Datasets:

inputs
stringlengths
50
14k
targets
stringlengths
4
655k
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: d = {} Aset = set(A) A.sort() ans = 0 for i in range(len(A)): d[A[i]] = 1 for j in range(i): if A[i]%A[j] == 0: k = A[i]//A[j] if k == A[j]: d[A[i]] += d[A[j]]*d[A[j]] elif k in set(A): d[A[i]] += d[A[j]]*d[k] ans += d[A[i]] ans %= 10**9+7 # print(d) return ans # return sum(d[key] for key in d)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: d = {} Aset = set(A) A.sort() ans = 0 for i in range(len(A)): d[A[i]] = 1 for j in range(i): if A[i]%A[j] == 0: k = A[i]//A[j] if k in set(A): d[A[i]] += d[A[j]]*d[k] d[A[i]] %= 10**9+7 ans += d[A[i]] ans %= 10**9+7 return ans
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: SA = set(A) A = sorted(SA) C = {} for x in A: C[x] = 1 for i, x in enumerate(A): for j in range(i): if A[j] * A[j] > A[i]: break elif A[j] * A[j] == A[i]: C[A[i]] += C[A[j]] * C[A[j]] elif A[i] % A[j] == 0 and A[i] // A[j] in SA: C[A[i]] += 2 * C[A[j]] * C[A[i] // A[j]] # print(C) res = sum(C.values()) return res % (10**9 + 7)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: A.sort() treeCount = {} for num in A: count = 1 for p, pCount in list(treeCount.items()): q, rem = divmod(num, p) if p > q: break if rem == 0 and q in treeCount: count += pCount*treeCount[q] if p == q else 2*pCount*treeCount[q] treeCount[num] = count return sum(treeCount.values()) % (1000_000_000 + 7)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def collect(self, lst, st, num, cache): if num in cache: return cache[num] res = 1 for n1 in lst: if n1**2 > num: break if num % n1 == 0 and (num // n1) in st: n2 = num // n1 res_local = self.collect(lst, st, n1, cache) * self.collect(lst, st, n2, cache) res += res_local if n1 != n2: res += res_local mod = (10**9)+7 res = res % mod cache[num] = res return res def solve(self, A): st = set(A) lst = sorted(list(st)) res = 0 cache = {} mod = (10**9)+7 for n in lst: res += self.collect(lst, st, n, cache) return res % mod def numFactoredBinaryTrees(self, A: List[int]) -> int: return self.solve(A)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
import functools as ft import typing as t class Solution: BASE = 10 ** 9 + 7 def divisor_pairs(self, idx: int) -> List[t.Tuple[int, int]]: num = self.A[idx] left_idx = 0 ans = [] while self.A[left_idx] ** 2 <= num: left = self.A[left_idx] if num % left == 0: right = num // left if right in self.A_idx: ans.append((left_idx, self.A_idx[right])) left_idx += 1 return ans def numFactoredBinaryTrees(self, A: List[int]) -> int: self.A = sorted(A) self.A_idx = {a: idx for idx, a in enumerate(self.A)} return sum(self.count_binary_trees(idx) for idx in range(len(A))) % self.BASE @ft.lru_cache(None) def count_binary_trees(self, idx: int) -> int: num = self.A[idx] ans = 1 # root only for left_idx, right_idx in self.divisor_pairs(idx): left_cnt = self.count_binary_trees(left_idx) right_cnt = self.count_binary_trees(right_idx) if left_idx == right_idx: total_cnt = left_cnt * right_cnt else: total_cnt = 2 * left_cnt * right_cnt ans += total_cnt return ans
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: A.sort() d = {} MOD = 1000000007 for a in A: d[a] = 1 + sum(d[a//b] * d[b] for b in d if not a%b and a//b in d) #print(d) return sum(d.values()) % MOD
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: mod = 10 ** 9 + 7 A.sort() parents = dict() seen = set() for a in A: tot = 1 for s in seen: if a % s == 0: b = a // s if b in seen: tot += parents[s] * parents[b] parents[a] = tot seen.add(a) return sum(parents.values()) % mod
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: # Time complexity: O(N^2) # Space complexity: O(N) # A.sort() # dic = {num: 1 for num in A} # for i in range(1, len(A)): # for j in range(i): # q, res = divmod(A[i], A[j]) # if res == 0 and q in dic: # dic[A[i]] += dic[q] * dic[A[j]] # return sum(dic.values()) % (10**9 + 7) dp = {} for a in sorted(A): dp[a] = sum(dp[b] * dp.get(a // b, 0) for b in dp if a % b == 0) + 1 return sum(dp.values()) % (10**9 + 7)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: A.sort() d = {A[0]:0} dp = [1]*len(A) MOD = 1000000007 for i in range(1, len(A)): for j in range(0, i): t = A[i]//A[j] if t< A[j]: break if not A[i] % A[j] and t in d: if A[j] == t: dp[i] += dp[j] * dp[d[t]] else: dp[i] += dp[j] * dp[d[t]] * 2 dp[i] %= MOD d[A[i]] = i return sum(dp) % MOD
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A): dp = {} for a in sorted(A): dp[a] = sum(dp[b] * dp.get(a / b, 0) for b in dp if a % b == 0) + 1 return sum(dp.values()) % (10**9 + 7)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: dp = {} for a in sorted(A): dp[a] = sum(dp[b] * dp.get(a / b, 0) for b in dp if a % b == 0) + 1 return sum(dp.values()) % (10**9 + 7)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: dp = {} for a in sorted(A): dp[a] = sum(dp[b]*dp.get(a/b, 0) for b in dp if(a%b == 0))+1 return sum(dp.values())%(10**9+7)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: A.sort() A_set = set(A) cache = {} num_trees = 0 # Update num trees. for i, n in enumerate(A): # Get factors pairs. factor_pairs = [] for j in range(i): if n % A[j] == 0 and n // A[j] in A_set: factor_pairs.append((n // A[j], A[j])) # Compute num_trees. new_trees = 1 for factor1, factor2 in factor_pairs: if factor1 != factor2: new_trees += cache[factor1] * cache[factor2] # Each pair is run over twice. elif factor1 == factor2: new_trees += cache[factor1] * cache[factor2] num_trees += new_trees cache[n] = new_trees print(cache) return num_trees % (10 ** 9 + 7)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: MOD = 10 ** 9 + 7 N = len(A) A.sort() dp = [1] * N index = {x: i for i, x in enumerate(A)} for i, x in enumerate(A): for j in range(i): if x % A[j] == 0: #A[j] will be left child right = x / A[j] if right in index: dp[i] += dp[j] * dp[index[right]] dp[i] %= MOD return sum(dp) % MOD
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: mod = 10**9 + 7 A.sort() dp = [1 for _ in range(len(A))] reverse_map = {x: i for i, x in enumerate(A)} for i, x in enumerate(A): for j in range(i): if x % A[j] == 0: #A[j] will be left child right_child = x / A[j] if right_child in reverse_map: dp[i] += dp[j] * dp[reverse_map[right_child]] dp[i] % mod return sum(dp) % mod
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: MOD = int(1e9 + 7) N = len(A) A.sort() dp = [1] * N idx = {ele: i for i, ele in enumerate(A)} for c, rootVal in enumerate(A): for j in range(c): left = A[j] if rootVal % left == 0: right = rootVal / left if right in idx: dp[c] += dp[j] * dp[idx[right]] % MOD return sum(dp) % MOD
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: MOD = int(1e9 + 7) N = len(A) A.sort() dp = [1] * N idx = {ele: i for i, ele in enumerate(A)} for i, rootVal in enumerate(A): for j in range(i): left = A[j] if rootVal % left == 0: right = rootVal / left if right in idx: dp[i] += dp[j] * dp[idx[right]] dp[i] %= MOD return sum(dp) % MOD
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: MOD = 10 ** 9 + 7 N = len(A) A.sort() dp = [1] * N index = {x: i for i, x in enumerate(A)} for i, x in enumerate(A): for j in range(i): if x % A[j] == 0: #A[j] will be left child right = x / A[j] if right in index: dp[i] += dp[j] * dp[index[right]] dp[i] %= MOD return sum(dp) % MOD
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: A.sort() O = {} for a in A: if a not in O: O[a] = 1 for k, v in list(O.items()): if a % k == 0 and a // k in O: O[a] += v * O[a // k] return sum(O.values()) % 1000000007
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: MOD = int(1e9 + 7) N = len(A) A.sort() dp = [1] * N idx = {ele: i for i, ele in enumerate(A)} for i, root_val in enumerate(A): for j in range(i): left = A[j] if root_val % left == 0: right = root_val / left if right in idx: dp[i] += dp[j] * dp[idx[right]] dp[i] %= MOD return sum(dp) % MOD
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
# 823. Binary Trees With Factors class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: MOD = int(1e9 + 7) N = len(A) A.sort() dp = [1] * N idx = {ele: i for i, ele in enumerate(A)} for c, rootVal in enumerate(A): for l in range(c): leftVal = A[l] if rootVal % leftVal == 0: rightVal = rootVal / leftVal if rightVal in idx: dp[c] += dp[l] * dp[idx[rightVal]] % MOD return sum(dp) % MOD
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: A.sort() numToIdx = {x : i for i, x in enumerate(A)} dp = [1 for _ in range(len(A))] MOD = 10**9 + 7 totalSum = 0 for i, x in enumerate(A): for j in range(i): y = A[j] if x % y == 0 and x // y in numToIdx: dp[i] += dp[j] * dp[numToIdx[x // y]] totalSum = (totalSum + dp[i]) % MOD return totalSum
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: A = sorted(A) N = len(A) dp = [1 for _ in range(N)] index_map = {} for index in range(N): index_map[A[index]] = index for k in range(N): for i in range(k): if A[k] % A[i] == 0: num_to_look = A[k]//A[i] if num_to_look in index_map: j = index_map[num_to_look] dp[k] += dp[i]*dp[j] # okay why is this not giving me the right number? return sum(dp) % (10**9 +7)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: factorSet = set(A) A.sort() treeCount = {} for num in A: count = 1 for p, pCount in list(treeCount.items()): q, rem = divmod(num, p) if p > q: break if rem == 0 and q in treeCount: tmp = pCount * treeCount[q] count += tmp if p == q else 2*tmp treeCount[num] = count return sum(treeCount.values()) % (1000_000_000 + 7)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: A.sort() ret = 0 root_value_to_tree_number = collections.defaultdict(int) for i in range(len(A)): occurrences = 1 for j in range(i - 1, -1, -1): if (A[i] % A[j] == 0): required_root_value = A[i] // A[j] occurrences += root_value_to_tree_number[required_root_value] * root_value_to_tree_number[A[j]] root_value_to_tree_number[A[i]] = occurrences ret += occurrences return ret % 1000000007
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: factors = set(A) A.sort() dp = defaultdict(int) count = 0 modulus = 10**9 + 7 for i in range(len(A)): dp[A[i]] += 1 for j in range(i): if A[i] % A[j] == 0 and (A[i] // A[j]) in factors: dp[A[i]] += dp[A[j]] * dp[A[i] // A[j]] count = (count + dp[A[i]]) % modulus return count
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A): MOD = 10 ** 9 + 7 n = len(A) A.sort() dp = [1] * n index = {x: i for i, x in enumerate(A)} for i, x in enumerate(A): for j in range(i): if x % A[j] == 0: right = x / A[j] if right in index: dp[i] += dp[j] * dp[index[right]] dp[i] %= MOD return sum(dp) % MOD
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
import math class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: mod = 1000000007 dp = [1 for i in range(len(A))] A.sort() val_to_idx = {val: idx for idx, val in enumerate(A)} M = len(A) for i in range(M): for j in range(0, i): if A[i] % A[j] == 0 and A[i]//A[j] in val_to_idx: dp[i] += (dp[j] * dp[val_to_idx[A[i]//A[j]]]) % mod dp[i] = dp[i] % mod print(dp) return sum(dp) % mod
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: A.sort() dp = {val: 1 for val in A} for i in range(len(A)): for j in range(i): if A[i] % A[j] == 0 and A[i]//A[j] in dp: dp[A[i]] += dp[A[i]//A[j]] * dp[A[j]] return sum(dp[v] for v in dp) % (10 ** 9 + 7)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: n = len(A) A.sort() s = {a:i for i,a in enumerate(A)} d = collections.defaultdict(set) for i in range(n): for j in range(i): if A[i] % A[j] == 0: res = A[i] // A[j] if res in s: d[i].add((j, s[res])) @lru_cache(maxsize=None) def dfs(i): nonlocal ans cur = 1 for l, r in d[i]: cur += dfs(l) * dfs(r) return cur ans = 0 for i in range(n): val = dfs(i) ans += val return ans % 1000000007
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, x: List[int]) -> int: def f(n): if n in dp:return dp[n] ans=1 for i in x: if i>(n**.5):break if n%i==0 and n//i in se: ans+=(1 if n//i==i else 2)*f(i)*f(n//i) dp[n]=ans return ans dp={} x.sort() se=set(x) ans=0 for i in x:ans+=f(i) return ans%(10**9+7)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: num_trees = {} A.sort() A_set = set(A) for i in range (len(A)): curr_num = A[i] num_trees[curr_num] = 1 for j in range (i): if (A[i] % A[j] == 0): if (A[i] // A[j]) in A_set: num_trees[curr_num] += (num_trees[A[j]] * num_trees[A[i] // A[j]]) total = 0 for key in num_trees: total += num_trees[key] total %= (10**9 + 7) return total
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: if not A: return 0 A.sort() dp = {} for i in range(len(A)): dp[A[i]] = 1 for j in range(i): if A[i] % A[j] == 0 and int(A[i]/A[j]) in dp: dp[A[i]] += dp[A[j]] * dp[A[i]/A[j]] result = 0 for key in dp: result += dp[key] return result % (10 ** 9 + 7)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
def prodcount(a): dp =defaultdict(int) a.sort() for i in range(0,len(a)): dp[a[i]] = 1 for j in range(i): if a[i]%a[j]==0: if a[i]//a[j] == a[j]: dp[a[i]] += (dp[a[j]] *dp[a[i]//a[j]]) elif dp[a[i]//a[j]]: dp[a[i]] += (dp[a[j]] *dp[a[i]//a[j]]) return sum(dp.values())% (10**9 + 7) class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: return prodcount(A)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: memo = {} ans = 0 A.sort() for i in range(len(A)): localAns = 1 for j in range(i, -1, -1): if A[i] / A[j] in memo: localAns += memo[A[i]/A[j]] * memo[A[j]] ans += localAns memo[A[i]] = localAns return ans % (10 ** 9 + 7)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: # https://blog.csdn.net/fuxuemingzhu/article/details/83536814 A.sort() dp = {} for i, a in enumerate(A): dp[a] = 1 for j in range(i): if a % A[j] == 0 and a / A[j] in dp: dp[a] += dp[A[j]] * dp[a / A[j]] return sum(dp.values()) % (10**9 + 7)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, x: List[int]) -> int: def f(n): if n in dp:return dp[n] ans=0 for i in x: if i==n: ans+=1 break if i>n:break if n%i==0 and n//i in se: ans+=f(i)*f(n//i) dp[n]=ans return ans dp={} x.sort() se=set(x) ans=0 for i in x: ans+=f(i) return ans%(10**9+7)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: A.sort() mapping = {x: i for i, x in enumerate(A)} maximal = A[-1] N = len(A) ans, MOD = [1] * N, 10 ** 9 + 7 for i in range(N): for j in range(i + 1): if A[i] * A[j] in mapping and A[i] * A[j] <= maximal: if A[i] != A[j]: ans[mapping[A[i] * A[j]]] += 2 * ans[i] * ans[j] else: ans[mapping[A[i] * A[j]]] += ans[i] * ans[j] ans[mapping[A[i] * A[j]]] %= MOD return sum(ans) % MOD
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: A.sort() ret = 0 root_value_to_tree_number = collections.defaultdict(int) for i in range(len(A)): occurrences = 1 for j in range(i - 1, -1, -1): if (A[i] % A[j] == 0): required_root_value = A[i] // A[j] occurrences += root_value_to_tree_number[required_root_value] * root_value_to_tree_number[A[j]] root_value_to_tree_number[A[i]] = occurrences ret += occurrences return ret % 1000000007
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, x: List[int]) -> int: def f(n): if n in dp:return dp[n] ans=1 for i in x: if i>(n**.5):break if n%i==0 and n//i in se: ans+=(1 if n//i==i else 2)*f(i)*f(n//i) dp[n]=ans return ans dp={} x.sort() se=set(x) ans=0 for i in x:ans+=f(i) return ans%(10**9+7)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution(object): def numFactoredBinaryTrees(self, A): MOD = 10 ** 9 + 7 N = len(A) A.sort() dp = [1] * N index = {x: i for i, x in enumerate(A)} for i, x in enumerate(A): for j in range(i): if x % A[j] == 0: #A[j] will be left child right = x //A[j] if right in index: dp[i] += dp[j] * dp[index[right]] dp[i] %= MOD return sum(dp) % MOD
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: if len(A) <= 1: return len(A) N, MOD = len(A), 10 ** 9 + 7 trees = {} ans = 0 A.sort() for i in range(N): trees[A[i]] = 1 for j in range(i): factor = A[i]/A[j] if not factor.is_integer(): continue factor = int(factor) if factor in trees: trees[A[i]] += trees[A[j]]*trees[factor] ans += trees[A[i]] return ans % MOD
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: A.sort() dp = {n: 1 for n in A} setA = set(A) for i in range(len(A)): # goal target = A[i] for j in range(0, i): # using this as factor factor = A[j] if target%factor == 0: other_half = target//factor if other_half in setA: dp[target] += dp[other_half] * dp[factor] return sum(dp.values())%(10**9 + 7)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: n = len(A) nums = set(A) A = sorted(A) counts = collections.defaultdict(int) mod = 10**9+7 res = 0 for i, num in enumerate(A): for j in range(i): b, c = A[j], num/A[j] if c in nums: counts[num] += (counts[b]*counts[c])%mod counts[num] += 1 res = (res+counts[num])%mod return res
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
import math class Solution: @staticmethod def numFactors(num, A_set): factors = set() for a in A_set: if num < a: continue if num % a == 0 and num // a in A_set: factors.add(a) factors.add(num // a) return factors @staticmethod def numFactoredTrees(root, results, A_set): if root in results: return results[root] factors = Solution.numFactors(root, A_set) # tree can only have depth 1 with the root node alone if len(factors) == 0: results[root] = 1 return 1 # tree can have depth greater than 1 n = 1 # depth 1 while len(factors) > 0: factor = factors.pop() remainder = root // factor if factor not in results: results[factor] = Solution.numFactoredTrees(factor, results, A_set) if factor == remainder: n += results[factor] * results[factor] else: factors.remove(remainder) if remainder not in results: results[remainder] = Solution.numFactoredTrees(remainder, results, A_set) n += results[factor] * results[remainder] * 2 results[root] = n return n def numFactoredBinaryTrees(self, A) -> int: A.sort() A_set = set(A) results = {} return sum([Solution.numFactoredTrees(a, results, A_set) for a in A]) % (10 ** 9 + 7)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
import math class Solution: @staticmethod def numFactors(num, A_set): factors = set() for a in A_set: if num % a == 0 and num // a in A_set: factors.add(a) factors.add(num // a) return factors @staticmethod def numFactoredTrees(root, results, A_set): if root in results: return results[root] factors = Solution.numFactors(root, A_set) # tree can only have depth 1 with the root node alone if len(factors) == 0: results[root] = 1 return 1 # tree can have depth greater than 1 n = 1 # depth 1 while len(factors) > 0: factor = factors.pop() remainder = root // factor if factor not in results: results[factor] = Solution.numFactoredTrees(factor, results, A_set) if factor == remainder: n += results[factor] * results[factor] else: factors.remove(remainder) if remainder not in results: results[remainder] = Solution.numFactoredTrees(remainder, results, A_set) n += results[factor] * results[remainder] * 2 results[root] = n return n def numFactoredBinaryTrees(self, A) -> int: #A.sort() A_set = set(A) results = {} return sum([Solution.numFactoredTrees(a, results, A_set) for a in A]) % (10 ** 9 + 7)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
import math class Solution: @staticmethod def numFactors(num, A_set): factors = set() for a in A_set: if num % a == 0 and num // a in A_set: factors.add(a) factors.add(num // a) return factors @staticmethod def numFactoredTrees(root, results, A_set): if root in results: return results[root] factors = Solution.numFactors(root, A_set) # tree can only have depth 1 with the root node alone if len(factors) == 0: results[root] = 1 return 1 # tree can have depth greater than 1 n = 1 # depth 1 while len(factors) > 0: factor = factors.pop() remainder = root // factor if factor not in results: results[factor] = Solution.numFactoredTrees(factor, results, A_set) if factor == remainder: n += results[factor] * results[factor] else: factors.remove(remainder) if remainder not in results: results[remainder] = Solution.numFactoredTrees(remainder, results, A_set) n += results[factor] * results[remainder] * 2 results[root] = n return n def numFactoredBinaryTrees(self, A) -> int: A.sort() A_set = set(A) results = {} return sum([Solution.numFactoredTrees(a, results, A_set) for a in A]) % (10 ** 9 + 7)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: A = sorted(A) n = len(A) dict_num = {} for num in A: dict_num[num] = True dp_dict = {} factor_pair = [] for i in range(n): factor_pair.append([]) for i in range(n): for j in range(i): if(A[i] % A[j] == 0 and A[i]//A[j] in dict_num): factor_pair[i].append((A[j], A[i]//A[j])) # print(factor_pair) for i in range(n): root = A[i] num_trees = 1 for a, b in factor_pair[i]: num_trees += dp_dict[a]*dp_dict[b] dp_dict[root] = num_trees answer = 0 for key in dp_dict: answer += dp_dict[key] return answer % (10**9+7)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: A.sort() O = {} ans = 0 for a in A: if a not in O: O[a] = 1 for k, v in list(O.items()): if a % k == 0 and a // k in O: O[a] += v * O[a // k] ans += O[a] return ans % 1000000007
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: MOD = 10 ** 9 + 7 n = len(A) tips = sorted(A) index = { x: i for i, x in enumerate(tips) } d = [1] * n for i, x in enumerate(tips): head = x for j in range(i): x = tips[j] y = head // x if y*x != head: continue if y in index: leaf_1 = j leaf_2 = index[y] d[i] = d[i] + (d[leaf_1] * d[leaf_2]) return sum(d) % MOD
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: A.sort() n = len(A) dp = defaultdict(int) res = 0 for i, num in enumerate(A): dp[num] = 1 for j in range(i): if num % A[j] == 0: dp[num] += dp[A[j]] * dp[A[i]//A[j]] res += dp[num] return res % 1000000007
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: seen,A={},set(A) def find_all(root): if root in seen: return seen[root] combs=1 for left in A: if root==left or root%left: continue right=root//left if right not in A: continue combs+=find_all(left)*find_all(right) seen[root]=combs return combs return sum(find_all(num) for num in sorted(A))%1000000007
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: mod = 10**9 + 7 processed = dict() res = 0 for a in sorted(A): counter = 1 for key, val in list(processed.items()): key2 = a / key val2 = processed.get(key2, 0) if val2 != 0: counter = (counter + val * val2) % mod processed[a] = counter res = (res + counter) % mod return res
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: n=len(A) A.sort() dp=[1]*n mod=10**9+7 index={c:i for i,c in enumerate(A) } for i,x in enumerate(A): for j in range(n): if x%A[j]==0: right=x/A[j] if right in index: dp[i]+=dp[j]*dp[index[right]] dp[i]=dp[i]%mod return sum(dp)%mod
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: factorSet = set(A) A.sort() treeCount = {} for num in A: count = 1 for p, pCount in list(treeCount.items()): q, rem = divmod(num, p) if p > q: break if rem == 0 and q in treeCount: count += pCount*treeCount[q] if p == q else 2*pCount*treeCount[q] treeCount[num] = count return sum(treeCount.values()) % (1000_000_000 + 7)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: seen,A={},set(A) def find_all(root): if root in seen: return seen[root] combs=1 for left in A: if root==left or root%left: continue right=root//left if right not in A: continue combs+=find_all(left)*find_all(right) seen[root]=combs return combs return sum(find_all(num) for num in A)%1000000007
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: A.sort() dp = {i:1 for i in A} res = 0 for idd, number in enumerate(A): for inner, inumber in enumerate(A[:idd]): if number % inumber == 0 and ((number // inumber) in dp): dp[number] += dp[inumber] * dp[number // inumber] res += dp[number] res = res % (10 ** 9 + 7) return res
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
# 823. Binary Trees With Factors MOD = 10**9 + 7 def count_binary_trees (arr): arr = sorted (arr) coll = set (arr) count = {} for index, elem in enumerate (arr): ans = 1 for i in range (index): factor = arr[i] if elem % factor == 0 and elem // factor in coll: other_factor = elem // factor ans = (ans + count[factor] * count[other_factor]) % MOD count[elem] = ans return sum (y for (x, y) in count.items ()) % MOD class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: return count_binary_trees(A)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: A = sorted(A) mems = {} for ix in range(len(A)): mems[A[ix]] = ix dp = [1] * len(A) big_mod = 10**9 + 7 for i in range(len(A)): extras = 0 for j in range(i): d, mo = divmod(A[i], A[j]) if mo == 0: if d in mems: extras += dp[j] * dp[mems[d]] extras = extras % big_mod dp[i] += extras result = sum(dp) % big_mod return result
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: # Time complexity: O(N^2) # Space complexity: O(N) A.sort() dic = {num: 1 for num in A} for i in range(1, len(A)): for j in range(i): q, res = divmod(A[i], A[j]) if res == 0 and q in dic: dic[A[i]] += dic[q] * dic[A[j]] return sum(dic.values()) % (10**9 + 7)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: A = sorted(A) mems = {} for ix in range(len(A)): mems[A[ix]] = ix dp = [1] * len(A) big_mod = 10**9 + 7 for i in range(len(A)): extras = 0 for j in range(i): d, mo = divmod(A[i], A[j]) if mo == 0: if d in mems: extras += dp[j] * dp[mems[d]] extras = extras % big_mod dp[i] += extras result = sum(dp) % big_mod return result
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: A.sort() dp = {} mod = 10**9+7 for a in A: dp[a] = 1 for b in A: if a%b==0 and b in dp and a//b in dp: dp[a] += dp[b]*dp[a//b] dp[a] %= mod return sum(dp.values())%mod
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: sorted_A = sorted(A) dp = dict() result = 0 for i in range(len(sorted_A)): cur_total = 0 for j in range(i + 1): cur_val = sorted_A[i] prev_val = sorted_A[j] if i == j: dp[cur_val] = cur_total + 1 result += cur_total + 1 elif (cur_val / prev_val) in dp: cur_total += dp[cur_val/prev_val] * dp[prev_val] return result % (10 ** 9 + 7) ''' [18, 3, 6, 2] [2, 3, 6, 18] dp = { 2 : 1 3 : 1 6 : 3 18: 5 } cur_val = 18 prev_val = 6 cur_total = 3 + 1 result = 1 + 1 + 3 + 5 '''
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: dp = {} for a in sorted(A): dp[a] = sum(dp[b] * dp.get(a/b, 0) for b in dp) + 1 return sum(dp.values()) % (10**9 + 7)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: A.sort() ans = 0 N = len(A) cnt = [1 for _ in range(N)] for i, n in enumerate(A): l, r = 0, i - 1 while r >= l: if A[r] * A[l] == n: cnt[i] += cnt[r] * cnt[l] if r == l else cnt[r] * cnt[l] * 2 l += 1 r -= 1 elif A[r] * A[l] > n: r -= 1 else: l += 1 ans += cnt[i] return ans % (10 ** 9 + 7)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: factorSet = set(A) A.sort() treeCount = {} for num in A: count = 1 for p, pCount in list(treeCount.items()): q, rem = divmod(num, p) if rem == 0: count += pCount * treeCount.get(q, 0) treeCount[num] = count return sum(treeCount.values()) % (1000_000_000 + 7)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: A.sort() t = {} for a in A: t[a] = 1 + sum(t[b] * t.get(a / b, 0) for b in A if b < a) return sum(t.values()) % (pow(10, 9) + 7)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: t = {} for a in sorted(A): t[a] = 1 + sum(t[b] * t.get(a/b, 0) for b in A if b < a) return sum(t.values()) % (10**9 + 7)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A): t = {} for a in sorted(A): t[a] = 1 + sum(t[b] * t.get(a/b, 0) for b in A if b < a) return sum(t.values()) % (10**9 + 7)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: mymap = {} for x in sorted(A): # 1 for leaf, plus sum any that could be factors (y and currval/y) mymap[x] = 1+ sum(mymap[y]*mymap.get(x/y,0) for y in A if y<x) return sum(mymap.values())%(10**9+7)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: A.sort() n=len(A) dp=[1 for i in range(n)] for i in range(n): start,end=0,i-1 while(start<=end): if A[start]*A[end]<A[i]: start+=1 continue if A[start]*A[end]>A[i]: end-=1 continue if start==end: dp[i]+=dp[start]*dp[end] else: dp[i]+=dp[start]*dp[end]*2 start+=1 end-=1 # print(dp) return sum(dp)%(10**9+7)
Given an array of unique integers, each integer is strictly greater than 1. We make a binary tree using these integers and each number may be used for any number of times. Each non-leaf node's value should be equal to the product of the values of it's children. How many binary trees can we make?  Return the answer modulo 10 ** 9 + 7. Example 1: Input: A = [2, 4] Output: 3 Explanation: We can make these trees: [2], [4], [4, 2, 2] Example 2: Input: A = [2, 4, 5, 10] Output: 7 Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].   Note: 1 <= A.length <= 1000. 2 <= A[i] <= 10 ^ 9.
class Solution: def numFactoredBinaryTrees(self, A: List[int]) -> int: n = len(A) A.sort() dp = [1] * n res = 0 for i in range(n): s = 0 e = i - 1 for s in range(i): while s <= e and A[s] * A[e] > A[i]: e -= 1 if s > e: break if A[s] * A[e] == A[i]: dp[i] += ((dp[s] * dp[e] * 2) if s != e else (dp[s] * dp[e])) dp[i] = dp[i] % (10 ** 9 + 7) e -= 1 res += dp[i] res = res % (10 ** 9 + 7) return res
Implement pow(x, n), which calculates x raised to the power n (xn). Example 1: Input: 2.00000, 10 Output: 1024.00000 Example 2: Input: 2.10000, 3 Output: 9.26100 Example 3: Input: 2.00000, -2 Output: 0.25000 Explanation: 2-2 = 1/22 = 1/4 = 0.25 Note: -100.0 < x < 100.0 n is a 32-bit signed integer, within the range [−231, 231 − 1]
class Solution: def myPow(self, x, n): """ :type x: float :type n: int :rtype: float """ if n == 0: return 1 if abs(n) == 1: if n == 1: return x else: return 1/x if n > 0: a, b = int(n//2), n%2 else: a, b = -int(-n//2), -(n%2) y = self.myPow(x, a) z = self.myPow(x, b) return y*y*z
Implement pow(x, n), which calculates x raised to the power n (xn). Example 1: Input: 2.00000, 10 Output: 1024.00000 Example 2: Input: 2.10000, 3 Output: 9.26100 Example 3: Input: 2.00000, -2 Output: 0.25000 Explanation: 2-2 = 1/22 = 1/4 = 0.25 Note: -100.0 < x < 100.0 n is a 32-bit signed integer, within the range [−231, 231 − 1]
class Solution: def myPow(self, x, n): """ :type x: float :type n: int :rtype: float """ if n < 0: return 1 / self.myPow(x, -n) elif n == 1: return x elif n == 0: return 1 elif n % 2: return x * self.myPow(x, n - 1) else: t = self.myPow(x, n // 2) return t * t
Implement pow(x, n), which calculates x raised to the power n (xn). Example 1: Input: 2.00000, 10 Output: 1024.00000 Example 2: Input: 2.10000, 3 Output: 9.26100 Example 3: Input: 2.00000, -2 Output: 0.25000 Explanation: 2-2 = 1/22 = 1/4 = 0.25 Note: -100.0 < x < 100.0 n is a 32-bit signed integer, within the range [−231, 231 − 1]
class Solution: def myPow(self, x, n): """ :type x: float :type n: int :rtype: float """ if n < 0: return 1 / self.myPow(x, -n) elif n == 1: return x elif n == 0: return 1 elif n % 2: return x * self.myPow(x, n - 1) else: t = self.myPow(x, n // 2) return t * t
Implement pow(x, n), which calculates x raised to the power n (xn). Example 1: Input: 2.00000, 10 Output: 1024.00000 Example 2: Input: 2.10000, 3 Output: 9.26100 Example 3: Input: 2.00000, -2 Output: 0.25000 Explanation: 2-2 = 1/22 = 1/4 = 0.25 Note: -100.0 < x < 100.0 n is a 32-bit signed integer, within the range [−231, 231 − 1]
class Solution: def myPow(self, x, n): """ :type x: float :type n: int :rtype: float """ if 0 <= n < 2: return [1, x][n] if n < 0: n, x = -n, 1 / x temp = divmod(n, 2) return self.myPow(x, temp[0]) ** 2 * self.myPow(x, temp[1])
Implement pow(x, n), which calculates x raised to the power n (xn). Example 1: Input: 2.00000, 10 Output: 1024.00000 Example 2: Input: 2.10000, 3 Output: 9.26100 Example 3: Input: 2.00000, -2 Output: 0.25000 Explanation: 2-2 = 1/22 = 1/4 = 0.25 Note: -100.0 < x < 100.0 n is a 32-bit signed integer, within the range [−231, 231 − 1]
class Solution: def myPow(self, x, n): """ :type x: float :type n: int :rtype: float """ if n == 0: return 1 if n == 1: return x if n < 0: return self.myPow(1/x, -n) if (n % 2) == 0: return self.myPow(x*x, n/2) else: return self.myPow(x*x, (n-1)/2) * x
Implement pow(x, n), which calculates x raised to the power n (xn). Example 1: Input: 2.00000, 10 Output: 1024.00000 Example 2: Input: 2.10000, 3 Output: 9.26100 Example 3: Input: 2.00000, -2 Output: 0.25000 Explanation: 2-2 = 1/22 = 1/4 = 0.25 Note: -100.0 < x < 100.0 n is a 32-bit signed integer, within the range [−231, 231 − 1]
class Solution: def myPow(self, x, n): """ :type x: float :type n: int :rtype: float """ return pow(x,n)
Implement pow(x, n), which calculates x raised to the power n (xn). Example 1: Input: 2.00000, 10 Output: 1024.00000 Example 2: Input: 2.10000, 3 Output: 9.26100 Example 3: Input: 2.00000, -2 Output: 0.25000 Explanation: 2-2 = 1/22 = 1/4 = 0.25 Note: -100.0 < x < 100.0 n is a 32-bit signed integer, within the range [−231, 231 − 1]
class Solution: def myPow(self, x, n): """ :type x: float :type n: int :rtype: float """ if n == 0: return 1 if n < 0: n = -n x = 1/x if n % 2 == 0: return self.myPow(x*x,n/2) else: return self.myPow(x*x,(n-1)/2)*x
Implement pow(x, n), which calculates x raised to the power n (xn). Example 1: Input: 2.00000, 10 Output: 1024.00000 Example 2: Input: 2.10000, 3 Output: 9.26100 Example 3: Input: 2.00000, -2 Output: 0.25000 Explanation: 2-2 = 1/22 = 1/4 = 0.25 Note: -100.0 < x < 100.0 n is a 32-bit signed integer, within the range [−231, 231 − 1]
class Solution: def myPow(self, x, n): """ :type x: float :type n: int :rtype: float """ if n<0:return 1/self.myPow(x,-n) elif n==0:return 1 elif n>1000:return self.myPow(self.myPow(x,1000),n//1000)*self.myPow(x,n%1000) else: return x*self.myPow(x,n-1)
Implement pow(x, n), which calculates x raised to the power n (xn). Example 1: Input: 2.00000, 10 Output: 1024.00000 Example 2: Input: 2.10000, 3 Output: 9.26100 Example 3: Input: 2.00000, -2 Output: 0.25000 Explanation: 2-2 = 1/22 = 1/4 = 0.25 Note: -100.0 < x < 100.0 n is a 32-bit signed integer, within the range [−231, 231 − 1]
class Solution: def myPow(self, x, n): """ :type x: float :type n: int :rtype: float """ return x**n
Implement pow(x, n), which calculates x raised to the power n (xn). Example 1: Input: 2.00000, 10 Output: 1024.00000 Example 2: Input: 2.10000, 3 Output: 9.26100 Example 3: Input: 2.00000, -2 Output: 0.25000 Explanation: 2-2 = 1/22 = 1/4 = 0.25 Note: -100.0 < x < 100.0 n is a 32-bit signed integer, within the range [−231, 231 − 1]
class Solution: def myPow(self, x, n): """ :type x: float :type n: int :rtype: float """ if n < 0: return 1 / self.myPow(x, -n) elif n == 1: return x elif n == 0: return 1 elif n % 2: return x * self.myPow(x, n - 1) else: t = self.myPow(x, n // 2) return t * t
Implement pow(x, n), which calculates x raised to the power n (xn). Example 1: Input: 2.00000, 10 Output: 1024.00000 Example 2: Input: 2.10000, 3 Output: 9.26100 Example 3: Input: 2.00000, -2 Output: 0.25000 Explanation: 2-2 = 1/22 = 1/4 = 0.25 Note: -100.0 < x < 100.0 n is a 32-bit signed integer, within the range [−231, 231 − 1]
class Solution: def myPow(self, x, n): """ :type x: float :type n: int :rtype: float """ output=1 power=0 power_applied=1 product=x m=abs(n) while m!=0 and power!=m: if (power+power_applied*2)<m: product=product*product power_applied=power_applied*2 power=power+power_applied else: product=x power_applied=1 power=power+power_applied output=output*product if n<0: output=1/output return output
Implement pow(x, n), which calculates x raised to the power n (xn). Example 1: Input: 2.00000, 10 Output: 1024.00000 Example 2: Input: 2.10000, 3 Output: 9.26100 Example 3: Input: 2.00000, -2 Output: 0.25000 Explanation: 2-2 = 1/22 = 1/4 = 0.25 Note: -100.0 < x < 100.0 n is a 32-bit signed integer, within the range [−231, 231 − 1]
class Solution: def myPow(self, x, n): """ :type x: float :type n: int :rtype: float """ if not n: return 1 if n < 0: return 1 / self.myPow(x, -n) if n % 2: return x * self.myPow(x, n-1) return self.myPow(x*x, n/2)
Implement pow(x, n), which calculates x raised to the power n (xn). Example 1: Input: 2.00000, 10 Output: 1024.00000 Example 2: Input: 2.10000, 3 Output: 9.26100 Example 3: Input: 2.00000, -2 Output: 0.25000 Explanation: 2-2 = 1/22 = 1/4 = 0.25 Note: -100.0 < x < 100.0 n is a 32-bit signed integer, within the range [−231, 231 − 1]
class Solution: def myPow(self, x, n): """ :type x: float :type n: int :rtype: float """ return x ** n
Implement pow(x, n), which calculates x raised to the power n (xn). Example 1: Input: 2.00000, 10 Output: 1024.00000 Example 2: Input: 2.10000, 3 Output: 9.26100 Example 3: Input: 2.00000, -2 Output: 0.25000 Explanation: 2-2 = 1/22 = 1/4 = 0.25 Note: -100.0 < x < 100.0 n is a 32-bit signed integer, within the range [−231, 231 − 1]
class Solution: def myPow(self, x, n): """ :type x: float :type n: int :rtype: float """ if n == 0 : return 1.00000 if n < 0 : return 1 / self.myPow(x , -n) if n % 2 != 0 : return x * self.myPow(x , n - 1) return self.myPow(x * x , n / 2)
Implement pow(x, n), which calculates x raised to the power n (xn). Example 1: Input: 2.00000, 10 Output: 1024.00000 Example 2: Input: 2.10000, 3 Output: 9.26100 Example 3: Input: 2.00000, -2 Output: 0.25000 Explanation: 2-2 = 1/22 = 1/4 = 0.25 Note: -100.0 < x < 100.0 n is a 32-bit signed integer, within the range [−231, 231 − 1]
class Solution: def myPow(self, x, n): """ :type x: float :type n: int :rtype: float """ if n < 0: return 1 / self.powRecu(x, -n) return self.powRecu(x, n) def powRecu(self, x, n): if n == 0: return 1.0 if n % 2 == 0: return self.powRecu(x * x, n // 2) else: return x * self.powRecu(x * x, n // 2)
Implement pow(x, n), which calculates x raised to the power n (xn). Example 1: Input: 2.00000, 10 Output: 1024.00000 Example 2: Input: 2.10000, 3 Output: 9.26100 Example 3: Input: 2.00000, -2 Output: 0.25000 Explanation: 2-2 = 1/22 = 1/4 = 0.25 Note: -100.0 < x < 100.0 n is a 32-bit signed integer, within the range [−231, 231 − 1]
class Solution: def myPow(self, x, n): """ :type x: float :type n: int :rtype: float """ if n == 0: return 1 if n<0: n= -n x = 1/x res = 1 while n>0: cnt = 1 mul = x while (cnt+cnt) <= n: mul = mul * mul cnt += cnt n = n - cnt res = mul * res if n%2 == 1: res = res*x return res
Implement pow(x, n), which calculates x raised to the power n (xn). Example 1: Input: 2.00000, 10 Output: 1024.00000 Example 2: Input: 2.10000, 3 Output: 9.26100 Example 3: Input: 2.00000, -2 Output: 0.25000 Explanation: 2-2 = 1/22 = 1/4 = 0.25 Note: -100.0 < x < 100.0 n is a 32-bit signed integer, within the range [−231, 231 − 1]
class Solution: def myPow(self, x, n): """ :type x: float :type n: int :rtype: float """ return x**n
Given an array nums of integers, a move consists of choosing any element and decreasing it by 1. An array A is a zigzag array if either: Every even-indexed element is greater than adjacent elements, ie. A[0] > A[1] < A[2] > A[3] < A[4] > ... OR, every odd-indexed element is greater than adjacent elements, ie. A[0] < A[1] > A[2] < A[3] > A[4] < ... Return the minimum number of moves to transform the given array nums into a zigzag array.   Example 1: Input: nums = [1,2,3] Output: 2 Explanation: We can decrease 2 to 0 or 3 to 1. Example 2: Input: nums = [9,6,1,6,2] Output: 4   Constraints: 1 <= nums.length <= 1000 1 <= nums[i] <= 1000
class Solution: def movesToMakeZigzag(self, nums): n = len(nums) res0 = 0 for i in range(0, n, 2): nei = min(nums[j] for j in [i - 1, i + 1] if 0 <= j <= n-1) if nums[i] >= nei: res0 += nums[i] - nei + 1 res1 = 0 for i in range(1, n, 2): nei = min(nums[j] for j in [i - 1, i + 1] if 0 <= j <= n-1) if nums[i] >= nei: res1 += nums[i] - nei + 1 return min(res0, res1)
Given an array nums of integers, a move consists of choosing any element and decreasing it by 1. An array A is a zigzag array if either: Every even-indexed element is greater than adjacent elements, ie. A[0] > A[1] < A[2] > A[3] < A[4] > ... OR, every odd-indexed element is greater than adjacent elements, ie. A[0] < A[1] > A[2] < A[3] > A[4] < ... Return the minimum number of moves to transform the given array nums into a zigzag array.   Example 1: Input: nums = [1,2,3] Output: 2 Explanation: We can decrease 2 to 0 or 3 to 1. Example 2: Input: nums = [9,6,1,6,2] Output: 4   Constraints: 1 <= nums.length <= 1000 1 <= nums[i] <= 1000
class Solution: def movesToMakeZigzag(self, nums: List[int]) -> int: # do either first case or second case even = odd = 0 n = len(nums) for i in range(n): prev = nums[i - 1] if (i - 1) >= 0 else float('inf') next = nums[i + 1] if (i + 1) < n else float('inf') change = max(0, nums[i] - min(prev, next) + 1) if i % 2 == 0: even += change else: odd += change return min(even, odd)
Given an array nums of integers, a move consists of choosing any element and decreasing it by 1. An array A is a zigzag array if either: Every even-indexed element is greater than adjacent elements, ie. A[0] > A[1] < A[2] > A[3] < A[4] > ... OR, every odd-indexed element is greater than adjacent elements, ie. A[0] < A[1] > A[2] < A[3] > A[4] < ... Return the minimum number of moves to transform the given array nums into a zigzag array.   Example 1: Input: nums = [1,2,3] Output: 2 Explanation: We can decrease 2 to 0 or 3 to 1. Example 2: Input: nums = [9,6,1,6,2] Output: 4   Constraints: 1 <= nums.length <= 1000 1 <= nums[i] <= 1000
class Solution: def movesToMakeZigzag(self, nums: List[int]) -> int: return self.sb(nums) ''' 걍 even 을 작게만들거나주변보다 혹은 odd를 주변보다 작게만들거나 ㅇㅇ ''' def sb(self, nums): nums = [float('inf')] + nums + [float('inf')] res = [0,0] for i in range(1, len(nums)-1): res[i%2] += max(0, (nums[i] - min(nums[i-1],nums[i+1])+1)) # 주변이 다 나보다 크면 움직이지않아도됌 :) 혹은 나보다 작은애있으면 큰만큼 + 1 줄여야함 return min(res)
Given an array nums of integers, a move consists of choosing any element and decreasing it by 1. An array A is a zigzag array if either: Every even-indexed element is greater than adjacent elements, ie. A[0] > A[1] < A[2] > A[3] < A[4] > ... OR, every odd-indexed element is greater than adjacent elements, ie. A[0] < A[1] > A[2] < A[3] > A[4] < ... Return the minimum number of moves to transform the given array nums into a zigzag array.   Example 1: Input: nums = [1,2,3] Output: 2 Explanation: We can decrease 2 to 0 or 3 to 1. Example 2: Input: nums = [9,6,1,6,2] Output: 4   Constraints: 1 <= nums.length <= 1000 1 <= nums[i] <= 1000
class Solution: def movesToMakeZigzag(self, nums: List[int]) -> int: if len(nums) <= 2: return 0 n = len(nums) if n%2 == 0: step1 = max(0,nums[-1]-nums[-2]+1) for i in range(1,n-1,2): step1 += max(0, nums[i] - min(nums[i-1], nums[i+1])+1) step2 = max(0, nums[0]-nums[1] +1) for i in range(2,n,2): step2 += max(0, nums[i] - min(nums[i-1], nums[i+1])+1) else: step1 = max(0,nums[-1]-nums[-2]+1) + max(0, nums[0]-nums[1] +1) for i in range(2,n-1,2): step1 += max(0, nums[i] - min(nums[i-1], nums[i+1])+1) step2 = 0 for i in range(1,n,2): step2 += max(0, nums[i] - min(nums[i-1], nums[i+1])+1) return min(step1, step2)
Given an array nums of integers, a move consists of choosing any element and decreasing it by 1. An array A is a zigzag array if either: Every even-indexed element is greater than adjacent elements, ie. A[0] > A[1] < A[2] > A[3] < A[4] > ... OR, every odd-indexed element is greater than adjacent elements, ie. A[0] < A[1] > A[2] < A[3] > A[4] < ... Return the minimum number of moves to transform the given array nums into a zigzag array.   Example 1: Input: nums = [1,2,3] Output: 2 Explanation: We can decrease 2 to 0 or 3 to 1. Example 2: Input: nums = [9,6,1,6,2] Output: 4   Constraints: 1 <= nums.length <= 1000 1 <= nums[i] <= 1000
class Solution: def movesToMakeZigzag(self, A: List[int]) -> int: res1=0 n=len(A) B=A.copy() for i in range(1,n,2): if A[i-1]<=A[i]: t=A[i]-A[i-1]+1 res1+=t A[i]=A[i-1]-1 if i+1<n and A[i+1]<=A[i]: t=A[i]-A[i+1]+1 res1+=t A[i]=A[i+1]-1 res2=0 for i in range(0,n,2): if i-1>=0 and B[i]>=B[i-1]: t=B[i]-B[i-1]+1 res2+=t B[i]=B[i-1]-1 if i+1<n and B[i+1]<=B[i]: t=B[i]-B[i+1]+1 res2+=t B[i]=B[i+1]-1 # print(A) # print(B) # print(res1,res2) return min(res1,res2)
Given an array nums of integers, a move consists of choosing any element and decreasing it by 1. An array A is a zigzag array if either: Every even-indexed element is greater than adjacent elements, ie. A[0] > A[1] < A[2] > A[3] < A[4] > ... OR, every odd-indexed element is greater than adjacent elements, ie. A[0] < A[1] > A[2] < A[3] > A[4] < ... Return the minimum number of moves to transform the given array nums into a zigzag array.   Example 1: Input: nums = [1,2,3] Output: 2 Explanation: We can decrease 2 to 0 or 3 to 1. Example 2: Input: nums = [9,6,1,6,2] Output: 4   Constraints: 1 <= nums.length <= 1000 1 <= nums[i] <= 1000
class Solution: def movesToMakeZigzag(self, nums: List[int]) -> int: res = [0, 0] for i in range(len(nums)): res[i%2] += max(nums[i] + 1 - min(nums[i-1] if i else float('inf'), nums[i+1] if i < len(nums) - 1 else float('inf')), 0) return min(res)
Given an array nums of positive integers. Your task is to select some subset of nums, multiply each element by an integer and add all these numbers. The array is said to be good if you can obtain a sum of 1 from the array by any possible subset and multiplicand. Return True if the array is good otherwise return False.   Example 1: Input: nums = [12,5,7,23] Output: true Explanation: Pick numbers 5 and 7. 5*3 + 7*(-2) = 1 Example 2: Input: nums = [29,6,10] Output: true Explanation: Pick numbers 29, 6 and 10. 29*1 + 6*(-3) + 10*(-1) = 1 Example 3: Input: nums = [3,6] Output: false   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^9
class Solution: def isGoodArray(self, nums: List[int]) -> bool: n = nums[0] for i in nums: n = gcd(i,n) if n==1: return True return False
Given an array nums of positive integers. Your task is to select some subset of nums, multiply each element by an integer and add all these numbers. The array is said to be good if you can obtain a sum of 1 from the array by any possible subset and multiplicand. Return True if the array is good otherwise return False.   Example 1: Input: nums = [12,5,7,23] Output: true Explanation: Pick numbers 5 and 7. 5*3 + 7*(-2) = 1 Example 2: Input: nums = [29,6,10] Output: true Explanation: Pick numbers 29, 6 and 10. 29*1 + 6*(-3) + 10*(-1) = 1 Example 3: Input: nums = [3,6] Output: false   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^9
class Solution: def isGoodArray(self, nums: List[int]) -> bool: if not nums: return False a=nums[0] for i in range(1, len(nums)): a=gcd(a,nums[i]) return a==1
Given an array nums of positive integers. Your task is to select some subset of nums, multiply each element by an integer and add all these numbers. The array is said to be good if you can obtain a sum of 1 from the array by any possible subset and multiplicand. Return True if the array is good otherwise return False.   Example 1: Input: nums = [12,5,7,23] Output: true Explanation: Pick numbers 5 and 7. 5*3 + 7*(-2) = 1 Example 2: Input: nums = [29,6,10] Output: true Explanation: Pick numbers 29, 6 and 10. 29*1 + 6*(-3) + 10*(-1) = 1 Example 3: Input: nums = [3,6] Output: false   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^9
class Solution: def isGoodArray(self, nums: List[int]) -> bool: def gcd(x,y): while y: x,y=y,x%y return x g=nums[0] for x in nums: g=gcd(g,x) return g==1
Given an array nums of positive integers. Your task is to select some subset of nums, multiply each element by an integer and add all these numbers. The array is said to be good if you can obtain a sum of 1 from the array by any possible subset and multiplicand. Return True if the array is good otherwise return False.   Example 1: Input: nums = [12,5,7,23] Output: true Explanation: Pick numbers 5 and 7. 5*3 + 7*(-2) = 1 Example 2: Input: nums = [29,6,10] Output: true Explanation: Pick numbers 29, 6 and 10. 29*1 + 6*(-3) + 10*(-1) = 1 Example 3: Input: nums = [3,6] Output: false   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^9
class Solution: def isGoodArray(self, nums: List[int]) -> bool: def gcd(x: int, y: int) -> int: if y == 0: return x else: return gcd(y, x % y) result = nums[0] for num in nums: result = gcd(result, num) return result == 1