Datasets:

inputs
stringlengths
50
14k
targets
stringlengths
4
655k
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def divide(self, num, divisor): return -((-num)//divisor) def getQuotient(self, nums, divisor): output = 0 for num in nums: output += ceil(num/divisor) return output def getResult(self, results, divisor, nums): #if divisor in results: # return results[divisor] #else: # results[divisor] = self.getQuotient(nums, divisor) # return results[divisor] return self.getQuotient(nums, divisor) def helper(self, results, nums, i, j, threshold): if i == j: return i mid = (i+j)//2 if mid == 1: return mid elif self.getResult(results, mid, nums) <= threshold and self.getResult(results, mid-1, nums) > threshold: return mid elif self.getResult(results, mid, nums) <= threshold: return self.helper(results, nums, i, mid-1, threshold) else: return self.helper(results, nums, mid+1, j, threshold) def smallestDivisor(self, nums: List[int], threshold: int) -> int: maxDivisor = self.divide(2*sum(nums), threshold) #print(maxDivisor) #maxDivisor = 1000000 results = dict() return self.helper(results, nums, 1, maxDivisor, threshold)
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: # (s + n) / x <= threshold # x >= (s + n) / threshold # x >= (s + n) // threshold # n <= t # n >= 1 # t >= 1 # s / x <= t # x <= s n, j = len(nums), sum(nums) i = (j + n) // threshold i = 1 if i == 0 else i while i < j-1: k = (i + j) // 2 ss = sum([math.ceil(n / k) for n in nums]) if ss > threshold: i = k else: j = k if sum([math.ceil(n / i) for n in nums]) <= threshold: return i else: return j
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
import math class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: self.nums = nums self.threshold = threshold num_sum = sum(nums) l = math.floor(num_sum / threshold)-1 h = num_sum m = math.ceil((l+h) / 2) while h != m: # print(l,h) if self.validate_divisor(m): h = m else: l = m m = math.ceil((l+h) / 2) return h def validate_divisor(self, divisor): if divisor <= 0: return False s = sum(math.ceil(x / divisor) for x in self.nums) # print('validate', divisor, s, s <= self.threshold) return s <= self.threshold
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
import math class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: def condition(divisor): return sum((num - 1) // divisor +1 for num in nums) <= threshold left, right = ceil(sum(nums)/threshold), max(nums) while left < right: mid = left + (right -left) //2 if condition(mid): right = mid else: left = mid + 1 return left
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: l = 1; r = 2**31-1 calc = lambda cand: sum(ceil(x/cand) for x in nums) while l + 1 < r: mid = l+(r-l)//2 if calc(mid) > threshold: l = mid else: r = mid if calc(l) <= threshold: return l else: return r
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
import math class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: # bruteforce ''' divisor = 0 trial_sum = float(inf) while trial_sum > threshold: divisor += 1 trial_sum = 0 for num in nums: trial_sum += math.ceil(num / divisor) return divisor ''' # binary search low = 1 high = 100000000 while (low <= high): mid = low + (high - low) // 2 if self.getSum(nums, mid) <= threshold: high = mid - 1 elif self.getSum(nums, mid) > threshold: low = mid + 1 return low def getSum(self, nums, divisor): trial_sum = 0 for num in nums: trial_sum += math.ceil(num / divisor) return trial_sum
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
import math class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: def candidate(val): res = sum(math.ceil(v/val) for v in nums) return res <= threshold lo, hi = 1, max(nums) while lo < hi: med = lo + (hi-lo)//2 if candidate(med): hi = med else: lo = med+1 return hi
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
import math class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: def posb(m): s=0 for i in range(len(nums)): s+=math.ceil(nums[i]/m) return s>threshold l=1 r=10**9 while l<r: mid=(l+r)//2 if posb(mid)==False: r=mid else: l=mid+1 return l
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: def calculate(divisor): _sum=0 for val in nums: _sum+=val//divisor + int(val%divisor!=0) return _sum start,end=1,sum(nums) while start<end: mid=start+(end-start)//2 _sum=calculate(mid) if _sum>threshold: start=mid+1 else: end=mid return start
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: #print(math.ceil(7/3)) high = sum(nums) if high <= threshold: return 1 def sum_divide(divisor): su = 0 for num in nums: su += math.ceil(num / divisor) if su > threshold: return False return True low = 1 while low < high: mid = low + (high - low) // 2 if sum_divide(mid): high = mid else: low = mid + 1 return low
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: lo, hi = 1, max(nums) while lo <= hi: mid = (lo+hi)//2 divisor_sum = sum([math.ceil(x/mid) for x in nums]) # will be larger next_sum = sum([math.ceil(x/(mid+1)) for x in nums]) # will be smaller if next_sum <= threshold < divisor_sum: return mid+1 elif next_sum > threshold: lo = mid + 1 elif divisor_sum <= threshold: hi = mid - 1 return 1
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
import math class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: # sum/divisor<= threshold # divisor >= sum/threshold def is_le(divisor): count = 0 for num in nums: count += math.ceil(num/divisor) if count>threshold: return False return True low = max(1,math.floor(sum(nums)/threshold)) high = max(nums) while low<high: mid = low + (high-low)//2 if is_le(mid): high = mid else: low = mid + 1 return low
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
from math import ceil def is_fine(nums,val,threshold): tot = 0 for i in nums: tot += ceil(i/val) if tot <= threshold: return True else: return False def bSearch(l,r,nums,threshold): if l <= r: mid = (l+r)//2 high_val = is_fine(nums,mid,threshold) low_val = is_fine(nums,mid-1,threshold) if high_val is True and low_val is False: return mid elif high_val is False and low_val is False: return bSearch(mid+1,r,nums,threshold) else: return bSearch(l,mid-1,nums,threshold) else: return None class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: if sum(nums) <= threshold: return 1 return bSearch(2,10**7,nums,threshold)
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: lo, hi = 1, max(nums) while lo < hi: mid = (lo+hi)//2 print(sum([math.ceil(n/mid) for n in nums])) if sum([math.ceil(n/mid) for n in nums]) <= threshold: hi = mid else: lo = mid+1 return lo
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def satisfyThreshold(self, nums, threshold, divisor): return sum((((n-1) // divisor) + 1 for n in nums)) <= threshold def smallestDivisor(self, nums: List[int], threshold: int) -> int: left = 1 right = max(nums) while left < right: mid = left + (right - left) // 2 if self.satisfyThreshold(nums, threshold, mid): right = mid else: left = mid + 1 return left
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: val=sum(nums) n=len(nums) if val<=threshold: return 1 p=val//threshold+int(val%threshold!=0) q=val//(max(1,threshold-n-1)) q=q+4 p=max(2,p) check=1 while (p<q): mid=(p+q)//2 count1=0 count2=0 for i in nums: count1=count1+(i//mid+int(i%mid!=0)) count2=count2+(i//(mid-1)+int(i%(mid-1)!=0)) if count1<=threshold and count2>threshold: return mid elif count1<=threshold and count2<=threshold: q=mid elif count1>threshold: p=mid+1
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: left = 1 right = max(nums) while left <= right: mid = (right + left) // 2 acc = 0 for n in nums: acc += math.ceil(n/mid) # print(left, mid, right, '|', acc) if acc > threshold: left = mid + 1 elif acc <= threshold: right = mid - 1 return left
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: def check(nums, a, th): for n in nums: th-=math.ceil(n/a) if th<0: return False return True l,r=1,max(nums) while l<r: mid=(l+r)//2 if check(nums, mid, threshold): r=mid else: l=mid+1 return l
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
import math class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: nums.sort() return self.binSearch(1, nums[-1], nums, threshold) def binSearch(self, head, tail, nums, threshold): if head == tail: return head mid = (tail - head) // 2 + head ct = 0 flag = True for num in nums: ct += math.ceil(num/mid) if ct > threshold: flag = False break if not flag: return self.binSearch(mid + 1, tail, nums, threshold) else: return self.binSearch(head, mid, nums, threshold)
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
#import math from numpy import ceil class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: def candidate(val): #res = sum(math.ceil(v/val) for v in nums) res = sum((v-1)//val + 1 for v in nums) return res <= threshold lo, hi = 1, max(nums) while lo < hi: med = lo + (hi-lo)//2 if candidate(med): hi = med else: lo = med+1 return hi
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: def thres(div): return sum([ceil(val/div) for val in nums]) l,h=1,max(nums) while(l<=h): mid=l+((h-l)>>1) if thres(mid)<=threshold: h=mid-1 else: l=mid+1 return l
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: left = 1 right = max(nums) while left < right: mid = (right + left) // 2 acc = 0 for n in nums: acc += math.ceil(n/mid) # print(left, mid, right, '|', acc) if acc > threshold: left = mid + 1 elif acc <= threshold: right = mid return left
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: # O(n*log(sum(nums))) # sum = 18, threshold = 6, left = 0, right = 3 l = 1 r = max(nums) while l < r: m = l + (r - l) // 2 # print(l, r) s = sum([ceil(x/m) for x in nums]) # print(\"sum: \", s) if s > threshold: l = m + 1 else: r = m return l
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: l = 0 r = nums[-1] res = [] while r-l > 1: c = (l+r)//2 tmp_sum = [math.ceil(i/c) for i in nums] tmp_sum = sum(tmp_sum) if tmp_sum > threshold: l = c elif tmp_sum <= threshold: r=c res.append(c) return min(res)
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: l, r = 1, max(nums) count = 0 while l < r: m = l + (r-l)//2 for i in nums: count += (i + m -1) // m if count > threshold: l = m + 1 else: r = m count = 0 return l
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: nums.sort() n = len(nums) start, end = 1, nums[-1] while start < end: mid = (start + end) // 2 j = n - 1 s = n while j >= 0 and mid < nums[j]: s -= 1 s += math.ceil(nums[j] / mid) j -= 1 if s > threshold: start = mid + 1 else: end = mid return start # j = len(nums) - 1 # for i in nums[::-1]: # j = n - 1 # s = n # while j >= 0 and i < nums[j]: # s -= 1 # s += math.ceil(nums[j] / i) # j -= 1 # if s > threshold: # start = i # end = prev # break # prev = i # else: # start = 1 # end = i # # print(start, end) # for i in range(end, start - 1, -1): # j = n - 1 # s = n # while j >= 0 and i < nums[j]: # s -= 1 # s += math.ceil(nums[j] / i) # j -= 1 # if s > threshold: # return i + 1 # return 1
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: def condition(arr, thr, div): res = 0 for i in arr: res += math.ceil(i/div) return res <= thr l, r = 1, max(nums) while l < r: m = l + (r-l)//2 if condition(nums, threshold, m): r = m else: l = m + 1 return l
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
import math class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: n = len(nums) small, big = 1, max(nums) while small < big: mid = small + (big-small)//2 cur = 0 for num in nums: cur += math.ceil(num/mid) if cur > threshold: small = mid + 1 else: big = mid return small
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
import math class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: # left, right = 1, max(nums) # while left + 1 < right: # mid = (left + right) // 2 # div_sum = self.get_sum(mid, nums) # if div_sum > threshold: # left = mid # else: # right = mid # div_sum = self.get_sum(left, nums) # if div_sum <= threshold: # return left # return right # def get_sum(self, divisor, nums): # res = 0 # for n in nums: # tmp = n // divisor # if tmp * divisor < n: # tmp += 1 # res += tmp # return res def chk(nmb): if nmb == 0: return False val = 0 for num in nums: val += math.ceil(num/nmb) if val > threshold: return False return True high = sum(nums) low = math.ceil(high/threshold) while low <= high: mid = (low + high)//2 if chk(mid): high = mid - 1 elif not chk(mid): low = mid + 1 return low-1 if chk(low-1) else high+1
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: left, right = 1, max(nums) while left < right: mid = (left + right) // 2 if self.findSum(nums, mid) > threshold: left = mid + 1 else: right = mid return left def findSum(self, nums, divisor): return sum(math.ceil(num / divisor) for num in nums)
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: def getSum(k): res = 0 for n in nums: if n % k == 0: res += n // k else: res += n // k + 1 return res l, r = max(sum(nums) // threshold, 1), max(1, sum(nums)) while l < r: m = (l + r) // 2 if getSum(m) > threshold: l = m + 1 else: r = m return l
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
import math class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: # left, right = 1, max(nums) # while left + 1 < right: # mid = (left + right) // 2 # div_sum = self.get_sum(mid, nums) # if div_sum > threshold: # left = mid # else: # right = mid # div_sum = self.get_sum(left, nums) # if div_sum <= threshold: # return left # return right # def get_sum(self, divisor, nums): # res = 0 # for n in nums: # tmp = n // divisor # if tmp * divisor < n: # tmp += 1 # res += tmp # return res def chk(nmb): if nmb == 0: return False val = 0 for num in nums: val += math.ceil(num/nmb) if val > threshold: return False return True high = sum(nums) low = (high//threshold) while low <= high: mid = (low + high)//2 if chk(mid): high = mid - 1 elif not chk(mid): low = mid + 1 return low-1 if chk(low-1) else high+1
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: l = 1 u = max(nums) def division_sum(k): return sum(int(math.ceil(n/k)) for n in nums) while l < u: mid = l + (u-l)//2 if division_sum(mid) <= threshold: u = mid else: l = mid + 1 return l
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
import math class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: def condition(divisor): return sum((num - 1) // divisor +1 for num in nums) <= threshold left, right = 1, max(nums) while left < right: mid = left + (right -left) //2 if condition(mid): right = mid else: left = mid + 1 return left
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: ''' find m where (num + m) // m for all nums and sum to <= threshold ''' i = 1 j = max(nums) m = (i + j) // 2 ans = 0 while i <= j: total = 0 for num in nums: total += (num + m - 1) // m # ceil. division if total > threshold: i = m + 1 elif total <= threshold: j = m - 1 ans = m m = (i + j) // 2 # mid point return ans
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: ''' find m where (num + m) // m for all nums and sum to <= threshold ''' i = 1 j = max(nums) while i < j: m = (i + j) // 2 total = 0 for num in nums: total += (num + m - 1) // m # ceil. division if total > threshold: i = m + 1 elif total <= threshold: j = m return i
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: l = 1 r = max(nums) while l < r: m = (l + r) // 2 if sum((n + m - 1) // m for n in nums) > threshold: l = m + 1 else: r = m return l
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: def feasible(div): count = 0 for num in nums: count += (num-1)//div + 1 return count<=threshold left = 1 right = max(nums) while left < right: mid = left + ((right-left)>>1) if feasible(mid): right = mid else: left = mid+1 return left
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: #def evl(d): #s = 0 #for n in nums: # s += (n-1) // d + 1 #return s # return def BS(p, r): if r-p <= 1: if sum([(n-1)//p + 1 for n in nums]) <= threshold: return p return r q = (r+p)//2 e = sum([(n-1)//q + 1 for n in nums]) if e <= threshold: return BS(p, q) else: return BS(q, r) r = max(nums) p = 1 return BS(p,r)
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
from numpy import array, ceil, sum class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: ''' Original solution def div(a,b): return (a//b + 1 - (a//b == a/b)) divisor = max(nums)//2 divided_list = [div(num, divisor) for num in nums] left = 1 right = max(nums) while right - left > 1: goleft = (sum(divided_list) <= threshold) if goleft: right = divisor divisor = (divisor + left) // 2 else: left = divisor divisor = (divisor + right) // 2 #print(f\"left:{left}, right:{right}\") divided_list = [div(num, divisor) for num in nums] if sum(divided_list) > threshold: divisor += 1 return divisor''' nums = array(nums) l, r = int(ceil(sum(nums)/threshold)), max(nums) while l < r: mid = (l+r)//2 if sum(ceil(nums/mid)) <= threshold: r = mid else: l = mid + 1 return r
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: low,high = 1, max(nums) while low<high: mid = (low+high)//2 if(sum(ceil(elem/mid) for elem in nums)) > threshold: low = mid +1 else: high = mid return low
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
from math import ceil class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: l, r = 1, max(nums) while l < r: d = (l+r) // 2 s = sum ( [ ceil(n/d) for n in nums ]) if s>threshold: l = d+1 else: r = d return l
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: mx = max(nums) low = 1 high = mx best = mx while low < high: med = low + (high-low) // 2 total = 0 for num in nums: total += ceil(num / med) if total <= threshold: high = med best = min(best,med) else: low = med + 1 return best
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: low, high = 1, max(nums) while low <= high: mid = (low + high)//2 total = 0 for num in nums: total += ceil(num/mid) if total > threshold: low = mid + 1 else: high = mid - 1 return low
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: # high = math.ceil(max(nums) * len(nums) / threshold) # low = math.ceil(sum(nums) / threshold) low, high = math.ceil(sum(nums)/threshold), math.ceil(sum(nums)/(threshold-len(nums))) def binary_search(low, high): if high > low: mid = (high + low) // 2 tot = 0 for num in nums: tot += math.ceil(num / mid) if tot <= threshold: return binary_search(low, mid) else: return binary_search(mid + 1, high) else: return high return binary_search(low, high)
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
from math import ceil class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: left=1 right=max(nums) def cal_sum(div): div_sum=0 for num in nums: div_sum+=ceil(num/div) return div_sum while left< right: mid=left+(right-left)//2 if cal_sum(mid)>threshold: left=mid+1 else: right=mid return right
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
from math import ceil class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: left=1 right=max(nums) def cal_sum(div): div_sum=0 for num in nums: div_sum+=ceil(num/div) return div_sum while left< right: mid=left+(right-left)//2 if cal_sum(mid)>threshold: left=mid+1 else: right=mid return left
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
from bisect import bisect_left class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: hi = math.ceil(len(nums) * max(nums) / threshold) lo = math.ceil(sum(nums) / threshold) while lo <= hi: med = (lo + hi) // 2 cur = self.divSum(nums, med) if cur <= threshold: hi = med - 1 else: lo = med + 1 return lo def divSum(self, nums, div): total = 0 for num in nums: total += math.ceil(num / div) return total
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
import math class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: def division(divisor): total = 0 for n in nums: total += math.ceil(n / divisor) return total total = sum(nums) left = max(1, total//threshold) right = math.ceil(total/(threshold-len(nums))) while left < right: mid = (left + right) // 2 if division(mid) > threshold: left = mid + 1 else: right = mid return left
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: left, right = 1, max(nums) while left < right: mid = left + (right-left)//2 total = sum([(x + mid - 1)//mid for x in nums]) if total > threshold: left = mid + 1 else: right = mid return left
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
from numpy import array, ceil, sum class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: nums = array(nums) l, r = 1, max(nums) while l < r: mid = (l+r)//2 if sum(ceil(nums / mid)) <= threshold: r = mid else: l = mid + 1 return r
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: def condition(mid): sum_nums = 0 for num in nums: sum_nums += ceil(num/mid) return sum_nums <= threshold left = 1 right = max(nums) while left < right: mid = (left + right)//2 if condition(mid): right = mid else: left = mid + 1 return left
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
from math import ceil class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: left, right = 1, max(nums) while left <= right: m = left + (right - left) // 2 if self.check(nums, m, threshold): ans = m right = m - 1 else: left = m + 1 return ans def check(self, nums, m, threshold): return sum([ceil(x/m) for x in nums]) <= threshold
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: high = math.ceil(max(nums) * len(nums) / threshold) low = math.ceil(sum(nums) / threshold) while high > low: mid = (high + low) // 2 tot = 0 for num in nums: tot += math.ceil(num / mid) if tot <= threshold: high = mid else: low = mid + 1 return high
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: def helper(div): output = 0 for n in nums: if n % div == 0: output += n//div else: output += n//div+1 if output <= threshold: return True return False nums.sort() l, r = 1, max(nums) while l < r: mid = l + (r-l)//2 if helper(mid): r = mid else: l = mid + 1 return l
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
import math class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: # No matter what each num must contribute at least 1 (even if the divisor is infinite) # We need to binary search divisor range from 1 to max(nums), since the lowest divisor possible is dividing by 1, and the highest divisor we can use is the max of nums, so everything will divide to 1 left = 1 right = max(nums) while left <= right: mid = (left + right) // 2 sum_val = sum(math.ceil(num / mid) for num in nums) if sum_val <= threshold: # We want to divide by a smaller num right = mid - 1 else: left = mid + 1 # Left will stop at the lowest divisor that makes sum_val <= threshold return left
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: L, R = 1, max(nums)+1 def solve(divisor): sums = 0 for num in nums: sums += num // divisor sums += 0 if num % divisor == 0 else 1 return sums > threshold while L < R: mid = L + (R-L) // 2 if solve(mid): L = mid + 1 else: R = mid return R
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: a = 1 b = max(nums) i = (a+b)//2 ans = 10000000000000 while b-a >1: sum = 0 for j in nums: if j%i == 0: sum += j//i else: sum += j//i + 1 if sum <= threshold: ans = min(i,ans) b = i else: a = i i = (a+b)//2 for i in(a,b): sum = 0 for j in nums: if j%i == 0: sum += j//i else: sum += j//i + 1 if sum <= threshold: ans = min(i,ans) return ans
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
import math class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: low, high = 1, max(nums) while low < high: mid = (low+high)//2 if sum(math.ceil(num/mid) for num in nums) > threshold: low = mid + 1 else: high = mid return low
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
import numpy as np class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: nums = np.array(nums) left = sum(nums) // threshold right = max(nums) + 1 while left < right: mid = left + (right - left) // 2 if np.sum(np.ceil(nums / mid)) <= threshold: right = mid else: left = mid + 1 return left
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: L, R = 1, max(nums)+1 def solve(divisor): res = [] for num in nums: res.append(num // divisor + (0 if num % divisor == 0 else 1)) return sum(res) > threshold while L < R: mid = L + (R-L) // 2 if solve(mid): L = mid + 1 else: R = mid return R
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: left = 1 right = max(nums) while left < right: mid = (left+right)//2 cur_sum = 0 for each in nums: cur_sum += math.ceil(each/mid) if cur_sum <= threshold: right = mid else: left = mid+1 return left
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: low = 1 high = 2 * max(nums) ans = float('inf') while low <= high: mid = (low + high) // 2 m = sum(math.ceil(x/mid) for x in nums) if m <= threshold: ans = min(ans, mid) high = mid - 1 else: low = mid + 1 return ans
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: s = sum(nums) lo = max(1, s // threshold) hi = max(nums) while lo < hi: mid = (lo + hi) // 2 r = sum([math.ceil(n / mid) for n in nums]) if r > threshold: lo = mid + 1 else: hi = mid return lo
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
import math class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: def get_sum(nmb): if nmb == 0: return False val = 0 for num in nums: val += math.ceil(num/nmb) return val left, right = 1, max(nums) while left <= right: mid = (left + right) // 2 if get_sum(mid) > threshold: left = mid+1 else: right = mid-1 return right+1 if get_sum(right+1) else right # def get_sum(self, divisor, nums): # res = 0 # for n in nums: # tmp = n // divisor # if tmp * divisor < n: # tmp += 1 # res += tmp # return res # def chk(nmb): # if nmb == 0: # return False # val = 0 # for num in nums: # val += math.ceil(num/nmb) # if val > threshold: # return False # return True
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: def get_sum(d): ans = 0 for n in nums: ans += math.ceil(n/d) return ans l, r = 1, max(nums) ans = 0 while l < r: m = (l + r) // 2 test = get_sum(m) if test <= threshold: ans = m r = m else: l = m + 1 return l
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
from numpy import array, ceil class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: nums = array(nums) l, r = 1, max(nums) while l < r: mid = (l+r)//2 if sum(ceil(nums / mid)) <= threshold: r = mid else: l = mid + 1 return r
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
import math class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: def get_sum(nmb): if nmb == 0: return False val = 0 for num in nums: val += math.ceil(num/nmb) return val left, right = 1, max(nums) while left <= right: mid = (left + right) // 2 if get_sum(mid) > threshold: left = mid+1 else: right = mid-1 if get_sum(left) <= threshold: return left return right # def get_sum(self, divisor, nums): # res = 0 # for n in nums: # tmp = n // divisor # if tmp * divisor < n: # tmp += 1 # res += tmp # return res # def chk(nmb): # if nmb == 0: # return False # val = 0 # for num in nums: # val += math.ceil(num/nmb) # if val > threshold: # return False # return True # high = max(nums) # low = high//threshold # while low <= high: # mid = (low + high)//2 # if chk(mid): # high = mid - 1 # elif not chk(mid): # low = mid + 1 # return low-1 if chk(low-1) else high+1
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
import numpy as np class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: Nums = np.array(nums) low = 1 high = np.max(Nums) min_num = np.max(Nums) Sum = 0 while low <= high: mid = np.ceil((low + high) / 2) Sum = np.sum(np.ceil(Nums/mid)) if Sum <= threshold: min_num = mid high = mid - 1 else: low = mid + 1 return int(min_num)
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: l = 1 r = max(nums) def helper(arr,mid,threshold): return sum([math.ceil(num/mid) for num in arr])<=threshold while l<=r: mid = (l+r)//2 if helper(nums,mid,threshold): r = mid-1 else: l = mid+1 return l
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: left, right = 1, max(nums) while left < right: mid = left + (right - left) // 2 divided = sum([num//mid + int(num%mid > 0) for num in nums]) # print(mid, divided, threshold) if divided > threshold: left = mid + 1 else: right = mid return right
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: low=1 high=max(nums) n=len(nums) while(low<high): mid=low+(high-low)//2 s=0 for i in range(n): s+=math.ceil(nums[i]/mid) if(s>threshold): low=mid+1 else: high=mid return high
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: def enough(x): cnt = 0 for num in nums: cnt += int(num//x) + (num%x > 0) return cnt <= threshold left, right = 1, max(nums) while left < right: mid = (left + right) // 2 if enough(mid): right = mid else: left = mid+1 return left
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: def calculate(divisor): _sum=0 for val in nums: _sum+=val//divisor + int(val%divisor!=0) return _sum start,end=1,max(nums) while start<end: mid=start+(end-start)//2 _sum=calculate(mid) if _sum>threshold: start=mid+1 else: end=mid return start
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
import math class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: def ok(mid): ans = 0 for num in nums: ans += math.ceil(num / mid) if ans > threshold: return False return True l, r = 1, int(1e6) while l <= r: mid = (l+r) // 2 if ok(mid): r = mid - 1 else: l = mid + 1 return l # nums.sort() # v1 = sum(nums) # v2 = len(nums) # if v1<= threshold: # return 1 # l = 1 # u = max(nums) # addl = [] # while l+1<u: # print(l,u) # mid = (l+u)//2 # print('mid',mid) # add = 0 # for i in range(len(nums)): # add = add + math.ceil(nums[i]/mid) # print(add) # if add>threshold: # l = mid # elif add == threshold: # return mid # else: # addl.append(mid) # u = mid # return min(addl
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
import math class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: # max = 0 # for j in range(threshold): # count = 0 # for i in range(len(nums)): # a = nums[i]/(j+1) # count += math.ceil(a) # print(count) # if count <= threshold: # if max < count: # max = count # return j def checking(mid): ans = 0 for num in nums: ans += math.ceil(num/mid) if ans > threshold: return False return True l, r = 1, int(1e6) while l<= r: mid = (l+r)//2 if checking(mid): r = mid-1 else: l = mid+1 return l
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: #res=sum(nums) #print(1//5) #n=max(nums)+1 #print(int(1e6)) def dfs(m): r=0 for i in nums: r+=math.ceil(i/m) if r>threshold: return False return True l,r=1,int(1e6) while l<=r: m=(l+r)//2 if dfs(m): r=m-1 else: l=m+1 return l ''' for i in range(1,max(nums)): r=0 n-=1 for j in nums: if j%i==0: r+=j//i else: r+=(j//i)+1 if r<=threshold: return i ''' #return res
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: r = max(nums) l = 1 def calc(div): s = sum([(num + div - 1) // div for num in nums]) return s <= threshold while l < r: mid = (l + r) // 2 val = calc(mid) # print (\"[%d, %d] => %d v %r\" %(l, r, mid, val)) if calc(mid): r = mid else: l = mid + 1 return l
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: def bs(mid): sum_val = 0 for i in nums: sum_val+=math.ceil(i/mid) if sum_val > threshold: return False return True l =1 r = 10**6 while l<=r: mid = (l+r)//2 if bs(mid): r = mid-1 else: l=mid+1 return l
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
from numpy import array, ceil, sum class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: nums = array(nums) l, r = 1, max(nums) while l < r: mid = (l+r)//2 if sum(ceil(nums / mid)) <= threshold: r = mid else: l = mid + 1 return r
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
import math def divisor(l, n): ans = 0 for i in l: ans += math.ceil(i/n) return ans class Solution: def smallestDivisor(self, l: List[int], t: int) -> int: if sum(l)<=t: return 1 s = sum(l) ans = 0 x = 0 i = 1 j = 1 while(x<t): j = i x = divisor(l, i) if x<t: i *= 2 else: break mid = 0 j = max(l) p = -1 # print(i, j) while(i<j): mid = (i+j)//2 x = divisor(l, mid) # print('mid',x, mid) if x<t: j = mid elif x == t: break else: i = mid+1 if i == j: mid = j break while(1): # print(mid) x = divisor(l, mid-1) if x <= t: mid -= 1 else: break return mid
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: def ok(mid): ans = 0 for num in nums: ans += math.ceil(num / mid) if ans > threshold: return False return True l, r = 1, int(1e6) while l <= r: mid = (l+r) // 2 if ok(mid): r = mid - 1 else: l = mid + 1 return l
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: def check(div): # print(sum([elem/div if elem % div == 0 else (elem//div)+1 for elem in nums])) return threshold >= sum([elem/div if elem % div == 0 else (elem//div)+1 for elem in nums]) def bst(low,high): # print(low,high) mid = (low+high) // 2 if low > high: return -1 elif low == high: if check(low): return low else: return -1 else: if check(mid): ambition = bst(low,mid-1) if ambition != -1: return ambition else: return mid else: return bst(mid+1,high) return bst(1,10**9)
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: start = 1 end = max(nums) while start <= end: mid = (start + end) // 2 result = self.satistfy(nums, mid) if result <= threshold: end = mid - 1 else: start = mid + 1 return start def satistfy(self, nums, mid): return sum(list([math.ceil(x/mid) for x in nums]))
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: start = 1 end = max(nums) while start+1 < end: mid = (start + end) // 2 result = sum(list([math.ceil(x/mid) for x in nums])) if result <= threshold: end = mid else: start = mid if sum(list([math.ceil(x/start) for x in nums])) <= threshold: return start return end
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
import math class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: if not nums: return sys.maxsize left, right = 1, 2 while right < sys.maxsize and self.get_sum(nums, right) > threshold: left, right = right, right * 10 while left + 1 < right: mid = (left + right) // 2 if self.get_sum(nums, mid) <= threshold: right = mid else: left = mid if self.get_sum(nums, left) <= threshold: return left return right def get_sum(self, nums: List[int], divisor: int) -> int: result = 0 for num in nums: result += math.ceil(num / divisor) return int(result)
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
import math def divide_and_sum(nums, divisor): return sum([math.ceil(x / divisor) for x in nums]) class Solution: def smallestDivisor(self, nums, threshold): start = max(nums) end = 1 assert divide_and_sum(nums, start) <= threshold, 'impossible, threshold is guaranteed to be at least len(nums)' if divide_and_sum(nums, end) <= threshold: # there are no divisors smaller than 1 return end # loop invariant: # dsum(nums, start) <= threshold # dsum(nums, end) > threshold while start >= end: mid = (start + end) // 2 dsum = divide_and_sum(nums, mid) if dsum == threshold: #print('case 1') while divide_and_sum(nums, mid) == threshold: mid -= 1 return mid + 1 if dsum > threshold: # divisor is too small end = mid + 1 if dsum < threshold: # threshold is too large start = mid - 1 #print('case 2') return end
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: start = 1 end = max(nums) while start+1 < end: mid = (start + end) // 2 result = self.satistfy(nums, mid) if result <= threshold: end = mid else: start = mid if self.satistfy(nums, start) <= threshold: return start return end def satistfy(self, nums, mid): return sum(list([math.ceil(x/mid) for x in nums]))
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
''' Binary search to find the best divisor that doesn't go through the threshold ''' class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: def ok(divisor): sol = 0 for n in nums: sol += ceil(n / divisor) return sol <= threshold lo = 1 hi = max(nums) while lo <= hi: mid = (lo + hi) // 2 # if current is okay, we have to go higher lower if ok(mid): hi = mid - 1 else: lo = mid + 1 return lo
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
from numpy import array, ceil, sum class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: nums = array(nums) l, r = int(ceil(sum(nums)/threshold)), max(nums) while l < r: mid = (l+r)//2 if sum(ceil(nums/mid)) <= threshold: r = mid else: l = mid + 1 return r
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
import math def divide_and_sum(nums, divisor): return sum([math.ceil(x / divisor) for x in nums]) class Solution: def smallestDivisor(self, nums, threshold): start = max(nums) end = 1 assert divide_and_sum(nums, start) <= threshold, 'impossible, threshold is guaranteed to be at least len(nums)' if divide_and_sum(nums, end) <= threshold: # there are no divisors smaller than 1 return end # loop invariant: # dsum(nums, start) <= threshold # dsum(nums, end) >= threshold while start >= end: mid = (start + end) // 2 dsum = divide_and_sum(nums, mid) if dsum == threshold: #print('case 1') mid -= 1 while divide_and_sum(nums, mid) == threshold: mid -= 1 return mid + 1 if dsum > threshold: # divisor is too small end = mid + 1 if dsum < threshold: # threshold is too large start = mid - 1 #print('case 2') #loop exit condition: #start < end #dsum(nums, start) <= threshold #dsum(nums, end) >= threshold print((start, end, divide_and_sum(nums, start), divide_and_sum(nums, end))) return end
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
import math class Solution: def smallestDivisor(self, nums: List[int], t: int) -> int: def mine2(n,nums): nums_copy = nums[:] nums_copy = list([math.ceil(x/n) for x in nums_copy]) return sum(nums_copy) def mine(left,right,nums,t,l): if(right>left): mid = (left+right)//2 if(mine2(mid,nums)<=t): right = mid-1 l.append(mid) else: left = mid+1 return mine(left,right,nums,t,l) else: if(left>0): if(mine2(left,nums)<=t): l.append(left) if(right>0): if(mine2(right,nums)<=t): l.append(right) return l l = [] return min(mine(1,max(nums),nums,t,l))
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
# Binary Search import math class Solution: def smallestDivisor(self, nums, threshold): nums.sort() # you can take hi=10^6 as well # but hi=max_element, will also be correct # because nums.length <= threshold ans = float('+INF') lo, hi = 1, nums[-1] while lo<=hi: mid = lo + (hi-lo)//2 if self.div(nums, mid) <= threshold: ans = min(ans, mid) hi = mid-1 else: lo = mid+1 return ans def div(self, nums, mid): t_sum=0 for i in nums: t_sum += int(math.ceil(i/mid)) return t_sum
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: # sm = sum(nums) # strt = sm//threshold # search_space = list(range(max(strt,1),sm)) # n = len(search_space) l = 1 r = max(nums) while(l+1<r): mid = l+(r-l)//2 # if self.search(nums,search_space[mid],threshold) == 0: # return search_space[mid] if self.search(nums,mid,threshold) > 0: r = mid elif self.search(nums,mid,threshold) < 0: l = mid # print(search_space[l],search_space[r]) if self.search(nums,l,threshold) >= 0: return l else: return r # print(search_space[l],search_space[r]) def search(self,nums,i,threshold): insum = sum([math.ceil(el/i) for el in nums]) # print(i,insum) # if insum == threshold: # return 0 if insum <= threshold: return 1 else: return -1
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def check(self,divisor,nums,threshold): result = 0 for number in nums: k = int(number/divisor) if number % divisor != 0: k +=1 result += k if result > threshold: return False return True def smallestDivisor(self, nums: List[int], threshold: int) -> int: low = 1 high = max(nums) while low <= high: mid = int((low+high)/2) if self.check(mid,nums,threshold): high = mid -1 else: low = mid+1 return low
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: sm = sum(nums) # strt = sm//threshold # search_space = list(range(max(strt,1),sm)) # n = len(search_space) l = max(sm//threshold,1) r = max(nums) while(l+1<r): mid = l+(r-l)//2 if self.search(nums,mid,threshold) > 0: r = mid elif self.search(nums,mid,threshold) < 0: l = mid+1 if self.search(nums,l,threshold) >= 0: return l else: return r # print(search_space[l],search_space[r]) def search(self,nums,i,threshold): insum = sum([math.ceil(el/i) for el in nums]) if insum <= threshold: return 1 else: return -1
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
class Solution: def divide(self, num, divisor): return -((-num)//divisor) def getQuotient(self, nums, divisor): output = 0 for num in nums: output += self.divide(num, divisor) return output def getResult(self, results, divisor, nums): if divisor in results: return results[divisor] else: results[divisor] = self.getQuotient(nums, divisor) return results[divisor] def helper(self, results, nums, i, j, threshold): if i == j: return i mid = (i+j)//2 if mid == 1: return mid elif self.getResult(results, mid, nums) <= threshold and self.getResult(results, mid-1, nums) > threshold: return mid elif self.getResult(results, mid, nums) <= threshold: return self.helper(results, nums, i, mid-1, threshold) else: return self.helper(results, nums, mid+1, j, threshold) def smallestDivisor(self, nums: List[int], threshold: int) -> int: maxDivisor = self.divide(2*sum(nums), threshold) #print(maxDivisor) #maxDivisor = 1000000 results = dict() return self.helper(results, nums, 1, maxDivisor, threshold)
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
import math class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: def chk(nmb): if nmb == 0: return False val = 0 for num in nums: val += math.ceil(num/nmb) return val <= threshold high = max(nums) low = high//threshold while low <= high: mid = (low + high)//2 if chk(mid): high = mid - 1 elif not chk(mid): low = mid + 1 return high+1 if chk(high+1) else high # def get_sum(self, divisor, nums): # res = 0 # for n in nums: # tmp = n // divisor # if tmp * divisor < n: # tmp += 1 # res += tmp # return res # def chk(nmb): # if nmb == 0: # return False # val = 0 # for num in nums: # val += math.ceil(num/nmb) # if val > threshold: # return False # return True
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
from math import ceil def eval(nums, i, thold): s1 = 0 for num in nums: s1 += ceil(num / i) if s1 <= thold: return True return False class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: lo, hi = 1, 100000000000 while lo < hi: mid = lo + (hi - lo) // 2 if eval(nums, mid, threshold): hi = mid else: lo = mid + 1 return lo
Given an array of integers nums and an integer threshold, we will choose a positive integer divisor and divide all the array by it and sum the result of the division. Find the smallest divisor such that the result mentioned above is less than or equal to threshold. Each result of division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3 and 10/2 = 5). It is guaranteed that there will be an answer.   Example 1: Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum to 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2). Example 2: Input: nums = [2,3,5,7,11], threshold = 11 Output: 3 Example 3: Input: nums = [19], threshold = 5 Output: 4   Constraints: 1 <= nums.length <= 5 * 10^4 1 <= nums[i] <= 10^6 nums.length <= threshold <= 10^6
# class Solution: # def smallestDivisor(self, nums: List[int], threshold: int) -> int: # def check(divisor): # res = 0 # for num in nums: # if num % divisor == 0: # res += num // divisor # else: # res += (num // divisor) + 1 # if res <= threshold: # return True # return False # left = 1 # right = 1000000 #最大元素700ms # # right = 1 800ms # # for num in nums: # # right = max(right, num) # while left < right: # mid = (left + right) >> 1 # if check(mid) == True: # right = mid # else: # left = mid+1 # return left from numpy import array, ceil, sum class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: nums = array(nums) l, r = 1, max(nums) while l < r: mid = (l+r)//2 if sum(ceil(nums / mid)) <= threshold: r = mid else: l = mid + 1 return r