k = 2 Output: true Example 5: Input: arr = [-1,1,-2,2,-3,3,-4,4], k = 3 Output: true   Constraints: arr.length == n 1 <= n <= 10^5 n is even. -10^9 <= arr[i] <= 10^9 1 <= k <= 10^5
from collections import Counter class Solution: def canArrange(self, arr: List[int], k: int) -> bool: li=collections.Counter([x%k for x in arr]) print(li) for i in li: if i==0 or li[i]==0: continue # print(i,li[i]) if li[k-i]!=li[i] : return False if li[0]%2==0: return True else: return False
Given an array of integers arr of even length n and an integer k. We want to divide the array into exactly n / 2 pairs such that the sum of each pair is divisible by k. Return True If you can find a way to do that or False otherwise.   Example 1: Input: arr = [1,2,3,4,5,10,6,7,8,9], k = 5 Output: true Explanation: Pairs are (1,9),(2,8),(3,7),(4,6) and (5,10). Example 2: Input: arr = [1,2,3,4,5,6], k = 7 Output: true Explanation: Pairs are (1,6),(2,5) and(3,4). Example 3: Input: arr = [1,2,3,4,5,6], k = 10 Output: false Explanation: You can try all possible pairs to see that there is no way to divide arr into 3 pairs each with sum divisible by 10. Example 4: Input: arr = [-10,10], k = 2 Output: true Example 5: Input: arr = [-1,1,-2,2,-3,3,-4,4], k = 3 Output: true   Constraints: arr.length == n 1 <= n <= 10^5 n is even. -10^9 <= arr[i] <= 10^9 1 <= k <= 10^5
class Solution: def canArrange(self, arr: List[int], k: int) -> bool: ''' ## APPROACH : 2 SUM ## ## LOGIC ## \t\t## 1. Store the remainders in the hashmap and check if the current number has remaining remainder available in the hashset ## freq {remainder: remainder count} return true if not any of the pairs are true => we check if the freq[k-x%k]!=freq[x%k]. If we find any of such instance to be true, we return false ''' freq = collections.Counter(map(lambda x: x%k, arr)) return not any(val%2 if not key else val!=freq[k-key] for key,val in freq.items())
Given an array of integers arr of even length n and an integer k. We want to divide the array into exactly n / 2 pairs such that the sum of each pair is divisible by k. Return True If you can find a way to do that or False otherwise.   Example 1: Input: arr = [1,2,3,4,5,10,6,7,8,9], k = 5 Output: true Explanation: Pairs are (1,9),(2,8),(3,7),(4,6) and (5,10). Example 2: Input: arr = [1,2,3,4,5,6], k = 7 Output: true Explanation: Pairs are (1,6),(2,5) and(3,4). Example 3: Input: arr = [1,2,3,4,5,6], k = 10 Output: false Explanation: You can try all possible pairs to see that there is no way to divide arr into 3 pairs each with sum divisible by 10. Example 4: Input: arr = [-10,10], k = 2 Output: true Example 5: Input: arr = [-1,1,-2,2,-3,3,-4,4], k = 3 Output: true   Constraints: arr.length == n 1 <= n <= 10^5 n is even. -10^9 <= arr[i] <= 10^9 1 <= k <= 10^5
class Solution: def canArrange(self, arr: List[int], k: int) -> bool: cnt = [0] * k for a in arr: a %= k remainder = (k - a) % k if cnt[remainder] > 0: cnt[remainder] -= 1 else: cnt[a] += 1 return all(c == 0 for c in cnt)
Given an array of integers arr of even length n and an integer k. We want to divide the array into exactly n / 2 pairs such that the sum of each pair is divisible by k. Return True If you can find a way to do that or False otherwise.   Example 1: Input: arr = [1,2,3,4,5,10,6,7,8,9], k = 5 Output: true Explanation: Pairs are (1,9),(2,8),(3,7),(4,6) and (5,10). Example 2: Input: arr = [1,2,3,4,5,6], k = 7 Output: true Explanation: Pairs are (1,6),(2,5) and(3,4). Example 3: Input: arr = [1,2,3,4,5,6], k = 10 Output: false Explanation: You can try all possible pairs to see that there is no way to divide arr into 3 pairs each with sum divisible by 10. Example 4: Input: arr = [-10,10], k = 2 Output: true Example 5: Input: arr = [-1,1,-2,2,-3,3,-4,4], k = 3 Output: true   Constraints: arr.length == n 1 <= n <= 10^5 n is even. -10^9 <= arr[i] <= 10^9 1 <= k <= 10^5
class Solution: def canArrange(self, arr: List[int], k: int) -> bool: m = {i:0 for i in range(k)} for a in arr: m[a%k] += 1 for i in range(k): if i == 0: if m[i] % 2 != 0: return False elif m[i] != m[k-i]: return False return True
Given an array of integers arr of even length n and an integer k. We want to divide the array into exactly n / 2 pairs such that the sum of each pair is divisible by k. Return True If you can find a way to do that or False otherwise.   Example 1: Input: arr = [1,2,3,4,5,10,6,7,8,9], k = 5 Output: true Explanation: Pairs are (1,9),(2,8),(3,7),(4,6) and (5,10). Example 2: Input: arr = [1,2,3,4,5,6], k = 7 Output: true Explanation: Pairs are (1,6),(2,5) and(3,4). Example 3: Input: arr = [1,2,3,4,5,6], k = 10 Output: false Explanation: You can try all possible pairs to see that there is no way to divide arr into 3 pairs each with sum divisible by 10. Example 4: Input: arr = [-10,10], k = 2 Output: true Example 5: Input: arr = [-1,1,-2,2,-3,3,-4,4], k = 3 Output: true   Constraints: arr.length == n 1 <= n <= 10^5 n is even. -10^9 <= arr[i] <= 10^9 1 <= k <= 10^5
class Solution: def canArrange(self, arr: List[int], k: int) -> bool: d=collections.Counter() for e in arr: t=e%k d[t]+=1 key = d.keys() print(d) for e in key: if e==0: continue if d[e]!=d[k-e]: return False else: if e==k//2 and k%2==0 and d[e]%2!=0: return False return True
Given an array of integers arr of even length n and an integer k. We want to divide the array into exactly n / 2 pairs such that the sum of each pair is divisible by k. Return True If you can find a way to do that or False otherwise.   Example 1: Input: arr = [1,2,3,4,5,10,6,7,8,9], k = 5 Output: true Explanation: Pairs are (1,9),(2,8),(3,7),(4,6) and (5,10). Example 2: Input: arr = [1,2,3,4,5,6], k = 7 Output: true Explanation: Pairs are (1,6),(2,5) and(3,4). Example 3: Input: arr = [1,2,3,4,5,6], k = 10 Output: false Explanation: You can try all possible pairs to see that there is no way to divide arr into 3 pairs each with sum divisible by 10. Example 4: Input: arr = [-10,10], k = 2 Output: true Example 5: Input: arr = [-1,1,-2,2,-3,3,-4,4], k = 3 Output: true   Constraints: arr.length == n 1 <= n <= 10^5 n is even. -10^9 <= arr[i] <= 10^9 1 <= k <= 10^5
''' 现在需要把数组恰好分成 n / 2 对,以使每对数字的和都能够被 k 整除。 如果存在这样的分法,请返回 True ;否则,返回 False 。 思路:首先和得整除。要凑对,那就是mod能凑对,统计mod能否凑对即可 ''' class Solution: def canArrange(self, arr: List[int], k: int) -> bool: mod_count = [0 for i in range(k)] for i in arr: mod_count[i % k] += 1 if mod_count[0] % 2: return False for i in range(1, len(mod_count)): if mod_count[i] != mod_count[k-i]: return False return True
Given an array of integers arr of even length n and an integer k. We want to divide the array into exactly n / 2 pairs such that the sum of each pair is divisible by k. Return True If you can find a way to do that or False otherwise.   Example 1: Input: arr = [1,2,3,4,5,10,6,7,8,9], k = 5 Output: true Explanation: Pairs are (1,9),(2,8),(3,7),(4,6) and (5,10). Example 2: Input: arr = [1,2,3,4,5,6], k = 7 Output: true Explanation: Pairs are (1,6),(2,5) and(3,4). Example 3: Input: arr = [1,2,3,4,5,6], k = 10 Output: false Explanation: You can try all possible pairs to see that there is no way to divide arr into 3 pairs each with sum divisible by 10. Example 4: Input: arr = [-10,10], k = 2 Output: true Example 5: Input: arr = [-1,1,-2,2,-3,3,-4,4], k = 3 Output: true   Constraints: arr.length == n 1 <= n <= 10^5 n is even. -10^9 <= arr[i] <= 10^9 1 <= k <= 10^5
# # O(nlogn) S(n) # class Solution: # def canArrange(self, arr: List[int], k: int) -> bool: # A = [a % k for a in arr] # A.sort() # l = 0 # r = len(A) - 1 # while l < len(A) and A[l] == 0: # l += 1 # if l % 2 == 1: # return False # while l < r: # if A[l] + A[r] != k: # return False # l += 1 # r -= 1 # return True # O(n) S(n) class Solution: def canArrange(self, arr: List[int], k: int) -> bool: c = collections.Counter([i%k for i in arr]) for j in c: if j == 0: if c[j]%2!=0: return False else: if c[j]!=c[k-j]:return False return True