state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (x \ y) \ z = x \ y ⊓ x \ z
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by
rw [sdiff_sdiff_left, sdiff_sup]
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by
Mathlib.Order.BooleanAlgebra.397_0.ewE75DLNneOU8G5
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by
rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by
Mathlib.Order.BooleanAlgebra.400_0.ewE75DLNneOU8G5
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x)
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by
rw [sup_inf_left, sup_comm, sup_inf_sdiff]
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by
Mathlib.Order.BooleanAlgebra.400_0.ewE75DLNneOU8G5
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x)
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x))
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by
rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by
Mathlib.Order.BooleanAlgebra.400_0.ewE75DLNneOU8G5
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x)
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by
ac_rfl
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by
Mathlib.Order.BooleanAlgebra.400_0.ewE75DLNneOU8G5
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x)
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by
rw [inf_idem]
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by
Mathlib.Order.BooleanAlgebra.400_0.ewE75DLNneOU8G5
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x)
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ z \ (x \ y) ⊓ z \ (y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by
rw [sdiff_sdiff_right, sdiff_sdiff_right]
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by
Mathlib.Order.BooleanAlgebra.411_0.ewE75DLNneOU8G5
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by
ac_rfl
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by
Mathlib.Order.BooleanAlgebra.411_0.ewE75DLNneOU8G5
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by
ac_rfl
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by
Mathlib.Order.BooleanAlgebra.411_0.ewE75DLNneOU8G5
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hcb : z ≤ y ⊢ (x \ z) \ (y \ z) = x \ y
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
Mathlib.Order.BooleanAlgebra.424_0.ewE75DLNneOU8G5
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α hcb : z ≤ y ⊢ (x \ z) \ (x \ y) ≤ y \ z ∧ x \ y ≤ (x \ z) \ (y \ z)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm]
Mathlib.Order.BooleanAlgebra.424_0.ewE75DLNneOU8G5
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by
rw [sup_inf_left]
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by
Mathlib.Order.BooleanAlgebra.429_0.ewE75DLNneOU8G5
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by
rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by
Mathlib.Order.BooleanAlgebra.429_0.ewE75DLNneOU8G5
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by
ac_rfl
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by
Mathlib.Order.BooleanAlgebra.429_0.ewE75DLNneOU8G5
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by
rw [inf_sup_self, sup_inf_inf_sdiff]
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by
Mathlib.Order.BooleanAlgebra.429_0.ewE75DLNneOU8G5
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) = x ⊓ y ⊔ x \ z ⊓ y \ z
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by
rw [@inf_comm _ _ y, sup_inf_left]
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by
Mathlib.Order.BooleanAlgebra.429_0.ewE75DLNneOU8G5
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by
ac_rfl
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by
Mathlib.Order.BooleanAlgebra.429_0.ewE75DLNneOU8G5
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z = ⊥
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by
rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by
Mathlib.Order.BooleanAlgebra.429_0.ewE75DLNneOU8G5
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by
rw [inf_assoc]
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by
Mathlib.Order.BooleanAlgebra.444_0.ewE75DLNneOU8G5
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ (y ⊓ z ⊔ y \ z) = x ⊓ y
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by
rw [sup_inf_sdiff]
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by
Mathlib.Order.BooleanAlgebra.444_0.ewE75DLNneOU8G5
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by
ac_rfl
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by
Mathlib.Order.BooleanAlgebra.444_0.ewE75DLNneOU8G5
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) = ⊥
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by
rw [inf_inf_sdiff, inf_bot_eq]
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by
Mathlib.Order.BooleanAlgebra.444_0.ewE75DLNneOU8G5
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x \ z ⊓ y = (x ⊓ y) \ z
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
Mathlib.Order.BooleanAlgebra.455_0.ewE75DLNneOU8G5
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α a b c : α ⊢ a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
Mathlib.Order.BooleanAlgebra.459_0.ewE75DLNneOU8G5
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c)
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α a b c : α ⊢ a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
Mathlib.Order.BooleanAlgebra.463_0.ewE75DLNneOU8G5
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c)
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ Disjoint (x \ z) y ↔ Disjoint x (y \ z)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
Mathlib.Order.BooleanAlgebra.467_0.ewE75DLNneOU8G5
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z)
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by
rw [sup_inf_left]
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by
Mathlib.Order.BooleanAlgebra.471_0.ewE75DLNneOU8G5
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y))
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by
ac_rfl
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by
Mathlib.Order.BooleanAlgebra.471_0.ewE75DLNneOU8G5
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) = (x ⊔ y \ x) ⊓ (x \ y ⊔ y)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by
rw [sup_sdiff_right, sup_sdiff_right]
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by
Mathlib.Order.BooleanAlgebra.471_0.ewE75DLNneOU8G5
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α ⊢ (x ⊔ y \ x) ⊓ (x \ y ⊔ y) = x ⊔ y
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by
rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by
Mathlib.Order.BooleanAlgebra.471_0.ewE75DLNneOU8G5
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α h : y < z \ x hxz : x ≤ z ⊢ x ⊔ y < z
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
Mathlib.Order.BooleanAlgebra.480_0.ewE75DLNneOU8G5
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α h : y < z \ x hxz : x ≤ z ⊢ x ⊔ y < x ⊔ z \ x
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz]
Mathlib.Order.BooleanAlgebra.480_0.ewE75DLNneOU8G5
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α h : y < z \ x hxz : x ≤ z h' : x ⊔ z \ x ≤ x ⊔ y ⊢ z \ x ≤ y
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
Mathlib.Order.BooleanAlgebra.480_0.ewE75DLNneOU8G5
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α h : y < z \ x hxz : x ≤ z h' : x ⊔ z \ x ≤ x ⊔ y ⊢ (z \ x) \ x ≤ y
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem]
Mathlib.Order.BooleanAlgebra.480_0.ewE75DLNneOU8G5
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α h : x < z \ y hyz : y ≤ z ⊢ x ⊔ y < z
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
Mathlib.Order.BooleanAlgebra.487_0.ewE75DLNneOU8G5
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α h : x < z \ y hyz : y ≤ z ⊢ x ⊔ y < z \ y ⊔ y
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz]
Mathlib.Order.BooleanAlgebra.487_0.ewE75DLNneOU8G5
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α h : x < z \ y hyz : y ≤ z h' : z \ y ⊔ y ≤ x ⊔ y ⊢ z \ y ≤ x
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
Mathlib.Order.BooleanAlgebra.487_0.ewE75DLNneOU8G5
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : GeneralizedBooleanAlgebra α h : x < z \ y hyz : y ≤ z h' : z \ y ⊔ y ≤ x ⊔ y ⊢ (z \ y) \ y ≤ x
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem]
Mathlib.Order.BooleanAlgebra.487_0.ewE75DLNneOU8G5
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝¹ : GeneralizedBooleanAlgebra α inst✝ : OrderTop α src✝² : GeneralizedBooleanAlgebra α := inst✝¹ src✝¹ : OrderBot α := toOrderBot src✝ : OrderTop α := inst✝ x✝¹ x✝ : α ⊢ x✝¹ \ x✝ = x✝¹ ⊓ x✝ᶜ
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq]
/-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164
Mathlib.Order.BooleanAlgebra.551_0.ewE75DLNneOU8G5
/-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α src✝ : BooleanAlgebra α := inst✝ a b : α ⊢ a ⊓ b ⊔ a \ b = a
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by
Mathlib.Order.BooleanAlgebra.600_0.ewE75DLNneOU8G5
instance (priority
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α src✝ : BooleanAlgebra α := inst✝ a b : α ⊢ a ⊓ b ⊓ a \ b = ⊥
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by
Mathlib.Order.BooleanAlgebra.600_0.ewE75DLNneOU8G5
instance (priority
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α src✝¹ : BooleanAlgebra α := inst✝ src✝ : GeneralizedCoheytingAlgebra α := GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra a b c : α ⊢ a ≤ b ⇨ c ↔ a ⊓ b ≤ c
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by
rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by
Mathlib.Order.BooleanAlgebra.609_0.ewE75DLNneOU8G5
instance (priority
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α src✝¹ : BooleanAlgebra α := inst✝ src✝ : GeneralizedCoheytingAlgebra α := GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra a : α ⊢ ⊤ \ a = ¬a
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by
rw [sdiff_eq, top_inf_eq]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by
Mathlib.Order.BooleanAlgebra.609_0.ewE75DLNneOU8G5
instance (priority
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α src✝¹ : BooleanAlgebra α := inst✝ src✝ : GeneralizedCoheytingAlgebra α := GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra a : α ⊢ aᶜ = ¬a
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq];
rfl
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq];
Mathlib.Order.BooleanAlgebra.609_0.ewE75DLNneOU8G5
instance (priority
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α h : x = yᶜ ⊢ IsCompl x y
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by
rw [h]
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by
Mathlib.Order.BooleanAlgebra.627_0.ewE75DLNneOU8G5
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α h : x = yᶜ ⊢ IsCompl yᶜ y
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h]
exact isCompl_compl.symm
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h]
Mathlib.Order.BooleanAlgebra.627_0.ewE75DLNneOU8G5
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α h : xᶜ = y ⊢ IsCompl x y
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by
rw [← h]
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by
Mathlib.Order.BooleanAlgebra.633_0.ewE75DLNneOU8G5
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α h : xᶜ = y ⊢ IsCompl x xᶜ
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h]
exact isCompl_compl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h]
Mathlib.Order.BooleanAlgebra.633_0.ewE75DLNneOU8G5
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α ⊢ xᶜ = y ↔ yᶜ = x
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
Mathlib.Order.BooleanAlgebra.639_0.ewE75DLNneOU8G5
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α ⊢ x = yᶜ ↔ y = xᶜ
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
Mathlib.Order.BooleanAlgebra.643_0.ewE75DLNneOU8G5
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α h : yᶜ ≤ xᶜ ⊢ x ≤ y
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by
have h := compl_le_compl h
@[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by
Mathlib.Order.BooleanAlgebra.697_0.ewE75DLNneOU8G5
@[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α h✝ : yᶜ ≤ xᶜ h : xᶜᶜ ≤ yᶜᶜ ⊢ x ≤ y
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h;
simp at h
@[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h;
Mathlib.Order.BooleanAlgebra.697_0.ewE75DLNneOU8G5
@[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α h✝ : yᶜ ≤ xᶜ h : x ≤ y ⊢ x ≤ y
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h;
assumption
@[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h;
Mathlib.Order.BooleanAlgebra.697_0.ewE75DLNneOU8G5
@[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α h : yᶜ ≤ x ⊢ xᶜ ≤ y
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
Mathlib.Order.BooleanAlgebra.705_0.ewE75DLNneOU8G5
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α ⊢ xᶜ ≤ x ↔ x = ⊤
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by
simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by
Mathlib.Order.BooleanAlgebra.713_0.ewE75DLNneOU8G5
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝¹ : BooleanAlgebra α inst✝ : Nontrivial α ⊢ xᶜ < x ↔ x = ⊤
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
Mathlib.Order.BooleanAlgebra.715_0.ewE75DLNneOU8G5
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α ⊢ x \ yᶜ = x ⊓ y
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by
rw [sdiff_eq, compl_compl]
@[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by
Mathlib.Order.BooleanAlgebra.718_0.ewE75DLNneOU8G5
@[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α ⊢ x ⊓ y ⊔ x ⊓ yᶜ = x
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by
rw [← sdiff_eq, sup_inf_sdiff _ _]
@[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by
Mathlib.Order.BooleanAlgebra.732_0.ewE75DLNneOU8G5
@[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α ⊢ (x \ y)ᶜ = x ⇨ y
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
@[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
Mathlib.Order.BooleanAlgebra.736_0.ewE75DLNneOU8G5
@[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α ⊢ xᶜ \ yᶜ = y \ x
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by
rw [sdiff_compl, sdiff_eq, inf_comm]
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by
Mathlib.Order.BooleanAlgebra.746_0.ewE75DLNneOU8G5
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α ⊢ Disjoint xᶜ y ↔ y ≤ x
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm] #align compl_sdiff_compl compl_sdiff_compl @[simp] theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x := @compl_sdiff_compl αᵒᵈ _ _ _ #align compl_himp_compl compl_himp_compl theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
rw [← le_compl_iff_disjoint_left, compl_compl]
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
Mathlib.Order.BooleanAlgebra.754_0.ewE75DLNneOU8G5
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝ : BooleanAlgebra α ⊢ Disjoint x yᶜ ↔ x ≤ y
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm] #align compl_sdiff_compl compl_sdiff_compl @[simp] theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x := @compl_sdiff_compl αᵒᵈ _ _ _ #align compl_himp_compl compl_himp_compl theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by rw [← le_compl_iff_disjoint_left, compl_compl] #align disjoint_compl_left_iff disjoint_compl_left_iff theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
rw [← le_compl_iff_disjoint_right, compl_compl]
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
Mathlib.Order.BooleanAlgebra.758_0.ewE75DLNneOU8G5
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y
Mathlib_Order_BooleanAlgebra
α✝ : Type u β✝ : Type u_1 w x✝ y z : α✝ α : Type ?u.69761 β : Type ?u.69764 inst✝¹ : BooleanAlgebra α inst✝ : BooleanAlgebra β src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra src✝ : DistribLattice (α × β) := distribLattice α β x : α × β ⊢ x ⊓ xᶜ ≤ ⊥
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm] #align compl_sdiff_compl compl_sdiff_compl @[simp] theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x := @compl_sdiff_compl αᵒᵈ _ _ _ #align compl_himp_compl compl_himp_compl theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by rw [← le_compl_iff_disjoint_left, compl_compl] #align disjoint_compl_left_iff disjoint_compl_left_iff theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by rw [← le_compl_iff_disjoint_right, compl_compl] #align disjoint_compl_right_iff disjoint_compl_right_iff theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x := @disjoint_sdiff_self_left αᵒᵈ _ _ _ #align codisjoint_himp_self_left codisjoint_himp_self_left theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) := @disjoint_sdiff_self_right αᵒᵈ _ _ _ #align codisjoint_himp_self_right codisjoint_himp_self_right theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z := (@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _ #align himp_le himp_le end BooleanAlgebra instance Prop.booleanAlgebra : BooleanAlgebra Prop := { Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with compl := Not, himp_eq := fun p q => propext imp_iff_or_not, inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp, top_le_sup_compl := fun p _ => Classical.em p } #align Prop.boolean_algebra Prop.booleanAlgebra instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;> simp [sdiff_eq] inf_compl_le_bot x := by
constructor
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;> simp [sdiff_eq] inf_compl_le_bot x := by
Mathlib.Order.BooleanAlgebra.784_0.ewE75DLNneOU8G5
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __
Mathlib_Order_BooleanAlgebra
case left α✝ : Type u β✝ : Type u_1 w x✝ y z : α✝ α : Type ?u.69761 β : Type ?u.69764 inst✝¹ : BooleanAlgebra α inst✝ : BooleanAlgebra β src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra src✝ : DistribLattice (α × β) := distribLattice α β x : α × β ⊢ (x ⊓ xᶜ).1 ≤ ⊥.1
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm] #align compl_sdiff_compl compl_sdiff_compl @[simp] theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x := @compl_sdiff_compl αᵒᵈ _ _ _ #align compl_himp_compl compl_himp_compl theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by rw [← le_compl_iff_disjoint_left, compl_compl] #align disjoint_compl_left_iff disjoint_compl_left_iff theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by rw [← le_compl_iff_disjoint_right, compl_compl] #align disjoint_compl_right_iff disjoint_compl_right_iff theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x := @disjoint_sdiff_self_left αᵒᵈ _ _ _ #align codisjoint_himp_self_left codisjoint_himp_self_left theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) := @disjoint_sdiff_self_right αᵒᵈ _ _ _ #align codisjoint_himp_self_right codisjoint_himp_self_right theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z := (@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _ #align himp_le himp_le end BooleanAlgebra instance Prop.booleanAlgebra : BooleanAlgebra Prop := { Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with compl := Not, himp_eq := fun p q => propext imp_iff_or_not, inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp, top_le_sup_compl := fun p _ => Classical.em p } #align Prop.boolean_algebra Prop.booleanAlgebra instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;> simp [sdiff_eq] inf_compl_le_bot x := by constructor <;>
simp
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;> simp [sdiff_eq] inf_compl_le_bot x := by constructor <;>
Mathlib.Order.BooleanAlgebra.784_0.ewE75DLNneOU8G5
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __
Mathlib_Order_BooleanAlgebra
case right α✝ : Type u β✝ : Type u_1 w x✝ y z : α✝ α : Type ?u.69761 β : Type ?u.69764 inst✝¹ : BooleanAlgebra α inst✝ : BooleanAlgebra β src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra src✝ : DistribLattice (α × β) := distribLattice α β x : α × β ⊢ (x ⊓ xᶜ).2 ≤ ⊥.2
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm] #align compl_sdiff_compl compl_sdiff_compl @[simp] theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x := @compl_sdiff_compl αᵒᵈ _ _ _ #align compl_himp_compl compl_himp_compl theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by rw [← le_compl_iff_disjoint_left, compl_compl] #align disjoint_compl_left_iff disjoint_compl_left_iff theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by rw [← le_compl_iff_disjoint_right, compl_compl] #align disjoint_compl_right_iff disjoint_compl_right_iff theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x := @disjoint_sdiff_self_left αᵒᵈ _ _ _ #align codisjoint_himp_self_left codisjoint_himp_self_left theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) := @disjoint_sdiff_self_right αᵒᵈ _ _ _ #align codisjoint_himp_self_right codisjoint_himp_self_right theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z := (@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _ #align himp_le himp_le end BooleanAlgebra instance Prop.booleanAlgebra : BooleanAlgebra Prop := { Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with compl := Not, himp_eq := fun p q => propext imp_iff_or_not, inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp, top_le_sup_compl := fun p _ => Classical.em p } #align Prop.boolean_algebra Prop.booleanAlgebra instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;> simp [sdiff_eq] inf_compl_le_bot x := by constructor <;>
simp
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;> simp [sdiff_eq] inf_compl_le_bot x := by constructor <;>
Mathlib.Order.BooleanAlgebra.784_0.ewE75DLNneOU8G5
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __
Mathlib_Order_BooleanAlgebra
α✝ : Type u β✝ : Type u_1 w x✝ y z : α✝ α : Type ?u.69761 β : Type ?u.69764 inst✝¹ : BooleanAlgebra α inst✝ : BooleanAlgebra β src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra src✝ : DistribLattice (α × β) := distribLattice α β x : α × β ⊢ ⊤ ≤ x ⊔ xᶜ
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm] #align compl_sdiff_compl compl_sdiff_compl @[simp] theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x := @compl_sdiff_compl αᵒᵈ _ _ _ #align compl_himp_compl compl_himp_compl theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by rw [← le_compl_iff_disjoint_left, compl_compl] #align disjoint_compl_left_iff disjoint_compl_left_iff theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by rw [← le_compl_iff_disjoint_right, compl_compl] #align disjoint_compl_right_iff disjoint_compl_right_iff theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x := @disjoint_sdiff_self_left αᵒᵈ _ _ _ #align codisjoint_himp_self_left codisjoint_himp_self_left theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) := @disjoint_sdiff_self_right αᵒᵈ _ _ _ #align codisjoint_himp_self_right codisjoint_himp_self_right theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z := (@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _ #align himp_le himp_le end BooleanAlgebra instance Prop.booleanAlgebra : BooleanAlgebra Prop := { Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with compl := Not, himp_eq := fun p q => propext imp_iff_or_not, inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp, top_le_sup_compl := fun p _ => Classical.em p } #align Prop.boolean_algebra Prop.booleanAlgebra instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;> simp [sdiff_eq] inf_compl_le_bot x := by constructor <;> simp top_le_sup_compl x := by
constructor
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;> simp [sdiff_eq] inf_compl_le_bot x := by constructor <;> simp top_le_sup_compl x := by
Mathlib.Order.BooleanAlgebra.784_0.ewE75DLNneOU8G5
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __
Mathlib_Order_BooleanAlgebra
case left α✝ : Type u β✝ : Type u_1 w x✝ y z : α✝ α : Type ?u.69761 β : Type ?u.69764 inst✝¹ : BooleanAlgebra α inst✝ : BooleanAlgebra β src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra src✝ : DistribLattice (α × β) := distribLattice α β x : α × β ⊢ ⊤.1 ≤ (x ⊔ xᶜ).1
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm] #align compl_sdiff_compl compl_sdiff_compl @[simp] theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x := @compl_sdiff_compl αᵒᵈ _ _ _ #align compl_himp_compl compl_himp_compl theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by rw [← le_compl_iff_disjoint_left, compl_compl] #align disjoint_compl_left_iff disjoint_compl_left_iff theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by rw [← le_compl_iff_disjoint_right, compl_compl] #align disjoint_compl_right_iff disjoint_compl_right_iff theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x := @disjoint_sdiff_self_left αᵒᵈ _ _ _ #align codisjoint_himp_self_left codisjoint_himp_self_left theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) := @disjoint_sdiff_self_right αᵒᵈ _ _ _ #align codisjoint_himp_self_right codisjoint_himp_self_right theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z := (@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _ #align himp_le himp_le end BooleanAlgebra instance Prop.booleanAlgebra : BooleanAlgebra Prop := { Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with compl := Not, himp_eq := fun p q => propext imp_iff_or_not, inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp, top_le_sup_compl := fun p _ => Classical.em p } #align Prop.boolean_algebra Prop.booleanAlgebra instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;> simp [sdiff_eq] inf_compl_le_bot x := by constructor <;> simp top_le_sup_compl x := by constructor <;>
simp
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;> simp [sdiff_eq] inf_compl_le_bot x := by constructor <;> simp top_le_sup_compl x := by constructor <;>
Mathlib.Order.BooleanAlgebra.784_0.ewE75DLNneOU8G5
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __
Mathlib_Order_BooleanAlgebra
case right α✝ : Type u β✝ : Type u_1 w x✝ y z : α✝ α : Type ?u.69761 β : Type ?u.69764 inst✝¹ : BooleanAlgebra α inst✝ : BooleanAlgebra β src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra src✝ : DistribLattice (α × β) := distribLattice α β x : α × β ⊢ ⊤.2 ≤ (x ⊔ xᶜ).2
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm] #align compl_sdiff_compl compl_sdiff_compl @[simp] theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x := @compl_sdiff_compl αᵒᵈ _ _ _ #align compl_himp_compl compl_himp_compl theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by rw [← le_compl_iff_disjoint_left, compl_compl] #align disjoint_compl_left_iff disjoint_compl_left_iff theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by rw [← le_compl_iff_disjoint_right, compl_compl] #align disjoint_compl_right_iff disjoint_compl_right_iff theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x := @disjoint_sdiff_self_left αᵒᵈ _ _ _ #align codisjoint_himp_self_left codisjoint_himp_self_left theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) := @disjoint_sdiff_self_right αᵒᵈ _ _ _ #align codisjoint_himp_self_right codisjoint_himp_self_right theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z := (@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _ #align himp_le himp_le end BooleanAlgebra instance Prop.booleanAlgebra : BooleanAlgebra Prop := { Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with compl := Not, himp_eq := fun p q => propext imp_iff_or_not, inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp, top_le_sup_compl := fun p _ => Classical.em p } #align Prop.boolean_algebra Prop.booleanAlgebra instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;> simp [sdiff_eq] inf_compl_le_bot x := by constructor <;> simp top_le_sup_compl x := by constructor <;>
simp
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;> simp [sdiff_eq] inf_compl_le_bot x := by constructor <;> simp top_le_sup_compl x := by constructor <;>
Mathlib.Order.BooleanAlgebra.784_0.ewE75DLNneOU8G5
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __
Mathlib_Order_BooleanAlgebra
α✝ : Type u β✝ : Type u_1 w x✝ y✝ z : α✝ α : Type ?u.69761 β : Type ?u.69764 inst✝¹ : BooleanAlgebra α inst✝ : BooleanAlgebra β src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra src✝ : DistribLattice (α × β) := distribLattice α β x y : α × β ⊢ x \ y = x ⊓ yᶜ
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm] #align compl_sdiff_compl compl_sdiff_compl @[simp] theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x := @compl_sdiff_compl αᵒᵈ _ _ _ #align compl_himp_compl compl_himp_compl theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by rw [← le_compl_iff_disjoint_left, compl_compl] #align disjoint_compl_left_iff disjoint_compl_left_iff theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by rw [← le_compl_iff_disjoint_right, compl_compl] #align disjoint_compl_right_iff disjoint_compl_right_iff theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x := @disjoint_sdiff_self_left αᵒᵈ _ _ _ #align codisjoint_himp_self_left codisjoint_himp_self_left theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) := @disjoint_sdiff_self_right αᵒᵈ _ _ _ #align codisjoint_himp_self_right codisjoint_himp_self_right theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z := (@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _ #align himp_le himp_le end BooleanAlgebra instance Prop.booleanAlgebra : BooleanAlgebra Prop := { Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with compl := Not, himp_eq := fun p q => propext imp_iff_or_not, inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp, top_le_sup_compl := fun p _ => Classical.em p } #align Prop.boolean_algebra Prop.booleanAlgebra instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by
ext
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by
Mathlib.Order.BooleanAlgebra.784_0.ewE75DLNneOU8G5
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __
Mathlib_Order_BooleanAlgebra
case a α✝ : Type u β✝ : Type u_1 w x✝ y✝ z : α✝ α : Type ?u.69761 β : Type ?u.69764 inst✝¹ : BooleanAlgebra α inst✝ : BooleanAlgebra β src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra src✝ : DistribLattice (α × β) := distribLattice α β x y : α × β ⊢ (x \ y).1 = (x ⊓ yᶜ).1
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm] #align compl_sdiff_compl compl_sdiff_compl @[simp] theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x := @compl_sdiff_compl αᵒᵈ _ _ _ #align compl_himp_compl compl_himp_compl theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by rw [← le_compl_iff_disjoint_left, compl_compl] #align disjoint_compl_left_iff disjoint_compl_left_iff theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by rw [← le_compl_iff_disjoint_right, compl_compl] #align disjoint_compl_right_iff disjoint_compl_right_iff theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x := @disjoint_sdiff_self_left αᵒᵈ _ _ _ #align codisjoint_himp_self_left codisjoint_himp_self_left theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) := @disjoint_sdiff_self_right αᵒᵈ _ _ _ #align codisjoint_himp_self_right codisjoint_himp_self_right theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z := (@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _ #align himp_le himp_le end BooleanAlgebra instance Prop.booleanAlgebra : BooleanAlgebra Prop := { Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with compl := Not, himp_eq := fun p q => propext imp_iff_or_not, inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp, top_le_sup_compl := fun p _ => Classical.em p } #align Prop.boolean_algebra Prop.booleanAlgebra instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;>
simp [sdiff_eq]
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;>
Mathlib.Order.BooleanAlgebra.784_0.ewE75DLNneOU8G5
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __
Mathlib_Order_BooleanAlgebra
case a α✝ : Type u β✝ : Type u_1 w x✝ y✝ z : α✝ α : Type ?u.69761 β : Type ?u.69764 inst✝¹ : BooleanAlgebra α inst✝ : BooleanAlgebra β src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra src✝ : DistribLattice (α × β) := distribLattice α β x y : α × β ⊢ (x \ y).2 = (x ⊓ yᶜ).2
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm] #align compl_sdiff_compl compl_sdiff_compl @[simp] theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x := @compl_sdiff_compl αᵒᵈ _ _ _ #align compl_himp_compl compl_himp_compl theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by rw [← le_compl_iff_disjoint_left, compl_compl] #align disjoint_compl_left_iff disjoint_compl_left_iff theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by rw [← le_compl_iff_disjoint_right, compl_compl] #align disjoint_compl_right_iff disjoint_compl_right_iff theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x := @disjoint_sdiff_self_left αᵒᵈ _ _ _ #align codisjoint_himp_self_left codisjoint_himp_self_left theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) := @disjoint_sdiff_self_right αᵒᵈ _ _ _ #align codisjoint_himp_self_right codisjoint_himp_self_right theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z := (@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _ #align himp_le himp_le end BooleanAlgebra instance Prop.booleanAlgebra : BooleanAlgebra Prop := { Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with compl := Not, himp_eq := fun p q => propext imp_iff_or_not, inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp, top_le_sup_compl := fun p _ => Classical.em p } #align Prop.boolean_algebra Prop.booleanAlgebra instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;>
simp [sdiff_eq]
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;>
Mathlib.Order.BooleanAlgebra.784_0.ewE75DLNneOU8G5
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __
Mathlib_Order_BooleanAlgebra
α✝ : Type u β✝ : Type u_1 w x✝ y✝ z : α✝ α : Type ?u.69761 β : Type ?u.69764 inst✝¹ : BooleanAlgebra α inst✝ : BooleanAlgebra β src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra src✝ : DistribLattice (α × β) := distribLattice α β x y : α × β ⊢ x ⇨ y = y ⊔ xᶜ
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm] #align compl_sdiff_compl compl_sdiff_compl @[simp] theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x := @compl_sdiff_compl αᵒᵈ _ _ _ #align compl_himp_compl compl_himp_compl theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by rw [← le_compl_iff_disjoint_left, compl_compl] #align disjoint_compl_left_iff disjoint_compl_left_iff theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by rw [← le_compl_iff_disjoint_right, compl_compl] #align disjoint_compl_right_iff disjoint_compl_right_iff theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x := @disjoint_sdiff_self_left αᵒᵈ _ _ _ #align codisjoint_himp_self_left codisjoint_himp_self_left theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) := @disjoint_sdiff_self_right αᵒᵈ _ _ _ #align codisjoint_himp_self_right codisjoint_himp_self_right theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z := (@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _ #align himp_le himp_le end BooleanAlgebra instance Prop.booleanAlgebra : BooleanAlgebra Prop := { Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with compl := Not, himp_eq := fun p q => propext imp_iff_or_not, inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp, top_le_sup_compl := fun p _ => Classical.em p } #align Prop.boolean_algebra Prop.booleanAlgebra instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by
ext
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by
Mathlib.Order.BooleanAlgebra.784_0.ewE75DLNneOU8G5
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __
Mathlib_Order_BooleanAlgebra
case a α✝ : Type u β✝ : Type u_1 w x✝ y✝ z : α✝ α : Type ?u.69761 β : Type ?u.69764 inst✝¹ : BooleanAlgebra α inst✝ : BooleanAlgebra β src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra src✝ : DistribLattice (α × β) := distribLattice α β x y : α × β ⊢ (x ⇨ y).1 = (y ⊔ xᶜ).1
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm] #align compl_sdiff_compl compl_sdiff_compl @[simp] theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x := @compl_sdiff_compl αᵒᵈ _ _ _ #align compl_himp_compl compl_himp_compl theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by rw [← le_compl_iff_disjoint_left, compl_compl] #align disjoint_compl_left_iff disjoint_compl_left_iff theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by rw [← le_compl_iff_disjoint_right, compl_compl] #align disjoint_compl_right_iff disjoint_compl_right_iff theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x := @disjoint_sdiff_self_left αᵒᵈ _ _ _ #align codisjoint_himp_self_left codisjoint_himp_self_left theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) := @disjoint_sdiff_self_right αᵒᵈ _ _ _ #align codisjoint_himp_self_right codisjoint_himp_self_right theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z := (@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _ #align himp_le himp_le end BooleanAlgebra instance Prop.booleanAlgebra : BooleanAlgebra Prop := { Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with compl := Not, himp_eq := fun p q => propext imp_iff_or_not, inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp, top_le_sup_compl := fun p _ => Classical.em p } #align Prop.boolean_algebra Prop.booleanAlgebra instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;>
simp [himp_eq]
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;>
Mathlib.Order.BooleanAlgebra.784_0.ewE75DLNneOU8G5
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __
Mathlib_Order_BooleanAlgebra
case a α✝ : Type u β✝ : Type u_1 w x✝ y✝ z : α✝ α : Type ?u.69761 β : Type ?u.69764 inst✝¹ : BooleanAlgebra α inst✝ : BooleanAlgebra β src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra src✝ : DistribLattice (α × β) := distribLattice α β x y : α × β ⊢ (x ⇨ y).2 = (y ⊔ xᶜ).2
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm] #align compl_sdiff_compl compl_sdiff_compl @[simp] theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x := @compl_sdiff_compl αᵒᵈ _ _ _ #align compl_himp_compl compl_himp_compl theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by rw [← le_compl_iff_disjoint_left, compl_compl] #align disjoint_compl_left_iff disjoint_compl_left_iff theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by rw [← le_compl_iff_disjoint_right, compl_compl] #align disjoint_compl_right_iff disjoint_compl_right_iff theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x := @disjoint_sdiff_self_left αᵒᵈ _ _ _ #align codisjoint_himp_self_left codisjoint_himp_self_left theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) := @disjoint_sdiff_self_right αᵒᵈ _ _ _ #align codisjoint_himp_self_right codisjoint_himp_self_right theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z := (@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _ #align himp_le himp_le end BooleanAlgebra instance Prop.booleanAlgebra : BooleanAlgebra Prop := { Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with compl := Not, himp_eq := fun p q => propext imp_iff_or_not, inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp, top_le_sup_compl := fun p _ => Classical.em p } #align Prop.boolean_algebra Prop.booleanAlgebra instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;>
simp [himp_eq]
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;>
Mathlib.Order.BooleanAlgebra.784_0.ewE75DLNneOU8G5
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝⁴ : Sup α inst✝³ : Inf α inst✝² : Bot α inst✝¹ : SDiff α inst✝ : GeneralizedBooleanAlgebra β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_bot : f ⊥ = ⊥ map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b src✝¹ : GeneralizedCoheytingAlgebra α := Injective.generalizedCoheytingAlgebra f hf map_sup map_inf map_bot map_sdiff src✝ : DistribLattice α := Injective.distribLattice f hf map_sup map_inf a b : α ⊢ f (a ⊓ b ⊔ a \ b) = f a
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm] #align compl_sdiff_compl compl_sdiff_compl @[simp] theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x := @compl_sdiff_compl αᵒᵈ _ _ _ #align compl_himp_compl compl_himp_compl theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by rw [← le_compl_iff_disjoint_left, compl_compl] #align disjoint_compl_left_iff disjoint_compl_left_iff theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by rw [← le_compl_iff_disjoint_right, compl_compl] #align disjoint_compl_right_iff disjoint_compl_right_iff theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x := @disjoint_sdiff_self_left αᵒᵈ _ _ _ #align codisjoint_himp_self_left codisjoint_himp_self_left theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) := @disjoint_sdiff_self_right αᵒᵈ _ _ _ #align codisjoint_himp_self_right codisjoint_himp_self_right theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z := (@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _ #align himp_le himp_le end BooleanAlgebra instance Prop.booleanAlgebra : BooleanAlgebra Prop := { Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with compl := Not, himp_eq := fun p q => propext imp_iff_or_not, inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp, top_le_sup_compl := fun p _ => Classical.em p } #align Prop.boolean_algebra Prop.booleanAlgebra instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;> simp [sdiff_eq] inf_compl_le_bot x := by constructor <;> simp top_le_sup_compl x := by constructor <;> simp instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] : BooleanAlgebra (∀ i, α i) := { Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with sdiff_eq := fun _ _ => funext fun _ => sdiff_eq, himp_eq := fun _ _ => funext fun _ => himp_eq, inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _, top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ } #align pi.boolean_algebra Pi.booleanAlgebra instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where __ := Bool.linearOrder __ := Bool.boundedOrder __ := Bool.instDistribLattice compl := not inf_compl_le_bot a := a.and_not_self.le top_le_sup_compl a := a.or_not_self.ge @[simp] theorem Bool.sup_eq_bor : (· ⊔ ·) = or := rfl #align bool.sup_eq_bor Bool.sup_eq_bor @[simp] theorem Bool.inf_eq_band : (· ⊓ ·) = and := rfl #align bool.inf_eq_band Bool.inf_eq_band @[simp] theorem Bool.compl_eq_bnot : HasCompl.compl = not := rfl #align bool.compl_eq_bnot Bool.compl_eq_bnot section lift -- See note [reducible non-instances] /-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α] [GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : GeneralizedBooleanAlgebra α := { hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff, hf.distribLattice f map_sup map_inf with sup_inf_sdiff := fun a b => hf <| by
erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff]
/-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α] [GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : GeneralizedBooleanAlgebra α := { hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff, hf.distribLattice f map_sup map_inf with sup_inf_sdiff := fun a b => hf <| by
Mathlib.Order.BooleanAlgebra.828_0.ewE75DLNneOU8G5
/-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α] [GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : GeneralizedBooleanAlgebra α
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝⁴ : Sup α inst✝³ : Inf α inst✝² : Bot α inst✝¹ : SDiff α inst✝ : GeneralizedBooleanAlgebra β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_bot : f ⊥ = ⊥ map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b src✝¹ : GeneralizedCoheytingAlgebra α := Injective.generalizedCoheytingAlgebra f hf map_sup map_inf map_bot map_sdiff src✝ : DistribLattice α := Injective.distribLattice f hf map_sup map_inf a b : α ⊢ f (a ⊓ b ⊓ a \ b) = f ⊥
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm] #align compl_sdiff_compl compl_sdiff_compl @[simp] theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x := @compl_sdiff_compl αᵒᵈ _ _ _ #align compl_himp_compl compl_himp_compl theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by rw [← le_compl_iff_disjoint_left, compl_compl] #align disjoint_compl_left_iff disjoint_compl_left_iff theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by rw [← le_compl_iff_disjoint_right, compl_compl] #align disjoint_compl_right_iff disjoint_compl_right_iff theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x := @disjoint_sdiff_self_left αᵒᵈ _ _ _ #align codisjoint_himp_self_left codisjoint_himp_self_left theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) := @disjoint_sdiff_self_right αᵒᵈ _ _ _ #align codisjoint_himp_self_right codisjoint_himp_self_right theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z := (@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _ #align himp_le himp_le end BooleanAlgebra instance Prop.booleanAlgebra : BooleanAlgebra Prop := { Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with compl := Not, himp_eq := fun p q => propext imp_iff_or_not, inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp, top_le_sup_compl := fun p _ => Classical.em p } #align Prop.boolean_algebra Prop.booleanAlgebra instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;> simp [sdiff_eq] inf_compl_le_bot x := by constructor <;> simp top_le_sup_compl x := by constructor <;> simp instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] : BooleanAlgebra (∀ i, α i) := { Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with sdiff_eq := fun _ _ => funext fun _ => sdiff_eq, himp_eq := fun _ _ => funext fun _ => himp_eq, inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _, top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ } #align pi.boolean_algebra Pi.booleanAlgebra instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where __ := Bool.linearOrder __ := Bool.boundedOrder __ := Bool.instDistribLattice compl := not inf_compl_le_bot a := a.and_not_self.le top_le_sup_compl a := a.or_not_self.ge @[simp] theorem Bool.sup_eq_bor : (· ⊔ ·) = or := rfl #align bool.sup_eq_bor Bool.sup_eq_bor @[simp] theorem Bool.inf_eq_band : (· ⊓ ·) = and := rfl #align bool.inf_eq_band Bool.inf_eq_band @[simp] theorem Bool.compl_eq_bnot : HasCompl.compl = not := rfl #align bool.compl_eq_bnot Bool.compl_eq_bnot section lift -- See note [reducible non-instances] /-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α] [GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : GeneralizedBooleanAlgebra α := { hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff, hf.distribLattice f map_sup map_inf with sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff], inf_inf_sdiff := fun a b => hf <| by
erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot]
/-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α] [GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : GeneralizedBooleanAlgebra α := { hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff, hf.distribLattice f map_sup map_inf with sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff], inf_inf_sdiff := fun a b => hf <| by
Mathlib.Order.BooleanAlgebra.828_0.ewE75DLNneOU8G5
/-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α] [GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : GeneralizedBooleanAlgebra α
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝⁶ : Sup α inst✝⁵ : Inf α inst✝⁴ : Top α inst✝³ : Bot α inst✝² : HasCompl α inst✝¹ : SDiff α inst✝ : BooleanAlgebra β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_top : f ⊤ = ⊤ map_bot : f ⊥ = ⊥ map_compl : ∀ (a : α), f aᶜ = (f a)ᶜ map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b src✝ : GeneralizedBooleanAlgebra α := Injective.generalizedBooleanAlgebra f hf map_sup map_inf map_bot map_sdiff a : α ⊢ f a ⊓ f aᶜ = f ⊥
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm] #align compl_sdiff_compl compl_sdiff_compl @[simp] theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x := @compl_sdiff_compl αᵒᵈ _ _ _ #align compl_himp_compl compl_himp_compl theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by rw [← le_compl_iff_disjoint_left, compl_compl] #align disjoint_compl_left_iff disjoint_compl_left_iff theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by rw [← le_compl_iff_disjoint_right, compl_compl] #align disjoint_compl_right_iff disjoint_compl_right_iff theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x := @disjoint_sdiff_self_left αᵒᵈ _ _ _ #align codisjoint_himp_self_left codisjoint_himp_self_left theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) := @disjoint_sdiff_self_right αᵒᵈ _ _ _ #align codisjoint_himp_self_right codisjoint_himp_self_right theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z := (@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _ #align himp_le himp_le end BooleanAlgebra instance Prop.booleanAlgebra : BooleanAlgebra Prop := { Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with compl := Not, himp_eq := fun p q => propext imp_iff_or_not, inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp, top_le_sup_compl := fun p _ => Classical.em p } #align Prop.boolean_algebra Prop.booleanAlgebra instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;> simp [sdiff_eq] inf_compl_le_bot x := by constructor <;> simp top_le_sup_compl x := by constructor <;> simp instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] : BooleanAlgebra (∀ i, α i) := { Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with sdiff_eq := fun _ _ => funext fun _ => sdiff_eq, himp_eq := fun _ _ => funext fun _ => himp_eq, inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _, top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ } #align pi.boolean_algebra Pi.booleanAlgebra instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where __ := Bool.linearOrder __ := Bool.boundedOrder __ := Bool.instDistribLattice compl := not inf_compl_le_bot a := a.and_not_self.le top_le_sup_compl a := a.or_not_self.ge @[simp] theorem Bool.sup_eq_bor : (· ⊔ ·) = or := rfl #align bool.sup_eq_bor Bool.sup_eq_bor @[simp] theorem Bool.inf_eq_band : (· ⊓ ·) = and := rfl #align bool.inf_eq_band Bool.inf_eq_band @[simp] theorem Bool.compl_eq_bnot : HasCompl.compl = not := rfl #align bool.compl_eq_bnot Bool.compl_eq_bnot section lift -- See note [reducible non-instances] /-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α] [GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : GeneralizedBooleanAlgebra α := { hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff, hf.distribLattice f map_sup map_inf with sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff], inf_inf_sdiff := fun a b => hf <| by erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot] } #align function.injective.generalized_boolean_algebra Function.Injective.generalizedBooleanAlgebra -- See note [reducible non-instances] /-- Pullback a `BooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α] [SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α := { hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with compl := compl, top := ⊤, le_top := fun a => (@le_top β _ _ _).trans map_top.ge, bot_le := fun a => map_bot.le.trans bot_le, inf_compl_le_bot := fun a => ((map_inf _ _).trans <| by
rw [map_compl, inf_compl_eq_bot, map_bot]
/-- Pullback a `BooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α] [SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α := { hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with compl := compl, top := ⊤, le_top := fun a => (@le_top β _ _ _).trans map_top.ge, bot_le := fun a => map_bot.le.trans bot_le, inf_compl_le_bot := fun a => ((map_inf _ _).trans <| by
Mathlib.Order.BooleanAlgebra.842_0.ewE75DLNneOU8G5
/-- Pullback a `BooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α] [SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝⁶ : Sup α inst✝⁵ : Inf α inst✝⁴ : Top α inst✝³ : Bot α inst✝² : HasCompl α inst✝¹ : SDiff α inst✝ : BooleanAlgebra β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_top : f ⊤ = ⊤ map_bot : f ⊥ = ⊥ map_compl : ∀ (a : α), f aᶜ = (f a)ᶜ map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b src✝ : GeneralizedBooleanAlgebra α := Injective.generalizedBooleanAlgebra f hf map_sup map_inf map_bot map_sdiff a : α ⊢ f a ⊔ f aᶜ = f ⊤
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm] #align compl_sdiff_compl compl_sdiff_compl @[simp] theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x := @compl_sdiff_compl αᵒᵈ _ _ _ #align compl_himp_compl compl_himp_compl theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by rw [← le_compl_iff_disjoint_left, compl_compl] #align disjoint_compl_left_iff disjoint_compl_left_iff theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by rw [← le_compl_iff_disjoint_right, compl_compl] #align disjoint_compl_right_iff disjoint_compl_right_iff theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x := @disjoint_sdiff_self_left αᵒᵈ _ _ _ #align codisjoint_himp_self_left codisjoint_himp_self_left theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) := @disjoint_sdiff_self_right αᵒᵈ _ _ _ #align codisjoint_himp_self_right codisjoint_himp_self_right theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z := (@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _ #align himp_le himp_le end BooleanAlgebra instance Prop.booleanAlgebra : BooleanAlgebra Prop := { Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with compl := Not, himp_eq := fun p q => propext imp_iff_or_not, inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp, top_le_sup_compl := fun p _ => Classical.em p } #align Prop.boolean_algebra Prop.booleanAlgebra instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;> simp [sdiff_eq] inf_compl_le_bot x := by constructor <;> simp top_le_sup_compl x := by constructor <;> simp instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] : BooleanAlgebra (∀ i, α i) := { Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with sdiff_eq := fun _ _ => funext fun _ => sdiff_eq, himp_eq := fun _ _ => funext fun _ => himp_eq, inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _, top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ } #align pi.boolean_algebra Pi.booleanAlgebra instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where __ := Bool.linearOrder __ := Bool.boundedOrder __ := Bool.instDistribLattice compl := not inf_compl_le_bot a := a.and_not_self.le top_le_sup_compl a := a.or_not_self.ge @[simp] theorem Bool.sup_eq_bor : (· ⊔ ·) = or := rfl #align bool.sup_eq_bor Bool.sup_eq_bor @[simp] theorem Bool.inf_eq_band : (· ⊓ ·) = and := rfl #align bool.inf_eq_band Bool.inf_eq_band @[simp] theorem Bool.compl_eq_bnot : HasCompl.compl = not := rfl #align bool.compl_eq_bnot Bool.compl_eq_bnot section lift -- See note [reducible non-instances] /-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α] [GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : GeneralizedBooleanAlgebra α := { hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff, hf.distribLattice f map_sup map_inf with sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff], inf_inf_sdiff := fun a b => hf <| by erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot] } #align function.injective.generalized_boolean_algebra Function.Injective.generalizedBooleanAlgebra -- See note [reducible non-instances] /-- Pullback a `BooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α] [SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α := { hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with compl := compl, top := ⊤, le_top := fun a => (@le_top β _ _ _).trans map_top.ge, bot_le := fun a => map_bot.le.trans bot_le, inf_compl_le_bot := fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le, top_le_sup_compl := fun a => ((map_sup _ _).trans <| by
rw [map_compl, sup_compl_eq_top, map_top]
/-- Pullback a `BooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α] [SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α := { hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with compl := compl, top := ⊤, le_top := fun a => (@le_top β _ _ _).trans map_top.ge, bot_le := fun a => map_bot.le.trans bot_le, inf_compl_le_bot := fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le, top_le_sup_compl := fun a => ((map_sup _ _).trans <| by
Mathlib.Order.BooleanAlgebra.842_0.ewE75DLNneOU8G5
/-- Pullback a `BooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α] [SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝⁶ : Sup α inst✝⁵ : Inf α inst✝⁴ : Top α inst✝³ : Bot α inst✝² : HasCompl α inst✝¹ : SDiff α inst✝ : BooleanAlgebra β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_top : f ⊤ = ⊤ map_bot : f ⊥ = ⊥ map_compl : ∀ (a : α), f aᶜ = (f a)ᶜ map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b src✝ : GeneralizedBooleanAlgebra α := Injective.generalizedBooleanAlgebra f hf map_sup map_inf map_bot map_sdiff a b : α ⊢ a \ b = a ⊓ bᶜ
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm] #align compl_sdiff_compl compl_sdiff_compl @[simp] theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x := @compl_sdiff_compl αᵒᵈ _ _ _ #align compl_himp_compl compl_himp_compl theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by rw [← le_compl_iff_disjoint_left, compl_compl] #align disjoint_compl_left_iff disjoint_compl_left_iff theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by rw [← le_compl_iff_disjoint_right, compl_compl] #align disjoint_compl_right_iff disjoint_compl_right_iff theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x := @disjoint_sdiff_self_left αᵒᵈ _ _ _ #align codisjoint_himp_self_left codisjoint_himp_self_left theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) := @disjoint_sdiff_self_right αᵒᵈ _ _ _ #align codisjoint_himp_self_right codisjoint_himp_self_right theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z := (@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _ #align himp_le himp_le end BooleanAlgebra instance Prop.booleanAlgebra : BooleanAlgebra Prop := { Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with compl := Not, himp_eq := fun p q => propext imp_iff_or_not, inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp, top_le_sup_compl := fun p _ => Classical.em p } #align Prop.boolean_algebra Prop.booleanAlgebra instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;> simp [sdiff_eq] inf_compl_le_bot x := by constructor <;> simp top_le_sup_compl x := by constructor <;> simp instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] : BooleanAlgebra (∀ i, α i) := { Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with sdiff_eq := fun _ _ => funext fun _ => sdiff_eq, himp_eq := fun _ _ => funext fun _ => himp_eq, inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _, top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ } #align pi.boolean_algebra Pi.booleanAlgebra instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where __ := Bool.linearOrder __ := Bool.boundedOrder __ := Bool.instDistribLattice compl := not inf_compl_le_bot a := a.and_not_self.le top_le_sup_compl a := a.or_not_self.ge @[simp] theorem Bool.sup_eq_bor : (· ⊔ ·) = or := rfl #align bool.sup_eq_bor Bool.sup_eq_bor @[simp] theorem Bool.inf_eq_band : (· ⊓ ·) = and := rfl #align bool.inf_eq_band Bool.inf_eq_band @[simp] theorem Bool.compl_eq_bnot : HasCompl.compl = not := rfl #align bool.compl_eq_bnot Bool.compl_eq_bnot section lift -- See note [reducible non-instances] /-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α] [GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : GeneralizedBooleanAlgebra α := { hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff, hf.distribLattice f map_sup map_inf with sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff], inf_inf_sdiff := fun a b => hf <| by erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot] } #align function.injective.generalized_boolean_algebra Function.Injective.generalizedBooleanAlgebra -- See note [reducible non-instances] /-- Pullback a `BooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α] [SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α := { hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with compl := compl, top := ⊤, le_top := fun a => (@le_top β _ _ _).trans map_top.ge, bot_le := fun a => map_bot.le.trans bot_le, inf_compl_le_bot := fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le, top_le_sup_compl := fun a => ((map_sup _ _).trans <| by rw [map_compl, sup_compl_eq_top, map_top]).ge, sdiff_eq := fun a b => by
refine hf ((map_sdiff _ _).trans (sdiff_eq.trans ?_))
/-- Pullback a `BooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α] [SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α := { hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with compl := compl, top := ⊤, le_top := fun a => (@le_top β _ _ _).trans map_top.ge, bot_le := fun a => map_bot.le.trans bot_le, inf_compl_le_bot := fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le, top_le_sup_compl := fun a => ((map_sup _ _).trans <| by rw [map_compl, sup_compl_eq_top, map_top]).ge, sdiff_eq := fun a b => by
Mathlib.Order.BooleanAlgebra.842_0.ewE75DLNneOU8G5
/-- Pullback a `BooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α] [SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α inst✝⁶ : Sup α inst✝⁵ : Inf α inst✝⁴ : Top α inst✝³ : Bot α inst✝² : HasCompl α inst✝¹ : SDiff α inst✝ : BooleanAlgebra β f : α → β hf : Injective f map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b map_top : f ⊤ = ⊤ map_bot : f ⊥ = ⊥ map_compl : ∀ (a : α), f aᶜ = (f a)ᶜ map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b src✝ : GeneralizedBooleanAlgebra α := Injective.generalizedBooleanAlgebra f hf map_sup map_inf map_bot map_sdiff a b : α ⊢ f a ⊓ (f b)ᶜ = f (a ⊓ bᶜ)
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm] #align compl_sdiff_compl compl_sdiff_compl @[simp] theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x := @compl_sdiff_compl αᵒᵈ _ _ _ #align compl_himp_compl compl_himp_compl theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by rw [← le_compl_iff_disjoint_left, compl_compl] #align disjoint_compl_left_iff disjoint_compl_left_iff theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by rw [← le_compl_iff_disjoint_right, compl_compl] #align disjoint_compl_right_iff disjoint_compl_right_iff theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x := @disjoint_sdiff_self_left αᵒᵈ _ _ _ #align codisjoint_himp_self_left codisjoint_himp_self_left theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) := @disjoint_sdiff_self_right αᵒᵈ _ _ _ #align codisjoint_himp_self_right codisjoint_himp_self_right theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z := (@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _ #align himp_le himp_le end BooleanAlgebra instance Prop.booleanAlgebra : BooleanAlgebra Prop := { Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with compl := Not, himp_eq := fun p q => propext imp_iff_or_not, inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp, top_le_sup_compl := fun p _ => Classical.em p } #align Prop.boolean_algebra Prop.booleanAlgebra instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;> simp [sdiff_eq] inf_compl_le_bot x := by constructor <;> simp top_le_sup_compl x := by constructor <;> simp instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] : BooleanAlgebra (∀ i, α i) := { Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with sdiff_eq := fun _ _ => funext fun _ => sdiff_eq, himp_eq := fun _ _ => funext fun _ => himp_eq, inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _, top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ } #align pi.boolean_algebra Pi.booleanAlgebra instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where __ := Bool.linearOrder __ := Bool.boundedOrder __ := Bool.instDistribLattice compl := not inf_compl_le_bot a := a.and_not_self.le top_le_sup_compl a := a.or_not_self.ge @[simp] theorem Bool.sup_eq_bor : (· ⊔ ·) = or := rfl #align bool.sup_eq_bor Bool.sup_eq_bor @[simp] theorem Bool.inf_eq_band : (· ⊓ ·) = and := rfl #align bool.inf_eq_band Bool.inf_eq_band @[simp] theorem Bool.compl_eq_bnot : HasCompl.compl = not := rfl #align bool.compl_eq_bnot Bool.compl_eq_bnot section lift -- See note [reducible non-instances] /-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α] [GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : GeneralizedBooleanAlgebra α := { hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff, hf.distribLattice f map_sup map_inf with sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff], inf_inf_sdiff := fun a b => hf <| by erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot] } #align function.injective.generalized_boolean_algebra Function.Injective.generalizedBooleanAlgebra -- See note [reducible non-instances] /-- Pullback a `BooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α] [SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α := { hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with compl := compl, top := ⊤, le_top := fun a => (@le_top β _ _ _).trans map_top.ge, bot_le := fun a => map_bot.le.trans bot_le, inf_compl_le_bot := fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le, top_le_sup_compl := fun a => ((map_sup _ _).trans <| by rw [map_compl, sup_compl_eq_top, map_top]).ge, sdiff_eq := fun a b => by refine hf ((map_sdiff _ _).trans (sdiff_eq.trans ?_))
rw [map_inf, map_compl]
/-- Pullback a `BooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α] [SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α := { hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with compl := compl, top := ⊤, le_top := fun a => (@le_top β _ _ _).trans map_top.ge, bot_le := fun a => map_bot.le.trans bot_le, inf_compl_le_bot := fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le, top_le_sup_compl := fun a => ((map_sup _ _).trans <| by rw [map_compl, sup_compl_eq_top, map_top]).ge, sdiff_eq := fun a b => by refine hf ((map_sdiff _ _).trans (sdiff_eq.trans ?_))
Mathlib.Order.BooleanAlgebra.842_0.ewE75DLNneOU8G5
/-- Pullback a `BooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α] [SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α
Mathlib_Order_BooleanAlgebra
α : Type u β : Type u_1 w x y z : α ⊢ BooleanAlgebra PUnit.{?u.90848 + 1}
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm] #align compl_sdiff_compl compl_sdiff_compl @[simp] theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x := @compl_sdiff_compl αᵒᵈ _ _ _ #align compl_himp_compl compl_himp_compl theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by rw [← le_compl_iff_disjoint_left, compl_compl] #align disjoint_compl_left_iff disjoint_compl_left_iff theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by rw [← le_compl_iff_disjoint_right, compl_compl] #align disjoint_compl_right_iff disjoint_compl_right_iff theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x := @disjoint_sdiff_self_left αᵒᵈ _ _ _ #align codisjoint_himp_self_left codisjoint_himp_self_left theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) := @disjoint_sdiff_self_right αᵒᵈ _ _ _ #align codisjoint_himp_self_right codisjoint_himp_self_right theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z := (@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _ #align himp_le himp_le end BooleanAlgebra instance Prop.booleanAlgebra : BooleanAlgebra Prop := { Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with compl := Not, himp_eq := fun p q => propext imp_iff_or_not, inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp, top_le_sup_compl := fun p _ => Classical.em p } #align Prop.boolean_algebra Prop.booleanAlgebra instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;> simp [sdiff_eq] inf_compl_le_bot x := by constructor <;> simp top_le_sup_compl x := by constructor <;> simp instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] : BooleanAlgebra (∀ i, α i) := { Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with sdiff_eq := fun _ _ => funext fun _ => sdiff_eq, himp_eq := fun _ _ => funext fun _ => himp_eq, inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _, top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ } #align pi.boolean_algebra Pi.booleanAlgebra instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where __ := Bool.linearOrder __ := Bool.boundedOrder __ := Bool.instDistribLattice compl := not inf_compl_le_bot a := a.and_not_self.le top_le_sup_compl a := a.or_not_self.ge @[simp] theorem Bool.sup_eq_bor : (· ⊔ ·) = or := rfl #align bool.sup_eq_bor Bool.sup_eq_bor @[simp] theorem Bool.inf_eq_band : (· ⊓ ·) = and := rfl #align bool.inf_eq_band Bool.inf_eq_band @[simp] theorem Bool.compl_eq_bnot : HasCompl.compl = not := rfl #align bool.compl_eq_bnot Bool.compl_eq_bnot section lift -- See note [reducible non-instances] /-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α] [GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : GeneralizedBooleanAlgebra α := { hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff, hf.distribLattice f map_sup map_inf with sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff], inf_inf_sdiff := fun a b => hf <| by erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot] } #align function.injective.generalized_boolean_algebra Function.Injective.generalizedBooleanAlgebra -- See note [reducible non-instances] /-- Pullback a `BooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α] [SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α := { hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with compl := compl, top := ⊤, le_top := fun a => (@le_top β _ _ _).trans map_top.ge, bot_le := fun a => map_bot.le.trans bot_le, inf_compl_le_bot := fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le, top_le_sup_compl := fun a => ((map_sup _ _).trans <| by rw [map_compl, sup_compl_eq_top, map_top]).ge, sdiff_eq := fun a b => by refine hf ((map_sdiff _ _).trans (sdiff_eq.trans ?_)) rw [map_inf, map_compl] } #align function.injective.boolean_algebra Function.Injective.booleanAlgebra end lift instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by
refine' { PUnit.biheytingAlgebra with .. }
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by
Mathlib.Order.BooleanAlgebra.865_0.ewE75DLNneOU8G5
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit
Mathlib_Order_BooleanAlgebra
case refine'_1 α : Type u β : Type u_1 w x y z : α src✝ : BiheytingAlgebra PUnit.{?u.90854 + 1} := biheytingAlgebra ⊢ ∀ (x y z : PUnit.{?u.90854 + 1}), (x ⊔ y) ⊓ (x ⊔ z) ≤ x ⊔ y ⊓ z
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm] #align compl_sdiff_compl compl_sdiff_compl @[simp] theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x := @compl_sdiff_compl αᵒᵈ _ _ _ #align compl_himp_compl compl_himp_compl theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by rw [← le_compl_iff_disjoint_left, compl_compl] #align disjoint_compl_left_iff disjoint_compl_left_iff theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by rw [← le_compl_iff_disjoint_right, compl_compl] #align disjoint_compl_right_iff disjoint_compl_right_iff theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x := @disjoint_sdiff_self_left αᵒᵈ _ _ _ #align codisjoint_himp_self_left codisjoint_himp_self_left theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) := @disjoint_sdiff_self_right αᵒᵈ _ _ _ #align codisjoint_himp_self_right codisjoint_himp_self_right theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z := (@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _ #align himp_le himp_le end BooleanAlgebra instance Prop.booleanAlgebra : BooleanAlgebra Prop := { Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with compl := Not, himp_eq := fun p q => propext imp_iff_or_not, inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp, top_le_sup_compl := fun p _ => Classical.em p } #align Prop.boolean_algebra Prop.booleanAlgebra instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;> simp [sdiff_eq] inf_compl_le_bot x := by constructor <;> simp top_le_sup_compl x := by constructor <;> simp instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] : BooleanAlgebra (∀ i, α i) := { Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with sdiff_eq := fun _ _ => funext fun _ => sdiff_eq, himp_eq := fun _ _ => funext fun _ => himp_eq, inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _, top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ } #align pi.boolean_algebra Pi.booleanAlgebra instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where __ := Bool.linearOrder __ := Bool.boundedOrder __ := Bool.instDistribLattice compl := not inf_compl_le_bot a := a.and_not_self.le top_le_sup_compl a := a.or_not_self.ge @[simp] theorem Bool.sup_eq_bor : (· ⊔ ·) = or := rfl #align bool.sup_eq_bor Bool.sup_eq_bor @[simp] theorem Bool.inf_eq_band : (· ⊓ ·) = and := rfl #align bool.inf_eq_band Bool.inf_eq_band @[simp] theorem Bool.compl_eq_bnot : HasCompl.compl = not := rfl #align bool.compl_eq_bnot Bool.compl_eq_bnot section lift -- See note [reducible non-instances] /-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α] [GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : GeneralizedBooleanAlgebra α := { hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff, hf.distribLattice f map_sup map_inf with sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff], inf_inf_sdiff := fun a b => hf <| by erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot] } #align function.injective.generalized_boolean_algebra Function.Injective.generalizedBooleanAlgebra -- See note [reducible non-instances] /-- Pullback a `BooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α] [SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α := { hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with compl := compl, top := ⊤, le_top := fun a => (@le_top β _ _ _).trans map_top.ge, bot_le := fun a => map_bot.le.trans bot_le, inf_compl_le_bot := fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le, top_le_sup_compl := fun a => ((map_sup _ _).trans <| by rw [map_compl, sup_compl_eq_top, map_top]).ge, sdiff_eq := fun a b => by refine hf ((map_sdiff _ _).trans (sdiff_eq.trans ?_)) rw [map_inf, map_compl] } #align function.injective.boolean_algebra Function.Injective.booleanAlgebra end lift instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by refine' { PUnit.biheytingAlgebra with .. } <;> (
intros
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by refine' { PUnit.biheytingAlgebra with .. } <;> (
Mathlib.Order.BooleanAlgebra.865_0.ewE75DLNneOU8G5
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit
Mathlib_Order_BooleanAlgebra
case refine'_1 α : Type u β : Type u_1 w x y z : α src✝ : BiheytingAlgebra PUnit.{?u.90854 + 1} := biheytingAlgebra x✝ y✝ z✝ : PUnit.{?u.90854 + 1} ⊢ (x✝ ⊔ y✝) ⊓ (x✝ ⊔ z✝) ≤ x✝ ⊔ y✝ ⊓ z✝
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm] #align compl_sdiff_compl compl_sdiff_compl @[simp] theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x := @compl_sdiff_compl αᵒᵈ _ _ _ #align compl_himp_compl compl_himp_compl theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by rw [← le_compl_iff_disjoint_left, compl_compl] #align disjoint_compl_left_iff disjoint_compl_left_iff theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by rw [← le_compl_iff_disjoint_right, compl_compl] #align disjoint_compl_right_iff disjoint_compl_right_iff theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x := @disjoint_sdiff_self_left αᵒᵈ _ _ _ #align codisjoint_himp_self_left codisjoint_himp_self_left theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) := @disjoint_sdiff_self_right αᵒᵈ _ _ _ #align codisjoint_himp_self_right codisjoint_himp_self_right theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z := (@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _ #align himp_le himp_le end BooleanAlgebra instance Prop.booleanAlgebra : BooleanAlgebra Prop := { Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with compl := Not, himp_eq := fun p q => propext imp_iff_or_not, inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp, top_le_sup_compl := fun p _ => Classical.em p } #align Prop.boolean_algebra Prop.booleanAlgebra instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;> simp [sdiff_eq] inf_compl_le_bot x := by constructor <;> simp top_le_sup_compl x := by constructor <;> simp instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] : BooleanAlgebra (∀ i, α i) := { Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with sdiff_eq := fun _ _ => funext fun _ => sdiff_eq, himp_eq := fun _ _ => funext fun _ => himp_eq, inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _, top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ } #align pi.boolean_algebra Pi.booleanAlgebra instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where __ := Bool.linearOrder __ := Bool.boundedOrder __ := Bool.instDistribLattice compl := not inf_compl_le_bot a := a.and_not_self.le top_le_sup_compl a := a.or_not_self.ge @[simp] theorem Bool.sup_eq_bor : (· ⊔ ·) = or := rfl #align bool.sup_eq_bor Bool.sup_eq_bor @[simp] theorem Bool.inf_eq_band : (· ⊓ ·) = and := rfl #align bool.inf_eq_band Bool.inf_eq_band @[simp] theorem Bool.compl_eq_bnot : HasCompl.compl = not := rfl #align bool.compl_eq_bnot Bool.compl_eq_bnot section lift -- See note [reducible non-instances] /-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α] [GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : GeneralizedBooleanAlgebra α := { hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff, hf.distribLattice f map_sup map_inf with sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff], inf_inf_sdiff := fun a b => hf <| by erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot] } #align function.injective.generalized_boolean_algebra Function.Injective.generalizedBooleanAlgebra -- See note [reducible non-instances] /-- Pullback a `BooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α] [SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α := { hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with compl := compl, top := ⊤, le_top := fun a => (@le_top β _ _ _).trans map_top.ge, bot_le := fun a => map_bot.le.trans bot_le, inf_compl_le_bot := fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le, top_le_sup_compl := fun a => ((map_sup _ _).trans <| by rw [map_compl, sup_compl_eq_top, map_top]).ge, sdiff_eq := fun a b => by refine hf ((map_sdiff _ _).trans (sdiff_eq.trans ?_)) rw [map_inf, map_compl] } #align function.injective.boolean_algebra Function.Injective.booleanAlgebra end lift instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by refine' { PUnit.biheytingAlgebra with .. } <;> (intros;
trivial
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by refine' { PUnit.biheytingAlgebra with .. } <;> (intros;
Mathlib.Order.BooleanAlgebra.865_0.ewE75DLNneOU8G5
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit
Mathlib_Order_BooleanAlgebra
case refine'_2 α : Type u β : Type u_1 w x y z : α src✝ : BiheytingAlgebra PUnit.{?u.90854 + 1} := biheytingAlgebra ⊢ ∀ (x : PUnit.{?u.90854 + 1}), x ⊓ xᶜ ≤ ⊥
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm] #align compl_sdiff_compl compl_sdiff_compl @[simp] theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x := @compl_sdiff_compl αᵒᵈ _ _ _ #align compl_himp_compl compl_himp_compl theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by rw [← le_compl_iff_disjoint_left, compl_compl] #align disjoint_compl_left_iff disjoint_compl_left_iff theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by rw [← le_compl_iff_disjoint_right, compl_compl] #align disjoint_compl_right_iff disjoint_compl_right_iff theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x := @disjoint_sdiff_self_left αᵒᵈ _ _ _ #align codisjoint_himp_self_left codisjoint_himp_self_left theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) := @disjoint_sdiff_self_right αᵒᵈ _ _ _ #align codisjoint_himp_self_right codisjoint_himp_self_right theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z := (@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _ #align himp_le himp_le end BooleanAlgebra instance Prop.booleanAlgebra : BooleanAlgebra Prop := { Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with compl := Not, himp_eq := fun p q => propext imp_iff_or_not, inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp, top_le_sup_compl := fun p _ => Classical.em p } #align Prop.boolean_algebra Prop.booleanAlgebra instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;> simp [sdiff_eq] inf_compl_le_bot x := by constructor <;> simp top_le_sup_compl x := by constructor <;> simp instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] : BooleanAlgebra (∀ i, α i) := { Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with sdiff_eq := fun _ _ => funext fun _ => sdiff_eq, himp_eq := fun _ _ => funext fun _ => himp_eq, inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _, top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ } #align pi.boolean_algebra Pi.booleanAlgebra instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where __ := Bool.linearOrder __ := Bool.boundedOrder __ := Bool.instDistribLattice compl := not inf_compl_le_bot a := a.and_not_self.le top_le_sup_compl a := a.or_not_self.ge @[simp] theorem Bool.sup_eq_bor : (· ⊔ ·) = or := rfl #align bool.sup_eq_bor Bool.sup_eq_bor @[simp] theorem Bool.inf_eq_band : (· ⊓ ·) = and := rfl #align bool.inf_eq_band Bool.inf_eq_band @[simp] theorem Bool.compl_eq_bnot : HasCompl.compl = not := rfl #align bool.compl_eq_bnot Bool.compl_eq_bnot section lift -- See note [reducible non-instances] /-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α] [GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : GeneralizedBooleanAlgebra α := { hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff, hf.distribLattice f map_sup map_inf with sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff], inf_inf_sdiff := fun a b => hf <| by erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot] } #align function.injective.generalized_boolean_algebra Function.Injective.generalizedBooleanAlgebra -- See note [reducible non-instances] /-- Pullback a `BooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α] [SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α := { hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with compl := compl, top := ⊤, le_top := fun a => (@le_top β _ _ _).trans map_top.ge, bot_le := fun a => map_bot.le.trans bot_le, inf_compl_le_bot := fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le, top_le_sup_compl := fun a => ((map_sup _ _).trans <| by rw [map_compl, sup_compl_eq_top, map_top]).ge, sdiff_eq := fun a b => by refine hf ((map_sdiff _ _).trans (sdiff_eq.trans ?_)) rw [map_inf, map_compl] } #align function.injective.boolean_algebra Function.Injective.booleanAlgebra end lift instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by refine' { PUnit.biheytingAlgebra with .. } <;> (
intros
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by refine' { PUnit.biheytingAlgebra with .. } <;> (
Mathlib.Order.BooleanAlgebra.865_0.ewE75DLNneOU8G5
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit
Mathlib_Order_BooleanAlgebra
case refine'_2 α : Type u β : Type u_1 w x y z : α src✝ : BiheytingAlgebra PUnit.{?u.90854 + 1} := biheytingAlgebra x✝ : PUnit.{?u.90854 + 1} ⊢ x✝ ⊓ x✝ᶜ ≤ ⊥
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm] #align compl_sdiff_compl compl_sdiff_compl @[simp] theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x := @compl_sdiff_compl αᵒᵈ _ _ _ #align compl_himp_compl compl_himp_compl theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by rw [← le_compl_iff_disjoint_left, compl_compl] #align disjoint_compl_left_iff disjoint_compl_left_iff theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by rw [← le_compl_iff_disjoint_right, compl_compl] #align disjoint_compl_right_iff disjoint_compl_right_iff theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x := @disjoint_sdiff_self_left αᵒᵈ _ _ _ #align codisjoint_himp_self_left codisjoint_himp_self_left theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) := @disjoint_sdiff_self_right αᵒᵈ _ _ _ #align codisjoint_himp_self_right codisjoint_himp_self_right theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z := (@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _ #align himp_le himp_le end BooleanAlgebra instance Prop.booleanAlgebra : BooleanAlgebra Prop := { Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with compl := Not, himp_eq := fun p q => propext imp_iff_or_not, inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp, top_le_sup_compl := fun p _ => Classical.em p } #align Prop.boolean_algebra Prop.booleanAlgebra instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;> simp [sdiff_eq] inf_compl_le_bot x := by constructor <;> simp top_le_sup_compl x := by constructor <;> simp instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] : BooleanAlgebra (∀ i, α i) := { Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with sdiff_eq := fun _ _ => funext fun _ => sdiff_eq, himp_eq := fun _ _ => funext fun _ => himp_eq, inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _, top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ } #align pi.boolean_algebra Pi.booleanAlgebra instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where __ := Bool.linearOrder __ := Bool.boundedOrder __ := Bool.instDistribLattice compl := not inf_compl_le_bot a := a.and_not_self.le top_le_sup_compl a := a.or_not_self.ge @[simp] theorem Bool.sup_eq_bor : (· ⊔ ·) = or := rfl #align bool.sup_eq_bor Bool.sup_eq_bor @[simp] theorem Bool.inf_eq_band : (· ⊓ ·) = and := rfl #align bool.inf_eq_band Bool.inf_eq_band @[simp] theorem Bool.compl_eq_bnot : HasCompl.compl = not := rfl #align bool.compl_eq_bnot Bool.compl_eq_bnot section lift -- See note [reducible non-instances] /-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α] [GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : GeneralizedBooleanAlgebra α := { hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff, hf.distribLattice f map_sup map_inf with sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff], inf_inf_sdiff := fun a b => hf <| by erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot] } #align function.injective.generalized_boolean_algebra Function.Injective.generalizedBooleanAlgebra -- See note [reducible non-instances] /-- Pullback a `BooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α] [SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α := { hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with compl := compl, top := ⊤, le_top := fun a => (@le_top β _ _ _).trans map_top.ge, bot_le := fun a => map_bot.le.trans bot_le, inf_compl_le_bot := fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le, top_le_sup_compl := fun a => ((map_sup _ _).trans <| by rw [map_compl, sup_compl_eq_top, map_top]).ge, sdiff_eq := fun a b => by refine hf ((map_sdiff _ _).trans (sdiff_eq.trans ?_)) rw [map_inf, map_compl] } #align function.injective.boolean_algebra Function.Injective.booleanAlgebra end lift instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by refine' { PUnit.biheytingAlgebra with .. } <;> (intros;
trivial
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by refine' { PUnit.biheytingAlgebra with .. } <;> (intros;
Mathlib.Order.BooleanAlgebra.865_0.ewE75DLNneOU8G5
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit
Mathlib_Order_BooleanAlgebra
case refine'_3 α : Type u β : Type u_1 w x y z : α src✝ : BiheytingAlgebra PUnit.{?u.90854 + 1} := biheytingAlgebra ⊢ ∀ (x : PUnit.{?u.90854 + 1}), ⊤ ≤ x ⊔ xᶜ
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm] #align compl_sdiff_compl compl_sdiff_compl @[simp] theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x := @compl_sdiff_compl αᵒᵈ _ _ _ #align compl_himp_compl compl_himp_compl theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by rw [← le_compl_iff_disjoint_left, compl_compl] #align disjoint_compl_left_iff disjoint_compl_left_iff theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by rw [← le_compl_iff_disjoint_right, compl_compl] #align disjoint_compl_right_iff disjoint_compl_right_iff theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x := @disjoint_sdiff_self_left αᵒᵈ _ _ _ #align codisjoint_himp_self_left codisjoint_himp_self_left theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) := @disjoint_sdiff_self_right αᵒᵈ _ _ _ #align codisjoint_himp_self_right codisjoint_himp_self_right theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z := (@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _ #align himp_le himp_le end BooleanAlgebra instance Prop.booleanAlgebra : BooleanAlgebra Prop := { Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with compl := Not, himp_eq := fun p q => propext imp_iff_or_not, inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp, top_le_sup_compl := fun p _ => Classical.em p } #align Prop.boolean_algebra Prop.booleanAlgebra instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;> simp [sdiff_eq] inf_compl_le_bot x := by constructor <;> simp top_le_sup_compl x := by constructor <;> simp instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] : BooleanAlgebra (∀ i, α i) := { Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with sdiff_eq := fun _ _ => funext fun _ => sdiff_eq, himp_eq := fun _ _ => funext fun _ => himp_eq, inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _, top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ } #align pi.boolean_algebra Pi.booleanAlgebra instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where __ := Bool.linearOrder __ := Bool.boundedOrder __ := Bool.instDistribLattice compl := not inf_compl_le_bot a := a.and_not_self.le top_le_sup_compl a := a.or_not_self.ge @[simp] theorem Bool.sup_eq_bor : (· ⊔ ·) = or := rfl #align bool.sup_eq_bor Bool.sup_eq_bor @[simp] theorem Bool.inf_eq_band : (· ⊓ ·) = and := rfl #align bool.inf_eq_band Bool.inf_eq_band @[simp] theorem Bool.compl_eq_bnot : HasCompl.compl = not := rfl #align bool.compl_eq_bnot Bool.compl_eq_bnot section lift -- See note [reducible non-instances] /-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α] [GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : GeneralizedBooleanAlgebra α := { hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff, hf.distribLattice f map_sup map_inf with sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff], inf_inf_sdiff := fun a b => hf <| by erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot] } #align function.injective.generalized_boolean_algebra Function.Injective.generalizedBooleanAlgebra -- See note [reducible non-instances] /-- Pullback a `BooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α] [SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α := { hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with compl := compl, top := ⊤, le_top := fun a => (@le_top β _ _ _).trans map_top.ge, bot_le := fun a => map_bot.le.trans bot_le, inf_compl_le_bot := fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le, top_le_sup_compl := fun a => ((map_sup _ _).trans <| by rw [map_compl, sup_compl_eq_top, map_top]).ge, sdiff_eq := fun a b => by refine hf ((map_sdiff _ _).trans (sdiff_eq.trans ?_)) rw [map_inf, map_compl] } #align function.injective.boolean_algebra Function.Injective.booleanAlgebra end lift instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by refine' { PUnit.biheytingAlgebra with .. } <;> (
intros
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by refine' { PUnit.biheytingAlgebra with .. } <;> (
Mathlib.Order.BooleanAlgebra.865_0.ewE75DLNneOU8G5
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit
Mathlib_Order_BooleanAlgebra
case refine'_3 α : Type u β : Type u_1 w x y z : α src✝ : BiheytingAlgebra PUnit.{?u.90854 + 1} := biheytingAlgebra x✝ : PUnit.{?u.90854 + 1} ⊢ ⊤ ≤ x✝ ⊔ x✝ᶜ
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm] #align compl_sdiff_compl compl_sdiff_compl @[simp] theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x := @compl_sdiff_compl αᵒᵈ _ _ _ #align compl_himp_compl compl_himp_compl theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by rw [← le_compl_iff_disjoint_left, compl_compl] #align disjoint_compl_left_iff disjoint_compl_left_iff theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by rw [← le_compl_iff_disjoint_right, compl_compl] #align disjoint_compl_right_iff disjoint_compl_right_iff theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x := @disjoint_sdiff_self_left αᵒᵈ _ _ _ #align codisjoint_himp_self_left codisjoint_himp_self_left theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) := @disjoint_sdiff_self_right αᵒᵈ _ _ _ #align codisjoint_himp_self_right codisjoint_himp_self_right theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z := (@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _ #align himp_le himp_le end BooleanAlgebra instance Prop.booleanAlgebra : BooleanAlgebra Prop := { Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with compl := Not, himp_eq := fun p q => propext imp_iff_or_not, inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp, top_le_sup_compl := fun p _ => Classical.em p } #align Prop.boolean_algebra Prop.booleanAlgebra instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;> simp [sdiff_eq] inf_compl_le_bot x := by constructor <;> simp top_le_sup_compl x := by constructor <;> simp instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] : BooleanAlgebra (∀ i, α i) := { Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with sdiff_eq := fun _ _ => funext fun _ => sdiff_eq, himp_eq := fun _ _ => funext fun _ => himp_eq, inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _, top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ } #align pi.boolean_algebra Pi.booleanAlgebra instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where __ := Bool.linearOrder __ := Bool.boundedOrder __ := Bool.instDistribLattice compl := not inf_compl_le_bot a := a.and_not_self.le top_le_sup_compl a := a.or_not_self.ge @[simp] theorem Bool.sup_eq_bor : (· ⊔ ·) = or := rfl #align bool.sup_eq_bor Bool.sup_eq_bor @[simp] theorem Bool.inf_eq_band : (· ⊓ ·) = and := rfl #align bool.inf_eq_band Bool.inf_eq_band @[simp] theorem Bool.compl_eq_bnot : HasCompl.compl = not := rfl #align bool.compl_eq_bnot Bool.compl_eq_bnot section lift -- See note [reducible non-instances] /-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α] [GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : GeneralizedBooleanAlgebra α := { hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff, hf.distribLattice f map_sup map_inf with sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff], inf_inf_sdiff := fun a b => hf <| by erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot] } #align function.injective.generalized_boolean_algebra Function.Injective.generalizedBooleanAlgebra -- See note [reducible non-instances] /-- Pullback a `BooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α] [SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α := { hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with compl := compl, top := ⊤, le_top := fun a => (@le_top β _ _ _).trans map_top.ge, bot_le := fun a => map_bot.le.trans bot_le, inf_compl_le_bot := fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le, top_le_sup_compl := fun a => ((map_sup _ _).trans <| by rw [map_compl, sup_compl_eq_top, map_top]).ge, sdiff_eq := fun a b => by refine hf ((map_sdiff _ _).trans (sdiff_eq.trans ?_)) rw [map_inf, map_compl] } #align function.injective.boolean_algebra Function.Injective.booleanAlgebra end lift instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by refine' { PUnit.biheytingAlgebra with .. } <;> (intros;
trivial
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by refine' { PUnit.biheytingAlgebra with .. } <;> (intros;
Mathlib.Order.BooleanAlgebra.865_0.ewE75DLNneOU8G5
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit
Mathlib_Order_BooleanAlgebra
case refine'_4 α : Type u β : Type u_1 w x y z : α src✝ : BiheytingAlgebra PUnit.{?u.90854 + 1} := biheytingAlgebra ⊢ ∀ (x y : PUnit.{?u.90854 + 1}), x \ y = x ⊓ yᶜ
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm] #align compl_sdiff_compl compl_sdiff_compl @[simp] theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x := @compl_sdiff_compl αᵒᵈ _ _ _ #align compl_himp_compl compl_himp_compl theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by rw [← le_compl_iff_disjoint_left, compl_compl] #align disjoint_compl_left_iff disjoint_compl_left_iff theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by rw [← le_compl_iff_disjoint_right, compl_compl] #align disjoint_compl_right_iff disjoint_compl_right_iff theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x := @disjoint_sdiff_self_left αᵒᵈ _ _ _ #align codisjoint_himp_self_left codisjoint_himp_self_left theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) := @disjoint_sdiff_self_right αᵒᵈ _ _ _ #align codisjoint_himp_self_right codisjoint_himp_self_right theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z := (@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _ #align himp_le himp_le end BooleanAlgebra instance Prop.booleanAlgebra : BooleanAlgebra Prop := { Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with compl := Not, himp_eq := fun p q => propext imp_iff_or_not, inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp, top_le_sup_compl := fun p _ => Classical.em p } #align Prop.boolean_algebra Prop.booleanAlgebra instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;> simp [sdiff_eq] inf_compl_le_bot x := by constructor <;> simp top_le_sup_compl x := by constructor <;> simp instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] : BooleanAlgebra (∀ i, α i) := { Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with sdiff_eq := fun _ _ => funext fun _ => sdiff_eq, himp_eq := fun _ _ => funext fun _ => himp_eq, inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _, top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ } #align pi.boolean_algebra Pi.booleanAlgebra instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where __ := Bool.linearOrder __ := Bool.boundedOrder __ := Bool.instDistribLattice compl := not inf_compl_le_bot a := a.and_not_self.le top_le_sup_compl a := a.or_not_self.ge @[simp] theorem Bool.sup_eq_bor : (· ⊔ ·) = or := rfl #align bool.sup_eq_bor Bool.sup_eq_bor @[simp] theorem Bool.inf_eq_band : (· ⊓ ·) = and := rfl #align bool.inf_eq_band Bool.inf_eq_band @[simp] theorem Bool.compl_eq_bnot : HasCompl.compl = not := rfl #align bool.compl_eq_bnot Bool.compl_eq_bnot section lift -- See note [reducible non-instances] /-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α] [GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : GeneralizedBooleanAlgebra α := { hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff, hf.distribLattice f map_sup map_inf with sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff], inf_inf_sdiff := fun a b => hf <| by erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot] } #align function.injective.generalized_boolean_algebra Function.Injective.generalizedBooleanAlgebra -- See note [reducible non-instances] /-- Pullback a `BooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α] [SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α := { hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with compl := compl, top := ⊤, le_top := fun a => (@le_top β _ _ _).trans map_top.ge, bot_le := fun a => map_bot.le.trans bot_le, inf_compl_le_bot := fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le, top_le_sup_compl := fun a => ((map_sup _ _).trans <| by rw [map_compl, sup_compl_eq_top, map_top]).ge, sdiff_eq := fun a b => by refine hf ((map_sdiff _ _).trans (sdiff_eq.trans ?_)) rw [map_inf, map_compl] } #align function.injective.boolean_algebra Function.Injective.booleanAlgebra end lift instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by refine' { PUnit.biheytingAlgebra with .. } <;> (
intros
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by refine' { PUnit.biheytingAlgebra with .. } <;> (
Mathlib.Order.BooleanAlgebra.865_0.ewE75DLNneOU8G5
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit
Mathlib_Order_BooleanAlgebra
case refine'_4 α : Type u β : Type u_1 w x y z : α src✝ : BiheytingAlgebra PUnit.{?u.90854 + 1} := biheytingAlgebra x✝ y✝ : PUnit.{?u.90854 + 1} ⊢ x✝ \ y✝ = x✝ ⊓ y✝ᶜ
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm] #align compl_sdiff_compl compl_sdiff_compl @[simp] theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x := @compl_sdiff_compl αᵒᵈ _ _ _ #align compl_himp_compl compl_himp_compl theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by rw [← le_compl_iff_disjoint_left, compl_compl] #align disjoint_compl_left_iff disjoint_compl_left_iff theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by rw [← le_compl_iff_disjoint_right, compl_compl] #align disjoint_compl_right_iff disjoint_compl_right_iff theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x := @disjoint_sdiff_self_left αᵒᵈ _ _ _ #align codisjoint_himp_self_left codisjoint_himp_self_left theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) := @disjoint_sdiff_self_right αᵒᵈ _ _ _ #align codisjoint_himp_self_right codisjoint_himp_self_right theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z := (@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _ #align himp_le himp_le end BooleanAlgebra instance Prop.booleanAlgebra : BooleanAlgebra Prop := { Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with compl := Not, himp_eq := fun p q => propext imp_iff_or_not, inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp, top_le_sup_compl := fun p _ => Classical.em p } #align Prop.boolean_algebra Prop.booleanAlgebra instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;> simp [sdiff_eq] inf_compl_le_bot x := by constructor <;> simp top_le_sup_compl x := by constructor <;> simp instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] : BooleanAlgebra (∀ i, α i) := { Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with sdiff_eq := fun _ _ => funext fun _ => sdiff_eq, himp_eq := fun _ _ => funext fun _ => himp_eq, inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _, top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ } #align pi.boolean_algebra Pi.booleanAlgebra instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where __ := Bool.linearOrder __ := Bool.boundedOrder __ := Bool.instDistribLattice compl := not inf_compl_le_bot a := a.and_not_self.le top_le_sup_compl a := a.or_not_self.ge @[simp] theorem Bool.sup_eq_bor : (· ⊔ ·) = or := rfl #align bool.sup_eq_bor Bool.sup_eq_bor @[simp] theorem Bool.inf_eq_band : (· ⊓ ·) = and := rfl #align bool.inf_eq_band Bool.inf_eq_band @[simp] theorem Bool.compl_eq_bnot : HasCompl.compl = not := rfl #align bool.compl_eq_bnot Bool.compl_eq_bnot section lift -- See note [reducible non-instances] /-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α] [GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : GeneralizedBooleanAlgebra α := { hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff, hf.distribLattice f map_sup map_inf with sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff], inf_inf_sdiff := fun a b => hf <| by erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot] } #align function.injective.generalized_boolean_algebra Function.Injective.generalizedBooleanAlgebra -- See note [reducible non-instances] /-- Pullback a `BooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α] [SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α := { hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with compl := compl, top := ⊤, le_top := fun a => (@le_top β _ _ _).trans map_top.ge, bot_le := fun a => map_bot.le.trans bot_le, inf_compl_le_bot := fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le, top_le_sup_compl := fun a => ((map_sup _ _).trans <| by rw [map_compl, sup_compl_eq_top, map_top]).ge, sdiff_eq := fun a b => by refine hf ((map_sdiff _ _).trans (sdiff_eq.trans ?_)) rw [map_inf, map_compl] } #align function.injective.boolean_algebra Function.Injective.booleanAlgebra end lift instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by refine' { PUnit.biheytingAlgebra with .. } <;> (intros;
trivial
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by refine' { PUnit.biheytingAlgebra with .. } <;> (intros;
Mathlib.Order.BooleanAlgebra.865_0.ewE75DLNneOU8G5
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit
Mathlib_Order_BooleanAlgebra
case refine'_5 α : Type u β : Type u_1 w x y z : α src✝ : BiheytingAlgebra PUnit.{?u.90854 + 1} := biheytingAlgebra ⊢ ∀ (x y : PUnit.{?u.90854 + 1}), x ⇨ y = y ⊔ xᶜ
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm] #align compl_sdiff_compl compl_sdiff_compl @[simp] theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x := @compl_sdiff_compl αᵒᵈ _ _ _ #align compl_himp_compl compl_himp_compl theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by rw [← le_compl_iff_disjoint_left, compl_compl] #align disjoint_compl_left_iff disjoint_compl_left_iff theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by rw [← le_compl_iff_disjoint_right, compl_compl] #align disjoint_compl_right_iff disjoint_compl_right_iff theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x := @disjoint_sdiff_self_left αᵒᵈ _ _ _ #align codisjoint_himp_self_left codisjoint_himp_self_left theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) := @disjoint_sdiff_self_right αᵒᵈ _ _ _ #align codisjoint_himp_self_right codisjoint_himp_self_right theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z := (@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _ #align himp_le himp_le end BooleanAlgebra instance Prop.booleanAlgebra : BooleanAlgebra Prop := { Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with compl := Not, himp_eq := fun p q => propext imp_iff_or_not, inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp, top_le_sup_compl := fun p _ => Classical.em p } #align Prop.boolean_algebra Prop.booleanAlgebra instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;> simp [sdiff_eq] inf_compl_le_bot x := by constructor <;> simp top_le_sup_compl x := by constructor <;> simp instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] : BooleanAlgebra (∀ i, α i) := { Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with sdiff_eq := fun _ _ => funext fun _ => sdiff_eq, himp_eq := fun _ _ => funext fun _ => himp_eq, inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _, top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ } #align pi.boolean_algebra Pi.booleanAlgebra instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where __ := Bool.linearOrder __ := Bool.boundedOrder __ := Bool.instDistribLattice compl := not inf_compl_le_bot a := a.and_not_self.le top_le_sup_compl a := a.or_not_self.ge @[simp] theorem Bool.sup_eq_bor : (· ⊔ ·) = or := rfl #align bool.sup_eq_bor Bool.sup_eq_bor @[simp] theorem Bool.inf_eq_band : (· ⊓ ·) = and := rfl #align bool.inf_eq_band Bool.inf_eq_band @[simp] theorem Bool.compl_eq_bnot : HasCompl.compl = not := rfl #align bool.compl_eq_bnot Bool.compl_eq_bnot section lift -- See note [reducible non-instances] /-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α] [GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : GeneralizedBooleanAlgebra α := { hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff, hf.distribLattice f map_sup map_inf with sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff], inf_inf_sdiff := fun a b => hf <| by erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot] } #align function.injective.generalized_boolean_algebra Function.Injective.generalizedBooleanAlgebra -- See note [reducible non-instances] /-- Pullback a `BooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α] [SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α := { hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with compl := compl, top := ⊤, le_top := fun a => (@le_top β _ _ _).trans map_top.ge, bot_le := fun a => map_bot.le.trans bot_le, inf_compl_le_bot := fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le, top_le_sup_compl := fun a => ((map_sup _ _).trans <| by rw [map_compl, sup_compl_eq_top, map_top]).ge, sdiff_eq := fun a b => by refine hf ((map_sdiff _ _).trans (sdiff_eq.trans ?_)) rw [map_inf, map_compl] } #align function.injective.boolean_algebra Function.Injective.booleanAlgebra end lift instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by refine' { PUnit.biheytingAlgebra with .. } <;> (
intros
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by refine' { PUnit.biheytingAlgebra with .. } <;> (
Mathlib.Order.BooleanAlgebra.865_0.ewE75DLNneOU8G5
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit
Mathlib_Order_BooleanAlgebra
case refine'_5 α : Type u β : Type u_1 w x y z : α src✝ : BiheytingAlgebra PUnit.{?u.90854 + 1} := biheytingAlgebra x✝ y✝ : PUnit.{?u.90854 + 1} ⊢ x✝ ⇨ y✝ = y✝ ⊔ x✝ᶜ
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Bryan Gin-ge Chen -/ import Mathlib.Order.Heyting.Basic #align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4" /-! # (Generalized) Boolean algebras A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras generalize the (classical) logic of propositions and the lattice of subsets of a set. Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary (not-necessarily-finite) type `α`. `GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`). For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra` so that it is also bundled with a `\` operator. (A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do not yet have relative complements for arbitrary intervals, as we do not even have lattice intervals.) ## Main declarations * `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras * `BooleanAlgebra`: a type class for Boolean algebras. * `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop` ## Implementation notes The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in `GeneralizedBooleanAlgebra` are taken from [Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations). [Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution `x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`. ## References * <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations> * [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935] * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] ## Tags generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl -/ open Function OrderDual universe u v variable {α : Type u} {β : Type*} {w x y z : α} /-! ### Generalized Boolean algebras Some of the lemmas in this section are from: * [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011] * <https://ncatlab.org/nlab/show/relative+complement> * <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf> -/ /-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and `(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`. This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary (not-necessarily-`Fintype`) `α`. -/ class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where /-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/ sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a /-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/ inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ #align generalized_boolean_algebra GeneralizedBooleanAlgebra -- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`, -- however we'd need another type class for lattices with bot, and all the API for that. section GeneralizedBooleanAlgebra variable [GeneralizedBooleanAlgebra α] @[simp] theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x := GeneralizedBooleanAlgebra.sup_inf_sdiff _ _ #align sup_inf_sdiff sup_inf_sdiff @[simp] theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ := GeneralizedBooleanAlgebra.inf_inf_sdiff _ _ #align inf_inf_sdiff inf_inf_sdiff @[simp] theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff] #align sup_sdiff_inf sup_sdiff_inf @[simp] theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff] #align inf_sdiff_inf inf_sdiff_inf -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α := { GeneralizedBooleanAlgebra.toBot with bot_le := fun a => by rw [← inf_inf_sdiff a a, inf_assoc] exact inf_le_left } #align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) := disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le #align disjoint_inf_sdiff disjoint_inf_sdiff -- TODO: in distributive lattices, relative complements are unique when they exist theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm] rw [sup_comm] at s conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm] rw [inf_comm] at i exact (eq_of_inf_eq_sup_eq i s).symm #align sdiff_unique sdiff_unique -- Use `sdiff_le` private theorem sdiff_le' : x \ y ≤ x := calc x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right _ = x := sup_inf_sdiff x y -- Use `sdiff_sup_self` private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x := calc y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self] _ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl _ = y ⊔ x := by rw [sup_inf_sdiff] @[simp] theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ := Eq.symm <| calc ⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff] _ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff] _ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left] _ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl _ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem] _ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y] _ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq] _ = x ⊓ x \ y ⊓ y \ x := by ac_rfl _ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le'] #align sdiff_inf_sdiff sdiff_inf_sdiff theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) := disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le #align disjoint_sdiff_sdiff disjoint_sdiff_sdiff @[simp] theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ := calc x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff] _ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right] _ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq] #align inf_sdiff_self_right inf_sdiff_self_right @[simp] theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right] #align inf_sdiff_self_left inf_sdiff_self_left -- see Note [lower instance priority] instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : GeneralizedCoheytingAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with sdiff := (· \ ·), sdiff_le_iff := fun y x z => ⟨fun h => le_of_inf_le_sup_le (le_of_eq (calc y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le' _ = x ⊓ y \ x ⊔ z ⊓ y \ x := by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq] _ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm)) (calc y ⊔ y \ x = y := sup_of_le_left sdiff_le' _ ≤ y ⊔ (x ⊔ z) := le_sup_left _ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y] _ = x ⊔ z ⊔ y \ x := by ac_rfl), fun h => le_of_inf_le_sup_le (calc y \ x ⊓ x = ⊥ := inf_sdiff_self_left _ ≤ z ⊓ x := bot_le) (calc y \ x ⊔ x = y ⊔ x := sdiff_sup_self' _ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x _ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ } #align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra theorem disjoint_sdiff_self_left : Disjoint (y \ x) x := disjoint_iff_inf_le.mpr inf_sdiff_self_left.le #align disjoint_sdiff_self_left disjoint_sdiff_self_left theorem disjoint_sdiff_self_right : Disjoint x (y \ x) := disjoint_iff_inf_le.mpr inf_sdiff_self_right.le #align disjoint_sdiff_self_right disjoint_sdiff_self_right lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z := ⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦ by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩ #align le_sdiff le_sdiff @[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y := ⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩ #align sdiff_eq_left sdiff_eq_left /- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using `Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/ theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z := have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot]) #align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) : y \ x = z := sdiff_unique (by rw [← inf_eq_right] at hs rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z, hs, sup_eq_left]) (by rw [inf_assoc, hd.eq_bot, inf_bot_eq]) #align disjoint.sdiff_unique Disjoint.sdiff_unique -- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff` theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x := ⟨fun H => le_of_inf_le_sup_le (le_trans H.le_bot bot_le) (by rw [sup_sdiff_cancel_right hx] refine' le_trans (sup_le_sup_left sdiff_le z) _ rw [sup_eq_right.2 hz]), fun H => disjoint_sdiff_self_right.mono_left H⟩ #align disjoint_sdiff_iff_le disjoint_sdiff_iff_le -- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff` theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) := (disjoint_sdiff_iff_le hz hx).symm #align le_iff_disjoint_sdiff le_iff_disjoint_sdiff -- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff` theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by rw [← disjoint_iff] exact disjoint_sdiff_iff_le hz hx #align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff -- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff` theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x := ⟨fun H => by apply le_antisymm · conv_lhs => rw [← sup_inf_sdiff y x] apply sup_le_sup_right rwa [inf_eq_right.2 hx] · apply le_trans · apply sup_le_sup_right hz · rw [sup_sdiff_left], fun H => by conv_lhs at H => rw [← sup_sdiff_cancel_right hx] refine' le_of_inf_le_sup_le _ H.le rw [inf_sdiff_self_right] exact bot_le⟩ #align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff -- cf. `IsCompl.sup_inf` theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z := sdiff_unique (calc y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) := by rw [sup_inf_left] _ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y] _ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl _ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff] _ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl _ = y := by rw [sup_inf_self, sup_inf_self, inf_idem]) (calc y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left] _ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right] _ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z), inf_inf_sdiff, inf_bot_eq]) #align sdiff_sup sdiff_sup theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z := ⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff]) (by rw [sup_inf_sdiff, h, sup_inf_sdiff]), fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩ #align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x := calc x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot] _ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf _ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff] #align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by rw [sdiff_eq_self_iff_disjoint, disjoint_comm] #align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint' theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by refine' sdiff_le.lt_of_ne fun h => hy _ rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h rw [← h, inf_eq_right.mpr hx] #align sdiff_lt sdiff_lt @[simp] theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ := ⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩ #align le_sdiff_iff le_sdiff_iff theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z := (sdiff_le_sdiff_right h.le).lt_of_not_le fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz #align sdiff_lt_sdiff_right sdiff_lt_sdiff_right theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z := calc x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc] _ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff] _ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left] #align sup_inf_inf_sdiff sup_inf_inf_sdiff theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff] apply sdiff_unique · calc x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) := by rw [sup_inf_right] _ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl _ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc] _ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) := by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) := by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y] _ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl _ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)] _ = x := by rw [sup_inf_self, sup_comm, inf_sup_self] · calc x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left] _ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl _ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq] _ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left] _ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq] #align sdiff_sdiff_right sdiff_sdiff_right theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z := calc x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right _ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl _ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm] #align sdiff_sdiff_right' sdiff_sdiff_right' theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by rw [sdiff_sdiff_right', inf_eq_right.2 h] #align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup @[simp] theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq] #align sdiff_sdiff_right_self sdiff_sdiff_right_self theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by rw [sdiff_sdiff_right_self, inf_of_le_right h] #align sdiff_sdiff_eq_self sdiff_sdiff_eq_self theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by rw [← h, sdiff_sdiff_eq_self hy] #align sdiff_eq_symm sdiff_eq_symm theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y := ⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩ #align sdiff_eq_comm sdiff_eq_comm theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz] #align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup] #align sdiff_sdiff_left' sdiff_sdiff_left' theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := calc z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right] _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff] _ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) := by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff] _ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl _ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem] #align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := calc z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup _ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right] _ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl _ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm _ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl #align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff' lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y := sdiff_sdiff_sdiff_le_sdiff.antisymm <| (disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by rw [le_antisymm_iff, sdiff_le_comm] exact ⟨sdiff_sdiff_sdiff_le_sdiff, (disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩ theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left] _ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right] _ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl _ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff] _ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left] _ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le)) (calc x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl _ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]) #align inf_sdiff inf_sdiff theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z := sdiff_unique (calc x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc] _ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm _ = x ⊓ y := by rw [sup_inf_sdiff]) (calc x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl _ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq]) #align inf_sdiff_assoc inf_sdiff_assoc theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc] #align inf_sdiff_right_comm inf_sdiff_right_comm theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc] #align inf_sdiff_distrib_left inf_sdiff_distrib_left theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left] #align inf_sdiff_distrib_right inf_sdiff_distrib_right theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc] #align disjoint_sdiff_comm disjoint_sdiff_comm theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y := Eq.symm <| calc x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left] _ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl _ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right] _ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem] #align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by rw [← sup_sdiff_cancel_right hxz] refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le #align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by rw [← sdiff_sup_cancel hyz] refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _ rw [← sdiff_idem] exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le #align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] : GeneralizedBooleanAlgebra (α × β) where sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _) inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _) -- Porting note: -- Once `pi_instance` has been ported, this is just `by pi_instance`. instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*} [∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a) inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a) #align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra end GeneralizedBooleanAlgebra /-! ### Boolean algebras -/ /-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that `x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\` and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`. This is a generalization of (classical) logic of propositions, or the powerset lattice. Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE` to be present at define-time, the `extends` mechanism does not work with them. Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided. -/ class BooleanAlgebra (α : Type u) extends DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where /-- The infimum of `x` and `xᶜ` is at most `⊥` -/ inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ /-- The supremum of `x` and `xᶜ` is at least `⊤` -/ top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ /-- `⊤` is the greatest element -/ le_top : ∀ a : α, a ≤ ⊤ /-- `⊥` is the least element -/ bot_le : ∀ a : α, ⊥ ≤ a /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff := fun x y => x ⊓ yᶜ /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp := fun x y => y ⊔ xᶜ /-- `x \ y` is equal to `x ⊓ yᶜ` -/ sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop /-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/ himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop #align boolean_algebra BooleanAlgebra -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α := { h with } #align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder -- See note [reducible non instances] /-- A bounded generalized boolean algebra is a boolean algebra. -/ @[reducible] def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] : BooleanAlgebra α := { ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with compl := fun a => ⊤ \ a, inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot, top_le_sup_compl := fun _ => le_sup_sdiff, sdiff_eq := fun _ _ => by -- Porting note: changed `rw` to `erw` here. -- https://github.com/leanprover-community/mathlib4/issues/5164 erw [← inf_sdiff_assoc, inf_top_eq] } #align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra section BooleanAlgebra variable [BooleanAlgebra α] theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ := bot_unique <| BooleanAlgebra.inf_compl_le_bot x #align inf_compl_eq_bot' inf_compl_eq_bot' @[simp] theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ := top_unique <| BooleanAlgebra.top_le_sup_compl x #align sup_compl_eq_top sup_compl_eq_top @[simp] theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ := sup_comm.trans sup_compl_eq_top #align compl_sup_eq_top compl_sup_eq_top theorem isCompl_compl : IsCompl x xᶜ := IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top #align is_compl_compl isCompl_compl theorem sdiff_eq : x \ y = x ⊓ yᶜ := BooleanAlgebra.sdiff_eq x y #align sdiff_eq sdiff_eq theorem himp_eq : x ⇨ y = y ⊔ xᶜ := BooleanAlgebra.himp_eq x y #align himp_eq himp_eq instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α := ⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩ #align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice -- see Note [lower instance priority] instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : GeneralizedBooleanAlgebra α := { ‹BooleanAlgebra α› with sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq], inf_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] } #align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra -- See note [lower instance priority] instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α := { ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with hnot := compl, le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le], himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq, top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl } #align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra @[simp] theorem hnot_eq_compl : ¬x = xᶜ := rfl #align hnot_eq_compl hnot_eq_compl /- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/ theorem top_sdiff : ⊤ \ x = xᶜ := top_sdiff' x #align top_sdiff top_sdiff theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y := ⟨fun h => by rw [h] exact isCompl_compl.symm, IsCompl.eq_compl⟩ #align eq_compl_iff_is_compl eq_compl_iff_isCompl theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y := ⟨fun h => by rw [← h] exact isCompl_compl, IsCompl.compl_eq⟩ #align compl_eq_iff_is_compl compl_eq_iff_isCompl theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align compl_eq_comm compl_eq_comm theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl] #align eq_compl_comm eq_compl_comm @[simp] theorem compl_compl (x : α) : xᶜᶜ = x := (@isCompl_compl _ x _).symm.compl_eq #align compl_compl compl_compl theorem compl_comp_compl : compl ∘ compl = @id α := funext compl_compl #align compl_comp_compl compl_comp_compl @[simp] theorem compl_involutive : Function.Involutive (compl : α → α) := compl_compl #align compl_involutive compl_involutive theorem compl_bijective : Function.Bijective (compl : α → α) := compl_involutive.bijective #align compl_bijective compl_bijective theorem compl_surjective : Function.Surjective (compl : α → α) := compl_involutive.surjective #align compl_surjective compl_surjective theorem compl_injective : Function.Injective (compl : α → α) := compl_involutive.injective #align compl_injective compl_injective @[simp] theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y := compl_injective.eq_iff #align compl_inj_iff compl_inj_iff theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x := h.compl_eq ▸ compl_inj_iff #align is_compl.compl_eq_iff IsCompl.compl_eq_iff @[simp] theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ := isCompl_bot_top.compl_eq_iff #align compl_eq_top compl_eq_top @[simp] theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ := isCompl_top_bot.compl_eq_iff #align compl_eq_bot compl_eq_bot @[simp] theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ := hnot_inf_distrib _ _ #align compl_inf compl_inf @[simp] theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y := ⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩ #align compl_le_compl_iff_le compl_le_compl_iff_le @[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y := lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by simpa only [compl_compl] using compl_le_compl h #align compl_le_of_compl_le compl_le_of_compl_le theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x := ⟨compl_le_of_compl_le, compl_le_of_compl_le⟩ #align compl_le_iff_compl_le compl_le_iff_compl_le @[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ) @[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by simpa using lt_compl_self (a := xᶜ) @[simp] theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl] #align sdiff_compl sdiff_compl instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ := { OrderDual.distribLattice α, OrderDual.boundedOrder α with compl := fun a => toDual (ofDual aᶜ), sdiff := fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a), inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le, top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot, sdiff_eq := fun _ _ => @himp_eq α _ _ _, himp_eq := fun _ _ => @sdiff_eq α _ _ _, } @[simp] theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _] #align sup_inf_inf_compl sup_inf_inf_compl @[simp] theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm] #align compl_sdiff compl_sdiff @[simp] theorem compl_himp : (x ⇨ y)ᶜ = x \ y := @compl_sdiff αᵒᵈ _ _ _ #align compl_himp compl_himp theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm] #align compl_sdiff_compl compl_sdiff_compl @[simp] theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x := @compl_sdiff_compl αᵒᵈ _ _ _ #align compl_himp_compl compl_himp_compl theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by rw [← le_compl_iff_disjoint_left, compl_compl] #align disjoint_compl_left_iff disjoint_compl_left_iff theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by rw [← le_compl_iff_disjoint_right, compl_compl] #align disjoint_compl_right_iff disjoint_compl_right_iff theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x := @disjoint_sdiff_self_left αᵒᵈ _ _ _ #align codisjoint_himp_self_left codisjoint_himp_self_left theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) := @disjoint_sdiff_self_right αᵒᵈ _ _ _ #align codisjoint_himp_self_right codisjoint_himp_self_right theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z := (@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _ #align himp_le himp_le end BooleanAlgebra instance Prop.booleanAlgebra : BooleanAlgebra Prop := { Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with compl := Not, himp_eq := fun p q => propext imp_iff_or_not, inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp, top_le_sup_compl := fun p _ => Classical.em p } #align Prop.boolean_algebra Prop.booleanAlgebra instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] : BooleanAlgebra (α × β) where __ := Prod.heytingAlgebra __ := Prod.distribLattice α β himp_eq x y := by ext <;> simp [himp_eq] sdiff_eq x y := by ext <;> simp [sdiff_eq] inf_compl_le_bot x := by constructor <;> simp top_le_sup_compl x := by constructor <;> simp instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] : BooleanAlgebra (∀ i, α i) := { Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with sdiff_eq := fun _ _ => funext fun _ => sdiff_eq, himp_eq := fun _ _ => funext fun _ => himp_eq, inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _, top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ } #align pi.boolean_algebra Pi.booleanAlgebra instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where __ := Bool.linearOrder __ := Bool.boundedOrder __ := Bool.instDistribLattice compl := not inf_compl_le_bot a := a.and_not_self.le top_le_sup_compl a := a.or_not_self.ge @[simp] theorem Bool.sup_eq_bor : (· ⊔ ·) = or := rfl #align bool.sup_eq_bor Bool.sup_eq_bor @[simp] theorem Bool.inf_eq_band : (· ⊓ ·) = and := rfl #align bool.inf_eq_band Bool.inf_eq_band @[simp] theorem Bool.compl_eq_bnot : HasCompl.compl = not := rfl #align bool.compl_eq_bnot Bool.compl_eq_bnot section lift -- See note [reducible non-instances] /-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α] [GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : GeneralizedBooleanAlgebra α := { hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff, hf.distribLattice f map_sup map_inf with sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff], inf_inf_sdiff := fun a b => hf <| by erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot] } #align function.injective.generalized_boolean_algebra Function.Injective.generalizedBooleanAlgebra -- See note [reducible non-instances] /-- Pullback a `BooleanAlgebra` along an injection. -/ @[reducible] protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α] [SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α := { hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with compl := compl, top := ⊤, le_top := fun a => (@le_top β _ _ _).trans map_top.ge, bot_le := fun a => map_bot.le.trans bot_le, inf_compl_le_bot := fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le, top_le_sup_compl := fun a => ((map_sup _ _).trans <| by rw [map_compl, sup_compl_eq_top, map_top]).ge, sdiff_eq := fun a b => by refine hf ((map_sdiff _ _).trans (sdiff_eq.trans ?_)) rw [map_inf, map_compl] } #align function.injective.boolean_algebra Function.Injective.booleanAlgebra end lift instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by refine' { PUnit.biheytingAlgebra with .. } <;> (intros;
trivial
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by refine' { PUnit.biheytingAlgebra with .. } <;> (intros;
Mathlib.Order.BooleanAlgebra.865_0.ewE75DLNneOU8G5
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit
Mathlib_Order_BooleanAlgebra
K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp ppred pred : Pair K nth_s_eq : Stream'.Seq.get? g.s n = some gp nth_conts_aux_eq : continuantsAux g n = ppred succ_nth_conts_aux_eq : continuantsAux g (n + 1) = pred ⊢ continuantsAux g (n + 2) = { a := gp.b * pred.a + gp.a * ppred.a, b := gp.b * pred.b + gp.a * ppred.b }
/- Copyright (c) 2019 Kevin Kappelmann. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kevin Kappelmann -/ import Mathlib.Algebra.ContinuedFractions.Translations #align_import algebra.continued_fractions.continuants_recurrence from "leanprover-community/mathlib"@"5f11361a98ae4acd77f5c1837686f6f0102cdc25" /-! # Recurrence Lemmas for the `continuants` Function of Continued Fractions. ## Summary Given a generalized continued fraction `g`, for all `n ≥ 1`, we prove that the `continuants` function indeed satisfies the following recurrences: - `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`, and - `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/ namespace GeneralizedContinuedFraction variable {K : Type*} {g : GeneralizedContinuedFraction K} {n : ℕ} [DivisionRing K] theorem continuantsAux_recurrence {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp) (nth_conts_aux_eq : g.continuantsAux n = ppred) (succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) : g.continuantsAux (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
simp [*, continuantsAux, nextContinuants, nextDenominator, nextNumerator]
theorem continuantsAux_recurrence {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp) (nth_conts_aux_eq : g.continuantsAux n = ppred) (succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) : g.continuantsAux (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
Mathlib.Algebra.ContinuedFractions.ContinuantsRecurrence.26_0.nOytPSFGrohRR6p
theorem continuantsAux_recurrence {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp) (nth_conts_aux_eq : g.continuantsAux n = ppred) (succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) : g.continuantsAux (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩
Mathlib_Algebra_ContinuedFractions_ContinuantsRecurrence
K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp ppred pred : Pair K nth_s_eq : Stream'.Seq.get? g.s n = some gp nth_conts_aux_eq : continuantsAux g n = ppred succ_nth_conts_aux_eq : continuantsAux g (n + 1) = pred ⊢ continuants g (n + 1) = { a := gp.b * pred.a + gp.a * ppred.a, b := gp.b * pred.b + gp.a * ppred.b }
/- Copyright (c) 2019 Kevin Kappelmann. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kevin Kappelmann -/ import Mathlib.Algebra.ContinuedFractions.Translations #align_import algebra.continued_fractions.continuants_recurrence from "leanprover-community/mathlib"@"5f11361a98ae4acd77f5c1837686f6f0102cdc25" /-! # Recurrence Lemmas for the `continuants` Function of Continued Fractions. ## Summary Given a generalized continued fraction `g`, for all `n ≥ 1`, we prove that the `continuants` function indeed satisfies the following recurrences: - `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`, and - `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/ namespace GeneralizedContinuedFraction variable {K : Type*} {g : GeneralizedContinuedFraction K} {n : ℕ} [DivisionRing K] theorem continuantsAux_recurrence {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp) (nth_conts_aux_eq : g.continuantsAux n = ppred) (succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) : g.continuantsAux (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by simp [*, continuantsAux, nextContinuants, nextDenominator, nextNumerator] #align generalized_continued_fraction.continuants_aux_recurrence GeneralizedContinuedFraction.continuantsAux_recurrence theorem continuants_recurrenceAux {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp) (nth_conts_aux_eq : g.continuantsAux n = ppred) (succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) : g.continuants (n + 1) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
simp [nth_cont_eq_succ_nth_cont_aux, continuantsAux_recurrence nth_s_eq nth_conts_aux_eq succ_nth_conts_aux_eq]
theorem continuants_recurrenceAux {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp) (nth_conts_aux_eq : g.continuantsAux n = ppred) (succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) : g.continuants (n + 1) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
Mathlib.Algebra.ContinuedFractions.ContinuantsRecurrence.33_0.nOytPSFGrohRR6p
theorem continuants_recurrenceAux {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp) (nth_conts_aux_eq : g.continuantsAux n = ppred) (succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) : g.continuants (n + 1) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩
Mathlib_Algebra_ContinuedFractions_ContinuantsRecurrence
K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp ppred pred : Pair K succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp nth_conts_eq : continuants g n = ppred succ_nth_conts_eq : continuants g (n + 1) = pred ⊢ continuants g (n + 2) = { a := gp.b * pred.a + gp.a * ppred.a, b := gp.b * pred.b + gp.a * ppred.b }
/- Copyright (c) 2019 Kevin Kappelmann. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kevin Kappelmann -/ import Mathlib.Algebra.ContinuedFractions.Translations #align_import algebra.continued_fractions.continuants_recurrence from "leanprover-community/mathlib"@"5f11361a98ae4acd77f5c1837686f6f0102cdc25" /-! # Recurrence Lemmas for the `continuants` Function of Continued Fractions. ## Summary Given a generalized continued fraction `g`, for all `n ≥ 1`, we prove that the `continuants` function indeed satisfies the following recurrences: - `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`, and - `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/ namespace GeneralizedContinuedFraction variable {K : Type*} {g : GeneralizedContinuedFraction K} {n : ℕ} [DivisionRing K] theorem continuantsAux_recurrence {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp) (nth_conts_aux_eq : g.continuantsAux n = ppred) (succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) : g.continuantsAux (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by simp [*, continuantsAux, nextContinuants, nextDenominator, nextNumerator] #align generalized_continued_fraction.continuants_aux_recurrence GeneralizedContinuedFraction.continuantsAux_recurrence theorem continuants_recurrenceAux {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp) (nth_conts_aux_eq : g.continuantsAux n = ppred) (succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) : g.continuants (n + 1) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by simp [nth_cont_eq_succ_nth_cont_aux, continuantsAux_recurrence nth_s_eq nth_conts_aux_eq succ_nth_conts_aux_eq] #align generalized_continued_fraction.continuants_recurrence_aux GeneralizedContinuedFraction.continuants_recurrenceAux /-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂` and `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/ theorem continuants_recurrence {gp ppred pred : Pair K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_conts_eq : g.continuants n = ppred) (succ_nth_conts_eq : g.continuants (n + 1) = pred) : g.continuants (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
rw [nth_cont_eq_succ_nth_cont_aux] at nth_conts_eq succ_nth_conts_eq
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂` and `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/ theorem continuants_recurrence {gp ppred pred : Pair K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_conts_eq : g.continuants n = ppred) (succ_nth_conts_eq : g.continuants (n + 1) = pred) : g.continuants (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
Mathlib.Algebra.ContinuedFractions.ContinuantsRecurrence.41_0.nOytPSFGrohRR6p
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂` and `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/ theorem continuants_recurrence {gp ppred pred : Pair K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_conts_eq : g.continuants n = ppred) (succ_nth_conts_eq : g.continuants (n + 1) = pred) : g.continuants (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩
Mathlib_Algebra_ContinuedFractions_ContinuantsRecurrence
K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp ppred pred : Pair K succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp nth_conts_eq : continuantsAux g (n + 1) = ppred succ_nth_conts_eq : continuantsAux g (n + 1 + 1) = pred ⊢ continuants g (n + 2) = { a := gp.b * pred.a + gp.a * ppred.a, b := gp.b * pred.b + gp.a * ppred.b }
/- Copyright (c) 2019 Kevin Kappelmann. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kevin Kappelmann -/ import Mathlib.Algebra.ContinuedFractions.Translations #align_import algebra.continued_fractions.continuants_recurrence from "leanprover-community/mathlib"@"5f11361a98ae4acd77f5c1837686f6f0102cdc25" /-! # Recurrence Lemmas for the `continuants` Function of Continued Fractions. ## Summary Given a generalized continued fraction `g`, for all `n ≥ 1`, we prove that the `continuants` function indeed satisfies the following recurrences: - `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`, and - `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/ namespace GeneralizedContinuedFraction variable {K : Type*} {g : GeneralizedContinuedFraction K} {n : ℕ} [DivisionRing K] theorem continuantsAux_recurrence {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp) (nth_conts_aux_eq : g.continuantsAux n = ppred) (succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) : g.continuantsAux (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by simp [*, continuantsAux, nextContinuants, nextDenominator, nextNumerator] #align generalized_continued_fraction.continuants_aux_recurrence GeneralizedContinuedFraction.continuantsAux_recurrence theorem continuants_recurrenceAux {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp) (nth_conts_aux_eq : g.continuantsAux n = ppred) (succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) : g.continuants (n + 1) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by simp [nth_cont_eq_succ_nth_cont_aux, continuantsAux_recurrence nth_s_eq nth_conts_aux_eq succ_nth_conts_aux_eq] #align generalized_continued_fraction.continuants_recurrence_aux GeneralizedContinuedFraction.continuants_recurrenceAux /-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂` and `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/ theorem continuants_recurrence {gp ppred pred : Pair K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_conts_eq : g.continuants n = ppred) (succ_nth_conts_eq : g.continuants (n + 1) = pred) : g.continuants (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by rw [nth_cont_eq_succ_nth_cont_aux] at nth_conts_eq succ_nth_conts_eq
exact continuants_recurrenceAux succ_nth_s_eq nth_conts_eq succ_nth_conts_eq
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂` and `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/ theorem continuants_recurrence {gp ppred pred : Pair K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_conts_eq : g.continuants n = ppred) (succ_nth_conts_eq : g.continuants (n + 1) = pred) : g.continuants (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by rw [nth_cont_eq_succ_nth_cont_aux] at nth_conts_eq succ_nth_conts_eq
Mathlib.Algebra.ContinuedFractions.ContinuantsRecurrence.41_0.nOytPSFGrohRR6p
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂` and `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/ theorem continuants_recurrence {gp ppred pred : Pair K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_conts_eq : g.continuants n = ppred) (succ_nth_conts_eq : g.continuants (n + 1) = pred) : g.continuants (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩
Mathlib_Algebra_ContinuedFractions_ContinuantsRecurrence
K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp : Pair K ppredA predA : K succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp nth_num_eq : numerators g n = ppredA succ_nth_num_eq : numerators g (n + 1) = predA ⊢ numerators g (n + 2) = gp.b * predA + gp.a * ppredA
/- Copyright (c) 2019 Kevin Kappelmann. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kevin Kappelmann -/ import Mathlib.Algebra.ContinuedFractions.Translations #align_import algebra.continued_fractions.continuants_recurrence from "leanprover-community/mathlib"@"5f11361a98ae4acd77f5c1837686f6f0102cdc25" /-! # Recurrence Lemmas for the `continuants` Function of Continued Fractions. ## Summary Given a generalized continued fraction `g`, for all `n ≥ 1`, we prove that the `continuants` function indeed satisfies the following recurrences: - `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`, and - `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/ namespace GeneralizedContinuedFraction variable {K : Type*} {g : GeneralizedContinuedFraction K} {n : ℕ} [DivisionRing K] theorem continuantsAux_recurrence {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp) (nth_conts_aux_eq : g.continuantsAux n = ppred) (succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) : g.continuantsAux (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by simp [*, continuantsAux, nextContinuants, nextDenominator, nextNumerator] #align generalized_continued_fraction.continuants_aux_recurrence GeneralizedContinuedFraction.continuantsAux_recurrence theorem continuants_recurrenceAux {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp) (nth_conts_aux_eq : g.continuantsAux n = ppred) (succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) : g.continuants (n + 1) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by simp [nth_cont_eq_succ_nth_cont_aux, continuantsAux_recurrence nth_s_eq nth_conts_aux_eq succ_nth_conts_aux_eq] #align generalized_continued_fraction.continuants_recurrence_aux GeneralizedContinuedFraction.continuants_recurrenceAux /-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂` and `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/ theorem continuants_recurrence {gp ppred pred : Pair K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_conts_eq : g.continuants n = ppred) (succ_nth_conts_eq : g.continuants (n + 1) = pred) : g.continuants (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by rw [nth_cont_eq_succ_nth_cont_aux] at nth_conts_eq succ_nth_conts_eq exact continuants_recurrenceAux succ_nth_s_eq nth_conts_eq succ_nth_conts_eq #align generalized_continued_fraction.continuants_recurrence GeneralizedContinuedFraction.continuants_recurrence /-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/ theorem numerators_recurrence {gp : Pair K} {ppredA predA : K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA) (succ_nth_num_eq : g.numerators (n + 1) = predA) : g.numerators (n + 2) = gp.b * predA + gp.a * ppredA := by
obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.a = ppredA
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/ theorem numerators_recurrence {gp : Pair K} {ppredA predA : K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA) (succ_nth_num_eq : g.numerators (n + 1) = predA) : g.numerators (n + 2) = gp.b * predA + gp.a * ppredA := by
Mathlib.Algebra.ContinuedFractions.ContinuantsRecurrence.49_0.nOytPSFGrohRR6p
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/ theorem numerators_recurrence {gp : Pair K} {ppredA predA : K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA) (succ_nth_num_eq : g.numerators (n + 1) = predA) : g.numerators (n + 2) = gp.b * predA + gp.a * ppredA
Mathlib_Algebra_ContinuedFractions_ContinuantsRecurrence
K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp : Pair K ppredA predA : K succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp nth_num_eq : numerators g n = ppredA succ_nth_num_eq : numerators g (n + 1) = predA ⊢ ∃ conts, continuants g n = conts ∧ conts.a = ppredA case intro.intro.refl K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp : Pair K predA : K succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp succ_nth_num_eq : numerators g (n + 1) = predA ppredConts : Pair K nth_conts_eq : continuants g n = ppredConts nth_num_eq : numerators g n = ppredConts.a ⊢ numerators g (n + 2) = gp.b * predA + gp.a * ppredConts.a
/- Copyright (c) 2019 Kevin Kappelmann. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kevin Kappelmann -/ import Mathlib.Algebra.ContinuedFractions.Translations #align_import algebra.continued_fractions.continuants_recurrence from "leanprover-community/mathlib"@"5f11361a98ae4acd77f5c1837686f6f0102cdc25" /-! # Recurrence Lemmas for the `continuants` Function of Continued Fractions. ## Summary Given a generalized continued fraction `g`, for all `n ≥ 1`, we prove that the `continuants` function indeed satisfies the following recurrences: - `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`, and - `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/ namespace GeneralizedContinuedFraction variable {K : Type*} {g : GeneralizedContinuedFraction K} {n : ℕ} [DivisionRing K] theorem continuantsAux_recurrence {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp) (nth_conts_aux_eq : g.continuantsAux n = ppred) (succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) : g.continuantsAux (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by simp [*, continuantsAux, nextContinuants, nextDenominator, nextNumerator] #align generalized_continued_fraction.continuants_aux_recurrence GeneralizedContinuedFraction.continuantsAux_recurrence theorem continuants_recurrenceAux {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp) (nth_conts_aux_eq : g.continuantsAux n = ppred) (succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) : g.continuants (n + 1) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by simp [nth_cont_eq_succ_nth_cont_aux, continuantsAux_recurrence nth_s_eq nth_conts_aux_eq succ_nth_conts_aux_eq] #align generalized_continued_fraction.continuants_recurrence_aux GeneralizedContinuedFraction.continuants_recurrenceAux /-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂` and `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/ theorem continuants_recurrence {gp ppred pred : Pair K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_conts_eq : g.continuants n = ppred) (succ_nth_conts_eq : g.continuants (n + 1) = pred) : g.continuants (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by rw [nth_cont_eq_succ_nth_cont_aux] at nth_conts_eq succ_nth_conts_eq exact continuants_recurrenceAux succ_nth_s_eq nth_conts_eq succ_nth_conts_eq #align generalized_continued_fraction.continuants_recurrence GeneralizedContinuedFraction.continuants_recurrence /-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/ theorem numerators_recurrence {gp : Pair K} {ppredA predA : K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA) (succ_nth_num_eq : g.numerators (n + 1) = predA) : g.numerators (n + 2) = gp.b * predA + gp.a * ppredA := by obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.a = ppredA
exact exists_conts_a_of_num nth_num_eq
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/ theorem numerators_recurrence {gp : Pair K} {ppredA predA : K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA) (succ_nth_num_eq : g.numerators (n + 1) = predA) : g.numerators (n + 2) = gp.b * predA + gp.a * ppredA := by obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.a = ppredA
Mathlib.Algebra.ContinuedFractions.ContinuantsRecurrence.49_0.nOytPSFGrohRR6p
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/ theorem numerators_recurrence {gp : Pair K} {ppredA predA : K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA) (succ_nth_num_eq : g.numerators (n + 1) = predA) : g.numerators (n + 2) = gp.b * predA + gp.a * ppredA
Mathlib_Algebra_ContinuedFractions_ContinuantsRecurrence
case intro.intro.refl K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp : Pair K predA : K succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp succ_nth_num_eq : numerators g (n + 1) = predA ppredConts : Pair K nth_conts_eq : continuants g n = ppredConts nth_num_eq : numerators g n = ppredConts.a ⊢ numerators g (n + 2) = gp.b * predA + gp.a * ppredConts.a
/- Copyright (c) 2019 Kevin Kappelmann. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kevin Kappelmann -/ import Mathlib.Algebra.ContinuedFractions.Translations #align_import algebra.continued_fractions.continuants_recurrence from "leanprover-community/mathlib"@"5f11361a98ae4acd77f5c1837686f6f0102cdc25" /-! # Recurrence Lemmas for the `continuants` Function of Continued Fractions. ## Summary Given a generalized continued fraction `g`, for all `n ≥ 1`, we prove that the `continuants` function indeed satisfies the following recurrences: - `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`, and - `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/ namespace GeneralizedContinuedFraction variable {K : Type*} {g : GeneralizedContinuedFraction K} {n : ℕ} [DivisionRing K] theorem continuantsAux_recurrence {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp) (nth_conts_aux_eq : g.continuantsAux n = ppred) (succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) : g.continuantsAux (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by simp [*, continuantsAux, nextContinuants, nextDenominator, nextNumerator] #align generalized_continued_fraction.continuants_aux_recurrence GeneralizedContinuedFraction.continuantsAux_recurrence theorem continuants_recurrenceAux {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp) (nth_conts_aux_eq : g.continuantsAux n = ppred) (succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) : g.continuants (n + 1) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by simp [nth_cont_eq_succ_nth_cont_aux, continuantsAux_recurrence nth_s_eq nth_conts_aux_eq succ_nth_conts_aux_eq] #align generalized_continued_fraction.continuants_recurrence_aux GeneralizedContinuedFraction.continuants_recurrenceAux /-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂` and `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/ theorem continuants_recurrence {gp ppred pred : Pair K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_conts_eq : g.continuants n = ppred) (succ_nth_conts_eq : g.continuants (n + 1) = pred) : g.continuants (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by rw [nth_cont_eq_succ_nth_cont_aux] at nth_conts_eq succ_nth_conts_eq exact continuants_recurrenceAux succ_nth_s_eq nth_conts_eq succ_nth_conts_eq #align generalized_continued_fraction.continuants_recurrence GeneralizedContinuedFraction.continuants_recurrence /-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/ theorem numerators_recurrence {gp : Pair K} {ppredA predA : K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA) (succ_nth_num_eq : g.numerators (n + 1) = predA) : g.numerators (n + 2) = gp.b * predA + gp.a * ppredA := by obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.a = ppredA exact exists_conts_a_of_num nth_num_eq
obtain ⟨predConts, succ_nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants (n + 1) = conts ∧ conts.a = predA
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/ theorem numerators_recurrence {gp : Pair K} {ppredA predA : K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA) (succ_nth_num_eq : g.numerators (n + 1) = predA) : g.numerators (n + 2) = gp.b * predA + gp.a * ppredA := by obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.a = ppredA exact exists_conts_a_of_num nth_num_eq
Mathlib.Algebra.ContinuedFractions.ContinuantsRecurrence.49_0.nOytPSFGrohRR6p
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/ theorem numerators_recurrence {gp : Pair K} {ppredA predA : K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA) (succ_nth_num_eq : g.numerators (n + 1) = predA) : g.numerators (n + 2) = gp.b * predA + gp.a * ppredA
Mathlib_Algebra_ContinuedFractions_ContinuantsRecurrence
K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp : Pair K predA : K succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp succ_nth_num_eq : numerators g (n + 1) = predA ppredConts : Pair K nth_conts_eq : continuants g n = ppredConts nth_num_eq : numerators g n = ppredConts.a ⊢ ∃ conts, continuants g (n + 1) = conts ∧ conts.a = predA case intro.intro.refl.intro.intro.refl K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp : Pair K succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp ppredConts : Pair K nth_conts_eq : continuants g n = ppredConts nth_num_eq : numerators g n = ppredConts.a predConts : Pair K succ_nth_conts_eq : continuants g (n + 1) = predConts succ_nth_num_eq : numerators g (n + 1) = predConts.a ⊢ numerators g (n + 2) = gp.b * predConts.a + gp.a * ppredConts.a
/- Copyright (c) 2019 Kevin Kappelmann. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kevin Kappelmann -/ import Mathlib.Algebra.ContinuedFractions.Translations #align_import algebra.continued_fractions.continuants_recurrence from "leanprover-community/mathlib"@"5f11361a98ae4acd77f5c1837686f6f0102cdc25" /-! # Recurrence Lemmas for the `continuants` Function of Continued Fractions. ## Summary Given a generalized continued fraction `g`, for all `n ≥ 1`, we prove that the `continuants` function indeed satisfies the following recurrences: - `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`, and - `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/ namespace GeneralizedContinuedFraction variable {K : Type*} {g : GeneralizedContinuedFraction K} {n : ℕ} [DivisionRing K] theorem continuantsAux_recurrence {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp) (nth_conts_aux_eq : g.continuantsAux n = ppred) (succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) : g.continuantsAux (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by simp [*, continuantsAux, nextContinuants, nextDenominator, nextNumerator] #align generalized_continued_fraction.continuants_aux_recurrence GeneralizedContinuedFraction.continuantsAux_recurrence theorem continuants_recurrenceAux {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp) (nth_conts_aux_eq : g.continuantsAux n = ppred) (succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) : g.continuants (n + 1) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by simp [nth_cont_eq_succ_nth_cont_aux, continuantsAux_recurrence nth_s_eq nth_conts_aux_eq succ_nth_conts_aux_eq] #align generalized_continued_fraction.continuants_recurrence_aux GeneralizedContinuedFraction.continuants_recurrenceAux /-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂` and `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/ theorem continuants_recurrence {gp ppred pred : Pair K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_conts_eq : g.continuants n = ppred) (succ_nth_conts_eq : g.continuants (n + 1) = pred) : g.continuants (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by rw [nth_cont_eq_succ_nth_cont_aux] at nth_conts_eq succ_nth_conts_eq exact continuants_recurrenceAux succ_nth_s_eq nth_conts_eq succ_nth_conts_eq #align generalized_continued_fraction.continuants_recurrence GeneralizedContinuedFraction.continuants_recurrence /-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/ theorem numerators_recurrence {gp : Pair K} {ppredA predA : K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA) (succ_nth_num_eq : g.numerators (n + 1) = predA) : g.numerators (n + 2) = gp.b * predA + gp.a * ppredA := by obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.a = ppredA exact exists_conts_a_of_num nth_num_eq obtain ⟨predConts, succ_nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants (n + 1) = conts ∧ conts.a = predA
exact exists_conts_a_of_num succ_nth_num_eq
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/ theorem numerators_recurrence {gp : Pair K} {ppredA predA : K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA) (succ_nth_num_eq : g.numerators (n + 1) = predA) : g.numerators (n + 2) = gp.b * predA + gp.a * ppredA := by obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.a = ppredA exact exists_conts_a_of_num nth_num_eq obtain ⟨predConts, succ_nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants (n + 1) = conts ∧ conts.a = predA
Mathlib.Algebra.ContinuedFractions.ContinuantsRecurrence.49_0.nOytPSFGrohRR6p
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/ theorem numerators_recurrence {gp : Pair K} {ppredA predA : K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA) (succ_nth_num_eq : g.numerators (n + 1) = predA) : g.numerators (n + 2) = gp.b * predA + gp.a * ppredA
Mathlib_Algebra_ContinuedFractions_ContinuantsRecurrence
case intro.intro.refl.intro.intro.refl K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp : Pair K succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp ppredConts : Pair K nth_conts_eq : continuants g n = ppredConts nth_num_eq : numerators g n = ppredConts.a predConts : Pair K succ_nth_conts_eq : continuants g (n + 1) = predConts succ_nth_num_eq : numerators g (n + 1) = predConts.a ⊢ numerators g (n + 2) = gp.b * predConts.a + gp.a * ppredConts.a
/- Copyright (c) 2019 Kevin Kappelmann. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kevin Kappelmann -/ import Mathlib.Algebra.ContinuedFractions.Translations #align_import algebra.continued_fractions.continuants_recurrence from "leanprover-community/mathlib"@"5f11361a98ae4acd77f5c1837686f6f0102cdc25" /-! # Recurrence Lemmas for the `continuants` Function of Continued Fractions. ## Summary Given a generalized continued fraction `g`, for all `n ≥ 1`, we prove that the `continuants` function indeed satisfies the following recurrences: - `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`, and - `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/ namespace GeneralizedContinuedFraction variable {K : Type*} {g : GeneralizedContinuedFraction K} {n : ℕ} [DivisionRing K] theorem continuantsAux_recurrence {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp) (nth_conts_aux_eq : g.continuantsAux n = ppred) (succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) : g.continuantsAux (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by simp [*, continuantsAux, nextContinuants, nextDenominator, nextNumerator] #align generalized_continued_fraction.continuants_aux_recurrence GeneralizedContinuedFraction.continuantsAux_recurrence theorem continuants_recurrenceAux {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp) (nth_conts_aux_eq : g.continuantsAux n = ppred) (succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) : g.continuants (n + 1) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by simp [nth_cont_eq_succ_nth_cont_aux, continuantsAux_recurrence nth_s_eq nth_conts_aux_eq succ_nth_conts_aux_eq] #align generalized_continued_fraction.continuants_recurrence_aux GeneralizedContinuedFraction.continuants_recurrenceAux /-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂` and `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/ theorem continuants_recurrence {gp ppred pred : Pair K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_conts_eq : g.continuants n = ppred) (succ_nth_conts_eq : g.continuants (n + 1) = pred) : g.continuants (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by rw [nth_cont_eq_succ_nth_cont_aux] at nth_conts_eq succ_nth_conts_eq exact continuants_recurrenceAux succ_nth_s_eq nth_conts_eq succ_nth_conts_eq #align generalized_continued_fraction.continuants_recurrence GeneralizedContinuedFraction.continuants_recurrence /-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/ theorem numerators_recurrence {gp : Pair K} {ppredA predA : K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA) (succ_nth_num_eq : g.numerators (n + 1) = predA) : g.numerators (n + 2) = gp.b * predA + gp.a * ppredA := by obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.a = ppredA exact exists_conts_a_of_num nth_num_eq obtain ⟨predConts, succ_nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants (n + 1) = conts ∧ conts.a = predA exact exists_conts_a_of_num succ_nth_num_eq
rw [num_eq_conts_a, continuants_recurrence succ_nth_s_eq nth_conts_eq succ_nth_conts_eq]
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/ theorem numerators_recurrence {gp : Pair K} {ppredA predA : K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA) (succ_nth_num_eq : g.numerators (n + 1) = predA) : g.numerators (n + 2) = gp.b * predA + gp.a * ppredA := by obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.a = ppredA exact exists_conts_a_of_num nth_num_eq obtain ⟨predConts, succ_nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants (n + 1) = conts ∧ conts.a = predA exact exists_conts_a_of_num succ_nth_num_eq
Mathlib.Algebra.ContinuedFractions.ContinuantsRecurrence.49_0.nOytPSFGrohRR6p
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/ theorem numerators_recurrence {gp : Pair K} {ppredA predA : K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA) (succ_nth_num_eq : g.numerators (n + 1) = predA) : g.numerators (n + 2) = gp.b * predA + gp.a * ppredA
Mathlib_Algebra_ContinuedFractions_ContinuantsRecurrence