Datasets:

inputs
stringlengths
50
14k
targets
stringlengths
4
655k
Given an array of integers A, find the number of triples of indices (i, j, k) such that: 0 <= i < A.length 0 <= j < A.length 0 <= k < A.length A[i] & A[j] & A[k] == 0, where & represents the bitwise-AND operator.   Example 1: Input: [2,1,3] Output: 12 Explanation: We could choose the following i, j, k triples: (i=0, j=0, k=1) : 2 & 2 & 1 (i=0, j=1, k=0) : 2 & 1 & 2 (i=0, j=1, k=1) : 2 & 1 & 1 (i=0, j=1, k=2) : 2 & 1 & 3 (i=0, j=2, k=1) : 2 & 3 & 1 (i=1, j=0, k=0) : 1 & 2 & 2 (i=1, j=0, k=1) : 1 & 2 & 1 (i=1, j=0, k=2) : 1 & 2 & 3 (i=1, j=1, k=0) : 1 & 1 & 2 (i=1, j=2, k=0) : 1 & 3 & 2 (i=2, j=0, k=1) : 3 & 2 & 1 (i=2, j=1, k=0) : 3 & 1 & 2   Note: 1 <= A.length <= 1000 0 <= A[i] < 2^16
class TrieNode: def __init__(self): self.children = [None] * 2 self.count = 0 self.cache = {} class Trie: def __init__(self): self.root = TrieNode() #self.cache = {} def insert(self, num): now = self.root for j in range(16): i = num & 1 if not now.children[i]: now.children[i] = TrieNode() now = now.children[i] num >>= 1 now.count += 1 def match(self, num): return self.count_match(self.root, num) def count_match(self, now, num): if not now: return 0 if num in now.cache: return now.cache[num] if now.count > 0: return now.count bit = num & 1 next_num = num >> 1 if bit: now.cache[num] = self.count_match(now.children[0], next_num) else: tmp = 0 tmp += self.count_match(now.children[0], next_num) tmp += self.count_match(now.children[1], next_num) now.cache[num] = tmp return now.cache[num] class Solution: def countTriplets(self, A: List[int]) -> int: # Tries: 16 * n^2 trie = Trie() # build Trie for num in A: trie.insert(num) cache = {} ans = 0 for num1 in A: for num2 in A: num = (num1 & num2) a = trie.match(num) ans += a #print(num1, num2, a) return ans
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: N = len(A) if(N==0): return 0 curr_max = A[0] global_max = A[0] curr_min = A[0] global_min = A[0] flag = 0 if(A[0]>=0): flag=1 for i in range(1, N): if(A[i]>=0): flag=1 if(curr_max >= 0): curr_max = curr_max + A[i] else: curr_max = A[i] if(curr_min >= 0): curr_min = A[i] else: curr_min = curr_min + A[i] if(curr_max > global_max): global_max = curr_max if(curr_min < global_min): global_min = curr_min if(flag==0): return max(A) return max(global_max, sum(A) - global_min)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: curr_max = A[0] max_sum = A[0] curr_min = A[0] min_sum = A[0] for i in range(1, len(A)): curr_max = max(A[i], A[i] + curr_max) max_sum = max(curr_max, max_sum) curr_min = min(A[i], A[i] + curr_min) min_sum = min(curr_min, min_sum) if max_sum > 0: return max(sum(A) - min_sum, max_sum) else: return max(A)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: if not A: return 0 max_A = max(A) if max_A <= 0: return max_A max_sum = 0 cur_sum = 0 for i in range(len(A)): cur_sum = max(cur_sum, 0) + A[i] max_sum = max(max_sum, cur_sum) if len(A) <= 2: return max_sum right_sum = A[-1] right_max = [A[-1]] for i in A[len(A)-2::-1]: right_sum += i right_max.append(max(right_max[-1], right_sum)) right_max = right_max[::-1] # print(right_max) left_max = A[0] left_sum = A[0] for i in range(1, len(A)-1): # print(A[i], left_max, left_sum) left_sum += A[i] left_max = max(left_max, left_sum) max_sum = max(max_sum, left_max + right_max[i+1]) return max_sum
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: mini = maxi = A[0] curMin = curMax = total = 0 for num in A: curMin = min(curMin + num, num) # 2 curMax = max(curMax + num, num) # 7 maxi = max(maxi, curMax) # 7 mini = min(mini, curMin) # -3 total += num return max(maxi, total - mini) if maxi > 0 else maxi
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: def _get_max(lo, hi, flag): m = float('-inf') s = 0 for i in range(lo, hi): s = max(s, 0) + flag * A[i] m = max(m, s) return m s = sum(A) return max(_get_max(0, len(A), 1), s + _get_max(0, len(A) - 1, -1), s + _get_max(1, len(A), -1))
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: mx = curr = A[0] cumSum = [A[0]] for i in range(1, len(A)): if curr >= 0: curr += A[i] else: curr = A[i] mx = max(mx, curr) cumSum.append(cumSum[-1]+A[i]) revCumSum = [] curr = 0 for x in reversed(A): curr += x if revCumSum: revCumSum.append(max(revCumSum[-1], curr)) else: revCumSum.append(curr) for i in range(len(A)-1): mx = max(mx, cumSum[i]+revCumSum[len(A)-2-i]) mx = max(mx, cumSum[-1]) return mx
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: def maxSubarray (A): dp = [0] * len(A) max_c = A[0] flag = True for idx,num in enumerate(A): if num < 0: flag = False if idx == 0: dp[0]=num else: dp[idx]=max(num, dp[idx-1] + num) return max(dp), flag temp,nonNeg = maxSubarray(A) if nonNeg: return temp res = float('-inf') rightWindow = [A[0]] + [0] * (len(A)-1) for idx,i in enumerate(A[1:]): rightWindow[idx+1] = i+rightWindow[idx] currMax = float('-inf') MaxIdx = float('inf') reversedA = A.reverse() leftWindow = [A[0]] + [0] * (len(A)-1) for idx,i in enumerate(A[1:]): leftWindow[idx +1] = i+leftWindow[idx] if MaxIdx >= len(A)-idx-1: currMax = max(rightWindow[:len(A)-idx-1]) MaxIdx = rightWindow.index(currMax) res = max(res,currMax + leftWindow[idx]) return max(res,temp)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
import heapq class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: N = len(A) best = A[0] heap = [(0, 0)] cumsums = [0] for n in A: cumsums.append(cumsums[-1] + n) for n in A: cumsums.append(cumsums[-1] + n) for i in range(1, len(cumsums)): while len(heap) > 0 and i - heap[0][1] > N: heapq.heappop(heap) best = max(best, cumsums[i] - heap[0][0]) heapq.heappush(heap, (cumsums[i], i)) return best
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: total, maxSum, curMax, minSum, curMin = 0, A[0], 0, A[0], 0 for a in A: curMax = max(curMax + a, a) maxSum = max(maxSum, curMax) curMin = min(curMin + a, a) minSum = min(minSum, curMin) total += a return max(maxSum, total - minSum) if maxSum > 0 else maxSum
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: # case 1, kadane's algo totalSum = sum(A) curr = A[0] maxSum = A[0] for i in range(1, len(A)): if A[i] + curr > A[i]: curr = A[i] + curr else: curr = A[i] maxSum = max(maxSum, curr) # case 2, wrapping curr = A[0] minSum = totalSum for i in range(1, len(A)): curr = min(A[i]+curr, A[i]) minSum = min(minSum, curr) if totalSum == minSum: return maxSum return max(totalSum - minSum, maxSum)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: def kadane(array): global_max = array[0] local_max = array[0] for i in range(1,len(array)): if local_max < 0: local_max = 0 local_max = array[i] + local_max if local_max > global_max: global_max = local_max return global_max def kadane_inverse(array): global_min = array[0] local_min = array[0] for i in range(1,len(array)): if local_min > 0: local_min = 0 local_min = array[i] + local_min if local_min < global_min: global_min = local_min return global_min total = sum(A) inv = kadane_inverse(A) reg = kadane(A) if total == inv: return reg return max(total-inv, reg)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: def maxSubarray (A): dp = [0] * len(A) max_c = A[0] for idx,num in enumerate(A): if idx != 0: dp[idx]=max(num, dp[idx-1] + num) else: dp[0]=num return max(dp) temp = maxSubarray(A) res = float('-inf') rightMax = [max(A[0],0)] + [0] * (len(A)-1) currMax = max(A[0],0) rightWindow = [A[0]] + [0] * (len(A)-1) for idx,i in enumerate(A[1:]): currMax = max(i+rightWindow[idx], currMax) rightMax[idx+1] = currMax rightWindow[idx+1] = i+rightWindow[idx] reversedA = A.reverse() leftWindow = [A[0]] + [0] * (len(A)-1) for idx,i in enumerate(A[1:]): leftWindow[idx +1] = i+leftWindow[idx] currMax = rightMax[len(A)-idx-2] res = max(res,currMax + leftWindow[idx]) return max(res,temp)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: n = len(A) cur_sum = A[0] result1 = A[0] for i in range(1,n): cur_sum = max(A[i],cur_sum+A[i]) result1 = max(cur_sum,result1) if n == 1: return result1 cur_sum = A[1] result2 = A[1] for i in range(2,n-1): cur_sum = min(A[i],cur_sum+A[i]) result2 = min(cur_sum, result2) return max(result1,sum(A)-result2)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: total, maxSum, curMax, minSum, curMin = 0, A[0], 0, A[0], 0 for a in A: curMax = max(curMax + a, a) maxSum = max(maxSum, curMax) curMin = min(curMin + a, a) minSum = min(minSum, curMin) total += a return max(maxSum, total - minSum) if maxSum > 0 else maxSum
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: n = len(A) if n == 1: return A[0] def kadane(it): max_ = current = float('-inf') for num in it: current = num + max(current, 0) max_ = max(max_, current) return max_ total = sum(A) max1 = kadane(num for num in A) max2 = total + kadane(-A[idx] for idx in range(n - 1)) max3 = total + kadane(-A[idx] for idx in range(1, n)) return max(max1, max2, max3)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: if A is None or not A: return 0 N = len(A) A = A + A acc = [0] for d in A: acc.append(acc[-1] + d) ret = -sys.maxsize queue = deque([0]) for j in range(1, 2 * N): while queue and queue[0] < j - N: queue.popleft() ret = max(ret, acc[j] - acc[queue[0]]) while queue and acc[queue[-1]] >= acc[j]: queue.pop() queue.append(j) return ret
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: def maxSubarray (A): dp = [0] * len(A) max_c = A[0] flag = True for idx,num in enumerate(A): if num < 0: flag = False if idx == 0: dp[0]=num else: dp[idx]=max(num, dp[idx-1] + num) return max(dp), flag temp,nonNeg = maxSubarray(A) res = float('-inf') rightMax = [max(A[0],0)] + [0] * (len(A)-1) currMax = max(A[0],0) rightWindow = [A[0]] + [0] * (len(A)-1) for idx,i in enumerate(A[1:]): currMax = max(i+rightWindow[idx], currMax) rightMax[idx+1] = currMax rightWindow[idx+1] = i+rightWindow[idx] reversedA = A.reverse() leftWindow = [A[0]] + [0] * (len(A)-1) for idx,i in enumerate(A[1:]): leftWindow[idx +1] = i+leftWindow[idx] currMax = rightMax[len(A)-idx-2] res = max(res,currMax + leftWindow[idx]) return max(res,temp)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: sm = sum(A) mx = mn = cur_mx = cur_mn = A[0] for i in range(1, len(A)): cur_mn = min(cur_mn + A[i], A[i]) mn = min(mn, cur_mn) cur_mx = max(cur_mx + A[i], A[i]) mx = max(mx, cur_mx) return max(mx, (mn if mn==sm else (sm - mn)))
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, a: List[int]) -> int: n = len(a) ans = float('-inf') current = 0 for num in a: current = num + max(0, current) ans = max(ans, current) right_sum = [0] * n right_sum[-1] = a[-1] right_most = [float('-inf')] * n right_most[-1] = right_sum[-1] for i in range(n - 2, -1, -1): right_sum[i] = right_sum[i + 1] + a[i] right_most[i] = max(right_sum[i], right_most[i + 1]) left_sum = 0 for i in range(n - 2): left_sum += a[i] ans = max(ans, left_sum + right_most[i + 2]) return ans
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: max_subarray = float('-inf') cur_max_subarray = 0 min_subarray = float('inf') cur_min_subarray = 0 total = 0 max_value = float('-inf') for num in A: cur_max_subarray += num if cur_max_subarray < 0: cur_max_subarray = 0 else: max_subarray = max(max_subarray, cur_max_subarray) cur_min_subarray += num if cur_min_subarray > 0: cur_min_subarray = 0 else: min_subarray = min(min_subarray, cur_min_subarray) total += num max_value = max(max_value, num) if max_value <= 0: return max_value return max(max_subarray, total-min_subarray)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: dp = [0] for _ in range(2): for num in A: dp.append(dp[-1]+num) res = A[0] deque = collections.deque([0]) # i's, increasing by P[i] for j in range(1, len(dp)): # If the smallest i is too small, remove it. if deque[0] < j-len(A): deque.popleft() # The optimal i is deque[0], for cand. answer P[j] - P[i]. res = max(res, dp[j] - dp[deque[0]]) # Remove any i1's with P[i2] <= P[i1]. while deque and dp[j] <= dp[deque[-1]]: deque.pop() deque.append(j) return res ''' As before, sum(nums[i:i+k]) = dp[i+k]-dp[i] now, sum[i+k:i] = dp[len(A)-(i+k)]+dp[i] ''' cur_max = -float('inf') dp = [0] for num in A: dp.append(dp[-1]+num) for i in range(len(A)): for j in range(i+1,i+len(A)+1): if j <= len(A): cur_max = max(cur_max,dp[j]-dp[i]) else: cur_max = max(cur_max,dp[len(A)]-dp[i]+dp[j%len(A)]) return cur_max
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: ansIfOne = kadane(A) ansIfTwo = sum(A) - kadaneMin(A[1:len(A)-1]) return max(ansIfOne, ansIfTwo) def kadane(A): prevMax = -math.inf result = -math.inf for x in A: curMax = max(prevMax + x, x) prevMax = curMax result = max(result, curMax) return result def kadaneMin(A): prevMin = math.inf result = math.inf for x in A: curMin = min(prevMin + x, x) prevMin = curMin result = min(result, curMin) return result
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular1(self, A: List[int]) -> int: maxSubarraySum = [i for i in A] minSubarraySum = [i for i in A] for i in range(1,len(A)): maxSubarraySum[i] = max(maxSubarraySum[i-1]+A[i],A[i]) for i in range(1,len(A)): minSubarraySum[i] = min(minSubarraySum[i-1]+A[i],A[i]) return max(max(maxSubarraySum),sum(A)-min(minSubarraySum)) if max(maxSubarraySum) >0 else max(maxSubarraySum) def maxSubarraySumCircular(self, A): total = 0 curMax = 0 maxSubArraySum = A[0] curMin = 0 minSubArraySum = A[0] for a in A: curMax = max(curMax+a,a) maxSubArraySum = max(maxSubArraySum,curMax) curMin = min(curMin+a,a) minSubArraySum = min(minSubArraySum,curMin) total += a return max(maxSubArraySum,total-minSubArraySum) if maxSubArraySum > 0 else maxSubArraySum
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
import sys class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: def kadane(A,n): maxG = 0 curr_max = 0 for i in range(n): curr_max += A[i] curr_max = max(0,curr_max) maxG = max(maxG, curr_max) return maxG flag = None for i in A: if i > 0: flag=1 break if not flag: return max(A) n = len(A) noWrap = kadane(A,n) total = 0 for i in range(n): total += A[i] A[i] *= -1 minTotal = kadane(A,n) maxG = total+minTotal return max(noWrap,maxG)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A): def kadane(gen): ans = cur = float('-inf') # maximum non-empty subarray sum for x in gen: cur = max(cur, 0) + x ans = max(ans, cur) return ans S = sum(A) ans1 = kadane(iter(A)) ans2 = S + kadane(-A[i] for i in range(1, len(A))) ans3 = S + kadane(-A[i] for i in range(len(A) - 1)) return max(ans1, ans2, ans3)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular1(self, A: List[int]) -> int: maxSubarraySum = [i for i in A] minSubarraySum = [i for i in A] for i in range(1,len(A)): maxSubarraySum[i] = max(maxSubarraySum[i-1]+A[i],A[i]) for i in range(1,len(A)): minSubarraySum[i] = min(minSubarraySum[i-1]+A[i],A[i]) return max(max(maxSubarraySum),sum(A)-min(minSubarraySum)) if max(maxSubarraySum) >0 else max(maxSubarraySum) def maxSubarraySumCircular(self, A): total, maxSum, curMax, minSum, curMin = 0, A[0], 0, A[0], 0 for a in A: curMax = max(curMax + a, a) maxSum = max(maxSum, curMax) curMin = min(curMin + a, a) minSum = min(minSum, curMin) total += a return max(maxSum, total - minSum) if maxSum > 0 else maxSum
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, arr: List[int]) -> int: max_eh = arr[0] min_eh = arr[0] max_sf = arr[0] min_sf = arr[0] total = sum(arr) for i in range(1,len(arr)): max_eh = max(max_eh+arr[i],arr[i]) max_sf = max(max_eh,max_sf) min_eh = min(min_eh+arr[i],arr[i]) min_sf = min(min_eh,min_sf) if min_sf == total: return max_sf else: return max(max_sf,total-min_sf)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: res = A[0] cur = A[0] sumn = sum(A) for num in A[1:]: cur = num + max(0, cur) res = max(cur, res) if len(A) >= 2: mincur = -A[1] minres = -A[1] for num in A[2:]: mincur = -num + max(0, mincur) minres = max(minres, mincur) res = max(res, sumn + minres) mincur = -A[0] minres = -A[0] for num in A[1:(len(A)-1)]: mincur = -num + max(0, mincur) minres = max(minres, mincur) res = max(res, sumn + minres) return res
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
# case1: ---------| # case2: ---------|---------- # |--------| # suf pre # maxsubarray = total - min(subarray) class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: local_min = 0 local_max = 0 global_min = A[0] global_max = A[0] total = 0 for num in A: total += num local_min = min(local_min+num, num) global_min = min(global_min, local_min) local_max = max(local_max+num, num) global_max = max(global_max, local_max) if global_max < 0: return global_max else: return max(global_max, total-global_min)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: max_sum = min_sum = A[0] curr_max = curr_min = tot = 0 for a in A: curr_max = max(curr_max + a, a) curr_min = min(curr_min + a, a) max_sum = max(curr_max, max_sum) min_sum = min(curr_min, min_sum) tot += a return max(max_sum, tot - min_sum) if max_sum > 0 else max_sum
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: # Maximum Sum Circular Subarray # 8/22/20 3:41 total, maxSum = 0, A[0] curMax, minSum, curMin = 0, A[0], 0 for a in A: curMax = max(curMax + a, a) maxSum = max(maxSum, curMax) curMin = min(curMin + a, a) minSum = min(minSum, curMin) total += a return max(maxSum, total - minSum) if total != minSum else maxSum # input: [5,-3,5] # Output:7 # Expected:10
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: maxsum = minsum = A[0] curmax = curmin = total = 0 for num in A: curmax = max(num, curmax + num) maxsum = max(maxsum, curmax) curmin = min(num, curmin + num) minsum = min(minsum, curmin) total += num return max(maxsum, total - minsum) if maxsum > 0 else maxsum
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: curmax, curmin = 0 , 0 total = 0 maxsum = minsum = A[0] for num in A: curmax = max(num, curmax + num) maxsum = max(maxsum, curmax) curmin = min(num, curmin + num) minsum = min(minsum, curmin) total += num return max(maxsum, total - minsum) if maxsum > 0 else maxsum
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: maxSubarraySum = [i for i in A] minSubarraySum = [i for i in A] for i in range(1,len(A)): maxSubarraySum[i] = max(maxSubarraySum[i-1]+A[i],A[i]) for i in range(1,len(A)): minSubarraySum[i] = min(minSubarraySum[i-1]+A[i],A[i]) return max(max(maxSubarraySum),sum(A)-min(minSubarraySum)) if max(maxSubarraySum) >0 else max(maxSubarraySum)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A): n = len(A) S = sum(A) m1 = self.kadane(A) m2 = S + self.kadane([-A[i] for i in range(1, n)]) m3 = S + self.kadane([-A[i] for i in range(n-1)]) return max(m1, m2, m3) def kadane(self, arr): res = cur = -float('inf') for a in arr: cur = a + max(0, cur) res = max(cur, res) return res
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: n = len(A) B = [0]+A+A for i in range(1, len(B)): B[i] += B[i-1] maxv = B[1] stack = [0] for end in range(1, len(B)): num = B[end] while stack and num < B[stack[-1]]: stack.pop() stack.append(end) if end-stack[0] == n+1: stack.pop(0) maxv = max(num-B[stack[0]], maxv) #print(end, stack, maxv) if all(x<0 for x in A): return max(A) return maxv
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: if A == None or len(A) == 0: return 0 max_sum , min_sum , total = -100000000, 1000000000, 0 curr_max_sum, curr_min_sum = 0, 0 for i in A: curr_max_sum += i max_sum = max(curr_max_sum, max_sum) curr_max_sum = max(curr_max_sum, 0) curr_min_sum += i min_sum = min(curr_min_sum, min_sum) curr_min_sum = min(curr_min_sum, 0) total += i return max_sum if max_sum < 0 else max(max_sum, total-min_sum)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: #naive will be n^2: try every possible start position #3 cases minSum = A[0] maxSum = A[0] maximum = A[0] minimum = A[0] for i in range(1, len(A)): if A[i] > maxSum + A[i]: maxSum = A[i] else: maxSum += A[i] maximum = max(maximum, maxSum) if A[i] < minSum + A[i]: minSum = A[i] else: minSum += A[i] minimum = min(minimum, minSum) minimum = sum(A) - minimum if minimum == 0: #means the entire araay is negative, so we take the max element return maximum return max(maximum, minimum) #take the max of 3 cases #1. maximum #2. total - minimum #3. if all negatives, then the max should be the maximum #[-2,-3,-1]. Take a look at this case, for example.
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: maxSum=A[0] minSum=A[0] currMax=0 currMin=0 total=0 for a in A: currMax=max(currMax+a,a) maxSum=max(currMax,maxSum) currMin=min(currMin+a,a) minSum=min(currMin,minSum) total+=a return max(maxSum,total-minSum) if maxSum>0 else maxSum
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: mx = float('-inf') curr = 0 for x in A: if curr >= 0: curr += x else: curr = x mx = max(mx, curr) cumSum = [] curr = 0 for x in A: curr += x cumSum.append(curr) revCumSum = [] curr = 0 for x in reversed(A): curr += x revCumSum.append(curr) for i in range(1, len(A)): revCumSum[i] = max(revCumSum[i-1], revCumSum[i]) for i in range(len(A)-1): mx = max(mx, cumSum[i]+revCumSum[len(A)-2-i]) mx = max(mx, cumSum[-1]) return mx
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: max_seen = max(A) if max_seen < 0: return max_seen min_seen = float('inf') curr_max = 0 curr_min = 0 total = 0 for num in A: total += num curr_max = max(0, curr_max + num) curr_min = min(0, curr_min + num) max_seen = max(max_seen, curr_max) min_seen = min(min_seen, curr_min) return max(max_seen, total - min_seen)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: def maxSubarray (A): dp = [0] * len(A) max_c = A[0] for idx,num in enumerate(A): if idx != 0: dp[idx]=max(num, dp[idx-1] + num) else: dp[0]=num return max(dp) temp = maxSubarray(A) res = float('-inf') rightMax = [max(A[0],0)] + [0] * (len(A)-1) currMax = max(A[0],0) rightWindow = [A[0]] + [0] * (len(A)-1) for idx,i in enumerate(A[1:]): currMax = max(i+rightWindow[idx], currMax) rightMax[idx+1] = currMax rightWindow[idx+1] = i+rightWindow[idx] reversedA = A.reverse() leftWindow = [A[0]] + [0] * (len(A)-1) for idx,i in enumerate(A[1:]): leftWindow[idx +1] = i+leftWindow[idx] currMax = rightMax[len(A)-idx-2] res = max(res,currMax + leftWindow[idx]) return max(res,temp)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
from sys import maxsize class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: i=1 n=len(A) # A=A+A # end = n ans = A[0] ans_max = A[0] ans_min = A[0] ans_f = A[0] sumi = A[0] while i < n: sumi += A[i] if ans+A[i%n]>A[i%n]: ans+=A[i%n] else: ans=A[i%n] if ans_f+A[i%n]<A[i%n]: ans_f+=A[i%n] else: ans_f=A[i%n] ans_max = max(ans_max, ans) ans_min = min(ans_min, ans_f) i+=1 return max(ans_max,sumi-ans_min) if ans_min!=sumi else ans_max
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: for i in range(1, len(A)): A[i] += A[i-1] pre_min, pre_max = float('inf'), float('-inf') res1, res2 = A[0], A[0] for a in A: res1 = max(res1, a-pre_min) res2 = min(res2, a-pre_max) pre_min = min(pre_min, a) pre_max = max(pre_max, a) res1 = max(res1, A[-1]) res2 = min(res2, A[-1]) if res2 == A[-1]: return res1 else: return max(res1, A[-1]-res2)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: n = len(A) if n == 1: return A[0] max_ = A[0] current = 0 for num in A: current += num max_ = max(max_, current) if current < 0: current = 0 max_from_left = [0] * n max_from_left[0] = float('-inf') current = A[0] for idx in range(1, n): max_from_left[idx] = max(max_from_left[idx - 1], current) current += A[idx] max_from_left[0] = 0 so_far = 0 for idx in range(n - 1, -1, -1): so_far += A[idx] max_ = max(max_, so_far + max_from_left[idx]) return max_ # left_acc = [0] * n # left_acc[0] = A[0] # for idx in range(1, n): # left_acc[idx] = A[idx] + left_acc[idx - 1] # right_acc = [0] * n # right_acc[-1] = A[-1] # for idx in range(n - 2, -1, -1): # right_acc[idx] = A[idx] + right_acc[idx + 1] # print(left_acc) # print(right_acc) # left, right = 0, n - 1 # while left < right: # max_ = max(max_, left_acc[left] + right_acc[right]) # if left_acc[left] > right_acc[right]: # right -= 1 # else: # left += 1 # return max_
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
import math class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: total = 0 maxss, maxss_cur = -math.inf, -math.inf minss, minss_cur = 0, 0 for a in A: maxss_cur = a + max(maxss_cur, 0) maxss = max(maxss, maxss_cur) minss_cur = a + min(minss_cur, 0) minss = min(minss, minss_cur) total += a return maxss if total == minss else max(maxss, total - minss)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: currMaxSum = 0 currMinSum = 0 maxSum = float('-inf') minSum = float('inf') flag = False totalSum = 0 for i in range(len(A)): currMaxSum += A[i] maxSum = max(maxSum, currMaxSum) if currMaxSum < 0: currMaxSum = 0 totalSum += A[i] if A[i] >= 0: flag = True currMinSum += A[i] minSum = min(minSum, currMinSum) if currMinSum > 0: currMinSum = 0 if flag: return max(totalSum-minSum, maxSum) else: return maxSum # currMaxSum = 0 # currMinSum = 0 # flag = False # maxSum = float('-inf') # minSum = float('inf') # totalSum = 0 # for i in range(len(A)): # currMaxSum += A[i] # maxSum = max(maxSum, currMaxSum) # if currMaxSum < 0: # currMaxSum = 0 # totalSum += A[i] # if A[i] >= 0: # flag = True # currMinSum += A[i] # minSum = min(minSum, currMinSum) # if currMinSum > 0: # currMinSum = 0 # if not flag: # return maxSum # else: # return max(maxSum, totalSum-minSum) # ans1 = cur = None # for x in A: # cur = x + max(cur, 0) # ans1 = max(ans1, cur) # ans2 = cur = float(\"inf\") # for i in range(1, len(A)): # cur = A[i] + min(cur, 0) # ans2 = min(ans2, cur) # ans2 = sum(A) - ans2 # ans3 = cur = float(\"inf\") # for i in range(len(A)-1): # cur = A[i] + min(cur, 0) # ans3 = min(ans3, cur) # ans3 = sum(A) - ans3 # return max(ans1, ans2, ans3) # track = [[0 for j in range(len(A))] for j in range(len(A))] # max_val = min(A) # for i in range(len(A)): # track[i][i] = A[i] # for j in range(i+1, len(A)): # track[i][j] = track[i][j-1] + A[j] # max_val = max(max_val, track[i][j]) # max_val = max(max_val, track[i][i]) # #print(track) # for i in range(len(A)-1, 0, -1): # for j in range(0, i): # track[i][j] = track[i][len(track) - 1] + track[0][j] # max_val = max(max_val, track[i][j]) # #print(track) # return max_val]
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: currMaxSum = 0 currMinSum = 0 flag = False maxSum = float('-inf') minSum = float('inf') totalSum = 0 for i in range(len(A)): currMaxSum += A[i] maxSum = max(maxSum, currMaxSum) if currMaxSum < 0: currMaxSum = 0 totalSum += A[i] if A[i] >= 0: flag = True currMinSum += A[i] minSum = min(minSum, currMinSum) if currMinSum > 0: currMinSum = 0 if not flag: return maxSum else: return max(maxSum, totalSum-minSum) # ans1 = cur = None # for x in A: # cur = x + max(cur, 0) # ans1 = max(ans1, cur) # ans2 = cur = float(\"inf\") # for i in range(1, len(A)): # cur = A[i] + min(cur, 0) # ans2 = min(ans2, cur) # ans2 = sum(A) - ans2 # ans3 = cur = float(\"inf\") # for i in range(len(A)-1): # cur = A[i] + min(cur, 0) # ans3 = min(ans3, cur) # ans3 = sum(A) - ans3 # return max(ans1, ans2, ans3) # track = [[0 for j in range(len(A))] for j in range(len(A))] # max_val = min(A) # for i in range(len(A)): # track[i][i] = A[i] # for j in range(i+1, len(A)): # track[i][j] = track[i][j-1] + A[j] # max_val = max(max_val, track[i][j]) # max_val = max(max_val, track[i][i]) # #print(track) # for i in range(len(A)-1, 0, -1): # for j in range(0, i): # track[i][j] = track[i][len(track) - 1] + track[0][j] # max_val = max(max_val, track[i][j]) # #print(track) # return max_val
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: # total, maxSum, curMax, minSum, curMin = 0, float('-inf'), 0, float('inf'), 0 # for a in A: # curMax = max(curMax + a, a) # maxSum = max(maxSum, curMax) # curMin = min(curMin + a, a) # minSum = min(minSum, curMin) # total += a # return max(maxSum, total - minSum) if maxSum > 0 else maxSum if not A: return 0 dp_max = [-99999] * len(A) dp_min = [-99999] * len(A) dp_max[0], dp_min[0] = A[0], A[0] for i in range(1, len(A)): dp_max[i] = max(A[i], dp_max[i - 1] + A[i]) dp_min[i] = min(A[i], dp_min[i - 1] + A[i]) if min(dp_min) == sum(A): return max(dp_max) else: return max(max(dp_max), sum(A) - min(dp_min))
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: # max(the max subarray sum, the total sum - the min subarray sum) max_sum = -float('inf') cur_max = -float('inf') total_sum = 0 cur_min = float('inf') min_sum = float('inf') for i in A: total_sum += i cur_max = max(cur_max + i, i) cur_min = min(cur_min + i, i) max_sum = max(max_sum, cur_max) min_sum = min(min_sum, cur_min) if total_sum - min_sum == 0: return max_sum return max(max_sum, total_sum - min_sum)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
# method 1 append array's copy at back of it. then apply kadane's algorithm # *not work* because we can only attain maximum n size window but here it can be 2n # method 2 sliding window max window size = n # *not work* because there is no way to move back of window # method 3 modified kadane's algorithm(see in lee215's solution) class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: if not A: return 0 max_sum, cur_max, min_sum, cur_min, total = A[0], 0, A[0], 0, 0 for a in A: cur_max = max(a + cur_max, a) max_sum = max(max_sum, cur_max) cur_min = min(a + cur_min, a) min_sum = min(min_sum, cur_min) total += a return max(max_sum, total - min_sum) if total > min_sum else max_sum
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: total = sum(A) minSum = self.maxSum([-x for x in A]) + total maxSum = self.maxSum(A) #print(maxSum) #print(minSum) return max(maxSum, minSum) if minSum > 0 else maxSum def maxSum(self, A: List[int]) -> int: current = 0 max_sum = float('-inf') for num in A: current += num if current > max_sum: max_sum = current if current < 0: current = 0 return max_sum
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: # 1. get max subarray sum maxSum = curSum = A[0] for i in range(1, len(A)): curSum = max(A[i], A[i] + curSum) maxSum = max(maxSum, curSum) if maxSum < 0: return maxSum # 2. get min subarray sum minSum = curSum = A[0] for i in range(1, len(A)): curSum = min(A[i], A[i] + curSum) minSum = min(minSum, curSum) # 3. compare (max subarray sum) with (total sum - min subarray sum) return max(sum(A)-minSum, maxSum)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
#Two cases: #MaxSubarray = normal -> proceed normally #MaxSubarray = circular -> total sum - minSubarray #return max(maxSubarray, maxSubarraycircular class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: total_sum = 0 global_max = A[0] global_min = A[0] local_max = 0 local_min = 0 for num in A: local_max = max(num, local_max + num) local_min = min(num, local_min + num) global_max = max(global_max, local_max) global_min = min(global_min, local_min) total_sum += num circular_max = total_sum - global_min if global_max <= 0: return global_max return max(circular_max, global_max)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: SUM = 0 MIN = 0 minsum = sys.maxsize MAX = 0 maxsum = -sys.maxsize for num in A: SUM += num maxsum = max(maxsum, SUM-MIN) MIN = min(MIN,SUM) minsum = min(minsum, SUM-MAX) MAX = max(MAX,SUM) if minsum == SUM: return maxsum return max(maxsum, SUM-minsum)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
#Two cases: #MaxSubarray = normal -> proceed normally #MaxSubarray = circular -> total sum - minSubarray #return max(maxSubarray, maxSubarraycircular class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: total_sum = 0 global_max = A[0] global_min = A[0] local_max = 0 local_min = 0 for num in A: local_max = max(num, local_max + num) local_min = min(num, local_min + num) global_max = max(global_max, local_max) global_min = min(global_min, local_min) total_sum += num circular_max = total_sum - global_min return max(circular_max, global_max) if global_max > 0 else global_max
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: n = len(A) if n == 1: return A[0] global_max = float('-inf') global_min = float('inf') local_max = 0 local_min = 0 for i, a in enumerate(A): local_max = max(local_max + a, a) global_max = max(global_max, local_max) if 0 < i < n - 1: local_min = min(local_min + a, a) global_min = min(global_min, local_min) return max(global_max, sum(A) - global_min)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: max1 = -float('inf') maxc = -float('inf') for i in range(len(A)): maxc = max(maxc+A[i],A[i]) max1 = max(max1,maxc) min1 = float('inf') minc = float('inf') for i in range(len(A)): minc = min(minc+A[i],A[i]) min1 = min(min1,minc) if min1==sum(A): return max1 return max(max1,sum(A)-min1)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: # n = len(A) # max_sub_ending = [A[0]] # max_sub_start_index = [0] # A.extend(A) # print(A) # for i in range(1, len(A)): # prev = max_sub_ending[i-1] # if prev <= 0: # max_sub_start_index.append(i) # max_sub_ending.append(A[i]) # if i - max_sub_start_index[-1] < n: # max_sub_start_index.append(max_sub_start_index[-1]) # max_sub_ending.append(A[i]+max_sub_ending[-1]) # elif (i - max_sub_start_index[-1]) == n: # index_len = len(max_sub_start_index) # val = max_sub_start_index[index_len-n] # current_sum = max_sub_ending[-1] - val # if current_sum <= 0: # max_sub_start_index.append(i) # max_sub_ending.append(A[i]) # else: # max_sub_start_index.append(max_sub_start_index[-1]+1) # max_sub_ending.append(A[i]+current_sum) # print(max_sub_ending) # return max(max_sub_ending) n = len(A) max_sub_ending = [A[0]] max_sub_ending_index = [0] for i in range(1, len(A)): prev = max_sub_ending[i-1] if prev <= 0: max_sub_ending_index.append(i) max_sub_ending.append(A[i]) else: max_sub_ending_index.append(max_sub_ending_index[-1]) max_sub_ending.append(A[i]+max_sub_ending[-1]) print(max_sub_ending) posmax = max(max_sub_ending) total = sum(A) for i in range(len(A)): A[i] = -A[i] max_sub_ending = [A[0]] max_sub_ending_index = [0] for i in range(1, len(A)): prev = max_sub_ending[i-1] if prev <= 0: max_sub_ending_index.append(i) max_sub_ending.append(A[i]) else: max_sub_ending_index.append(max_sub_ending_index[-1]) max_sub_ending.append(A[i]+max_sub_ending[-1]) print(max_sub_ending) negmax = max(max_sub_ending)+total if negmax > posmax and negmax != 0: return negmax else: return posmax # cycle = max_sub_ending[-1] # if cycle <= 0: # return max(max_sub_ending) # for i in range(max_sub_ending_index[-1]): # if cycle <= 0: # return max(max_sub_ending) # max_sub_ending_index[i] = cycle+A[i] # cycle = max_sub_ending_index[i] # return max(max_sub_ending) # total = sum(A) # #left sum # left_sum = [A[0]] # left = A[0] # for i in range(1, len(A)): # left = left+A[i] # left_sum.append(left) # #right sum # right = A[-1] # right_sum = [right] # for i in range(len(A)-2, -1, -1): # right += A[i] # right_sum.append(right) # right_sum.reverse() # max_sub = total # for i in range(0, len(A)): # for j in range(i, len(A)): # left, right = 0, 0 # if i != 0: # left = left_sum[i-1] # if j != (len(A) -1): # right = right_sum[j+1] # max_sub = max(max_sub, total - left - right , left+right) # #corner case # if max(A) < 0: # return max(A) # return max_sub
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: #On n=len(A) total=A[0] curmax=A[0] curmin=A[0] maxsum=curmax minsum=curmin for i in range(1,n): curmax=max(curmax+A[i],A[i]) maxsum=max(maxsum,curmax) curmin=min(curmin+A[i],A[i]) minsum=min(minsum,curmin) total+=A[i] #get maxsum and minsum # total-minsum and maxsum if total==minsum: return maxsum else: return max(maxsum,total-minsum) # dp=[0]*n # optsum=[A[0]]*n # pre=A[0] # dp[0]=A[0] # first=dp[0] # for i in range(1,n): # dp[i]=max(dp[i-1]+A[i],A[i]) # first=max(first,dp[i]) # pre+=A[i] # if pre>optsum[i-1]: # optsum[i]=pre # else: # optsum[i]=optsum[i-1] # # get second case now # #print(optsum) # pre=0 # for j in range(n-1,0,-1): # first=max(first,pre+A[j]+optsum[j-1]) # pre+=A[j] # return first
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: #N2 solution # n = len(A) # maxSum = -float('inf') # for i in range(n): # currSum = 0 # for j in range(n): # ind = (i+j)%n # ele = A[ind] # newSum = currSum +ele # maxSum = max(maxSum,newSum) # if currSum>0 and newSum<0: # currSum = 0 # elif currSum<0 and newSum<currSum: # currSum=0 # else: # currSum = newSum # return maxSum n = len(A) maxSum = -float('inf') currSum = 0 for j in range(n): ele = A[j] newSum = currSum +ele maxSum = max(maxSum,newSum) if currSum>0 and newSum<0: currSum = 0 elif currSum<=0 and newSum<currSum: currSum=0 else: currSum = newSum lSum = 0 bestLSum=0 totalSum = sum(A) for i in range(n): currSum= totalSum-lSum currSum+=bestLSum maxSum = max(maxSum,currSum) lSum+=A[i] bestLSum=max(lSum,bestLSum) return maxSum
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, arr: List[int]) -> int: def maxsub(a,n): maxsum = a[0] currsum= 0 for i in range(n): if currsum+a[i]>0: currsum+=a[i] maxsum = max(maxsum,currsum) else: currsum=0 maxsum= max(maxsum,a[i]) return maxsum b =[i*-1 for i in arr] n = len(arr) s=sum(arr) ans2=0 ans2 = maxsub(b,n) if s==-ans2: ans2 = -ans2 return max(maxsub(arr,n),s+ans2)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: if len(A) == 0: return 0 minS = minT = maxS = maxT = s = A[0] for i in range(1,len(A)): minS = min(A[i],minS + A[i]) minT = min(minS,minT) maxS = max(A[i],maxS + A[i]) maxT = max(maxT,maxS) s += A[i] if s == minT: return maxT return max(s - minT,maxT)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: if len(A) == 1: return A[0] s = sum(A) nums = A m = nums[0] last = m num = 1 last_max = m res = last res_max = last_max for i in A[1:]: if i + last < i: last = i + last num += 1 else: last = i num = 1 if num != len(A): res = min(res, last) last_max = max(i, i+last_max) res_max = max(res_max, last_max) return max(s-res, res_max)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: currentMax = totalMax = currentMin = totalMin = A[0] s = A[0] for i in range(1, len(A)): currentMax = max(currentMax + A[i], A[i]) totalMax = max(totalMax, currentMax) currentMin = min(currentMin + A[i], A[i]) totalMin = min(totalMin, currentMin) s += A[i] if s - totalMin != 0: return max(totalMax, s - totalMin) else: return totalMax
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
import math import random import string from functools import lru_cache from operator import truediv from typing import List, Set import collections import functools import heapq import itertools import sys from functools import lru_cache from typing import List import numpy as np import collections import functools import heapq import itertools import sys from functools import lru_cache from typing import List ''' 53. Maximum Subarray 无循环 dp[i] = max(A[i], dp[i-1] + A[i]) 显然当dp[i-1] < 0 时, dp[i] = A[i],则有: dp[i] = A[i] + max(dp[i-1], 0) 类比53,此题加了循环。也就是找到尾部和开头的最大正数组。 https://leetcode.com/problems/maximum-sum-circular-subarray/discuss/178422/One-Pass 但其实就是找到中间的最负子数组。 ''' class Solution: def maxSubarraySumCircular(self, A): total, maxSum, curMax, minSum, curMin = 0, A[0], 0, A[0], 0 for a in A: curMax = max(curMax + a, a) maxSum = max(maxSum, curMax) curMin = min(curMin + a, a) minSum = min(minSum, curMin) total += a return max(maxSum, total - minSum) if maxSum > 0 else maxSum # r = Solution() # a = r.maxSubarraySumCircular([3,-1,2,-1]) # print(a)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: #On n=len(A) dp=[0]*n optsum=[A[0]]*n pre=A[0] dp[0]=A[0] first=dp[0] for i in range(1,n): dp[i]=max(dp[i-1]+A[i],A[i]) first=max(first,dp[i]) pre+=A[i] if pre>optsum[i-1]: optsum[i]=pre else: optsum[i]=optsum[i-1] # get second case now #print(optsum) pre=0 for j in range(n-1,0,-1): first=max(first,pre+A[j]+optsum[j-1]) pre+=A[j] return first
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: ans1 = cur = 0 for x in A: cur = x + max(cur, 0) ans1 = max(ans1, cur) ans2 = cur = 0 for x in A[1:]: cur = x + min(cur, 0) ans2 = min(ans2, cur) ans2 = sum(A) - ans2 ans3 = cur = 0 for x in A[:-1]: cur = x + min(cur, 0) ans3 = min(ans3, cur) ans3 = sum(A) - ans3 ans = max(ans1, ans2, ans3) return ans if ans != 0 else max(A)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, nums: List[int]) -> int: greatest: int = -sys.maxsize + 1 smallest: int = sys.maxsize x = y = total = 0 for i in range(len(nums)): x += nums[i] greatest = max(greatest, x) x = max(x, 0) y += nums[i] smallest = min(smallest, y) y = min(y, 0) total += nums[i] return greatest if greatest < 0 else max(greatest, total - smallest)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: N = len(A) ans = cur = 0 for x in A: cur = x + max(cur, 0) ans = max(ans, cur) rightsums = [None] * N rightsums[-1] = A[-1] for i in range(N-2, -1, -1): rightsums[i] = rightsums[i+1] + A[i] # maxright[i] = max_{j >= i} rightsums[j] maxright = [None] * N maxright[-1] = rightsums[-1] for i in range(N-2, -1, -1): maxright[i] = max(maxright[i+1], rightsums[i]) leftsum = 0 for i in range(N-2): leftsum += A[i] ans = max(ans, leftsum + maxright[i+1]) if max(A) < 0: return max(A) return ans # total = sum(A) # max_sum_ending_i = [A[0]] # prev = max_sum_ending_i[-1] # for i in range(1, len(A)): # if prev <= 0: # max_sum_ending_i.append(A[i]) # else: # max_sum_ending_i.append(max_sum_ending_i[-1]+A[i]) # prev = max_sum_ending_i[-1] # min_sum_ending_i = [A[0]] # prev = min_sum_ending_i[-1] # for i in range(1, len(A)): # if prev >= 0: # min_sum_ending_i.append(A[i]) # else: # min_sum_ending_i.append(min_sum_ending_i[-1]+A[i]) # prev = min_sum_ending_i[-1] # if max(A) > 0: # return max(total - min(min_sum_ending_i), max(max_sum_ending_i)) # else: # return max(A)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: sums = sum(A) min_res = min_s = sys.maxsize max_res = max_s = -sys.maxsize n = len(A) for i in range(n): min_s = min(A[i], min_s + A[i]) max_s = max(A[i], max_s + A[i]) min_res = min(min_res, min_s) max_res = max(max_res, max_s) if min_res == sums: min_res = min(A) else: min_res = sums - min_res return max(min_res, max_res)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
import numpy as np class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: total, maxSum, curMax, minSum, curMin = 0, A[0], -np.Infinity, A[0], np.Infinity for a in A: curMax = max(curMax + a, a) maxSum = max(maxSum, curMax) curMin = min(curMin + a, a) minSum = min(minSum, curMin) total += a return max(maxSum, total - minSum) if maxSum>0 else maxSum
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: if max(A) <= 0: return max(A) endmax = [i for i in A] endmin = [i for i in A] for i in range(len(A)-1): if endmax[i] > 0: endmax[i+1] += endmax[i] if endmin[i] < 0: endmin[i+1] += endmin[i] return max(max(endmax), sum(A) - min(endmin))
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: def kadane(gen): ans = None cur = None for x in gen: if cur: cur = x + max(cur, 0) else: cur = x if ans: ans = max(ans, cur) else: ans = cur return ans S = sum(A) ans1 = kadane((A)) if len(A) > 1: ans2 = S + kadane([-A[i] for i in range(1, len(A))]) ans3 = S + kadane([-A[i] for i in range(len(A) - 1)]) return max(ans1, ans2, ans3) else: return ans1
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
# class Solution(object): # def maxSubarraySumCircular(self, A): # N = len(A) # ans = float('-inf') # cur = 0 # for x in A: # cur = x + max(cur, 0) # ans = max(ans, cur) # # ans is the answer for 1-interval subarrays. # # Now, let's consider all 2-interval subarrays. # # For each i, we want to know # # the maximum of sum(A[j:]) with j >= i+2 # # rightsums[i] = sum(A[i:]) # rightsums = [None] * N # rightsums[-1] = A[-1] # for i in xrange(N-2, -1, -1): # rightsums[i] = rightsums[i+1] + A[i] # # maxright[i] = max_{j >= i} rightsums[j] # maxright = [None] * N # maxright[-1] = rightsums[-1] # for i in xrange(N-2, -1, -1): # maxright[i] = max(maxright[i+1], rightsums[i]) # leftsum = 0 # for i in xrange(N-2): # leftsum += A[i] # ans = max(ans, leftsum + maxright[i+2]) # return ans class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: N = len(A) ans = float('-inf') cur = 0 for x in A: cur = x + max(cur, 0) ans = max(ans, cur) rightsums = [None] * N rightsums[-1] = A[-1] for i in range(N-2, -1, -1): rightsums[i] = rightsums[i+1] + A[i] maxright = [None] * N maxright[-1] = rightsums[-1] for i in range(N-2, -1, -1): maxright[i] = max(maxright[i+1], rightsums[i]) leftsum = 0 for i in range(N-2): leftsum += A[i] ans = max(ans, leftsum + maxright[i+2]) return ans
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: n = len(A) ans = cur = float('-inf') for x in A: cur = x + max(cur, 0) ans = max(ans, cur) rightsums = [0]*n rightsums[-1] = A[-1] for i in range(n-2, -1, -1): rightsums[i] = rightsums[i+1] + A[i] maxright = [0]*n maxright[-1] = rightsums[-1] for i in range(n-2, -1, -1): maxright[i] = max(maxright[i+1], rightsums[i]) leftsum = 0 for i in range(n-2): leftsum += A[i] ans = max(ans, leftsum + maxright[i+2]) return ans
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: ans1 = cur = 0 for x in A: cur = x + max(cur, 0) ans1 = max(ans1, cur) ans2 = cur = 0 for i in range(1, len(A)): cur = A[i] + min(cur, 0) ans2 = min(ans2, cur) ans2 = sum(A) - ans2 ans3 = cur = 0 for i in range(len(A)-1): cur = A[i] + min(cur, 0) ans3 = min(ans3, cur) ans3 = sum(A) - ans3 ans = max(ans1, ans2, ans3) return ans if ans != 0 else max(A)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: def kadane(A): ts=A[0] ms=A[0] for i in range(1,len(A)): ts=max(A[i],ts+A[i]) ms=max(ms,ts) return ms x=kadane(A) for i in range(len(A)): A[i]*=-1 s=sum(A) y=kadane(A) if y==s: y=-1e10 else: y=-s+y return max(x,y)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: def find_max_sum(A): curr_sum = 0 max_sum = -math.inf for num in A: if curr_sum > 0: curr_sum += num else: curr_sum = num max_sum = max(max_sum, curr_sum) return max_sum max_sum = find_max_sum(A) min_sum_1 = -find_max_sum(-num for num in A[1:]) min_sum_2 = -find_max_sum(-num for num in A[:-1]) return max(sum(A) - min(min_sum_1, min_sum_2), max_sum)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: n = len(A) A *= 2 ans = [0] * len(A) q = collections.deque() cur = 0 for i, a in enumerate(A): while q and i - q[0][0] > n: q.popleft() cur += a ans[i] = cur - q[0][1] if q else cur while q and q[-1][1] >= cur: q.pop() q.append((i, cur)) return max(ans) # n = len(A) # A *= 2 # ans = [A[0]] + [0] * (len(A) - 1) # q = collections.deque([(0, A[0])]) # cur = A[0] # for i, a in enumerate(A[1:], 1): # while q and i - q[0][0] > n: # q.popleft() # cur += a # ans[i] = cur - q[0][1] # while q and q[-1][1] >= cur: # q.pop() # q.append((i, cur)) # return max(ans)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: def kadane(gen): # maximum non-empty subarray sum ans = - sys.maxsize cur = - sys.maxsize for x in gen: cur = x + max(cur, 0) ans = max(ans, cur) return ans S = sum(A) ans1 = kadane(iter(A)) ans2 = S + kadane(-A[i] for i in range(1, len(A))) ans3 = S + kadane(-A[i] for i in range(len(A) - 1)) return max(ans1, ans2, ans3)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: ''' 12341234 limit of len[] < a.length p[i], i ''' def kaden(gen): ans = cur = gen[0] for n in gen[1:]: cur = n + max(0, cur) ans = max(ans, cur) return ans ans1 = kaden(A) if len(A)>1: s = sum(A) ans2 = s + kaden([-a for a in A[1:]]) ans3 = s + kaden([-a for a in A[:-1]]) else: ans2 = ans3 = -float('inf') return max(ans1, ans2, ans3)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: def kadane(gen): ans = cur = -float('inf') for x in gen: cur = x + max(cur, 0) ans = max(ans, cur) return ans S = sum(A) ans1 = kadane(iter(A)) ans2 = S + kadane(-A[i] for i in range(1, len(A))) ans3 = S + kadane(-A[i] for i in range(len(A)-1)) return max(ans1, ans2, ans3)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: B = A.copy() for i in range(1,len(B)): if B[i-1] > 0: B[i] += B[i-1] maxsum = max(B) C = A.copy() for i in range(1, len(C)): if C[i-1] < 0: C[i] += C[i-1] minsum = min(C) if minsum == sum(A): return max([maxsum, max(A)]) return max([maxsum, sum(A)-minsum])
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: ''' 12341234 limit of len[] < a.length p[i], i ''' def kaden(gen): ans = cur = -float('inf') for n in gen: cur = n + max(0, cur) ans = max(ans, cur) return ans ans1 = kaden(iter(A)) if len(A)>1: s = sum(A) ans2 = s + kaden(-a for a in A[1:]) ans3 = s + kaden(-a for a in A[1:]) else: ans2 = ans3 = -float('inf') return max(ans1, ans2, ans3)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: def kadane(gen): #ans = None #cur = None #for x in gen: # if cur: # cur = x + max(cur, 0) # else: # cur = x # if ans: # ans = max(ans, cur) # else: # ans = cur #return ans size = len(gen) ans = cur = gen[0] for i in range(1,size): cur = max(gen[i], cur + gen[i]) ans = max(ans, cur) return ans S = sum(A) ans1 = kadane((A)) if len(A) > 1: ans2 = S + kadane([-A[i] for i in range(1, len(A))]) ans3 = S + kadane([-A[i] for i in range(len(A) - 1)]) return max(ans1, ans2, ans3) else: return ans1
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: n = len(A) A *= 2 ans = [A[0]] + [0] * (len(A) - 1) q = collections.deque([(0, A[0])]) cur = A[0] for i, a in enumerate(A[1:], 1): while q and i - q[0][0] > n: q.popleft() cur += a ans[i] = cur - q[0][1] while q and q[-1][1] >= cur: q.pop() q.append((i, cur)) return max(ans) # n = len(A) # A *= 2 # ans = [0] * len(A) # q = collections.deque() # cur = 0 # for i, a in enumerate(A): # while q and i - q[0][0] > n: # q.popleft() # cur += a # ans[i] = cur - q[0][1] if q else cur # while q and q[-1][1] >= cur: # q.pop() # q.append((i, cur)) # return max(ans)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: n = len(A) ans = cur = float('-inf') for v in A: cur = v + max(cur, 0) ans = max(ans, cur) rightsum = [0] * n rightsum[-1] = A[-1] for i in range(n-2, -1, -1): rightsum[i] = rightsum[i+1] + A[i] rightmax = [0]*n rightmax[-1] = rightsum[-1] for i in range(n-2, -1, -1): rightmax[i] = max(rightmax[i+1], rightsum[i]) cur = 0 for i in range(n-2): cur += A[i] ans = max(ans, cur+rightmax[i+2]) return ans
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: n = len(A) ans = -float('inf') currmax = -float('inf') for i in range(n): currmax = max(currmax+A[i], A[i]) ans = max(ans, currmax) right_sums = [0]*n right_sums[-1] = A[-1] for i in range(1, n): right_sums[n-1-i] = right_sums[n-i] + A[n-i-1] maxright = [0]*n maxright[-1] = right_sums[-1] for i in range(1, n): maxright[n-i-1] = max(maxright[n-i], right_sums[n-i-1]) lefts = 0 for i in range(n-2): lefts += A[i] ans = max(ans, lefts+maxright[i+2]) return ans
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A): total = sum(A) max_sum = [0 for i in range(len(A))] min_sum = [0 for i in range(len(A))] max_sum[0] = A[0] min_sum[0] = A[0] best_non_loop = max_sum[0] best_inverse_loop = min_sum[0] for i in range(1, len(A)): max_sum[i] = A[i] + max(max_sum[i - 1], 0) min_sum[i] = A[i] + min(min_sum[i - 1], 0) best_non_loop = max(best_non_loop, max_sum[i]) best_inverse_loop = min(best_inverse_loop, min_sum[i]) ret = max(best_non_loop, total - best_inverse_loop) if ret == 0: return max(A) return ret
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution(object): def maxSubarraySumCircular(self, A): N = len(A) # Compute P[j] = sum(B[:j]) for the fixed array B = A+A P = [0] for _ in range(2): for x in A: P.append(P[-1] + x) # Want largest P[j] - P[i] with 1 <= j-i <= N # For each j, want smallest P[i] with i >= j-N ans = A[0] deque = collections.deque([0]) # i's, increasing by P[i] for j in range(1, len(P)): # If the smallest i is too small, remove it. if deque[0] < j-N: deque.popleft() # The optimal i is deque[0], for cand. answer P[j] - P[i]. ans = max(ans, P[j] - P[deque[0]]) # Remove any i1's with P[i2] <= P[i1]. while deque and P[j] <= P[deque[-1]]: deque.pop() deque.append(j) return ans
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: tot = sum(A) B = A[:] for i in range(1, len(A)): if A[i - 1] > 0: A[i] += A[i - 1] if B[i - 1] < 0: B[i] += B[i - 1] submax = max(A) submin = min(B) return max(submax, tot - submin) if tot != submin else submax
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: N = len(A) prefix = [0] for _ in range(2): for x in A: prefix.append(prefix[-1] + x) res = A[0] deque = collections.deque([0]) for j in range(1, len(prefix)): if deque[0] < j-N: deque.popleft() res = max(res, prefix[j] - prefix[deque[0]]) while deque and prefix[j] <= prefix[deque[-1]]: deque.pop() deque.append(j) return res
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: total, maxSum, curMax, minSum, curMin = 0, A[0], 0, A[0], 0 for a in A: curMax = max(curMax + a, a) maxSum = max(maxSum, curMax) curMin = min(curMin + a, a) minSum = min(minSum, curMin) total += a return max(maxSum, total - minSum) if maxSum > 0 else maxSum
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: maxHere = currentMax = float('-inf') minHere = currentMin = float('inf') for i in A: currentMax = i + max(0, currentMax) currentMin = i + min(0, currentMin) maxHere = max(currentMax, maxHere) minHere = min(currentMin, minHere) print(maxHere, minHere) if minHere == sum(A) and 0 not in A: return maxHere return max(maxHere, sum(A)-minHere)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: # find linear max subarray sum maxSum = A[0] curMaxSum = A[0] for i in range(1, len(A)): curMaxSum = max(curMaxSum + A[i], A[i]) maxSum = max(maxSum, curMaxSum) # find linear min subarray sum minSum = A[0] curMinSum = A[0] for i in range(1, len(A)): curMinSum = min(curMinSum + A[i], A[i]) minSum = min(minSum, curMinSum) # edge case: all values of A are negative if maxSum < 0: return maxSum # compare (linear max) with (total sum - linear min) return max(maxSum, sum(A)-minSum)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: l = len(A) A = A+A q = collections.deque([(0, -1)]) cur = 0 ret = float('-inf') for i, num in enumerate(A): cur += num ret = max(ret, cur-q[0][0]) if q[0][1]+l == i: q.popleft() while len(q) > 0 and q[-1][0] > cur: q.pop() q.append((cur, i)) return ret
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: def kadane(aa): ans= cur =float('-inf') for v in aa: cur = max(cur, 0) + v ans = max(ans, cur) return ans S = sum(A) ans1 = kadane(A) ans2 = S + kadane(-A[i] for i in range(1, len(A))) ans3 = S + kadane(-A[i] for i in range(len(A) - 1)) return max(ans1, ans2, ans3)
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C. Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.) Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)   Example 1: Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3 Example 2: Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10 Example 3: Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4 Example 4: Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3 Example 5: Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1   Note: -30000 <= A[i] <= 30000 1 <= A.length <= 30000
class Solution: def maxSubarraySumCircular(self, A: List[int]) -> int: L = len(A) cum_sum = [0]*L cum_max = [0]*L cum_max_final = [0]*L sum_ = 0 for i in range(L): sum_ += A[i] cum_sum[i] = sum_ if i==0: cum_max[i] = A[i] else: if cum_max[i-1]>0: cum_max[i] = cum_max[i-1] + A[i] else: cum_max[i] = A[i] m = A[L-1] for i in range(L-1,-1,-1): if i!=0: cur = cum_sum[L-1] - cum_sum[i-1] cum_max_final[i] = max(cur,m) m = max(m,cur) else: cum_max_final[i] = max(m,cum_sum[L-1]) res = -float('inf') for i in range(L): if i!=L-1: cur = cum_max[i] cur = max(cur,cum_sum[i]+cum_max_final[i+1]) res = max(res,cur) else: res = max(res,cum_max[L-1]) return res