Datasets:

inputs
stringlengths
50
14k
targets
stringlengths
4
655k
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: def has_duplicate(m, S): val, Mod = 0, 2**63-1 for i in range(m): val = (26*val + ord(S[i])) % Mod d = set([val]) const = 26**m % Mod for i in range(m, len(S)): val = (26*val + ord(S[i]) - ord(S[i-m])*const) % Mod if val in d: return i-m+1 d.add(val) return -1 l, r = 0, len(S) start, length = -1, 0 while l<=r: mid = l + (r-l)//2 idx = has_duplicate(mid, S) if idx!=-1: l = mid + 1 start, length = idx, mid else: r = mid - 1 if start==-1: return '' return S[start:start+length]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: A = [ord(c) for c in S] mod = 2**63-1 lo = 0 hi = len(S) res = 0 def test(sz): val = 0 p = pow(26,sz,mod) for i in range(sz): val = val*26+A[i] val %= mod seen = {val} for i in range(sz, len(A)): val = val*26+A[i]-A[i-sz]*p val = val%mod if val in seen: return i-sz+1 seen.add(val) return -1 while lo < hi: mid = (lo+hi)//2 pos = test(mid) if not pos >= 0: hi = mid else: res = pos lo = mid+1 return S[res:res+lo-1]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: def check(L): base = 26 modulo = 2**32 AL = base**L%modulo hk = 0 for i in range(L): hk = hk*base + nums[i] hk %= modulo hm = {hk:0} for i in range(L, len(S)): hk = (hk*base-nums[i-L]*AL+nums[i])%modulo if hk in hm and S[i-L+1:i+1]==S[hm[hk]:hm[hk]+L]: return i-L+1 hm[hk] = i-L+1 return -1 nums = [ord(c)-ord('a') for c in S] res = -1 s, e = 1, len(S) while s<=e: m = s+(e-s)//2 pos = check(m) if pos!=-1: res = pos s = m+1 else: e = m-1 return S[res:res+e]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: def test(L): base = 26 modulus = 2**32 AL = base**L%modulus hk = 0 for i in range(L): hk=hk*base+nums[i] hk%=modulus hs=set([hk]) for i in range(L, len(S)): hk = hk*base-nums[i-L]*AL+nums[i] hk%=modulus if hk in hs: return i-L+1 hs.add(hk) nums = [ord(c)-ord('a') for c in S] start, end = 1, len(S) res = -1 while start<=end: mid = start+(end-start)//2 pos = test(mid) if pos: res = pos start = mid+1 else: end = mid-1 return S[res:res+end]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: n=len(S) mod=10**30 ord_a=97 def find_len_k_dup(k): hash_val=0 seen=set() for i in range(k): hash_val=(hash_val*26+(ord(S[i])-ord_a))%mod seen.add(hash_val) power=26**k%mod for i in range(1,n-k+1): hash_val=((hash_val*26-(ord(S[i-1])-ord_a)*power)%mod+(ord(S[i+k-1])-ord_a))%mod if hash_val in seen: return i seen.add(hash_val) return None # self.s=S # self.n=len(S) # def find_len_k_dup(length): # hash_value = 0 # mod_value = 8000*(2**30) # a big number should be okay, if you change the number it might cause a wrong answer # seen = set() # for i in range(length): # hash_value = (hash_value*26+ord(self.s[i])-ord('a'))%mod_value # get the hash value # seen.add(hash_value) # tmp = pow(26, length)%mod_value # for i in range(1,self.n-length+1): # # get the moving hash # hash_value = ((hash_value*26 - (ord(self.s[i-1])-ord('a'))*tmp)%mod_value+ord(self.s[i+length-1])-ord('a'))%mod_value # if hash_value in seen: # return i # else: # seen.add(hash_value) # return None low=0 high=len(S) res='' while low<high: mid=(low+high)//2 idx=find_len_k_dup(mid) #print(candidate) if idx is not None: res=S[idx:idx+mid] low=mid+1 else: high=mid return res
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
from functools import reduce class Solution: def longestDupSubstring(self, S: str) -> str: A = [ord(c) - ord('a') for c in S] mod = 2**63 - 1 def isDuplicate(len_s): p = pow(31, len_s, mod) seen = collections.defaultdict(list) cur = reduce(lambda x,y: (x*31+y)%mod, A[:len_s]) seen[cur].append(0) for j in range(1, len(A)-len_s+1): cur = (cur*31 - A[j-1]*p + A[j+len_s-1])%mod if cur in seen: for i in seen[cur]: if S[i:i+len_s] == S[j:j+len_s]: return j seen[cur].append(j) return 0 l, r = 1, len(S)-1 ans = '' while l <= r: mid = l + (r-l)//2 pos = isDuplicate(mid) if pos: ans = S[pos:pos+mid] l = mid + 1 else: r = mid -1 return ans
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
from functools import reduce class Solution: def longestDupSubstring(self, S: str) -> str: A = [ord(c) - ord('a') for c in S] mod = 2**63 - 1 def test(L): p = pow(26, L, mod) cur = reduce(lambda x, y: (x * 26 + y) % mod, A[: L], 0) seen = set() seen.add(cur) for i in range(L, len(A)): cur = (cur * 26 + A[i] - A[i - L] * p) % mod if cur in seen: return i - L + 1 seen.add(cur) res, lo, hi = 0, 0, len(S) while lo + 1 < hi: mid = lo + (hi - lo) // 2 pos = test(mid) if pos: lo = mid else: hi = mid if test(hi): pos = test(hi) return S[pos: pos + hi] pos = test(lo) return S[pos: pos + lo]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S): nums = [ord(c) - ord('a') for c in S] #BASE, MOD = 113, 1000000007 BASE, MOD = 26, 2**32 def check(L): cur_hash, seen = 0, set() for val in nums[:L]: cur_hash = ((cur_hash * BASE) + val) % MOD seen.add(cur_hash) X = pow(BASE, L-1, MOD) # (BASE ** (L-1)) % MOD for i, val in enumerate(nums[L:]): # cur_hash -= nums[i] * (BASE ** (L-1)) cur_hash -= nums[i] * X cur_hash = ((cur_hash * BASE) + val) % MOD if cur_hash in seen: return i + 1 seen.add(cur_hash) return -1 low, high = 1, len(S) + 1 res = 0 while low < high: mid = (low + high)//2 idx = check(mid) if idx != -1: low = mid + 1 res = idx else: high = mid return S[res: res + low-1] #while low <= high: # mid = (low + high)//2 # idx = check(mid) # if idx != -1: # low = mid + 1 # res = idx # else: # high = mid - 1 #return S[res: res + low-1]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: def checkSubstrings(size): hashed = 0 pow_mult = pow(26, size) % mod for i in range(size): hashed *= 26 hashed += char_vals[i] hashed %= mod seen = {hashed} for i in range(size, len(S)): hashed = (hashed * 26 - char_vals[i-size] * pow_mult + char_vals[i]) % mod if hashed in seen: return i-size+1 seen.add(hashed) return None s, f = 0, len(S) longest = 0 char_vals = [ord(c) - ord('a') for c in S] mod = pow(2, 63) - 1 while s < f: m = s + (f-s+1) // 2 longest_check = checkSubstrings(m) if longest_check: longest = longest_check s = m else: f = m-1 return S[longest:longest+s]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: # def RabinKarp(text, M, q): # if M == 0: return True # h, t, d = (1<<(8*M-8))%q, 0, 256 # dic = defaultdict(list) # for i in range(M): # t = (d * t + ord(text[i]))% q # dic[t].append(i-M+1) # for i in range(len(text) - M): # t = (d*(t-ord(text[i])*h) + ord(text[i + M]))% q # for j in dic[t]: # if text[i+1:i+M+1] == text[j:j+M]: # return (True, text[j:j+M]) # dic[t].append(i+1) # return (False, \"\") def check(sz): seen = defaultdict(list) cur, base, MOD = 0, 256, (1<<31) - 1 h = (1 << (sz*8)) % MOD for i in range(sz): cur *= base cur += ord(S[i]) cur %= MOD seen[cur].append(0) for i in range(sz,len(S)): cur *= base cur += ord(S[i]) cur -= ord(S[i-sz])*h cur %= MOD for j in seen[cur]: if S[j:j+sz] == S[i-sz+1:i+1]: return True, S[i-sz+1:i+1] seen[cur].append(i-sz+1) return False, '' lo, hi = 1, len(S) res = '' # MOD = (1<<31) - 1 while lo <= hi: mid = (lo+hi)//2 flag, tmp = check(mid) # flag, tmp = RabinKarp(S, mid, q) if flag: lo = mid + 1 res = tmp # print(mid,res) else: hi = mid - 1 # print(lo,hi) return res # class Solution: # def RabinKarp(self,text, M, q): # if M == 0: return True # h, t, d = (1<<(8*M-8))%q, 0, 256 # dic = defaultdict(list) # for i in range(M): # t = (d * t + ord(text[i]))% q # dic[t].append(i-M+1) # for i in range(len(text) - M): # t = (d*(t-ord(text[i])*h) + ord(text[i + M]))% q # for j in dic[t]: # if text[i+1:i+M+1] == text[j:j+M]: # return (True, text[j:j+M]) # dic[t].append(i+1) # return (False, \"\") # def longestDupSubstring(self, S): # beg, end = 0, len(S) # q = (1<<31) - 1 # Found = \"\" # while beg + 1 < end: # mid = (beg + end)//2 # isFound, candidate = self.RabinKarp(S, mid, q) # if isFound: # beg, Found = mid, candidate # else: # end = mid # return Found
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def search(self, S, mid) -> str: n = len(S) # convert string to array of integers to implement constant time slice self.nums = [ord(S[i]) - ord('a') for i in range(n)] # base value for the rolling hash function base = 26 # mod value for the rolling hash function to avoid overflow MOD = 2**32 # compute the hash of string S[:L] hash_ = 0 for i in range(mid): hash_ = (hash_ * base + self.nums[i]) % MOD # already visited hashes of strings of length L visited = {hash_} # const value to be used often : a**L % mod aL = pow(base, mid, MOD) for start in range(1, n - mid + 1): # compute rolling hash in O(1) time hash_ = (hash_ * base - self.nums[start - 1] * aL + self.nums[start + mid - 1]) % MOD if hash_ in visited: return start visited.add(hash_) return -1 def longestDupSubstring(self, S: str) -> str: n = len(S) # convert string to array of integers to implement constant time slice self.nums = [ord(S[i]) - ord('a') for i in range(n)] # base value for the rolling hash function base = 26 # mod value for the rolling hash function to avoid overflow MOD = 2**32 # binary search, L = repeating string length left, right = 1, n while left <= right: mid = left + (right - left) // 2 if self.search(S, mid) != -1: left = mid + 1 else: right = mid - 1 start = self.search(S, left - 1) return S[start: start + left - 1]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: def rk(m): nonlocal idx mp = {} p = b**(m-1) p%=mod y = 0 for i in range(m): y = y*b+num[i] y%=mod mp[y] = 0 for i in range(1, n-m+1): y = ((y-num[i-1]*p%mod)*b%mod+num[i-1+m])%mod #y = (y-num[i-1]*p)*b+num[i-1+m] if y in mp: idx = i return 0 else: mp[y]=i return 1 n = len(S) b = 26 # no need to be 128 #mod = 10**9+7 # too small => conflict mod = 2**32 # here z = ord('a') num = [ ord(S[i])-z for i in range(n)] l=1 r=n idx = 0 # last found duplicate while l<r: m = (l+r)//2 if rk(m)>0: r = m else: l = m+1 return S[idx:idx+l-1]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: def rk(m): mp = {} p = b**(m-1) p%=mod y = 0 for i in range(m): y = y*b+num[i] y%=mod mp[y] = 0 for i in range(1, n-m+1): y = ((y-num[i-1]*p%mod)*b%mod+num[i-1+m])%mod #y = (y-num[i-1]*p)*b+num[i-1+m] if y not in mp: mp[y]=i else: return i return n n = len(S) b = 26 # no need to be 128 #mod = 10**9+7 # too small => conflict mod = 2**32 # here num = [] for i in range(n): num.append(ord(S[i])-ord('a')) l=1 r=n while l<r: m = (l+r)//2 if rk(m)==n: r = m else: l = m+1 x = l-1 if x==0: return '' k = rk(x) return S[k:k+x]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: def rk(m): nonlocal idx st = set() p = b**(m-1) p%=mod y = 0 for i in range(m): y = y*b+num[i] y%=mod st.add(y) for i in range(1, n-m+1): y = ((y-num[i-1]*p%mod)*b%mod+num[i-1+m])%mod #y = (y-num[i-1]*p)*b+num[i-1+m] if y in st: idx = i return 0 else: st.add(y) return 1 n = len(S) b = 26 # no need to be 128 #mod = 10**9+7 # too small => conflict mod = 2**32 # here z = ord('a') num = [ ord(S[i])-z for i in range(n)] l=1 r=n idx = 0 # last found duplicate while l<r: m = (l+r)//2 if rk(m)>0: r = m else: l = m+1 return S[idx:idx+l-1]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
from functools import reduce class Solution: def longestDupSubstring(self, S: str) -> str: A = [ord(c) - ord('a') for c in S] mod = 2**63 - 1 def test(L): # print(26, L, mod) p = pow(26, L, mod) cur = reduce(lambda x, y: (x * 26 + y) % mod, A[:L], 0) seen = {cur} for i in range(L, len(S)): cur = (cur * 26 + A[i] - A[i - L] * p) % mod if cur in seen: return i - L + 1 seen.add(cur) res, lo, hi = 0, 0, len(S) while lo < hi: mi = (lo + hi + 1) // 2 pos = test(mi) if pos: lo = mi res = pos else: hi = mi - 1 return S[res:res + lo] # s = [ord(num) - ord(\"a\") for num in S] # mod = 10 ** 9 + 7 # def check(l): # cur = 0 # seen = set() # maxBASE = pow(26, l-1, mod) # for i in range(len(s)): # if i < l: # cur = (cur * 26 + s[i]) % mod # else: # cur -= maxBASE * s[i-l] # cur = (cur * 26 + s[i]) % mod # if i == l-1: # seen.add(cur) # elif i >= l: # if cur in seen: # return i-l+1 # else: # seen.add(cur) # return 0 # l = 1 # r = len(S) - 1 # res = -1 # while l < r: # m = (l+r) // 2 # pos = check(m) # if pos: # l = m # res = pos # else: # r = m - 1 # return S[res:res + l]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S): nums, N = [ord(c) - ord('a') for c in S], len(S) BASE, MOD = 26, 2**32 def check(L): cur_hash, seen = 0, set() for val in nums[:L]: cur_hash = (cur_hash * BASE + val) % MOD seen.add(cur_hash) X = pow(BASE, L-1, MOD) for idx, val in enumerate(nums[L:]): cur_hash -= nums[idx] * X cur_hash = (cur_hash * BASE + val) % MOD if cur_hash in seen: return idx + 1 seen.add(cur_hash) return -1 low, high = 1, N + 1 start = 0 while low < high: mid = (low + high)//2 idx = check(mid) if idx != -1: low = mid + 1 start = idx else: high = mid return S[start: start + low - 1]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: self.s=S self.n=len(S) def find_len_k_dup(length): hash_value = 0 mod_value = 7919*(2**30) # a big number should be okay, if you change the number it might cause a wrong answer seen = set() for i in range(length): hash_value = (hash_value*26+ord(self.s[i])-ord('a'))%mod_value # get the hash value seen.add(hash_value) tmp = pow(26, length)%mod_value for i in range(1,self.n-length+1): # get the moving hash hash_value = (hash_value*26 - (ord(self.s[i-1])-ord('a'))*tmp+mod_value+ord(self.s[i+length-1])-ord('a'))%mod_value if hash_value in seen: return i else: seen.add(hash_value) return None low=0 high=len(S) res='' while low<high: mid=(low+high)//2 idx=find_len_k_dup(mid) #print(candidate) if idx is not None: res=S[idx:idx+mid] low=mid+1 else: high=mid return res
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: lo = 1 hi = len(S) nums = [ord(i) - ord('a') for i in S] self.modulus = 2 ** 32 def dup(l): seen = set() hval = 0 for i in range(l): hval = (hval*26 + nums[i]) % self.modulus seen.add(hval) al = pow(26,l,self.modulus) for i in range(1,len(S) - l+1): hval = (hval*26 - nums[i-1]*al + nums[i+l-1]) % self.modulus if hval in seen: return i seen.add(hval) return -1 start = -1 while lo <= hi: mi = lo + (hi-lo)//2 begin = dup(mi) if begin != -1: lo = mi + 1 start = begin else: hi = mi - 1 return S[start: start + lo - 1]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: N = len(S) l, r = 1, N nums = [ord(x) - ord('a') for x in S] KMAX = 2 ** 63 - 1 def check(m): MAXL = pow(26, m, KMAX) total = 0 hashset = set() for i in range(m): total = (total * 26 + nums[i]) % KMAX hashset.add(total) for i in range(1, N - m + 1): total = (total * 26 - MAXL * nums[i-1] + nums[i + m - 1]) % KMAX if total in hashset: return i hashset.add(total) return -1 while l < r: m = (l + r) // 2 if check(m) < 0: r = m else: l = m + 1 idx = check(r - 1) return S[idx: idx + r-1]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: self.s=S self.n=len(S) def find_len_k_dup(length): hash_value = 0 mod_value = 8000*(2**30) # a big number should be okay, if you change the number it might cause a wrong answer seen = set() for i in range(length): hash_value = (hash_value*26+ord(self.s[i])-ord('a'))%mod_value # get the hash value seen.add(hash_value) tmp = pow(26, length)%mod_value for i in range(1,self.n-length+1): # get the moving hash hash_value = ((hash_value*26 - (ord(self.s[i-1])-ord('a'))*tmp)%mod_value+ord(self.s[i+length-1])-ord('a'))%mod_value if hash_value in seen: return i else: seen.add(hash_value) return None low=0 high=len(S) res='' while low<high: mid=(low+high)//2 idx=find_len_k_dup(mid) #print(candidate) if idx is not None: res=S[idx:idx+mid] low=mid+1 else: high=mid return res
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
from functools import reduce class Solution: def longestDupSubstring(self, S: str) -> str: A = [ord(c) - ord('a') for c in S] mod = 2**63 - 1 def test(L): p = pow(26, L, mod) cur = reduce(lambda x, y: (x * 26 + y) % mod, A[:L], 0) seen = {cur} for i in range(L, len(S)): cur = (cur * 26 + A[i] - A[i - L] * p) % mod if cur in seen: return i - L + 1 seen.add(cur) res, lo, hi = 0, 0, len(S) while lo + 1 < hi: mi = (lo + hi) // 2 pos = test(mi) if pos: lo = mi else: hi = mi if test(hi): res = test(hi) return S[res: res + hi] elif test(lo): res = test(lo) return S[res: res + lo] # return ''
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
from functools import reduce class Solution: def longestDupSubstring(self, S): def evaluateLength(length): power = pow(26, length, mod) current = reduce(lambda x, y: (x*26 + y) % mod, ids[:length], 0) explored = {current} for index in range(length, len(S)): current = (current * 26 + ids[index] - ids[index - length] * power) % mod if current in explored: return index - length + 1 explored.add(current) ids = [ord(character) - ord('a') for character in S] mod = 2**63 - 1 index, low, high = 0, 0, len(S) while low < high: mid = (high + low + 1) // 2 position = evaluateLength(mid) if position: index = position low = mid else: high = mid - 1 return S[index:(index+low)]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: N = len(S) l, r = 1, N nums = [ord(x) - ord('a') for x in S] KMAX = 2 ** 63 - 1 def check(m): MAXL = pow(26, m, KMAX) total, hashset = 0, set() for i in range(m): total = (total * 26 + nums[i]) % KMAX hashset.add(total) for i in range(1, N - m + 1): total = (total * 26 - MAXL * nums[i-1] + nums[i+m-1]) % KMAX if total in hashset: return i hashset.add(total) return -1 while l < r: m = (l + r) // 2 if check(m) < 0: r = m else: l = m + 1 idx = check(r - 1) return S[idx: idx + r-1]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: def check(s, L): n = len(s) BASE = 26 MOD = 1 << 61 - 1 P = pow(26, L, MOD) cur = 0 seen = defaultdict(list) for i in range(len(s)): cur = (cur*BASE + ord(s[i]) - ord('a')) % MOD if i >= L: cur = (cur - (ord(s[i-L]) - ord('a')) * P) % MOD if i >= L - 1: if cur in seen: cur_str = s[i-L+1:i+1] for j in seen[cur]: pre_str = s[j-L+1:j+1] if cur_str == pre_str: return cur_str seen[cur].append(i) return '' lo, hi = 1, len(S) ans = '' while lo < hi: mid = (lo + hi) // 2 temp = check(S, mid) if temp: ans = temp lo = mid + 1 else: hi = mid return ans
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: p = 239017 pows = [[1], [1]] hsh = [[0], [0]] mods = [int(1e9) + 7, int(1e9) + 9] for ch in S: for i in range(len(mods)): hsh[i].append((hsh[i][-1] + ord(ch) * pows[i][-1]) % mods[i]) pows[i].append((pows[i][-1] * p) % mods[i]) l = 0 r = len(S) substrs = {} ans = '' while r - l > 1: m = (r + l) // 2 found = False for i in range(0, len(S) - m + 1): h0 = ((hsh[0][i + m] - hsh[0][i]) * pows[0][-(i + 1)]) % mods[0] h1 = ((hsh[1][i + m] - hsh[1][i]) * pows[1][-(i + 1)]) % mods[1] if (h0, h1) in substrs: found = True ans = S[i: i + m] break else: substrs[(h0, h1)] = True if found: l = m else: r = m substrs.clear() return ans
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: mod = 2 ** 31 - 1 base = 26 def get_ord(char: str): return ord(char) - ord('a') def find_duplicate(length) -> str: hashes = {} h = 1 for i in range(length - 1): h = (h * base) % mod cur = 0 for i in range(length): cur = (cur * base + get_ord(S[i])) % mod hashes[cur] = [0] for i in range(1, len(S) - length + 1): cur = ((cur - (get_ord(S[i-1]) * h)) * base + get_ord(S[i + length - 1])) % mod if cur in hashes: for idx in hashes[cur]: if S[idx: idx + length] == S[i: i + length]: return S[i: i + length] hashes[cur].append(i) else: hashes[cur] = [i] return '' def helper(start, end): res = '' while start < end: length = (start + end) // 2 + 1 r = find_duplicate(length) if len(r) > len(res): res = r if not r: end = length - 1 else: start = length return res return helper(0, len(S) - 1)
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def findRepSubstrGivenLength(self, nums: List[int], l:int, base:int, modulus:int) -> int: n = len(nums) h = 0 for i in range(l): h = (h * base + nums[i]) % modulus seen = {h} for start in range(1, n-l+1): h = (h * base - nums[start - 1] * pow(base, l, modulus) + nums[start + l - 1]) % modulus if h in seen: return start seen.add(h) return -1 def longestDupSubstring(self, S: str) -> str: if not S: return '' nums = [ord(S[i]) - ord('a') for i in range(len(S))] base = 26 modulus = 2**32 left = 1 right = len(S) while left <= right: mid = left + (right - left) // 2 if self.findRepSubstrGivenLength(nums, mid, base, modulus) != -1: left = mid + 1 else: right = mid -1 start = self.findRepSubstrGivenLength(nums, left-1, base, modulus) return S[start: start + left -1] ''' class Solution: class Node: def __init__(self, v='*'): self.value = v self.next = dict() self.occurences = set() def print_tree(self, node, indentation): print(indentation + str(node.value) + \": \" + str(node.occurences)) for v in node.next.keys(): self.print_tree(node.next[v], indentation + '\\t') def getNode(self, node, v): if v not in node.next.keys(): node.next[v] = self.Node(v) return node.next[v] def AddOccurences(self, node, i, S): node.occurences.add(i) if len(node.occurences) == 2: for o in node.occurences: if o + 1 < len(S): self.AddOccurences(self.getNode(node, S[o+1]), o+1, S) if len(node.occurences)>2: if i + 1 < len(S): self.AddOccurences(self.getNode(node, S[i+1]), i+1, S) def getLongestDuplicate(self, node): maxSubstring = '' for v in node.next.keys(): if len(node.next[v].occurences)>1: childSubstring = self.getLongestDuplicate(node.next[v]) if len(childSubstring) + 1 > len(maxSubstring): maxSubstring = v + childSubstring return maxSubstring def longestDupSubstring(self, S: str) -> str: if not S: return 0 if len(set(S)) == 1: return S[0:len(S)-1] root = self.Node() for i in range(len(S)): self.AddOccurences(self.getNode(root, S[i]), i, S) #self.print_tree(root, '') maxDepthDuplicates = self.getLongestDuplicate(root) return maxDepthDuplicates '''
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S): nums = [ord(c) - ord('a') for c in S] #BASE, MOD = 113, 1000000007 BASE, MOD = 26, 2**32 def check(L): cur_hash, seen = 0, set() for val in nums[:L]: cur_hash = ((cur_hash * BASE) + val) % MOD seen.add(cur_hash) X = pow(BASE, L-1, MOD) # (BASE ** (L-1)) % MOD for i, val in enumerate(nums[L:]): # cur_hash -= nums[i] * (BASE ** (L-1)) cur_hash -= nums[i] * X cur_hash = ((cur_hash * BASE) + val) % MOD if cur_hash in seen: return i + 1 seen.add(cur_hash) return -1 low, high = 1, len(S) res = 0 while low < high: mid = (low + high)//2 idx = check(mid) if idx != -1: low = mid + 1 res = idx else: high = mid return S[res: res + low-1] #while low <= high: # mid = (low + high)//2 # idx = check(mid) # if idx != -1: # low = mid + 1 # res = idx # else: # high = mid - 1 #return S[res: res + low-1]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: def check(Val): base, modulus = 26, 2**32 AL = base**Val%modulus hk = 0 for i in range(Val): hk = hk*base + ord(S[i])-ord('a') hk %= modulus hm = {hk: 0} for i in range(Val, N): hk = hk*base - (ord(S[i-Val])-ord('a'))*AL + ord(S[i]) - ord('a') hk %= modulus if hk in hm and S[hm[hk]:hm[hk]+Val]==S[i-Val+1:i+1]: return i-Val+1 hm[hk] = i-Val+1 # print(mid, hm) N = len(S) start, end = 1, N res = 0 while start<=end: mid = start+(end-start)//2 pos = check(mid) if pos: res = pos start = mid+1 else: end = mid-1 return S[res:res+end]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: n = len(S) BASE = 26 MOD = (1 << 63) - 1 POWS = [1] * n for i in range(1, n): POWS[i] = (POWS[i - 1] * BASE) % MOD def search(k): seen = set() h = 0 for i in range(k): h = (h * BASE + ord(S[i]) - 97) % MOD seen.add(h) for i in range(k, n): h = ((h - (ord(S[i - k]) - 97) * POWS[k - 1]) * BASE + ord(S[i]) - 97) % MOD s = S[i - k + 1:i + 1] if h in seen: return i seen.add(h) return -1 l, r = 0, n - 1 while l <= r: m = (l + r) // 2 if search(m) >= 0: l = m + 1 else: r = m - 1 if r < 0: return '' i = search(r) return S[i - r + 1:i + 1]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def search(self, L: int, a: int, modulus: int, n: int, nums: List[int]) -> str: h = 0 for i in range(L): h = (h * a + nums[i]) % modulus seen = {h} aL = pow(a, L, modulus) for start in range(1, n-L + 1): h = (h * a - nums[start - 1]* aL + nums[start + L - 1]) % modulus if h in seen: return start seen.add(h) return -1 def longestDupSubstring(self, S: str) -> str: n = len(S) nums = [ord(S[i]) - ord('a') for i in range(n)] a = 26 modulus = 2 ** 32 left, right = 1, n while left <= right: L = left + (right - left) // 2 if self.search(L, a, modulus, n, nums) != -1: left = L + 1 else: right = L - 1 start = self.search(left -1, a, modulus, n, nums) return S[start: start + left - 1]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
from collections import defaultdict class Solution: def longestDupSubstring(self, S: str) -> str: l, h = 2, len(S)-1 res = '' while l <= h: m = l + (h-l) // 2 cand = self.find_dup_substr_len_k(S, m) if cand: res = cand l = m+1 else: h = m-1 return res def find_dup_substr_len_k(self, s, k): MOD = (1 << 63) - 1 BASE = 26 D = pow(BASE, k-1, MOD) hash_val = 0 seen = defaultdict(set) for i in range(len(s)): # update the sliding hash value if i >= k: char_offset = ord(s[i-k]) - ord('a') hash_val = (hash_val - char_offset * D) % MOD char_offset = ord(s[i]) - ord('a') hash_val = (hash_val * BASE + char_offset) % MOD # check hash collision and return string if duplicate found if i >= k-1: if hash_val in seen: cand_i = s[i-k+1:i+1] for j in seen[hash_val]: cand_j = s[j-k+1:j+1] if cand_i == cand_j: return cand_i seen[hash_val].add(i) return ''
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: def code(t): return ord(t) - ord('a')+1 def check(length): seen = collections.defaultdict(list) MOD = 10 ** 9 + 7 P = 113 INV_P = pow(P, MOD-2, MOD) h = 0 power = 1 ''' h1 = s[0]p^0+s[1]p^1+s[2]p^2 +...+s[length-1]p^(length-1) move next: h2 = s[1]p^0+s[2]p^1+s[3]p^2 +...+s[length]p^(length-1) h2 = (h1 - S[i-length+1])*INV_P % MOD ''' for i, x in enumerate(S): h = (h + power*code(x)) % MOD if i < length-1: power = power * P % MOD else: # start: i-(length-1) if h in seen: for j in seen[h]: if S[i-(length-1):i+1] == S[j:j+length]: return S[j:j+length], True seen[h].append(i-(length-1)) h = (h-code(S[i-(length-1)]))*INV_P % MOD return '', False res = '' l, r = 1, len(S)-1 while l <= r: mid = (l+r)//2 sub, is_check = check(mid) if is_check: res = sub l = mid + 1 else: r = mid - 1 return res
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def find(self ,s , m) : seen = collections.defaultdict(list) mod = 1<<63 -1 base = 26 d = pow(26,m-1,mod) chal = 0 for i in range(len(s)) : if i >= m : l_chal = ord(s[i-m]) - ord('a') chal = ( chal - l_chal*d)%mod l_chal = ord(s[i]) - ord('a') chal = (chal*base + l_chal)%mod if i >= m-1 : s_i = s[i-m+1 : i +1] if chal in seen : for j in seen[chal] : s_j = s[j-m+1 : j+1] if s_j == s_i : return s_i else : seen[chal].append(i) return '' def longestDupSubstring(self, S: str) -> str: l = 2 h = len(S) -1 ans = '' while l <= h : m = (l+h)//2 s = self.find(S ,m) if s != '' : ans = s l = m+1 else : h = m-1 return ans
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S): nums, N = [ord(c) - ord('a') for c in S], len(S) BASE, MOD = 26, 2**32 def check(L): cur_hash, seen = 0, set() for val in nums[:L]: cur_hash = (cur_hash * BASE + val) % MOD seen.add(cur_hash) X = pow(BASE, L-1, MOD) for idx, val in enumerate(nums[L:], start = L): cur_hash -= nums[idx - L] * X cur_hash = (cur_hash * BASE + val) % MOD if cur_hash in seen: return idx - L + 1 seen.add(cur_hash) return -1 low, high = 1, N + 1 start = 0 while low < high: mid = (low + high)//2 idx = check(mid) if idx != -1: low = mid + 1 start = idx else: high = mid return S[start: start + low - 1]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
from collections import defaultdict class Solution: def longestDupSubstring(self, S: str) -> str: mod = 10 ** 9 + 7 def get_rep(l: int) -> str: mp = defaultdict(list) # key: hash_code, value: list of start indexes of substrings a = 13 sofar = 0 factor = 1 for i in range(l): sofar = (sofar * a + ord(S[i])) % mod factor = (factor * a) % mod mp[sofar].append(0) for i in range(l, len(S)): sofar = (sofar * a + ord(S[i]) - factor * ord(S[i - l])) % mod if sofar in mp: for j in mp[sofar]: if S[j: j + l] == S[i - l + 1: i + 1]: return S[i - l + 1: i + 1] mp[sofar].append(i - l + 1) return None low, high = 0, len(S) - 1 ans = None while low <= high: mid = (low + high) // 2 res = get_rep(mid) if res is None: high = mid - 1 else: ans = res low = mid + 1 return ans if ans is not None else ''
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: def search(m, MOD): h = 0 for i in range(m): h = (h * 26 + nums[i]) % MOD s = {h} aL = pow(26, m, MOD) for pos in range(1, n - m + 1): h = (h * 26 - nums[pos - 1] * aL + nums[pos + m - 1]) % MOD if h in s: return pos s.add(h) return -1 n = len(S) nums = [ord(c) - ord('a') for c in S] l, r = 1, n pos = -1 MOD = 2**63 - 1 while l <= r: m = (l + r) // 2 cur = search(m, MOD) if cur != -1: l = m + 1 pos = cur else: r = m - 1 return S[pos: pos + l - 1]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: base, mod = 26, 2**63 - 1 n = len(S) A = [ord(ch) - ord('a') for ch in S] def k_dup(k): curr = 0 for i in range(k): curr = (curr * base + A[i]) % mod seen = {curr} for i in range(1, n - k + 1): curr = ( base*curr - pow(base, k, mod)*A[i-1] + A[i+k-1]) % mod if curr in seen: return i seen.add(curr) return 0 l, r, ans = 0, n, 0 while l < r: mid = (l + r + 1) >> 1 pos = k_dup(mid) # print(pos, mid) if pos: l = mid ans = pos else: r = mid - 1 return S[ans:ans + l]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S): nums = [ord(c) - ord('a') for c in S] BASE, MOD = 26, 2**32 # Wrong: BASE, MOD = 113, 1000000007, too small def check(L): cur_hash, seen = 0, set() for val in nums[:L]: cur_hash = ((cur_hash * BASE) + val) % MOD seen.add(cur_hash) X = pow(BASE, L-1, MOD) # much faster than (BASE ** (L-1)) % MOD for i, val in enumerate(nums[L:]): # cur_hash -= nums[i] * (BASE ** (L-1)) cur_hash -= nums[i] * X cur_hash = ((cur_hash * BASE) + val) % MOD if cur_hash in seen: return i + 1 seen.add(cur_hash) return -1 low, high = 1, len(S) + 1 res = 0 while low < high: mid = (low + high)//2 idx = check(mid) if idx != -1: low = mid + 1 res = idx else: high = mid return S[res: res + low-1] class Solution: def longestDupSubstring(self, S): N = len(S) def check(length): seen = set() for i in range(N - length): hashS = hash(S[i:i+length+1]) if hashS in seen: return i seen.add(hashS) return 0 low, high = 0, N idx = 0 while low < high: mid = (low + high)//2 start = check(mid) if start: low = mid + 1 idx = start else: high = mid return S[idx:idx + low]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def search(self, L: int, base: int, MOD: int, n: int, nums: List[int]) -> str: # compute the hash of string S[:L] h = 0 for i in range(L): h = (h * base + nums[i]) % MOD # already seen hashes of strings of length L seen = {h} # const value to be used often : a**L % mod aL = pow(base, L, MOD) for start in range(1, n - L + 1): # compute rolling hash in O(1) time h = (h * base - nums[start - 1] * aL + nums[start + L - 1]) % MOD if h in seen: return start seen.add(h) return -1 def longestDupSubstring(self, S: str) -> str: n = len(S) # convert string to array of integers to implement constant time slice nums = [ord(S[i]) - ord('a') for i in range(n)] # base value for the rolling hash function base = 26 # mod value for the rolling hash function to avoid overflow MOD = 2**32 # binary search, L = repeating string length left, right = 1, n while left <= right: mid = left + (right - left) // 2 if self.search(mid, base, MOD, n, nums) != -1: left = mid + 1 else: right = mid - 1 start = self.search(left - 1, base, MOD, n, nums) return S[start: start + left - 1]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: n = len(S) low = 0 high = n-1 nums = [ord(S[i]) - ord('a') for i in range(n)] def findDuplicate(L): # compute the hash of string S[:L] h = 0 a = 26 modulus = 2**32 for i in range(L): h = (h * a + nums[i]) % modulus # already seen hashes of strings of length L seen = {h} # const value to be used often : a**L % modulus aL = pow(a, L, modulus) for start in range(1, n - L + 1): # compute rolling hash in O(1) time h = (h * a - nums[start - 1] * aL + nums[start + L - 1]) % modulus if h in seen: return start seen.add(h) return -1 res = '' while low < high: mid = (low + high + 1)//2 start = findDuplicate(mid) if start != -1: low = mid res = S[start:start+mid] else: high = mid-1 return res
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: l = 0 r = len(S) base = 26 mod = 2**32 res = [0, 0] nums = [ord(n) - ord('a') for n in S] while l < r: mid = (l+r) // 2 h = 0 for i in range(0, mid): h = (h*base + nums[i]) % mod dups = set([h]) remove = pow(base, mid, mod) for i in range(1, len(nums) - mid + 1): h = (h*base - nums[i-1] * remove + nums[i+mid-1]) % mod if h in dups: res = [i, i+mid] break dups.add(h) # print(mid, h) if res[1] - res[0] < mid: r = mid else: l = mid + 1 return S[res[0]:res[1]]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: low = 0 high = len(S)-1 result = '' nums = [ord(i) - ord('a') for i in S] mod = 2**63-1 def rabin_karp(size): power = pow(26,size,mod) hash_val = 0 hash_set = set() for i in range(size): hash_val = (hash_val*26 + (nums[i]))%mod hash_set.add(hash_val) for i in range(size, len(S)): hash_val = (hash_val*26 - (power*nums[i-size]) + nums[i])%mod if hash_val in hash_set: return i-size+1 else: hash_set.add(hash_val) return -1 while(low <= high): mid = low + (high-low)//2 pos = rabin_karp(mid) if pos == -1: high = mid - 1 else: result = S[pos:pos+mid] low = mid+1 return result
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S): nums = [ord(c) - ord('a') for c in S] BASE, MOD = 26, 2**32 # Wrong: BASE, MOD = 113, 1000000007, too small def check(L): cur_hash, seen = 0, set() for val in nums[:L]: cur_hash = ((cur_hash * BASE) + val) % MOD seen.add(cur_hash) X = pow(BASE, L-1, MOD) # much faster than (BASE ** (L-1)) % MOD for i, val in enumerate(nums[L:]): # cur_hash -= nums[i] * (BASE ** (L-1)) cur_hash -= nums[i] * X cur_hash = ((cur_hash * BASE) + val) % MOD if cur_hash in seen: return i + 1 seen.add(cur_hash) return -1 low, high = 1, len(S) + 1 res = 0 while low < high: mid = (low + high)//2 idx = check(mid) if idx != -1: low = mid + 1 res = idx else: high = mid return S[res: res + low-1]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: n=len(S) modulus=2**32 a=26 nums=[ord(c)-ord('a') for c in S] def search(L): nonlocal a,n,modulus aL=pow(a,L,modulus) h=0 for i in range(L): h=(h*a+nums[i])%modulus seen={h} for start in range(1,n-L+1): h=(h*a-nums[start-1]*aL+nums[start+L-1])%modulus if h in seen: return start seen.add(h) return -1 l,r=1,n while l<=r: mid=(l+r)>>1 if search(mid)!=-1: l=mid+1 else: r=mid-1 start=search(r) return S[start:start+r]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def rabinKarp(self, L, nums): h = 0 a = 26 MOD = 2**32 for i in range(L): h = (h * a + nums[i]) % MOD aL = pow(a, L, MOD) seen = {h} for start in range(1, len(nums)-L+1): h = (h *a - nums[start-1] * aL + nums[start+L-1]) % MOD if h in seen: return start seen.add(h) return -1 def longestDupSubstring(self, S: str) -> str: nums = [ord(ch)-ord('a') for ch in S] l, r = 0, len(S) while l < r: mid = l + (r-l) // 2 if self.rabinKarp(mid, nums) != -1: l = mid + 1 else: r = mid start = self.rabinKarp(l-1, nums) return S[start:start+l-1]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
from functools import reduce class Solution: def longestDupSubstring(self, S: str) -> str: # binary search + string hashing from functools import reduce A = [ord(c) - ord('a') for c in S] mod = 2 ** 63 - 1 def judge(l): p = 26 ** l % mod cur = reduce(lambda x, y : (x * 26 + y) % mod, A[:l], 0) seen = {cur} for i in range(l, len(S)): cur = (cur * 26 + A[i] - p * A[i - l]) % mod if cur in seen: return i - l + 1 seen.add(cur) lo, hi = 0, len(S) res = 0 while lo < hi: mi = (lo + hi + 1) // 2 pos = judge(mi) if pos: lo = mi res = pos else: hi = mi - 1 return S[res : res + lo]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: # Use binary search to try out all possible lengths of the subtrings # Use a record list to record the hash summation of the substring # Use the number of distinct chara as the hash base # If two substrings are the same, they should have the same hash summation # After minus the before part def longestDupSubstring(self, S: str) -> str: res = '' d,q = len(set(S)), 2**63-1 record = [0]*len(S) for i in range(len(S)): if i == 0:record[i] = ord(S[i]) else:record[i] = (record[i-1]*d+ord(S[i]))%q def check(mid): h,g = 1,set() for i in range(mid): h = h*d%q for i in range(len(S)-mid+1): count = (record[i+mid-1]-record[i-1]*h)%q if i > 0 else record[i+mid-1] if count not in g:g.add(count) else:return S[i:i+mid] return False l,r = 0,len(S)-1 while l<=r: mid = (l+r)//2 temp = check(mid) if temp: res = temp l = mid + 1 else:r = mid - 1 return res # res = \"\" # d, q = len(set(S)), 2**63-1 # hashes = [0] * len(S) # for i in range(len(S)): # if i == 0: hashes[i] = ord(S[i]) # else: hashes[i] = (hashes[i-1]*d + ord(S[i]))%q # l, r = 0, len(S)-1 # while l <= r: # mid = (l+r)//2 # temp = self.check(S,mid,hashes,d,q) # if temp: # res = temp # l = mid + 1 # else: r = mid - 1 # return res # def check(self, S, mid, hashes, d, q): # res = set() # h, g = 1, 0 # for i in range(mid): # h = (h*d)%q # for i in range(len(S)-mid+1): # g = (hashes[i+mid-1] - hashes[i-1]*h)%q if i > 0 else hashes[i+mid-1] # if g not in res: res.add(g) # else: return S[i:i+mid] # return False
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: def rk(m): nonlocal idx st = set() #p = b**(m-1) #p%=mod p= pow(b,m-1,mod) # more efficient to mod at each step than work on a long number y = 0 for i in range(m): y = (y*b+num[i])%mod # more efficient to mod at each step than work on a long number st.add(y) for i in range(1, n-m+1): y = ((y-num[i-1]*p%mod)*b%mod+num[i-1+m])%mod #y = (y-num[i-1]*p)*b+num[i-1+m] if y in st: idx = i return 0 else: st.add(y) return 1 n = len(S) b = 26 # no need to be 128 #mod = 10**9+7 # too small => conflict mod = 2**32 # here z = ord('a') num = [ ord(S[i])-z for i in range(n)] l=1 r=n idx = 0 # last found duplicate while l<r: m = (l+r)//2 if rk(m)>0: r = m else: l = m+1 return S[idx:idx+l-1]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
p = 2**63 - 1 class Solution: def longestDupSubstring(self, S: str) -> str: def rabin_karp(mid): cur_hash = 0 for i in range(mid): cur_hash = (cur_hash * 26 + nums[i]) % p hashes = {cur_hash} pos = -1 max_pow = pow(26, mid, p) for i in range(mid, len(S)): cur_hash = (26*cur_hash-nums[i-mid]*max_pow + nums[i]) % p if cur_hash in hashes: pos = i + 1 - mid hashes.add(cur_hash) return pos low, high = 0, len(S)-1 end = 0 start = 0 nums = [ord(c)-ord('a') for c in S] while low <= high: mid = (low+high) // 2 pos = rabin_karp(mid) if pos == -1: # no matching strings found high = mid - 1 else: start = pos low = mid + 1 return S[start:start+low-1]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: def search(m, MOD): h = 0 for i in range(m): h = (h * 26 + nums[i]) % MOD s = {h} aL = pow(26, m, MOD) for pos in range(1, n - m + 1): h = (h * 26 - nums[pos - 1] * aL + nums[pos + m - 1]) % MOD if h in s: return pos s.add(h) return -1 n = len(S) nums = [ord(c) - ord('a') for c in S] l, r = 1, n pos = -1 MOD = 2**63 - 1 while l <= r: m = (l + r) // 2 cur = search(m, MOD) if cur != -1: l = m + 1 pos = cur else: r = m - 1 return S[pos: pos + l - 1]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: N = len(S) l, r = 1, N nums = [ord(x) - ord('a') for x in S] KMAX = 2 ** 63 - 1 def check(m): MAXL = pow(26, m, KMAX) total = 0 hashset = set() for i in range(m): total = (total * 26 + nums[i]) % KMAX hashset.add(total) for i in range(1, N - m + 1): total = (total * 26 - nums[i-1] * MAXL + nums[i+m-1]) % KMAX if total in hashset: return i hashset.add(total) return -1 while l < r: m = (l + r) // 2 if check(m) < 0: r = m else: l = m + 1 idx = check(r - 1) return S[idx: idx + r-1]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: ords = [ord(ch) - 97 for ch in S] mod = 2 ** 32 seen = set() def has_dup_with_length(length): seen.clear() p = pow(26, length, mod) hashed_prefix = 0 for i in range(length): hashed_prefix = (hashed_prefix * 26 + ords[i]) % mod seen.add(hashed_prefix) for i in range(length, len(S)): hashed_prefix = (hashed_prefix * 26 + ords[i] - ords[i - length] * p) % mod if hashed_prefix in seen: return i - length + 1 seen.add(hashed_prefix) start, lo, hi = 0, 0, len(S) - 1, while lo < hi: mid_length = (lo + hi + 1) // 2 idx = has_dup_with_length(mid_length) if idx: start = idx lo = mid_length else: hi = mid_length - 1 return S[start: start + lo]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: res = '' d,q = len(set(S)), 2**63-1 record = [0]*len(S) for i in range(len(S)): if i == 0:record[i] = ord(S[i]) else:record[i] = (record[i-1]*d+ord(S[i]))%q def check(mid): h,g = 1,set() for i in range(mid): h = h*d%q for i in range(len(S)-mid+1): count = (record[i+mid-1]-record[i-1]*h)%q if i > 0 else record[i+mid-1] if count not in g:g.add(count) else:return S[i:i+mid] return False l,r = 0,len(S)-1 while l<=r: mid = (l+r)//2 temp = check(mid) if temp: res = temp l = mid + 1 else:r = mid - 1 return res # res = \"\" # d, q = len(set(S)), 2**63-1 # hashes = [0] * len(S) # for i in range(len(S)): # if i == 0: hashes[i] = ord(S[i]) # else: hashes[i] = (hashes[i-1]*d + ord(S[i]))%q # l, r = 0, len(S)-1 # while l <= r: # mid = (l+r)//2 # temp = self.check(S,mid,hashes,d,q) # if temp: # res = temp # l = mid + 1 # else: r = mid - 1 # return res # def check(self, S, mid, hashes, d, q): # res = set() # h, g = 1, 0 # for i in range(mid): # h = (h*d)%q # for i in range(len(S)-mid+1): # g = (hashes[i+mid-1] - hashes[i-1]*h)%q if i > 0 else hashes[i+mid-1] # if g not in res: res.add(g) # else: return S[i:i+mid] # return False
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: n = len(S) nums = [ord(S[i]) - ord('a') for i in range(n)] def search(position): h = 0 for i in range(position): h = (h * 26 + nums[i]) % 2 ** 32 seen = {h} const = 26 ** position % 2 ** 32 for start in range(1, n - position + 1): h = (h * 26 - nums[start - 1] * const + nums[start + position - 1]) % 2 ** 32 if h in seen: return start seen.add(h) return -1 left, right = 1, n while left <= right: pivot = (left + right) // 2 if search(pivot) != -1: left = pivot + 1 else: right = pivot - 1 start = search(left - 1) return S[start: start + left - 1]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: arr = [ord(ch) - ord('a') for ch in S] n = len(arr) B = 29 mod = 2**63 - 1 def exists(L): seen = {} P = pow(B, L, mod) h = 0 for i in range(n): h = (h * B + arr[i]) % mod if i >= L: h = (h - arr[i-L] * P) % mod if i >= L - 1: if h in seen: return seen[h] seen[h] = i return -1 lo, hi = 0, len(S) # cand = '' pos = -1 while lo < hi: mid = (lo + hi + 1) // 2 idx = exists(mid) if idx != -1: lo = mid # cand = S[idx - mid + 1: idx + 1] pos = idx else: hi = mid - 1 return S[pos - lo + 1:pos+1]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: self.A = [ord(c) - ord('a') for c in S] start, end = 1, len(S) while start + 1 < end: mid = (start + end) // 2 pos = self.check(mid) if pos: start = mid else: end = mid pos = self.check(end) if pos: return S[pos: pos + end] pos = self.check(start) if pos: return S[pos: pos + start] return '' def check(self, length): mod = 2**63 - 1 power = pow(26, length, mod) cur = 0 for i in range(length): cur = (cur * 26 + self.A[i]) % mod # cur = reduce(lambda x, y: (x * 26 + y) % mod, self.A[:length], 0) seen = {cur} for i in range(length, len(self.A)): cur = (cur * 26 + self.A[i] - self.A[i - length] * power) % mod if cur in seen: return i - length + 1 seen.add(cur)
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: def rk(m): nonlocal idx st = set() p = b**(m-1) p%=mod y = 0 for i in range(m): y = (y*b+num[i])%mod st.add(y) for i in range(1, n-m+1): y = ((y-num[i-1]*p%mod)*b%mod+num[i-1+m])%mod #y = (y-num[i-1]*p)*b+num[i-1+m] if y in st: idx = i return 0 else: st.add(y) return 1 n = len(S) b = 26 # no need to be 128 #mod = 10**9+7 # too small => conflict mod = 2**32 # here z = ord('a') num = [ ord(S[i])-z for i in range(n)] l=1 r=n idx = 0 # last found duplicate while l<r: m = (l+r)//2 if rk(m)>0: r = m else: l = m+1 return S[idx:idx+l-1]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
from functools import reduce class Solution: def longestDupSubstring(self, S: str) -> str: self.A = [ord(c) - ord('a') for c in S] start, end = 1, len(S) while start + 1 < end: mid = (start + end) // 2 pos = self.check(mid) if pos: start = mid else: end = mid pos = self.check(end) if pos: return S[pos: pos + end] pos = self.check(start) if pos: return S[pos: pos + start] return '' def check(self, length): mod = 2**63 - 1 power = pow(26, length, mod) cur = reduce(lambda x, y: (x * 26 + y) % mod, self.A[:length], 0) seen = {cur} for i in range(length, len(self.A)): cur = (cur * 26 + self.A[i] - self.A[i - length] * power) % mod if cur in seen: return i - length + 1 seen.add(cur)
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
from functools import reduce class Solution: def longestDupSubstring(self, S: str) -> str: self.A = [ord(c) - ord('a') for c in S] start, end = 1, len(S) while start + 1 < end: mid = (start + end) // 2 pos = self.check(mid) if pos: start = mid else: end = mid pos = self.check(end) if pos: return S[pos: pos + end] pos = self.check(start) if pos: return S[pos: pos + start] return '' def check(self, length): mod = 2**63 - 1 power = pow(26, length, mod) # cur = 0 # for i in range(length): # cur = (cur * 26 + self.A[i]) % mod cur = reduce(lambda x, y: (x * 26 + y) % mod, self.A[:length], 0) seen = {cur} for i in range(length, len(self.A)): cur = (cur * 26 + self.A[i] - self.A[i - length] * power) % mod if cur in seen: return i - length + 1 seen.add(cur)
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
from functools import reduce class Solution: def longestDupSubstring(self, S: str) -> str: self.A = [ord(c) - ord('a') for c in S] start, end = 1, len(S) while start + 1 < end: mid = (start + end) // 2 print(mid) pos = self.check(mid) print(pos) if pos: start = mid else: end = mid # print(start, end) pos = self.check(end) # print(pos) if pos: return S[pos: pos + end] pos = self.check(start) if pos: return S[pos: pos + start] return '' def check(self, length): mod = 2**63 - 1 power = pow(26, length, mod) cur = reduce(lambda x, y: (x * 26 + y) % mod, self.A[:length], 0) seen = {cur} for i in range(length, len(self.A)): cur = (cur * 26 + self.A[i] - self.A[i - length] * power) % mod if cur in seen: return i - length + 1 seen.add(cur)
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def searchLongestStringOfKLen(self, S, total_len, compare_len): search_len_hash = 0 for i in range(compare_len): search_len_hash = (search_len_hash * self.uniq + self.nums[i]) % self.mod tmp_hash = {} tmp_hash[search_len_hash] = True remove_old_power = pow(self.uniq, compare_len, self.mod) for i in range(1, total_len-compare_len+1): search_len_hash = (search_len_hash * self.uniq - (remove_old_power * self.nums[i-1]) + self.nums[i+compare_len-1] )% self.mod if search_len_hash in tmp_hash: return i tmp_hash[search_len_hash] = True return -1 def longestDupSubstring(self, S: str) -> str: ls = len(S) end = ls start = 1 mid = 0 self.nums = [] for i in range(ls): self.nums.append(ord(S[i]) - ord('a')) self.uniq = 26 self.mod = 2**32 while start <= end: mid = start + (end-start)//2 if self.searchLongestStringOfKLen(S, ls, mid) != -1: start = mid + 1 else : end = mid - 1 ds_sp = self.searchLongestStringOfKLen(S, ls, start -1) return S[ds_sp:ds_sp+start-1]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
def check(arr, n, l, mod): p = pow(26, l, mod) window_hash = 0 hash_set = set() for i in range(l): window_hash = (26 * window_hash + arr[i]) % mod hash_set.add(window_hash) for i in range(1, n - l + 1): window_hash = (window_hash * 26 - (arr[i - 1]*p) + arr[i + l - 1])%mod if window_hash in hash_set: return i hash_set.add(window_hash) return False class Solution: def longestDupSubstring(self, S: str) -> str: n = len(S) min_length, max_length = 1, n ans, prev_len = 0, 0 mod = (1 << 63) - 1 nums = [ord(S[i]) - ord('a') for i in range(n)] while min_length <= max_length: mid_length = int((max_length + min_length)/2) start = check(nums, n, mid_length, mod) if start != False: if prev_len < mid_length: ans = start prev_len = mid_length min_length = mid_length + 1 else: max_length = mid_length - 1 return S[ans:ans + prev_len]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: n=len(S) modulus=2**56 a=26 nums=[ord(c)-ord('a') for c in S] def search(L): nonlocal a,n,modulus aL=pow(a,L,modulus) h=0 for i in range(L): h=(h*a+nums[i])%modulus seen={h} for start in range(1,n-L+1): h=(h*a-nums[start-1]*aL+nums[start+L-1])%modulus if h in seen: return start seen.add(h) return -1 l,r=1,n while l<=r: mid=(l+r)>>1 if search(mid)!=-1: l=mid+1 else: r=mid-1 start=search(r) return S[start:start+r]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: n = len(S) chars = [ord(c) - 97 for c in S] BASE = 26 MOD = (1 << 63) - 1 POWS = [1] * n for i in range(1, n): POWS[i] = (POWS[i - 1] * BASE) % MOD def search(k): seen = set() h = 0 for i in range(k): h = (h * BASE + chars[i]) % MOD seen.add(h) for i in range(k, n): h = ((h - chars[i - k] * POWS[k - 1]) * BASE + chars[i]) % MOD if h in seen: return i seen.add(h) return -1 l, r = 0, n - 1 k = 0 while l < r: m = (l + r + 1) // 2 i = search(m) if i >= 0: k = i l = m else: r = m - 1 return S[k - l + 1:k + 1]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: n = len(S) chars = [ord(c) - 97 for c in S] BASE = 26 MOD = (1 << 63) - 1 POWS = [1] * n for i in range(1, n): POWS[i] = (POWS[i - 1] * BASE) % MOD def search(k): seen = set() h = 0 for i in range(k): h = (h * BASE + chars[i]) % MOD seen.add(h) for i in range(k, n): h = ((h - chars[i - k] * POWS[k - 1]) * BASE + chars[i]) % MOD if h in seen: return i seen.add(h) return -1 l, r = 0, n - 1 while l <= r: m = (l + r) // 2 if search(m) >= 0: l = m + 1 else: r = m - 1 if r < 0: return '' i = search(r) return S[i - r + 1:i + 1]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: p = 31 m = 100000000003 pows = [1] * len(S) invPows = [1] * len(S) for i in range(1, len(S)): pows[i] = pows[i-1] * p % m invPows[i] = pow(pows[i], -1, m) h = [0] * (len(S) + 1) for i in range(len(S)): h[i+1] = (h[i] + (ord(S[i]) - ord('a') + 1) * pows[i]) % m def hasDup(S, sublen): seen = set() for i in range(len(S)- sublen + 1): if (hs := (h[i + sublen] - h[i]) * invPows[i] % m) in seen: return (i, sublen) seen.add(hs) return (0, 0) ans = None lo, hi = 1, len(S) while lo < hi: mid = (lo + hi) // 2 if (s := hasDup(S, mid))[1]: lo = mid + 1 ans = s else: hi = mid return S[ans[0]:ans[0]+ans[1]] if ans else ''
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
class Solution: def longestDupSubstring(self, S: str) -> str: def search(m, MOD): h = 0 for i in range(m): h = (h * 26 + nums[i]) % MOD s = {h} aL = pow(26, m, MOD) for pos in range(1, n - m + 1): h = (h * 26 - nums[pos - 1] * aL + nums[pos + m - 1]) % MOD if h in s: return pos s.add(h) return -1 n = len(S) nums = [ord(c) - ord('a') for c in S] # find length of longest duplicate substring l, r = 1, n pos = 0 MOD = 2**63 - 1 # use largest positive of 8 byte integer while l <= r: m = (l + r) // 2 # search if there's duplicate for length m substring cur = search(m, MOD) if cur != -1: l = m + 1 pos = cur else: r = m - 1 return S[pos: pos + l - 1]
Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times.  (The occurrences may overlap.) Return any duplicated substring that has the longest possible length.  (If S does not have a duplicated substring, the answer is "".)   Example 1: Input: "banana" Output: "ana" Example 2: Input: "abcd" Output: ""   Note: 2 <= S.length <= 10^5 S consists of lowercase English letters.
from collections import defaultdict from functools import reduce class Solution: def longestDupSubstring(self, S: str) -> str: mod = (1 << 63 - 1) A = [ord(c) - ord('a') for c in S] def find_dup_of_length(L): p = pow(26, L, mod) h = reduce(lambda x, y: (x * 26 + y) % mod, A[:L], 0) seen = defaultdict(list) seen[h].append(0) for i in range(L, len(S)): h = (h * 26 + A[i] - p * A[i-L]) % mod for start in seen[h]: if S[start:start+L] == S[i-L+1:i+1]: return start seen[h].append(i-L+1) start = 0 length = 0 low, high = 1, len(S) while low < high: mid = low + (high - low) // 2 pos = find_dup_of_length(mid) if pos is not None: start = pos length = mid low = mid + 1 else: high = mid return S[start:start+length]
A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 <= n Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0. (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)   Example 1: Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8]. Example 2: Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].   Note: 3 <= A.length <= 1000 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9 (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
class Solution: def lenLongestFibSubseq(self, A: List[int]) -> int: def getFS(x1, x2): F = [x1, x2] while F[-1] <= 1000000000: F.append(F[-2] + F[-1]) return F C1 = getFS(1, 0) C2 = C1[1:] def getLLFS(x1, x2): max_len = 2 F = [x1, x2] xi = x1 + x2 while xi in setA: max_len += 1 F.append(xi) xi = F[-2] + F[-1] if max_len == 6: print(F) return max_len max_len = 2 setA = set(A) for i in range(len(A)): for j in range(i+1, len(A)): x1, x2 = A[i], A[j] # calculate X_{max_len+1} if x1 * C1[max_len] + x2 * C2[max_len] > A[-1]: break max_len = max(max_len, getLLFS(x1, x2)) if max_len < 3: return 0 return max_len
A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 <= n Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0. (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)   Example 1: Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8]. Example 2: Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].   Note: 3 <= A.length <= 1000 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9 (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
class Solution: def lenLongestFibSubseq(self, A: List[int]) -> int: n=len(A) nums_on_left=set() max_seq_len=collections.defaultdict(lambda:2) ans=0 for i,c in enumerate(A): for j in range(i-1,0,-1): b=A[j] a=c-b if a>=b: break if a in nums_on_left: max_seq_len[b,c]=max_seq_len[a,b]+1 ans=max(ans,max_seq_len[b,c]) nums_on_left.add(c) return ans
A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 <= n Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0. (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)   Example 1: Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8]. Example 2: Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].   Note: 3 <= A.length <= 1000 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9 (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
class Solution: def lenLongestFibSubseq(self, A: List[int]) -> int: index = {x: i for i, x in enumerate(A)} longest = collections.defaultdict(lambda: 2) ans = 0 for k, c in enumerate(A): for j in range(k-1, k//2-2, -1): i = index.get(c - A[j], None) if i is not None and i < j: cand = longest[j, k] = longest[i, j] + 1 ans = max(ans, cand) return ans if ans >= 3 else 0
A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 <= n Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0. (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)   Example 1: Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8]. Example 2: Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].   Note: 3 <= A.length <= 1000 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9 (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
class Solution: def lenLongestFibSubseq(self, array: List[int]) -> int: if len(array)<3: return len(array) d={} ans=0 dp=[[2 for i in range(len(array))] for j in range(len(array))] for i in range(len(array)): d[array[i]]=i for i in range(len(array)-1): for j in range(i+1,len(array)): if array[i]+array[j] in d: dp[j][d[array[i]+array[j]]]=1+dp[i][j] if dp[j][d[array[i]+array[j]]]>ans: ans=dp[j][d[array[i]+array[j]]] return ans
A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 <= n Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0. (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)   Example 1: Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8]. Example 2: Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].   Note: 3 <= A.length <= 1000 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9 (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
class Solution: def lenLongestFibSubseq(self, A: List[int]) -> int: dp = collections.defaultdict(lambda: 2) a = set(A) for j in range(2, len(A)): for i in range(j): if A[j] - A[i] < A[i] and A[j] - A[i] in a: dp[(A[i], A[j])] = dp[(A[j] - A[i], A[i])] + 1 return max(dp.values() or [0])
A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 <= n Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0. (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)   Example 1: Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8]. Example 2: Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].   Note: 3 <= A.length <= 1000 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9 (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
class Solution: def lenLongestFibSubseq(self, A: List[int]) -> int: indexes = {A[0]: 0} n = len(A) dp = [[2 for i in range(n)] for j in range(n)] max_len = 2 for i in range(1, n-1): indexes[A[i]] = i for j in range(i+1, n): diff = A[j] - A[i] if diff in indexes: dp[i][j] = 1 + dp[indexes[diff]][i] max_len = max(max_len, dp[i][j]) if max_len > 2: return max_len return 0 # dp[i, j] = length of fib seq that ends with i, j # [1,3,7,11,12,14,18]
A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 <= n Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0. (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)   Example 1: Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8]. Example 2: Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].   Note: 3 <= A.length <= 1000 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9 (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
class Solution: def lenLongestFibSubseq(self, arr: List[int]) -> int: n = len(arr) dic = {arr[i]:i for i in range(n)} ans = 2 dp = [[2]*n for _ in range(n)] for k in range(n): for j in range(k): i = dic.get(arr[k]-arr[j], None) if i is not None and j > i: dp[j][k] = dp[i][j]+1 ans = max(ans, dp[j][k]) if ans == 2: return 0 return ans
A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 <= n Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0. (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)   Example 1: Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8]. Example 2: Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].   Note: 3 <= A.length <= 1000 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9 (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
class Solution(object): def lenLongestFibSubseq(self, A): index = {x: i for i, x in enumerate(A)} longest = collections.defaultdict(lambda: 2) ans = 0 for k, z in enumerate(A): for j in range(k): i = index.get(z - A[j], None) if i is not None and i < j: cand = longest[j, k] = longest[i, j] + 1 ans = max(ans, cand) return ans if ans >= 3 else 0
A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 <= n Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0. (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)   Example 1: Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8]. Example 2: Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].   Note: 3 <= A.length <= 1000 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9 (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
class Solution: def lenLongestFibSubseq(self, A: List[int]) -> int: if not A or len(A) == 0: return 0 n = len(A) dp = [[0] * n for _ in range(n)] res = 0 for i in range(2, n): l = 0 r = i - 1 while l < r: sum_ = A[l] + A[r] if sum_ > A[i]: r -= 1 elif sum_ < A[i]: l += 1 else: dp[r][i] = dp[l][r] + 1 res = max(res, dp[r][i]) l += 1 r -= 1 if res == 0: return 0 return res + 2
A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 <= n Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0. (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)   Example 1: Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8]. Example 2: Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].   Note: 3 <= A.length <= 1000 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9 (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
class Solution: def lenLongestFibSubseq(self, A: List[int]) -> int: longest=0 ss=set(A) for i,x in enumerate(A): for j,y in enumerate(A[i+1:]): tmp=x+y if(tmp in ss): counter=2 t=x while(True): if(t+y in ss): t,y=y,t+y counter+=1 else: break if(longest<counter): longest=counter return longest
A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 <= n Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0. (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)   Example 1: Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8]. Example 2: Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].   Note: 3 <= A.length <= 1000 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9 (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
class Solution: def lenLongestFibSubseq(self, A: List[int]) -> int: index_dict={} for index,item in enumerate(A): index_dict[item]=index longest=collections.defaultdict(lambda:2) res=0 for index,value in enumerate(A): for j in range(index): i=index_dict.get(value-A[j],None) if(i is not None and i<j): longest[j,index]=longest[i,j]+1 res=max(longest[j,index],res) if(res<3): res=0 return res
A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 <= n Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0. (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)   Example 1: Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8]. Example 2: Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].   Note: 3 <= A.length <= 1000 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9 (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
class Solution: def lenLongestFibSubseq(self, A: List[int]) -> int: index = {x: i for i, x in enumerate(A)} longest = collections.defaultdict(lambda:2) ans = 0 for i, a in enumerate(A): for j in range(i): k = index.get(a - A[j], None) if k is not None and k < j: cand = longest[j, i] = longest[k, j] + 1 ans = max(cand, ans) return ans
A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 <= n Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0. (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)   Example 1: Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8]. Example 2: Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].   Note: 3 <= A.length <= 1000 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9 (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
class Solution: def lenLongestFibSubseq(self, A: List[int]) -> int: index = {x: i for i, x in enumerate(A)} longest = collections.defaultdict(lambda: 2) ans = 0 for k, c in enumerate(A): for j in range(k-1, -1, -1): if A[j] <= c//2: break i = index.get(c - A[j], None) if i is not None: cand = longest[A[j], c] = longest[A[i], A[j]] + 1 ans = max(ans, cand) return ans if ans >= 3 else 0
A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 <= n Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0. (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)   Example 1: Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8]. Example 2: Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].   Note: 3 <= A.length <= 1000 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9 (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
class Solution: def lenLongestFibSubseq(self, A: List[int]) -> int: s = set(A) d = dict() for i in range(len(A)): for j in range(i): if A[i] < 2 * A[j] and A[i] - A[j] in s: d[(A[i], A[j])] = d.get((A[j], A[i]-A[j]), 2) + 1 return max(d.values() or [0])
A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 <= n Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0. (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)   Example 1: Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8]. Example 2: Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].   Note: 3 <= A.length <= 1000 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9 (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
from collections import defaultdict class Solution: def lenLongestFibSubseq(self, A: List[int]) -> int: N = len(A) idx = {n: i for i, n in enumerate(A)} dp = defaultdict(lambda: 2) res = 0 for i in range(N): for j in range(i): if A[i] - A[j] < A[j] and A[i] - A[j] in idx: dp[A[j], A[i]] = dp[A[i]-A[j], A[j]] + 1 res = max(res, dp[A[j], A[i]]) return res if res > 2 else 0
A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 <= n Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0. (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)   Example 1: Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8]. Example 2: Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].   Note: 3 <= A.length <= 1000 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9 (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
class Solution: def lenLongestFibSubseq(self, A: List[int]) -> int: # # Time Complexity: O(N^2) # # Space Complesity: O(NlogM) # index_mapping = {num:index for index, num in enumerate(A)} # memory = collections.defaultdict(lambda: 2) # # memory[j, k] = memory[i, j] + 1 # # memory[i, j] a fibonacci subsequence ending with A[i] A[j] # # index i, j, k # result = 0 # for k, k_num in enumerate(A): # for j in range(k): # i = index_mapping.get(k_num - A[j]) # if i is not None and i < j: # # (i, j) can connect to (j, k) # memory[j, k] = memory[i, j] + 1 # result = max(memory[j, k] , result) # return result if result >=3 else 0 # n >= 3 # 还是老老实实用array matrix来做memorization好了 # Time Complexity: O(N^2) # Space Complesity: O(N^2) index_mapping = {number:index for index, number in enumerate(A)} memory = [[2 for i in range(len(A))] for j in range(len(A))] max_len = 0 for k in range(len(A)): for j in range(k): i_num = A[k] - A[j] if i_num in index_mapping and index_mapping[i_num] < j: i = index_mapping[i_num] memory[j][k] = memory[i][j] + 1 max_len = max(max_len, memory[j][k] ) return max_len if max_len >= 3 else 0
A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 <= n Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0. (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)   Example 1: Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8]. Example 2: Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].   Note: 3 <= A.length <= 1000 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9 (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
class Solution: def lenLongestFibSubseq1(self, A: List[int]) -> int: ''' time complexity: O(N^2logM) ''' s = set(A) n = len(A) res = 2 for i in range(n): for j in range(i+1,n): a = A[i] b = A[j] length = 2 while a+b in s: a,b,length = b,a+b, length +1 res = max(res,length) return res if res >2 else 0 def lenLongestFibSubseq(self, A: List[int]) -> int: ''' dp[i][j] represents the length of fibo sequence ends up with (A[i], A[j]) ''' n = len(A) res = 2 map = collections.defaultdict(int) for i,v in enumerate(A): map[v] = i dp = [[2 for _ in range(n+1)] for _ in range(n+1)] for j in range(n): for i in range(j): diff = A[j] - A[i] if diff in map and map[diff] < i: k = map[diff] dp[i][j] = dp[k][i]+1 res = max(res,dp[i][j]) return res if res >2 else 0
A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 <= n Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0. (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)   Example 1: Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8]. Example 2: Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].   Note: 3 <= A.length <= 1000 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9 (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
class Solution: def lenLongestFibSubseq1(self, A: List[int]) -> int: ''' time complexity: O(N^2logM) ''' s = set(A) n = len(A) res = 2 for i in range(n): for j in range(i+1,n): a = A[i] b = A[j] length = 2 while a+b in s: a,b,length = b,a+b, length +1 res = max(res,length) return res if res >2 else 0 def lenLongestFibSubseq(self, A: List[int]) -> int: ''' dp[i][j] represents the length of fibo sequence ends up with (A[i], A[j]) ''' map = collections.defaultdict(int) for i, v in enumerate(A): map[v]=i n = len(A) res = 2 dp = [[2 for _ in range(n+1)] for _ in range(n+1)] for j in range(n): for i in range(j): diff = A[j]-A[i] if diff in map and map[diff] < i: k = map[diff] dp[i][j] = 1+dp[k][i] res = max(dp[i][j],res) return res if res > 2 else 0
A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 <= n Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0. (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)   Example 1: Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8]. Example 2: Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].   Note: 3 <= A.length <= 1000 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9 (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
class Solution: def lenLongestFibSubseq(self, A: List[int]) -> int: s = set(A) count = 0 for i in range(len(A)): for j in range(i+1, len(A)): temp = 2 a = A[i] b = A[j] while a+b in s: temp += 1 count = max(count, temp) t = a a = b b = t+b return count
A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 <= n Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0. (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)   Example 1: Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8]. Example 2: Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].   Note: 3 <= A.length <= 1000 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9 (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
class Solution: def lenLongestFibSubseq(self, A: List[int]) -> int: longest=0 ss=set(A) for i,x in enumerate(A): for j,y in enumerate(A[i+1:]): tmp=x+y if(tmp in ss): ret=[x,y] t=x while(True): if(t+y in ss): t,y=y,t+y ret.append(y) else: break if(longest<len(ret)): longest=len(ret) return longest
A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 <= n Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0. (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)   Example 1: Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8]. Example 2: Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].   Note: 3 <= A.length <= 1000 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9 (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
class Solution: def lenLongestFibSubseq(self, A: List[int]) -> int: n = len (A) v2i = {v: i for i, v in enumerate (A)} dp = [[2] * n for _ in range (0, n)] ret = 0 # n1 + n2 = n3 for n3 in range (2, n): for n1 in range (0, n3 - 1): diff = A [n3] - A [n1] if diff < A [n1]: continue n2 = v2i.get (diff, -1) if n2 != -1:# and n1 < n2 and n2 < n3: length = dp [n1][n2] + 1 if length > dp [n2][n3]: dp [n2][n3] = length ret = max (ret, length) return ret res=0 d={x:i for i,x in enumerate(A)} n=len(A) dp=[[2 for j in range(n)] for i in range(n)] for i in range(2,n): for j in range(i): z=A[i] # = A [n3] x=A[j] # = A [n1] y=z-x # = diff = A [n3] - A [n1] k=d.get(y,-1) # n2 #x<y<z if x<y and k!=-1: # A[n1] < diff dp[i][k]=1+dp[k][j] # dp [n3][n2] = 1 + dp [n2][n1] res=max(res,dp[i][k]) if res>2: return res return 0
A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 <= n Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0. (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)   Example 1: Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8]. Example 2: Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].   Note: 3 <= A.length <= 1000 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9 (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
class Solution: # brute-force time O(n^2logm), m是A的最大值,代码在下面 # 试试机械dp, time O(n^2), space O(n^2) def lenLongestFibSubseq(self, A: List[int]) -> int: n = len(A) M = [[-1 for i in range(n)] for i in range(n)] mapping = {v:i for i, v in enumerate(A)} ret = 0 def dp(prev_, next_): if next_ == n-1: return 1 if M[prev_][next_] != -1: return M[prev_][next_] M[prev_][next_] = 1 if A[prev_]+A[next_] in mapping: M[prev_][next_] += dp(next_, mapping[A[prev_]+A[next_]]) return M[prev_][next_] for i in range(n): for j in range(i+1, n): if A[i]+A[j] in mapping: ret = max(ret, 2+dp(j, mapping[A[i]+A[j]])) return ret if ret > 2 else 0 # def lenLongestFibSubseq(self, A: List[int]) -> int: # ret = 0 # n = len(A) # mapping = {v:i for i, v in enumerate(A)} # for i in range(n): # for j in range(i+1, n): # prev_, next_ = A[j], A[i]+A[j] # length = 2 # while next_ in mapping: # length += 1 # prev_, next_ = next_, prev_+next_ # if length > 2: # ret = max(ret, length) # return ret
A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 <= n Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0. (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)   Example 1: Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8]. Example 2: Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].   Note: 3 <= A.length <= 1000 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9 (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
class Solution: def lenLongestFibSubseq(self, A: List[int]) -> int: dp = {} s = set(A) for j, c in enumerate(A): for b in A[:j]: a = c - b if a < b and a in s: dp[b, c] = dp.get((a, b), 2) + 1 return max(dp.values() or [0])
A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 <= n Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0. (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)   Example 1: Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8]. Example 2: Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].   Note: 3 <= A.length <= 1000 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9 (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
class Solution: def lenLongestFibSubseq(self, A: List[int]) -> int: index = {i:k for k,i in enumerate(A)} longest = collections.defaultdict(lambda:2) # ??? ans = 0 for k,z in enumerate(A): for j in range(k): i = index.get(z-A[j],None) # index of z-A[j] if i is not None and i<j: longest[j,k] = longest[i,j]+1 ans = max(ans, longest[j,k]) return ans
A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 <= n Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0. (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)   Example 1: Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8]. Example 2: Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].   Note: 3 <= A.length <= 1000 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9 (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
class Solution: def lenLongestFibSubseq(self, A: List[int]) -> int: index = {x:i for i, x in enumerate(A)} longest = collections.defaultdict(lambda: 2) result = 0 for k, z in enumerate(A): for j in range(k): i = index.get(z-A[j], len(A)+1) if i < j: longest[j, k] = longest[i, j] + 1 if longest[j, k] > result: result = longest[j, k] return result if result >= 3 else 0
A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 <= n Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0. (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)   Example 1: Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8]. Example 2: Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].   Note: 3 <= A.length <= 1000 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9 (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
class Solution: def lenLongestFibSubseq(self, A: List[int]) -> int: n = len (A) v2i = {v: i for i, v in enumerate (A)} dp = [[2] * n for _ in range (0, n)] ret = 0 # n1 + n2 = n3 for n3 in range (2, n): for n1 in range (0, n3 - 1): diff = A [n3] - A [n1] if diff < A [n1]: continue n2 = v2i.get (diff, -1) if n2 != -1:# and n1 < n2 and n2 < n3: length = dp [n1][n2] + 1 if length > dp [n2][n3]: dp [n2][n3] = length ret = max (ret, length) return ret
A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 <= n Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0. (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)   Example 1: Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8]. Example 2: Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].   Note: 3 <= A.length <= 1000 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9 (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
class Solution: def lenLongestFibSubseq1(self, A: List[int]) -> int: ''' time complexity: O(N^2logM) ''' s = set(A) n = len(A) res = 2 for i in range(n): for j in range(i+1,n): a = A[i] b = A[j] length = 2 while a+b in s: a,b,length = b,a+b, length +1 res = max(res,length) return res if res >2 else 0 def lenLongestFibSubseq(self, A: List[int]) -> int: ''' dp[i][j] represents the length of fibo sequence ends up with (A[i], A[j]) ''' map = collections.defaultdict(int) for i, v in enumerate(A): map[v]=i n = len(A) dp = [[2 for _ in range(n+1)] for _ in range(n+1)] for j in range(n): for i in range(j): diff = A[j]-A[i] if diff in map and map[diff] < i: k = map[diff] dp[i][j] = 1+dp[k][i] ans = max([max(n) for n in dp]) return 0 if ans <= 2 else ans
A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 <= n Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0. (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)   Example 1: Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8]. Example 2: Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].   Note: 3 <= A.length <= 1000 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9 (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
class Solution: def lenLongestFibSubseq(self, A: List[int]) -> int: def getLength(prev,curr): nxt = curr+prev if nxt in Aset: return 1+getLength(curr,nxt) else: return 2 Aset = set(A) out = max(max([getLength(a,b) for a in A[:i]],default=float('-inf')) for i,b in enumerate(A)) return out if out >= 3 else 0
A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 <= n Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0. (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)   Example 1: Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8]. Example 2: Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].   Note: 3 <= A.length <= 1000 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9 (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
class Solution: def lenLongestFibSubseq(self, A: List[int]) -> int: n = len(A) if n < 3: return 0 dp = [[2 for j in range(n)] for i in range(n)] ans = 2 hmap = {A[0]:0, A[1]:1} for i in range(2, n): for j in range(1, i): pos = hmap.get(A[i]-A[j], -1) if pos >= 0 and pos < j: dp[i][j] = max(dp[i][j], dp[j][pos]+1) ans = max(ans, dp[i][j]) hmap[A[i]] = i return ans if ans > 2 else 0
A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 <= n Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0. (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)   Example 1: Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8]. Example 2: Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].   Note: 3 <= A.length <= 1000 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9 (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
class Solution: def lenLongestFibSubseq(self, A: List[int]) -> int: idxs = {x: i for i, x in enumerate(A)} longest = defaultdict(lambda: 2) res = 0 for k, val in enumerate(A): for j in range(k): i = idxs.get(val - A[j], None) if i is not None and i < j: candidate = longest[(j, k)] = longest[(i, j)] + 1 res = max(res, candidate) return res if res >= 3 else 0
A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 <= n Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0. (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)   Example 1: Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8]. Example 2: Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].   Note: 3 <= A.length <= 1000 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9 (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
class Solution: def lenLongestFibSubseq(self, A: 'List[int]') -> 'int': map = collections.defaultdict(int) for i, v in enumerate(A): map[v]=i n = len(A) dp = [[2 for _ in range(n+1)] for _ in range(n+1)] for j in range(n): for i in range(j): diff = A[j]-A[i] if diff in map and diff < A[i]: k = map[diff] dp[i][j] = max(dp[i][j], 1+dp[k][i]) ans = max([max(n) for n in dp]) return 0 if ans <= 2 else ans