inputs
stringlengths 50
14k
| targets
stringlengths 4
655k
|
|---|---|
Given an array of integers A, find the number of triples of indices (i, j, k) such that:
0 <= i < A.length
0 <= j < A.length
0 <= k < A.length
A[i] & A[j] & A[k] == 0, where & represents the bitwise-AND operator.
Example 1:
Input: [2,1,3]
Output: 12
Explanation: We could choose the following i, j, k triples:
(i=0, j=0, k=1) : 2 & 2 & 1
(i=0, j=1, k=0) : 2 & 1 & 2
(i=0, j=1, k=1) : 2 & 1 & 1
(i=0, j=1, k=2) : 2 & 1 & 3
(i=0, j=2, k=1) : 2 & 3 & 1
(i=1, j=0, k=0) : 1 & 2 & 2
(i=1, j=0, k=1) : 1 & 2 & 1
(i=1, j=0, k=2) : 1 & 2 & 3
(i=1, j=1, k=0) : 1 & 1 & 2
(i=1, j=2, k=0) : 1 & 3 & 2
(i=2, j=0, k=1) : 3 & 2 & 1
(i=2, j=1, k=0) : 3 & 1 & 2
Note:
1 <= A.length <= 1000
0 <= A[i] < 2^16
|
class TrieNode:
def __init__(self):
self.children = [None] * 2
self.count = 0
self.cache = {}
class Trie:
def __init__(self):
self.root = TrieNode()
#self.cache = {}
def insert(self, num):
now = self.root
for j in range(16):
i = num & 1
if not now.children[i]:
now.children[i] = TrieNode()
now = now.children[i]
num >>= 1
now.count += 1
def match(self, num):
return self.count_match(self.root, num)
def count_match(self, now, num):
if not now:
return 0
if num in now.cache:
return now.cache[num]
if now.count > 0:
return now.count
bit = num & 1
next_num = num >> 1
if bit:
now.cache[num] = self.count_match(now.children[0], next_num)
else:
tmp = 0
tmp += self.count_match(now.children[0], next_num)
tmp += self.count_match(now.children[1], next_num)
now.cache[num] = tmp
return now.cache[num]
class Solution:
def countTriplets(self, A: List[int]) -> int:
# Tries: 16 * n^2
trie = Trie()
# build Trie
for num in A:
trie.insert(num)
cache = {}
ans = 0
for num1 in A:
for num2 in A:
num = (num1 & num2)
a = trie.match(num)
ans += a
#print(num1, num2, a)
return ans
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
N = len(A)
if(N==0):
return 0
curr_max = A[0]
global_max = A[0]
curr_min = A[0]
global_min = A[0]
flag = 0
if(A[0]>=0):
flag=1
for i in range(1, N):
if(A[i]>=0):
flag=1
if(curr_max >= 0):
curr_max = curr_max + A[i]
else:
curr_max = A[i]
if(curr_min >= 0):
curr_min = A[i]
else:
curr_min = curr_min + A[i]
if(curr_max > global_max):
global_max = curr_max
if(curr_min < global_min):
global_min = curr_min
if(flag==0):
return max(A)
return max(global_max, sum(A) - global_min)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
curr_max = A[0]
max_sum = A[0]
curr_min = A[0]
min_sum = A[0]
for i in range(1, len(A)):
curr_max = max(A[i], A[i] + curr_max)
max_sum = max(curr_max, max_sum)
curr_min = min(A[i], A[i] + curr_min)
min_sum = min(curr_min, min_sum)
if max_sum > 0:
return max(sum(A) - min_sum, max_sum)
else:
return max(A)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
if not A:
return 0
max_A = max(A)
if max_A <= 0:
return max_A
max_sum = 0
cur_sum = 0
for i in range(len(A)):
cur_sum = max(cur_sum, 0) + A[i]
max_sum = max(max_sum, cur_sum)
if len(A) <= 2:
return max_sum
right_sum = A[-1]
right_max = [A[-1]]
for i in A[len(A)-2::-1]:
right_sum += i
right_max.append(max(right_max[-1], right_sum))
right_max = right_max[::-1]
# print(right_max)
left_max = A[0]
left_sum = A[0]
for i in range(1, len(A)-1):
# print(A[i], left_max, left_sum)
left_sum += A[i]
left_max = max(left_max, left_sum)
max_sum = max(max_sum, left_max + right_max[i+1])
return max_sum
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
mini = maxi = A[0]
curMin = curMax = total = 0
for num in A:
curMin = min(curMin + num, num) # 2
curMax = max(curMax + num, num) # 7
maxi = max(maxi, curMax) # 7
mini = min(mini, curMin) # -3
total += num
return max(maxi, total - mini) if maxi > 0 else maxi
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
def _get_max(lo, hi, flag):
m = float('-inf')
s = 0
for i in range(lo, hi):
s = max(s, 0) + flag * A[i]
m = max(m, s)
return m
s = sum(A)
return max(_get_max(0, len(A), 1), s + _get_max(0, len(A) - 1, -1), s + _get_max(1, len(A), -1))
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
mx = curr = A[0]
cumSum = [A[0]]
for i in range(1, len(A)):
if curr >= 0:
curr += A[i]
else:
curr = A[i]
mx = max(mx, curr)
cumSum.append(cumSum[-1]+A[i])
revCumSum = []
curr = 0
for x in reversed(A):
curr += x
if revCumSum:
revCumSum.append(max(revCumSum[-1], curr))
else:
revCumSum.append(curr)
for i in range(len(A)-1):
mx = max(mx, cumSum[i]+revCumSum[len(A)-2-i])
mx = max(mx, cumSum[-1])
return mx
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
def maxSubarray (A):
dp = [0] * len(A)
max_c = A[0]
flag = True
for idx,num in enumerate(A):
if num < 0:
flag = False
if idx == 0:
dp[0]=num
else:
dp[idx]=max(num, dp[idx-1] + num)
return max(dp), flag
temp,nonNeg = maxSubarray(A)
if nonNeg:
return temp
res = float('-inf')
rightWindow = [A[0]] + [0] * (len(A)-1)
for idx,i in enumerate(A[1:]):
rightWindow[idx+1] = i+rightWindow[idx]
currMax = float('-inf')
MaxIdx = float('inf')
reversedA = A.reverse()
leftWindow = [A[0]] + [0] * (len(A)-1)
for idx,i in enumerate(A[1:]):
leftWindow[idx +1] = i+leftWindow[idx]
if MaxIdx >= len(A)-idx-1:
currMax = max(rightWindow[:len(A)-idx-1])
MaxIdx = rightWindow.index(currMax)
res = max(res,currMax + leftWindow[idx])
return max(res,temp)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
import heapq
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
N = len(A)
best = A[0]
heap = [(0, 0)]
cumsums = [0]
for n in A:
cumsums.append(cumsums[-1] + n)
for n in A:
cumsums.append(cumsums[-1] + n)
for i in range(1, len(cumsums)):
while len(heap) > 0 and i - heap[0][1] > N:
heapq.heappop(heap)
best = max(best, cumsums[i] - heap[0][0])
heapq.heappush(heap, (cumsums[i], i))
return best
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
total, maxSum, curMax, minSum, curMin = 0, A[0], 0, A[0], 0
for a in A:
curMax = max(curMax + a, a)
maxSum = max(maxSum, curMax)
curMin = min(curMin + a, a)
minSum = min(minSum, curMin)
total += a
return max(maxSum, total - minSum) if maxSum > 0 else maxSum
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
# case 1, kadane's algo
totalSum = sum(A)
curr = A[0]
maxSum = A[0]
for i in range(1, len(A)):
if A[i] + curr > A[i]:
curr = A[i] + curr
else:
curr = A[i]
maxSum = max(maxSum, curr)
# case 2, wrapping
curr = A[0]
minSum = totalSum
for i in range(1, len(A)):
curr = min(A[i]+curr, A[i])
minSum = min(minSum, curr)
if totalSum == minSum:
return maxSum
return max(totalSum - minSum, maxSum)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
def kadane(array):
global_max = array[0]
local_max = array[0]
for i in range(1,len(array)):
if local_max < 0:
local_max = 0
local_max = array[i] + local_max
if local_max > global_max:
global_max = local_max
return global_max
def kadane_inverse(array):
global_min = array[0]
local_min = array[0]
for i in range(1,len(array)):
if local_min > 0:
local_min = 0
local_min = array[i] + local_min
if local_min < global_min:
global_min = local_min
return global_min
total = sum(A)
inv = kadane_inverse(A)
reg = kadane(A)
if total == inv:
return reg
return max(total-inv, reg)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
def maxSubarray (A):
dp = [0] * len(A)
max_c = A[0]
for idx,num in enumerate(A):
if idx != 0:
dp[idx]=max(num, dp[idx-1] + num)
else:
dp[0]=num
return max(dp)
temp = maxSubarray(A)
res = float('-inf')
rightMax = [max(A[0],0)] + [0] * (len(A)-1)
currMax = max(A[0],0)
rightWindow = [A[0]] + [0] * (len(A)-1)
for idx,i in enumerate(A[1:]):
currMax = max(i+rightWindow[idx], currMax)
rightMax[idx+1] = currMax
rightWindow[idx+1] = i+rightWindow[idx]
reversedA = A.reverse()
leftWindow = [A[0]] + [0] * (len(A)-1)
for idx,i in enumerate(A[1:]):
leftWindow[idx +1] = i+leftWindow[idx]
currMax = rightMax[len(A)-idx-2]
res = max(res,currMax + leftWindow[idx])
return max(res,temp)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
n = len(A)
cur_sum = A[0]
result1 = A[0]
for i in range(1,n):
cur_sum = max(A[i],cur_sum+A[i])
result1 = max(cur_sum,result1)
if n == 1: return result1
cur_sum = A[1]
result2 = A[1]
for i in range(2,n-1):
cur_sum = min(A[i],cur_sum+A[i])
result2 = min(cur_sum, result2)
return max(result1,sum(A)-result2)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
total, maxSum, curMax, minSum, curMin = 0, A[0], 0, A[0], 0
for a in A:
curMax = max(curMax + a, a)
maxSum = max(maxSum, curMax)
curMin = min(curMin + a, a)
minSum = min(minSum, curMin)
total += a
return max(maxSum, total - minSum) if maxSum > 0 else maxSum
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
n = len(A)
if n == 1:
return A[0]
def kadane(it):
max_ = current = float('-inf')
for num in it:
current = num + max(current, 0)
max_ = max(max_, current)
return max_
total = sum(A)
max1 = kadane(num for num in A)
max2 = total + kadane(-A[idx] for idx in range(n - 1))
max3 = total + kadane(-A[idx] for idx in range(1, n))
return max(max1, max2, max3)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
if A is None or not A:
return 0
N = len(A)
A = A + A
acc = [0]
for d in A:
acc.append(acc[-1] + d)
ret = -sys.maxsize
queue = deque([0])
for j in range(1, 2 * N):
while queue and queue[0] < j - N:
queue.popleft()
ret = max(ret, acc[j] - acc[queue[0]])
while queue and acc[queue[-1]] >= acc[j]:
queue.pop()
queue.append(j)
return ret
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
def maxSubarray (A):
dp = [0] * len(A)
max_c = A[0]
flag = True
for idx,num in enumerate(A):
if num < 0:
flag = False
if idx == 0:
dp[0]=num
else:
dp[idx]=max(num, dp[idx-1] + num)
return max(dp), flag
temp,nonNeg = maxSubarray(A)
res = float('-inf')
rightMax = [max(A[0],0)] + [0] * (len(A)-1)
currMax = max(A[0],0)
rightWindow = [A[0]] + [0] * (len(A)-1)
for idx,i in enumerate(A[1:]):
currMax = max(i+rightWindow[idx], currMax)
rightMax[idx+1] = currMax
rightWindow[idx+1] = i+rightWindow[idx]
reversedA = A.reverse()
leftWindow = [A[0]] + [0] * (len(A)-1)
for idx,i in enumerate(A[1:]):
leftWindow[idx +1] = i+leftWindow[idx]
currMax = rightMax[len(A)-idx-2]
res = max(res,currMax + leftWindow[idx])
return max(res,temp)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
sm = sum(A)
mx = mn = cur_mx = cur_mn = A[0]
for i in range(1, len(A)):
cur_mn = min(cur_mn + A[i], A[i])
mn = min(mn, cur_mn)
cur_mx = max(cur_mx + A[i], A[i])
mx = max(mx, cur_mx)
return max(mx, (mn if mn==sm else (sm - mn)))
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, a: List[int]) -> int:
n = len(a)
ans = float('-inf')
current = 0
for num in a:
current = num + max(0, current)
ans = max(ans, current)
right_sum = [0] * n
right_sum[-1] = a[-1]
right_most = [float('-inf')] * n
right_most[-1] = right_sum[-1]
for i in range(n - 2, -1, -1):
right_sum[i] = right_sum[i + 1] + a[i]
right_most[i] = max(right_sum[i], right_most[i + 1])
left_sum = 0
for i in range(n - 2):
left_sum += a[i]
ans = max(ans, left_sum + right_most[i + 2])
return ans
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
max_subarray = float('-inf')
cur_max_subarray = 0
min_subarray = float('inf')
cur_min_subarray = 0
total = 0
max_value = float('-inf')
for num in A:
cur_max_subarray += num
if cur_max_subarray < 0:
cur_max_subarray = 0
else:
max_subarray = max(max_subarray, cur_max_subarray)
cur_min_subarray += num
if cur_min_subarray > 0:
cur_min_subarray = 0
else:
min_subarray = min(min_subarray, cur_min_subarray)
total += num
max_value = max(max_value, num)
if max_value <= 0:
return max_value
return max(max_subarray, total-min_subarray)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
dp = [0]
for _ in range(2):
for num in A:
dp.append(dp[-1]+num)
res = A[0]
deque = collections.deque([0]) # i's, increasing by P[i]
for j in range(1, len(dp)):
# If the smallest i is too small, remove it.
if deque[0] < j-len(A):
deque.popleft()
# The optimal i is deque[0], for cand. answer P[j] - P[i].
res = max(res, dp[j] - dp[deque[0]])
# Remove any i1's with P[i2] <= P[i1].
while deque and dp[j] <= dp[deque[-1]]:
deque.pop()
deque.append(j)
return res
'''
As before, sum(nums[i:i+k]) = dp[i+k]-dp[i]
now, sum[i+k:i] = dp[len(A)-(i+k)]+dp[i]
'''
cur_max = -float('inf')
dp = [0]
for num in A:
dp.append(dp[-1]+num)
for i in range(len(A)):
for j in range(i+1,i+len(A)+1):
if j <= len(A):
cur_max = max(cur_max,dp[j]-dp[i])
else:
cur_max = max(cur_max,dp[len(A)]-dp[i]+dp[j%len(A)])
return cur_max
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
ansIfOne = kadane(A)
ansIfTwo = sum(A) - kadaneMin(A[1:len(A)-1])
return max(ansIfOne, ansIfTwo)
def kadane(A):
prevMax = -math.inf
result = -math.inf
for x in A:
curMax = max(prevMax + x, x)
prevMax = curMax
result = max(result, curMax)
return result
def kadaneMin(A):
prevMin = math.inf
result = math.inf
for x in A:
curMin = min(prevMin + x, x)
prevMin = curMin
result = min(result, curMin)
return result
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular1(self, A: List[int]) -> int:
maxSubarraySum = [i for i in A]
minSubarraySum = [i for i in A]
for i in range(1,len(A)):
maxSubarraySum[i] = max(maxSubarraySum[i-1]+A[i],A[i])
for i in range(1,len(A)):
minSubarraySum[i] = min(minSubarraySum[i-1]+A[i],A[i])
return max(max(maxSubarraySum),sum(A)-min(minSubarraySum)) if max(maxSubarraySum) >0 else max(maxSubarraySum)
def maxSubarraySumCircular(self, A):
total = 0
curMax = 0
maxSubArraySum = A[0]
curMin = 0
minSubArraySum = A[0]
for a in A:
curMax = max(curMax+a,a)
maxSubArraySum = max(maxSubArraySum,curMax)
curMin = min(curMin+a,a)
minSubArraySum = min(minSubArraySum,curMin)
total += a
return max(maxSubArraySum,total-minSubArraySum) if maxSubArraySum > 0 else maxSubArraySum
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
import sys
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
def kadane(A,n):
maxG = 0
curr_max = 0
for i in range(n):
curr_max += A[i]
curr_max = max(0,curr_max)
maxG = max(maxG, curr_max)
return maxG
flag = None
for i in A:
if i > 0:
flag=1
break
if not flag:
return max(A)
n = len(A)
noWrap = kadane(A,n)
total = 0
for i in range(n):
total += A[i]
A[i] *= -1
minTotal = kadane(A,n)
maxG = total+minTotal
return max(noWrap,maxG)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A):
def kadane(gen):
ans = cur = float('-inf') # maximum non-empty subarray sum
for x in gen:
cur = max(cur, 0) + x
ans = max(ans, cur)
return ans
S = sum(A)
ans1 = kadane(iter(A))
ans2 = S + kadane(-A[i] for i in range(1, len(A)))
ans3 = S + kadane(-A[i] for i in range(len(A) - 1))
return max(ans1, ans2, ans3)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular1(self, A: List[int]) -> int:
maxSubarraySum = [i for i in A]
minSubarraySum = [i for i in A]
for i in range(1,len(A)):
maxSubarraySum[i] = max(maxSubarraySum[i-1]+A[i],A[i])
for i in range(1,len(A)):
minSubarraySum[i] = min(minSubarraySum[i-1]+A[i],A[i])
return max(max(maxSubarraySum),sum(A)-min(minSubarraySum)) if max(maxSubarraySum) >0 else max(maxSubarraySum)
def maxSubarraySumCircular(self, A):
total, maxSum, curMax, minSum, curMin = 0, A[0], 0, A[0], 0
for a in A:
curMax = max(curMax + a, a)
maxSum = max(maxSum, curMax)
curMin = min(curMin + a, a)
minSum = min(minSum, curMin)
total += a
return max(maxSum, total - minSum) if maxSum > 0 else maxSum
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, arr: List[int]) -> int:
max_eh = arr[0]
min_eh = arr[0]
max_sf = arr[0]
min_sf = arr[0]
total = sum(arr)
for i in range(1,len(arr)):
max_eh = max(max_eh+arr[i],arr[i])
max_sf = max(max_eh,max_sf)
min_eh = min(min_eh+arr[i],arr[i])
min_sf = min(min_eh,min_sf)
if min_sf == total:
return max_sf
else:
return max(max_sf,total-min_sf)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
res = A[0]
cur = A[0]
sumn = sum(A)
for num in A[1:]:
cur = num + max(0, cur)
res = max(cur, res)
if len(A) >= 2:
mincur = -A[1]
minres = -A[1]
for num in A[2:]:
mincur = -num + max(0, mincur)
minres = max(minres, mincur)
res = max(res, sumn + minres)
mincur = -A[0]
minres = -A[0]
for num in A[1:(len(A)-1)]:
mincur = -num + max(0, mincur)
minres = max(minres, mincur)
res = max(res, sumn + minres)
return res
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
# case1: ---------|
# case2: ---------|----------
# |--------|
# suf pre
# maxsubarray = total - min(subarray)
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
local_min = 0
local_max = 0
global_min = A[0]
global_max = A[0]
total = 0
for num in A:
total += num
local_min = min(local_min+num, num)
global_min = min(global_min, local_min)
local_max = max(local_max+num, num)
global_max = max(global_max, local_max)
if global_max < 0: return global_max
else: return max(global_max, total-global_min)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
max_sum = min_sum = A[0]
curr_max = curr_min = tot = 0
for a in A:
curr_max = max(curr_max + a, a)
curr_min = min(curr_min + a, a)
max_sum = max(curr_max, max_sum)
min_sum = min(curr_min, min_sum)
tot += a
return max(max_sum, tot - min_sum) if max_sum > 0 else max_sum
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
# Maximum Sum Circular Subarray
# 8/22/20 3:41
total, maxSum = 0, A[0]
curMax, minSum, curMin = 0, A[0], 0
for a in A:
curMax = max(curMax + a, a)
maxSum = max(maxSum, curMax)
curMin = min(curMin + a, a)
minSum = min(minSum, curMin)
total += a
return max(maxSum, total - minSum) if total != minSum else maxSum
# input: [5,-3,5]
# Output:7
# Expected:10
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
maxsum = minsum = A[0]
curmax = curmin = total = 0
for num in A:
curmax = max(num, curmax + num)
maxsum = max(maxsum, curmax)
curmin = min(num, curmin + num)
minsum = min(minsum, curmin)
total += num
return max(maxsum, total - minsum) if maxsum > 0 else maxsum
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
curmax, curmin = 0 , 0
total = 0
maxsum = minsum = A[0]
for num in A:
curmax = max(num, curmax + num)
maxsum = max(maxsum, curmax)
curmin = min(num, curmin + num)
minsum = min(minsum, curmin)
total += num
return max(maxsum, total - minsum) if maxsum > 0 else maxsum
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
maxSubarraySum = [i for i in A]
minSubarraySum = [i for i in A]
for i in range(1,len(A)):
maxSubarraySum[i] = max(maxSubarraySum[i-1]+A[i],A[i])
for i in range(1,len(A)):
minSubarraySum[i] = min(minSubarraySum[i-1]+A[i],A[i])
return max(max(maxSubarraySum),sum(A)-min(minSubarraySum)) if max(maxSubarraySum) >0 else max(maxSubarraySum)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A):
n = len(A)
S = sum(A)
m1 = self.kadane(A)
m2 = S + self.kadane([-A[i] for i in range(1, n)])
m3 = S + self.kadane([-A[i] for i in range(n-1)])
return max(m1, m2, m3)
def kadane(self, arr):
res = cur = -float('inf')
for a in arr:
cur = a + max(0, cur)
res = max(cur, res)
return res
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
n = len(A)
B = [0]+A+A
for i in range(1, len(B)):
B[i] += B[i-1]
maxv = B[1]
stack = [0]
for end in range(1, len(B)):
num = B[end]
while stack and num < B[stack[-1]]:
stack.pop()
stack.append(end)
if end-stack[0] == n+1:
stack.pop(0)
maxv = max(num-B[stack[0]], maxv)
#print(end, stack, maxv)
if all(x<0 for x in A):
return max(A)
return maxv
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
if A == None or len(A) == 0:
return 0
max_sum , min_sum , total = -100000000, 1000000000, 0
curr_max_sum, curr_min_sum = 0, 0
for i in A:
curr_max_sum += i
max_sum = max(curr_max_sum, max_sum)
curr_max_sum = max(curr_max_sum, 0)
curr_min_sum += i
min_sum = min(curr_min_sum, min_sum)
curr_min_sum = min(curr_min_sum, 0)
total += i
return max_sum if max_sum < 0 else max(max_sum, total-min_sum)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
#naive will be n^2: try every possible start position
#3 cases
minSum = A[0]
maxSum = A[0]
maximum = A[0]
minimum = A[0]
for i in range(1, len(A)):
if A[i] > maxSum + A[i]:
maxSum = A[i]
else:
maxSum += A[i]
maximum = max(maximum, maxSum)
if A[i] < minSum + A[i]:
minSum = A[i]
else:
minSum += A[i]
minimum = min(minimum, minSum)
minimum = sum(A) - minimum
if minimum == 0: #means the entire araay is negative, so we take the max element
return maximum
return max(maximum, minimum)
#take the max of 3 cases
#1. maximum
#2. total - minimum
#3. if all negatives, then the max should be the maximum
#[-2,-3,-1]. Take a look at this case, for example.
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
maxSum=A[0]
minSum=A[0]
currMax=0
currMin=0
total=0
for a in A:
currMax=max(currMax+a,a)
maxSum=max(currMax,maxSum)
currMin=min(currMin+a,a)
minSum=min(currMin,minSum)
total+=a
return max(maxSum,total-minSum) if maxSum>0 else maxSum
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
mx = float('-inf')
curr = 0
for x in A:
if curr >= 0:
curr += x
else:
curr = x
mx = max(mx, curr)
cumSum = []
curr = 0
for x in A:
curr += x
cumSum.append(curr)
revCumSum = []
curr = 0
for x in reversed(A):
curr += x
revCumSum.append(curr)
for i in range(1, len(A)):
revCumSum[i] = max(revCumSum[i-1], revCumSum[i])
for i in range(len(A)-1):
mx = max(mx, cumSum[i]+revCumSum[len(A)-2-i])
mx = max(mx, cumSum[-1])
return mx
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
max_seen = max(A)
if max_seen < 0:
return max_seen
min_seen = float('inf')
curr_max = 0
curr_min = 0
total = 0
for num in A:
total += num
curr_max = max(0, curr_max + num)
curr_min = min(0, curr_min + num)
max_seen = max(max_seen, curr_max)
min_seen = min(min_seen, curr_min)
return max(max_seen, total - min_seen)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
def maxSubarray (A):
dp = [0] * len(A)
max_c = A[0]
for idx,num in enumerate(A):
if idx != 0:
dp[idx]=max(num, dp[idx-1] + num)
else:
dp[0]=num
return max(dp)
temp = maxSubarray(A)
res = float('-inf')
rightMax = [max(A[0],0)] + [0] * (len(A)-1)
currMax = max(A[0],0)
rightWindow = [A[0]] + [0] * (len(A)-1)
for idx,i in enumerate(A[1:]):
currMax = max(i+rightWindow[idx], currMax)
rightMax[idx+1] = currMax
rightWindow[idx+1] = i+rightWindow[idx]
reversedA = A.reverse()
leftWindow = [A[0]] + [0] * (len(A)-1)
for idx,i in enumerate(A[1:]):
leftWindow[idx +1] = i+leftWindow[idx]
currMax = rightMax[len(A)-idx-2]
res = max(res,currMax + leftWindow[idx])
return max(res,temp)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
from sys import maxsize
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
i=1
n=len(A)
# A=A+A
# end = n
ans = A[0]
ans_max = A[0]
ans_min = A[0]
ans_f = A[0]
sumi = A[0]
while i < n:
sumi += A[i]
if ans+A[i%n]>A[i%n]:
ans+=A[i%n]
else:
ans=A[i%n]
if ans_f+A[i%n]<A[i%n]:
ans_f+=A[i%n]
else:
ans_f=A[i%n]
ans_max = max(ans_max, ans)
ans_min = min(ans_min, ans_f)
i+=1
return max(ans_max,sumi-ans_min) if ans_min!=sumi else ans_max
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
for i in range(1, len(A)):
A[i] += A[i-1]
pre_min, pre_max = float('inf'), float('-inf')
res1, res2 = A[0], A[0]
for a in A:
res1 = max(res1, a-pre_min)
res2 = min(res2, a-pre_max)
pre_min = min(pre_min, a)
pre_max = max(pre_max, a)
res1 = max(res1, A[-1])
res2 = min(res2, A[-1])
if res2 == A[-1]:
return res1
else:
return max(res1, A[-1]-res2)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
n = len(A)
if n == 1:
return A[0]
max_ = A[0]
current = 0
for num in A:
current += num
max_ = max(max_, current)
if current < 0:
current = 0
max_from_left = [0] * n
max_from_left[0] = float('-inf')
current = A[0]
for idx in range(1, n):
max_from_left[idx] = max(max_from_left[idx - 1], current)
current += A[idx]
max_from_left[0] = 0
so_far = 0
for idx in range(n - 1, -1, -1):
so_far += A[idx]
max_ = max(max_, so_far + max_from_left[idx])
return max_
# left_acc = [0] * n
# left_acc[0] = A[0]
# for idx in range(1, n):
# left_acc[idx] = A[idx] + left_acc[idx - 1]
# right_acc = [0] * n
# right_acc[-1] = A[-1]
# for idx in range(n - 2, -1, -1):
# right_acc[idx] = A[idx] + right_acc[idx + 1]
# print(left_acc)
# print(right_acc)
# left, right = 0, n - 1
# while left < right:
# max_ = max(max_, left_acc[left] + right_acc[right])
# if left_acc[left] > right_acc[right]:
# right -= 1
# else:
# left += 1
# return max_
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
import math
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
total = 0
maxss, maxss_cur = -math.inf, -math.inf
minss, minss_cur = 0, 0
for a in A:
maxss_cur = a + max(maxss_cur, 0)
maxss = max(maxss, maxss_cur)
minss_cur = a + min(minss_cur, 0)
minss = min(minss, minss_cur)
total += a
return maxss if total == minss else max(maxss, total - minss)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
currMaxSum = 0
currMinSum = 0
maxSum = float('-inf')
minSum = float('inf')
flag = False
totalSum = 0
for i in range(len(A)):
currMaxSum += A[i]
maxSum = max(maxSum, currMaxSum)
if currMaxSum < 0:
currMaxSum = 0
totalSum += A[i]
if A[i] >= 0:
flag = True
currMinSum += A[i]
minSum = min(minSum, currMinSum)
if currMinSum > 0:
currMinSum = 0
if flag:
return max(totalSum-minSum, maxSum)
else:
return maxSum
# currMaxSum = 0
# currMinSum = 0
# flag = False
# maxSum = float('-inf')
# minSum = float('inf')
# totalSum = 0
# for i in range(len(A)):
# currMaxSum += A[i]
# maxSum = max(maxSum, currMaxSum)
# if currMaxSum < 0:
# currMaxSum = 0
# totalSum += A[i]
# if A[i] >= 0:
# flag = True
# currMinSum += A[i]
# minSum = min(minSum, currMinSum)
# if currMinSum > 0:
# currMinSum = 0
# if not flag:
# return maxSum
# else:
# return max(maxSum, totalSum-minSum)
# ans1 = cur = None
# for x in A:
# cur = x + max(cur, 0)
# ans1 = max(ans1, cur)
# ans2 = cur = float(\"inf\")
# for i in range(1, len(A)):
# cur = A[i] + min(cur, 0)
# ans2 = min(ans2, cur)
# ans2 = sum(A) - ans2
# ans3 = cur = float(\"inf\")
# for i in range(len(A)-1):
# cur = A[i] + min(cur, 0)
# ans3 = min(ans3, cur)
# ans3 = sum(A) - ans3
# return max(ans1, ans2, ans3)
# track = [[0 for j in range(len(A))] for j in range(len(A))]
# max_val = min(A)
# for i in range(len(A)):
# track[i][i] = A[i]
# for j in range(i+1, len(A)):
# track[i][j] = track[i][j-1] + A[j]
# max_val = max(max_val, track[i][j])
# max_val = max(max_val, track[i][i])
# #print(track)
# for i in range(len(A)-1, 0, -1):
# for j in range(0, i):
# track[i][j] = track[i][len(track) - 1] + track[0][j]
# max_val = max(max_val, track[i][j])
# #print(track)
# return max_val]
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
currMaxSum = 0
currMinSum = 0
flag = False
maxSum = float('-inf')
minSum = float('inf')
totalSum = 0
for i in range(len(A)):
currMaxSum += A[i]
maxSum = max(maxSum, currMaxSum)
if currMaxSum < 0:
currMaxSum = 0
totalSum += A[i]
if A[i] >= 0:
flag = True
currMinSum += A[i]
minSum = min(minSum, currMinSum)
if currMinSum > 0:
currMinSum = 0
if not flag:
return maxSum
else:
return max(maxSum, totalSum-minSum)
# ans1 = cur = None
# for x in A:
# cur = x + max(cur, 0)
# ans1 = max(ans1, cur)
# ans2 = cur = float(\"inf\")
# for i in range(1, len(A)):
# cur = A[i] + min(cur, 0)
# ans2 = min(ans2, cur)
# ans2 = sum(A) - ans2
# ans3 = cur = float(\"inf\")
# for i in range(len(A)-1):
# cur = A[i] + min(cur, 0)
# ans3 = min(ans3, cur)
# ans3 = sum(A) - ans3
# return max(ans1, ans2, ans3)
# track = [[0 for j in range(len(A))] for j in range(len(A))]
# max_val = min(A)
# for i in range(len(A)):
# track[i][i] = A[i]
# for j in range(i+1, len(A)):
# track[i][j] = track[i][j-1] + A[j]
# max_val = max(max_val, track[i][j])
# max_val = max(max_val, track[i][i])
# #print(track)
# for i in range(len(A)-1, 0, -1):
# for j in range(0, i):
# track[i][j] = track[i][len(track) - 1] + track[0][j]
# max_val = max(max_val, track[i][j])
# #print(track)
# return max_val
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
# total, maxSum, curMax, minSum, curMin = 0, float('-inf'), 0, float('inf'), 0
# for a in A:
# curMax = max(curMax + a, a)
# maxSum = max(maxSum, curMax)
# curMin = min(curMin + a, a)
# minSum = min(minSum, curMin)
# total += a
# return max(maxSum, total - minSum) if maxSum > 0 else maxSum
if not A:
return 0
dp_max = [-99999] * len(A)
dp_min = [-99999] * len(A)
dp_max[0], dp_min[0] = A[0], A[0]
for i in range(1, len(A)):
dp_max[i] = max(A[i], dp_max[i - 1] + A[i])
dp_min[i] = min(A[i], dp_min[i - 1] + A[i])
if min(dp_min) == sum(A):
return max(dp_max)
else:
return max(max(dp_max), sum(A) - min(dp_min))
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
# max(the max subarray sum, the total sum - the min subarray sum)
max_sum = -float('inf')
cur_max = -float('inf')
total_sum = 0
cur_min = float('inf')
min_sum = float('inf')
for i in A:
total_sum += i
cur_max = max(cur_max + i, i)
cur_min = min(cur_min + i, i)
max_sum = max(max_sum, cur_max)
min_sum = min(min_sum, cur_min)
if total_sum - min_sum == 0:
return max_sum
return max(max_sum, total_sum - min_sum)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
# method 1 append array's copy at back of it. then apply kadane's algorithm
# *not work* because we can only attain maximum n size window but here it can be 2n
# method 2 sliding window max window size = n
# *not work* because there is no way to move back of window
# method 3 modified kadane's algorithm(see in lee215's solution)
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
if not A:
return 0
max_sum, cur_max, min_sum, cur_min, total = A[0], 0, A[0], 0, 0
for a in A:
cur_max = max(a + cur_max, a)
max_sum = max(max_sum, cur_max)
cur_min = min(a + cur_min, a)
min_sum = min(min_sum, cur_min)
total += a
return max(max_sum, total - min_sum) if total > min_sum else max_sum
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
total = sum(A)
minSum = self.maxSum([-x for x in A]) + total
maxSum = self.maxSum(A)
#print(maxSum)
#print(minSum)
return max(maxSum, minSum) if minSum > 0 else maxSum
def maxSum(self, A: List[int]) -> int:
current = 0
max_sum = float('-inf')
for num in A:
current += num
if current > max_sum:
max_sum = current
if current < 0:
current = 0
return max_sum
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
# 1. get max subarray sum
maxSum = curSum = A[0]
for i in range(1, len(A)):
curSum = max(A[i], A[i] + curSum)
maxSum = max(maxSum, curSum)
if maxSum < 0:
return maxSum
# 2. get min subarray sum
minSum = curSum = A[0]
for i in range(1, len(A)):
curSum = min(A[i], A[i] + curSum)
minSum = min(minSum, curSum)
# 3. compare (max subarray sum) with (total sum - min subarray sum)
return max(sum(A)-minSum, maxSum)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
#Two cases:
#MaxSubarray = normal -> proceed normally
#MaxSubarray = circular -> total sum - minSubarray
#return max(maxSubarray, maxSubarraycircular
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
total_sum = 0
global_max = A[0]
global_min = A[0]
local_max = 0
local_min = 0
for num in A:
local_max = max(num, local_max + num)
local_min = min(num, local_min + num)
global_max = max(global_max, local_max)
global_min = min(global_min, local_min)
total_sum += num
circular_max = total_sum - global_min
if global_max <= 0:
return global_max
return max(circular_max, global_max)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
SUM = 0
MIN = 0
minsum = sys.maxsize
MAX = 0
maxsum = -sys.maxsize
for num in A:
SUM += num
maxsum = max(maxsum, SUM-MIN)
MIN = min(MIN,SUM)
minsum = min(minsum, SUM-MAX)
MAX = max(MAX,SUM)
if minsum == SUM:
return maxsum
return max(maxsum, SUM-minsum)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
#Two cases:
#MaxSubarray = normal -> proceed normally
#MaxSubarray = circular -> total sum - minSubarray
#return max(maxSubarray, maxSubarraycircular
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
total_sum = 0
global_max = A[0]
global_min = A[0]
local_max = 0
local_min = 0
for num in A:
local_max = max(num, local_max + num)
local_min = min(num, local_min + num)
global_max = max(global_max, local_max)
global_min = min(global_min, local_min)
total_sum += num
circular_max = total_sum - global_min
return max(circular_max, global_max) if global_max > 0 else global_max
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
n = len(A)
if n == 1:
return A[0]
global_max = float('-inf')
global_min = float('inf')
local_max = 0
local_min = 0
for i, a in enumerate(A):
local_max = max(local_max + a, a)
global_max = max(global_max, local_max)
if 0 < i < n - 1:
local_min = min(local_min + a, a)
global_min = min(global_min, local_min)
return max(global_max, sum(A) - global_min)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
max1 = -float('inf')
maxc = -float('inf')
for i in range(len(A)):
maxc = max(maxc+A[i],A[i])
max1 = max(max1,maxc)
min1 = float('inf')
minc = float('inf')
for i in range(len(A)):
minc = min(minc+A[i],A[i])
min1 = min(min1,minc)
if min1==sum(A):
return max1
return max(max1,sum(A)-min1)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
# n = len(A)
# max_sub_ending = [A[0]]
# max_sub_start_index = [0]
# A.extend(A)
# print(A)
# for i in range(1, len(A)):
# prev = max_sub_ending[i-1]
# if prev <= 0:
# max_sub_start_index.append(i)
# max_sub_ending.append(A[i])
# if i - max_sub_start_index[-1] < n:
# max_sub_start_index.append(max_sub_start_index[-1])
# max_sub_ending.append(A[i]+max_sub_ending[-1])
# elif (i - max_sub_start_index[-1]) == n:
# index_len = len(max_sub_start_index)
# val = max_sub_start_index[index_len-n]
# current_sum = max_sub_ending[-1] - val
# if current_sum <= 0:
# max_sub_start_index.append(i)
# max_sub_ending.append(A[i])
# else:
# max_sub_start_index.append(max_sub_start_index[-1]+1)
# max_sub_ending.append(A[i]+current_sum)
# print(max_sub_ending)
# return max(max_sub_ending)
n = len(A)
max_sub_ending = [A[0]]
max_sub_ending_index = [0]
for i in range(1, len(A)):
prev = max_sub_ending[i-1]
if prev <= 0:
max_sub_ending_index.append(i)
max_sub_ending.append(A[i])
else:
max_sub_ending_index.append(max_sub_ending_index[-1])
max_sub_ending.append(A[i]+max_sub_ending[-1])
print(max_sub_ending)
posmax = max(max_sub_ending)
total = sum(A)
for i in range(len(A)):
A[i] = -A[i]
max_sub_ending = [A[0]]
max_sub_ending_index = [0]
for i in range(1, len(A)):
prev = max_sub_ending[i-1]
if prev <= 0:
max_sub_ending_index.append(i)
max_sub_ending.append(A[i])
else:
max_sub_ending_index.append(max_sub_ending_index[-1])
max_sub_ending.append(A[i]+max_sub_ending[-1])
print(max_sub_ending)
negmax = max(max_sub_ending)+total
if negmax > posmax and negmax != 0:
return negmax
else:
return posmax
# cycle = max_sub_ending[-1]
# if cycle <= 0:
# return max(max_sub_ending)
# for i in range(max_sub_ending_index[-1]):
# if cycle <= 0:
# return max(max_sub_ending)
# max_sub_ending_index[i] = cycle+A[i]
# cycle = max_sub_ending_index[i]
# return max(max_sub_ending)
# total = sum(A)
# #left sum
# left_sum = [A[0]]
# left = A[0]
# for i in range(1, len(A)):
# left = left+A[i]
# left_sum.append(left)
# #right sum
# right = A[-1]
# right_sum = [right]
# for i in range(len(A)-2, -1, -1):
# right += A[i]
# right_sum.append(right)
# right_sum.reverse()
# max_sub = total
# for i in range(0, len(A)):
# for j in range(i, len(A)):
# left, right = 0, 0
# if i != 0:
# left = left_sum[i-1]
# if j != (len(A) -1):
# right = right_sum[j+1]
# max_sub = max(max_sub, total - left - right , left+right)
# #corner case
# if max(A) < 0:
# return max(A)
# return max_sub
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
#On
n=len(A)
total=A[0]
curmax=A[0]
curmin=A[0]
maxsum=curmax
minsum=curmin
for i in range(1,n):
curmax=max(curmax+A[i],A[i])
maxsum=max(maxsum,curmax)
curmin=min(curmin+A[i],A[i])
minsum=min(minsum,curmin)
total+=A[i]
#get maxsum and minsum
# total-minsum and maxsum
if total==minsum:
return maxsum
else:
return max(maxsum,total-minsum)
# dp=[0]*n
# optsum=[A[0]]*n
# pre=A[0]
# dp[0]=A[0]
# first=dp[0]
# for i in range(1,n):
# dp[i]=max(dp[i-1]+A[i],A[i])
# first=max(first,dp[i])
# pre+=A[i]
# if pre>optsum[i-1]:
# optsum[i]=pre
# else:
# optsum[i]=optsum[i-1]
# # get second case now
# #print(optsum)
# pre=0
# for j in range(n-1,0,-1):
# first=max(first,pre+A[j]+optsum[j-1])
# pre+=A[j]
# return first
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
#N2 solution
# n = len(A)
# maxSum = -float('inf')
# for i in range(n):
# currSum = 0
# for j in range(n):
# ind = (i+j)%n
# ele = A[ind]
# newSum = currSum +ele
# maxSum = max(maxSum,newSum)
# if currSum>0 and newSum<0:
# currSum = 0
# elif currSum<0 and newSum<currSum:
# currSum=0
# else:
# currSum = newSum
# return maxSum
n = len(A)
maxSum = -float('inf')
currSum = 0
for j in range(n):
ele = A[j]
newSum = currSum +ele
maxSum = max(maxSum,newSum)
if currSum>0 and newSum<0:
currSum = 0
elif currSum<=0 and newSum<currSum:
currSum=0
else:
currSum = newSum
lSum = 0
bestLSum=0
totalSum = sum(A)
for i in range(n):
currSum= totalSum-lSum
currSum+=bestLSum
maxSum = max(maxSum,currSum)
lSum+=A[i]
bestLSum=max(lSum,bestLSum)
return maxSum
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, arr: List[int]) -> int:
def maxsub(a,n):
maxsum = a[0]
currsum= 0
for i in range(n):
if currsum+a[i]>0:
currsum+=a[i]
maxsum = max(maxsum,currsum)
else:
currsum=0
maxsum= max(maxsum,a[i])
return maxsum
b =[i*-1 for i in arr]
n = len(arr)
s=sum(arr)
ans2=0
ans2 = maxsub(b,n)
if s==-ans2:
ans2 = -ans2
return max(maxsub(arr,n),s+ans2)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
if len(A) == 0:
return 0
minS = minT = maxS = maxT = s = A[0]
for i in range(1,len(A)):
minS = min(A[i],minS + A[i])
minT = min(minS,minT)
maxS = max(A[i],maxS + A[i])
maxT = max(maxT,maxS)
s += A[i]
if s == minT:
return maxT
return max(s - minT,maxT)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
if len(A) == 1:
return A[0]
s = sum(A)
nums = A
m = nums[0]
last = m
num = 1
last_max = m
res = last
res_max = last_max
for i in A[1:]:
if i + last < i:
last = i + last
num += 1
else:
last = i
num = 1
if num != len(A):
res = min(res, last)
last_max = max(i, i+last_max)
res_max = max(res_max, last_max)
return max(s-res, res_max)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
currentMax = totalMax = currentMin = totalMin = A[0]
s = A[0]
for i in range(1, len(A)):
currentMax = max(currentMax + A[i], A[i])
totalMax = max(totalMax, currentMax)
currentMin = min(currentMin + A[i], A[i])
totalMin = min(totalMin, currentMin)
s += A[i]
if s - totalMin != 0:
return max(totalMax, s - totalMin)
else: return totalMax
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
import math
import random
import string
from functools import lru_cache
from operator import truediv
from typing import List, Set
import collections
import functools
import heapq
import itertools
import sys
from functools import lru_cache
from typing import List
import numpy as np
import collections
import functools
import heapq
import itertools
import sys
from functools import lru_cache
from typing import List
'''
53. Maximum Subarray 无循环
dp[i] = max(A[i], dp[i-1] + A[i])
显然当dp[i-1] < 0 时, dp[i] = A[i],则有:
dp[i] = A[i] + max(dp[i-1], 0)
类比53,此题加了循环。也就是找到尾部和开头的最大正数组。
https://leetcode.com/problems/maximum-sum-circular-subarray/discuss/178422/One-Pass
但其实就是找到中间的最负子数组。
'''
class Solution:
def maxSubarraySumCircular(self, A):
total, maxSum, curMax, minSum, curMin = 0, A[0], 0, A[0], 0
for a in A:
curMax = max(curMax + a, a)
maxSum = max(maxSum, curMax)
curMin = min(curMin + a, a)
minSum = min(minSum, curMin)
total += a
return max(maxSum, total - minSum) if maxSum > 0 else maxSum
# r = Solution()
# a = r.maxSubarraySumCircular([3,-1,2,-1])
# print(a)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
#On
n=len(A)
dp=[0]*n
optsum=[A[0]]*n
pre=A[0]
dp[0]=A[0]
first=dp[0]
for i in range(1,n):
dp[i]=max(dp[i-1]+A[i],A[i])
first=max(first,dp[i])
pre+=A[i]
if pre>optsum[i-1]:
optsum[i]=pre
else:
optsum[i]=optsum[i-1]
# get second case now
#print(optsum)
pre=0
for j in range(n-1,0,-1):
first=max(first,pre+A[j]+optsum[j-1])
pre+=A[j]
return first
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
ans1 = cur = 0
for x in A:
cur = x + max(cur, 0)
ans1 = max(ans1, cur)
ans2 = cur = 0
for x in A[1:]:
cur = x + min(cur, 0)
ans2 = min(ans2, cur)
ans2 = sum(A) - ans2
ans3 = cur = 0
for x in A[:-1]:
cur = x + min(cur, 0)
ans3 = min(ans3, cur)
ans3 = sum(A) - ans3
ans = max(ans1, ans2, ans3)
return ans if ans != 0 else max(A)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, nums: List[int]) -> int:
greatest: int = -sys.maxsize + 1
smallest: int = sys.maxsize
x = y = total = 0
for i in range(len(nums)):
x += nums[i]
greatest = max(greatest, x)
x = max(x, 0)
y += nums[i]
smallest = min(smallest, y)
y = min(y, 0)
total += nums[i]
return greatest if greatest < 0 else max(greatest, total - smallest)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
N = len(A)
ans = cur = 0
for x in A:
cur = x + max(cur, 0)
ans = max(ans, cur)
rightsums = [None] * N
rightsums[-1] = A[-1]
for i in range(N-2, -1, -1):
rightsums[i] = rightsums[i+1] + A[i]
# maxright[i] = max_{j >= i} rightsums[j]
maxright = [None] * N
maxright[-1] = rightsums[-1]
for i in range(N-2, -1, -1):
maxright[i] = max(maxright[i+1], rightsums[i])
leftsum = 0
for i in range(N-2):
leftsum += A[i]
ans = max(ans, leftsum + maxright[i+1])
if max(A) < 0:
return max(A)
return ans
# total = sum(A)
# max_sum_ending_i = [A[0]]
# prev = max_sum_ending_i[-1]
# for i in range(1, len(A)):
# if prev <= 0:
# max_sum_ending_i.append(A[i])
# else:
# max_sum_ending_i.append(max_sum_ending_i[-1]+A[i])
# prev = max_sum_ending_i[-1]
# min_sum_ending_i = [A[0]]
# prev = min_sum_ending_i[-1]
# for i in range(1, len(A)):
# if prev >= 0:
# min_sum_ending_i.append(A[i])
# else:
# min_sum_ending_i.append(min_sum_ending_i[-1]+A[i])
# prev = min_sum_ending_i[-1]
# if max(A) > 0:
# return max(total - min(min_sum_ending_i), max(max_sum_ending_i))
# else:
# return max(A)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
sums = sum(A)
min_res = min_s = sys.maxsize
max_res = max_s = -sys.maxsize
n = len(A)
for i in range(n):
min_s = min(A[i], min_s + A[i])
max_s = max(A[i], max_s + A[i])
min_res = min(min_res, min_s)
max_res = max(max_res, max_s)
if min_res == sums:
min_res = min(A)
else:
min_res = sums - min_res
return max(min_res, max_res)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
import numpy as np
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
total, maxSum, curMax, minSum, curMin = 0, A[0], -np.Infinity, A[0], np.Infinity
for a in A:
curMax = max(curMax + a, a)
maxSum = max(maxSum, curMax)
curMin = min(curMin + a, a)
minSum = min(minSum, curMin)
total += a
return max(maxSum, total - minSum) if maxSum>0 else maxSum
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
if max(A) <= 0: return max(A)
endmax = [i for i in A]
endmin = [i for i in A]
for i in range(len(A)-1):
if endmax[i] > 0: endmax[i+1] += endmax[i]
if endmin[i] < 0: endmin[i+1] += endmin[i]
return max(max(endmax), sum(A) - min(endmin))
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
def kadane(gen):
ans = None
cur = None
for x in gen:
if cur:
cur = x + max(cur, 0)
else:
cur = x
if ans:
ans = max(ans, cur)
else:
ans = cur
return ans
S = sum(A)
ans1 = kadane((A))
if len(A) > 1:
ans2 = S + kadane([-A[i] for i in range(1, len(A))])
ans3 = S + kadane([-A[i] for i in range(len(A) - 1)])
return max(ans1, ans2, ans3)
else:
return ans1
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
# class Solution(object):
# def maxSubarraySumCircular(self, A):
# N = len(A)
# ans = float('-inf')
# cur = 0
# for x in A:
# cur = x + max(cur, 0)
# ans = max(ans, cur)
# # ans is the answer for 1-interval subarrays.
# # Now, let's consider all 2-interval subarrays.
# # For each i, we want to know
# # the maximum of sum(A[j:]) with j >= i+2
# # rightsums[i] = sum(A[i:])
# rightsums = [None] * N
# rightsums[-1] = A[-1]
# for i in xrange(N-2, -1, -1):
# rightsums[i] = rightsums[i+1] + A[i]
# # maxright[i] = max_{j >= i} rightsums[j]
# maxright = [None] * N
# maxright[-1] = rightsums[-1]
# for i in xrange(N-2, -1, -1):
# maxright[i] = max(maxright[i+1], rightsums[i])
# leftsum = 0
# for i in xrange(N-2):
# leftsum += A[i]
# ans = max(ans, leftsum + maxright[i+2])
# return ans
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
N = len(A)
ans = float('-inf')
cur = 0
for x in A:
cur = x + max(cur, 0)
ans = max(ans, cur)
rightsums = [None] * N
rightsums[-1] = A[-1]
for i in range(N-2, -1, -1):
rightsums[i] = rightsums[i+1] + A[i]
maxright = [None] * N
maxright[-1] = rightsums[-1]
for i in range(N-2, -1, -1):
maxright[i] = max(maxright[i+1], rightsums[i])
leftsum = 0
for i in range(N-2):
leftsum += A[i]
ans = max(ans, leftsum + maxright[i+2])
return ans
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
n = len(A)
ans = cur = float('-inf')
for x in A:
cur = x + max(cur, 0)
ans = max(ans, cur)
rightsums = [0]*n
rightsums[-1] = A[-1]
for i in range(n-2, -1, -1):
rightsums[i] = rightsums[i+1] + A[i]
maxright = [0]*n
maxright[-1] = rightsums[-1]
for i in range(n-2, -1, -1):
maxright[i] = max(maxright[i+1], rightsums[i])
leftsum = 0
for i in range(n-2):
leftsum += A[i]
ans = max(ans, leftsum + maxright[i+2])
return ans
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
ans1 = cur = 0
for x in A:
cur = x + max(cur, 0)
ans1 = max(ans1, cur)
ans2 = cur = 0
for i in range(1, len(A)):
cur = A[i] + min(cur, 0)
ans2 = min(ans2, cur)
ans2 = sum(A) - ans2
ans3 = cur = 0
for i in range(len(A)-1):
cur = A[i] + min(cur, 0)
ans3 = min(ans3, cur)
ans3 = sum(A) - ans3
ans = max(ans1, ans2, ans3)
return ans if ans != 0 else max(A)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
def kadane(A):
ts=A[0]
ms=A[0]
for i in range(1,len(A)):
ts=max(A[i],ts+A[i])
ms=max(ms,ts)
return ms
x=kadane(A)
for i in range(len(A)):
A[i]*=-1
s=sum(A)
y=kadane(A)
if y==s:
y=-1e10
else:
y=-s+y
return max(x,y)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
def find_max_sum(A):
curr_sum = 0
max_sum = -math.inf
for num in A:
if curr_sum > 0:
curr_sum += num
else:
curr_sum = num
max_sum = max(max_sum, curr_sum)
return max_sum
max_sum = find_max_sum(A)
min_sum_1 = -find_max_sum(-num for num in A[1:])
min_sum_2 = -find_max_sum(-num for num in A[:-1])
return max(sum(A) - min(min_sum_1, min_sum_2), max_sum)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
n = len(A)
A *= 2
ans = [0] * len(A)
q = collections.deque()
cur = 0
for i, a in enumerate(A):
while q and i - q[0][0] > n:
q.popleft()
cur += a
ans[i] = cur - q[0][1] if q else cur
while q and q[-1][1] >= cur:
q.pop()
q.append((i, cur))
return max(ans)
# n = len(A)
# A *= 2
# ans = [A[0]] + [0] * (len(A) - 1)
# q = collections.deque([(0, A[0])])
# cur = A[0]
# for i, a in enumerate(A[1:], 1):
# while q and i - q[0][0] > n:
# q.popleft()
# cur += a
# ans[i] = cur - q[0][1]
# while q and q[-1][1] >= cur:
# q.pop()
# q.append((i, cur))
# return max(ans)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
def kadane(gen):
# maximum non-empty subarray sum
ans = - sys.maxsize
cur = - sys.maxsize
for x in gen:
cur = x + max(cur, 0)
ans = max(ans, cur)
return ans
S = sum(A)
ans1 = kadane(iter(A))
ans2 = S + kadane(-A[i] for i in range(1, len(A)))
ans3 = S + kadane(-A[i] for i in range(len(A) - 1))
return max(ans1, ans2, ans3)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
'''
12341234
limit of len[] < a.length
p[i], i
'''
def kaden(gen):
ans = cur = gen[0]
for n in gen[1:]:
cur = n + max(0, cur)
ans = max(ans, cur)
return ans
ans1 = kaden(A)
if len(A)>1:
s = sum(A)
ans2 = s + kaden([-a for a in A[1:]])
ans3 = s + kaden([-a for a in A[:-1]])
else:
ans2 = ans3 = -float('inf')
return max(ans1, ans2, ans3)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
def kadane(gen):
ans = cur = -float('inf')
for x in gen:
cur = x + max(cur, 0)
ans = max(ans, cur)
return ans
S = sum(A)
ans1 = kadane(iter(A))
ans2 = S + kadane(-A[i] for i in range(1, len(A)))
ans3 = S + kadane(-A[i] for i in range(len(A)-1))
return max(ans1, ans2, ans3)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
B = A.copy()
for i in range(1,len(B)):
if B[i-1] > 0:
B[i] += B[i-1]
maxsum = max(B)
C = A.copy()
for i in range(1, len(C)):
if C[i-1] < 0:
C[i] += C[i-1]
minsum = min(C)
if minsum == sum(A):
return max([maxsum, max(A)])
return max([maxsum, sum(A)-minsum])
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
'''
12341234
limit of len[] < a.length
p[i], i
'''
def kaden(gen):
ans = cur = -float('inf')
for n in gen:
cur = n + max(0, cur)
ans = max(ans, cur)
return ans
ans1 = kaden(iter(A))
if len(A)>1:
s = sum(A)
ans2 = s + kaden(-a for a in A[1:])
ans3 = s + kaden(-a for a in A[1:])
else:
ans2 = ans3 = -float('inf')
return max(ans1, ans2, ans3)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
def kadane(gen):
#ans = None
#cur = None
#for x in gen:
# if cur:
# cur = x + max(cur, 0)
# else:
# cur = x
# if ans:
# ans = max(ans, cur)
# else:
# ans = cur
#return ans
size = len(gen)
ans = cur = gen[0]
for i in range(1,size):
cur = max(gen[i], cur + gen[i])
ans = max(ans, cur)
return ans
S = sum(A)
ans1 = kadane((A))
if len(A) > 1:
ans2 = S + kadane([-A[i] for i in range(1, len(A))])
ans3 = S + kadane([-A[i] for i in range(len(A) - 1)])
return max(ans1, ans2, ans3)
else:
return ans1
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
n = len(A)
A *= 2
ans = [A[0]] + [0] * (len(A) - 1)
q = collections.deque([(0, A[0])])
cur = A[0]
for i, a in enumerate(A[1:], 1):
while q and i - q[0][0] > n:
q.popleft()
cur += a
ans[i] = cur - q[0][1]
while q and q[-1][1] >= cur:
q.pop()
q.append((i, cur))
return max(ans)
# n = len(A)
# A *= 2
# ans = [0] * len(A)
# q = collections.deque()
# cur = 0
# for i, a in enumerate(A):
# while q and i - q[0][0] > n:
# q.popleft()
# cur += a
# ans[i] = cur - q[0][1] if q else cur
# while q and q[-1][1] >= cur:
# q.pop()
# q.append((i, cur))
# return max(ans)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
n = len(A)
ans = cur = float('-inf')
for v in A:
cur = v + max(cur, 0)
ans = max(ans, cur)
rightsum = [0] * n
rightsum[-1] = A[-1]
for i in range(n-2, -1, -1):
rightsum[i] = rightsum[i+1] + A[i]
rightmax = [0]*n
rightmax[-1] = rightsum[-1]
for i in range(n-2, -1, -1):
rightmax[i] = max(rightmax[i+1], rightsum[i])
cur = 0
for i in range(n-2):
cur += A[i]
ans = max(ans, cur+rightmax[i+2])
return ans
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
n = len(A)
ans = -float('inf')
currmax = -float('inf')
for i in range(n):
currmax = max(currmax+A[i], A[i])
ans = max(ans, currmax)
right_sums = [0]*n
right_sums[-1] = A[-1]
for i in range(1, n):
right_sums[n-1-i] = right_sums[n-i] + A[n-i-1]
maxright = [0]*n
maxright[-1] = right_sums[-1]
for i in range(1, n):
maxright[n-i-1] = max(maxright[n-i], right_sums[n-i-1])
lefts = 0
for i in range(n-2):
lefts += A[i]
ans = max(ans, lefts+maxright[i+2])
return ans
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A):
total = sum(A)
max_sum = [0 for i in range(len(A))]
min_sum = [0 for i in range(len(A))]
max_sum[0] = A[0]
min_sum[0] = A[0]
best_non_loop = max_sum[0]
best_inverse_loop = min_sum[0]
for i in range(1, len(A)):
max_sum[i] = A[i] + max(max_sum[i - 1], 0)
min_sum[i] = A[i] + min(min_sum[i - 1], 0)
best_non_loop = max(best_non_loop, max_sum[i])
best_inverse_loop = min(best_inverse_loop, min_sum[i])
ret = max(best_non_loop, total - best_inverse_loop)
if ret == 0:
return max(A)
return ret
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution(object):
def maxSubarraySumCircular(self, A):
N = len(A)
# Compute P[j] = sum(B[:j]) for the fixed array B = A+A
P = [0]
for _ in range(2):
for x in A:
P.append(P[-1] + x)
# Want largest P[j] - P[i] with 1 <= j-i <= N
# For each j, want smallest P[i] with i >= j-N
ans = A[0]
deque = collections.deque([0]) # i's, increasing by P[i]
for j in range(1, len(P)):
# If the smallest i is too small, remove it.
if deque[0] < j-N:
deque.popleft()
# The optimal i is deque[0], for cand. answer P[j] - P[i].
ans = max(ans, P[j] - P[deque[0]])
# Remove any i1's with P[i2] <= P[i1].
while deque and P[j] <= P[deque[-1]]:
deque.pop()
deque.append(j)
return ans
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
tot = sum(A)
B = A[:]
for i in range(1, len(A)):
if A[i - 1] > 0:
A[i] += A[i - 1]
if B[i - 1] < 0:
B[i] += B[i - 1]
submax = max(A)
submin = min(B)
return max(submax, tot - submin) if tot != submin else submax
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
N = len(A)
prefix = [0]
for _ in range(2):
for x in A:
prefix.append(prefix[-1] + x)
res = A[0]
deque = collections.deque([0])
for j in range(1, len(prefix)):
if deque[0] < j-N:
deque.popleft()
res = max(res, prefix[j] - prefix[deque[0]])
while deque and prefix[j] <= prefix[deque[-1]]:
deque.pop()
deque.append(j)
return res
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
total, maxSum, curMax, minSum, curMin = 0, A[0], 0, A[0], 0
for a in A:
curMax = max(curMax + a, a)
maxSum = max(maxSum, curMax)
curMin = min(curMin + a, a)
minSum = min(minSum, curMin)
total += a
return max(maxSum, total - minSum) if maxSum > 0 else maxSum
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
maxHere = currentMax = float('-inf')
minHere = currentMin = float('inf')
for i in A:
currentMax = i + max(0, currentMax)
currentMin = i + min(0, currentMin)
maxHere = max(currentMax, maxHere)
minHere = min(currentMin, minHere)
print(maxHere, minHere)
if minHere == sum(A) and 0 not in A:
return maxHere
return max(maxHere, sum(A)-minHere)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
# find linear max subarray sum
maxSum = A[0]
curMaxSum = A[0]
for i in range(1, len(A)):
curMaxSum = max(curMaxSum + A[i], A[i])
maxSum = max(maxSum, curMaxSum)
# find linear min subarray sum
minSum = A[0]
curMinSum = A[0]
for i in range(1, len(A)):
curMinSum = min(curMinSum + A[i], A[i])
minSum = min(minSum, curMinSum)
# edge case: all values of A are negative
if maxSum < 0:
return maxSum
# compare (linear max) with (total sum - linear min)
return max(maxSum, sum(A)-minSum)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
l = len(A)
A = A+A
q = collections.deque([(0, -1)])
cur = 0
ret = float('-inf')
for i, num in enumerate(A):
cur += num
ret = max(ret, cur-q[0][0])
if q[0][1]+l == i:
q.popleft()
while len(q) > 0 and q[-1][0] > cur:
q.pop()
q.append((cur, i))
return ret
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
def kadane(aa):
ans= cur =float('-inf')
for v in aa:
cur = max(cur, 0) + v
ans = max(ans, cur)
return ans
S = sum(A)
ans1 = kadane(A)
ans2 = S + kadane(-A[i] for i in range(1, len(A)))
ans3 = S + kadane(-A[i] for i in range(len(A) - 1))
return max(ans1, ans2, ans3)
|
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
|
class Solution:
def maxSubarraySumCircular(self, A: List[int]) -> int:
L = len(A)
cum_sum = [0]*L
cum_max = [0]*L
cum_max_final = [0]*L
sum_ = 0
for i in range(L):
sum_ += A[i]
cum_sum[i] = sum_
if i==0:
cum_max[i] = A[i]
else:
if cum_max[i-1]>0:
cum_max[i] = cum_max[i-1] + A[i]
else:
cum_max[i] = A[i]
m = A[L-1]
for i in range(L-1,-1,-1):
if i!=0:
cur = cum_sum[L-1] - cum_sum[i-1]
cum_max_final[i] = max(cur,m)
m = max(m,cur)
else:
cum_max_final[i] = max(m,cum_sum[L-1])
res = -float('inf')
for i in range(L):
if i!=L-1:
cur = cum_max[i]
cur = max(cur,cum_sum[i]+cum_max_final[i+1])
res = max(res,cur)
else:
res = max(res,cum_max[L-1])
return res
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.