state
stringlengths 0
159k
| srcUpToTactic
stringlengths 387
167k
| nextTactic
stringlengths 3
9k
| declUpToTactic
stringlengths 22
11.5k
| declId
stringlengths 38
95
| decl
stringlengths 16
1.89k
| file_tag
stringlengths 17
73
|
|---|---|---|---|---|---|---|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (x \ y) \ z = x \ y ⊓ x \ z
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by
|
rw [sdiff_sdiff_left, sdiff_sup]
|
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by
|
Mathlib.Order.BooleanAlgebra.397_0.ewE75DLNneOU8G5
|
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x)
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by
|
rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
|
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by
|
Mathlib.Order.BooleanAlgebra.400_0.ewE75DLNneOU8G5
|
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x)
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x)
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by
|
rw [sup_inf_left, sup_comm, sup_inf_sdiff]
|
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by
|
Mathlib.Order.BooleanAlgebra.400_0.ewE75DLNneOU8G5
|
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x)
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x))
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by
|
rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
|
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by
|
Mathlib.Order.BooleanAlgebra.400_0.ewE75DLNneOU8G5
|
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x)
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x)
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by
|
ac_rfl
|
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by
|
Mathlib.Order.BooleanAlgebra.400_0.ewE75DLNneOU8G5
|
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x)
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x)
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by
|
rw [inf_idem]
|
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by
|
Mathlib.Order.BooleanAlgebra.400_0.ewE75DLNneOU8G5
|
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x)
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ z \ (x \ y) ⊓ z \ (y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x)
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by
|
rw [sdiff_sdiff_right, sdiff_sdiff_right]
|
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by
|
Mathlib.Order.BooleanAlgebra.411_0.ewE75DLNneOU8G5
|
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x)
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by
|
ac_rfl
|
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by
|
Mathlib.Order.BooleanAlgebra.411_0.ewE75DLNneOU8G5
|
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by
|
ac_rfl
|
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by
|
Mathlib.Order.BooleanAlgebra.411_0.ewE75DLNneOU8G5
|
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hcb : z ≤ y
⊢ (x \ z) \ (y \ z) = x \ y
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
|
rw [le_antisymm_iff, sdiff_le_comm]
|
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
|
Mathlib.Order.BooleanAlgebra.424_0.ewE75DLNneOU8G5
|
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
hcb : z ≤ y
⊢ (x \ z) \ (x \ y) ≤ y \ z ∧ x \ y ≤ (x \ z) \ (y \ z)
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
|
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
|
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
|
Mathlib.Order.BooleanAlgebra.424_0.ewE75DLNneOU8G5
|
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z)
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by
|
rw [sup_inf_left]
|
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by
|
Mathlib.Order.BooleanAlgebra.429_0.ewE75DLNneOU8G5
|
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z)
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by
|
rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
|
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by
|
Mathlib.Order.BooleanAlgebra.429_0.ewE75DLNneOU8G5
|
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z)
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by
|
ac_rfl
|
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by
|
Mathlib.Order.BooleanAlgebra.429_0.ewE75DLNneOU8G5
|
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z)
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by
|
rw [inf_sup_self, sup_inf_inf_sdiff]
|
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by
|
Mathlib.Order.BooleanAlgebra.429_0.ewE75DLNneOU8G5
|
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) = x ⊓ y ⊔ x \ z ⊓ y \ z
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by
|
rw [@inf_comm _ _ y, sup_inf_left]
|
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by
|
Mathlib.Order.BooleanAlgebra.429_0.ewE75DLNneOU8G5
|
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by
|
ac_rfl
|
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by
|
Mathlib.Order.BooleanAlgebra.429_0.ewE75DLNneOU8G5
|
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z = ⊥
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by
|
rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq]
|
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by
|
Mathlib.Order.BooleanAlgebra.429_0.ewE75DLNneOU8G5
|
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by
|
rw [inf_assoc]
|
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by
|
Mathlib.Order.BooleanAlgebra.444_0.ewE75DLNneOU8G5
|
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ (y ⊓ z ⊔ y \ z) = x ⊓ y
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by
|
rw [sup_inf_sdiff]
|
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by
|
Mathlib.Order.BooleanAlgebra.444_0.ewE75DLNneOU8G5
|
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z)
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by
|
ac_rfl
|
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by
|
Mathlib.Order.BooleanAlgebra.444_0.ewE75DLNneOU8G5
|
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) = ⊥
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by
|
rw [inf_inf_sdiff, inf_bot_eq]
|
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by
|
Mathlib.Order.BooleanAlgebra.444_0.ewE75DLNneOU8G5
|
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x \ z ⊓ y = (x ⊓ y) \ z
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
|
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
|
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
|
Mathlib.Order.BooleanAlgebra.455_0.ewE75DLNneOU8G5
|
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
a b c : α
⊢ a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c)
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
|
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
|
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
|
Mathlib.Order.BooleanAlgebra.459_0.ewE75DLNneOU8G5
|
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c)
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
a b c : α
⊢ a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c)
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
|
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
|
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
|
Mathlib.Order.BooleanAlgebra.463_0.ewE75DLNneOU8G5
|
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c)
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ Disjoint (x \ z) y ↔ Disjoint x (y \ z)
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
|
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
|
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
|
Mathlib.Order.BooleanAlgebra.467_0.ewE75DLNneOU8G5
|
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z)
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y)
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by
|
rw [sup_inf_left]
|
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by
|
Mathlib.Order.BooleanAlgebra.471_0.ewE75DLNneOU8G5
|
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y))
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by
|
ac_rfl
|
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by
|
Mathlib.Order.BooleanAlgebra.471_0.ewE75DLNneOU8G5
|
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) = (x ⊔ y \ x) ⊓ (x \ y ⊔ y)
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by
|
rw [sup_sdiff_right, sup_sdiff_right]
|
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by
|
Mathlib.Order.BooleanAlgebra.471_0.ewE75DLNneOU8G5
|
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
⊢ (x ⊔ y \ x) ⊓ (x \ y ⊔ y) = x ⊔ y
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by
|
rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
|
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by
|
Mathlib.Order.BooleanAlgebra.471_0.ewE75DLNneOU8G5
|
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
h : y < z \ x
hxz : x ≤ z
⊢ x ⊔ y < z
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
|
rw [← sup_sdiff_cancel_right hxz]
|
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
|
Mathlib.Order.BooleanAlgebra.480_0.ewE75DLNneOU8G5
|
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
h : y < z \ x
hxz : x ≤ z
⊢ x ⊔ y < x ⊔ z \ x
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
|
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
|
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
|
Mathlib.Order.BooleanAlgebra.480_0.ewE75DLNneOU8G5
|
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
h : y < z \ x
hxz : x ≤ z
h' : x ⊔ z \ x ≤ x ⊔ y
⊢ z \ x ≤ y
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
|
rw [← sdiff_idem]
|
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
|
Mathlib.Order.BooleanAlgebra.480_0.ewE75DLNneOU8G5
|
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
h : y < z \ x
hxz : x ≤ z
h' : x ⊔ z \ x ≤ x ⊔ y
⊢ (z \ x) \ x ≤ y
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
|
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
|
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
|
Mathlib.Order.BooleanAlgebra.480_0.ewE75DLNneOU8G5
|
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
h : x < z \ y
hyz : y ≤ z
⊢ x ⊔ y < z
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
|
rw [← sdiff_sup_cancel hyz]
|
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
|
Mathlib.Order.BooleanAlgebra.487_0.ewE75DLNneOU8G5
|
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
h : x < z \ y
hyz : y ≤ z
⊢ x ⊔ y < z \ y ⊔ y
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
|
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
|
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
|
Mathlib.Order.BooleanAlgebra.487_0.ewE75DLNneOU8G5
|
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
h : x < z \ y
hyz : y ≤ z
h' : z \ y ⊔ y ≤ x ⊔ y
⊢ z \ y ≤ x
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
|
rw [← sdiff_idem]
|
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
|
Mathlib.Order.BooleanAlgebra.487_0.ewE75DLNneOU8G5
|
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : GeneralizedBooleanAlgebra α
h : x < z \ y
hyz : y ≤ z
h' : z \ y ⊔ y ≤ x ⊔ y
⊢ (z \ y) \ y ≤ x
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
|
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
|
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
|
Mathlib.Order.BooleanAlgebra.487_0.ewE75DLNneOU8G5
|
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝¹ : GeneralizedBooleanAlgebra α
inst✝ : OrderTop α
src✝² : GeneralizedBooleanAlgebra α := inst✝¹
src✝¹ : OrderBot α := toOrderBot
src✝ : OrderTop α := inst✝
x✝¹ x✝ : α
⊢ x✝¹ \ x✝ = x✝¹ ⊓ x✝ᶜ
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
|
erw [← inf_sdiff_assoc, inf_top_eq]
|
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
|
Mathlib.Order.BooleanAlgebra.551_0.ewE75DLNneOU8G5
|
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
src✝ : BooleanAlgebra α := inst✝
a b : α
⊢ a ⊓ b ⊔ a \ b = a
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by
|
rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq]
|
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by
|
Mathlib.Order.BooleanAlgebra.600_0.ewE75DLNneOU8G5
|
instance (priority
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
src✝ : BooleanAlgebra α := inst✝
a b : α
⊢ a ⊓ b ⊓ a \ b = ⊥
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
|
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq]
|
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
|
Mathlib.Order.BooleanAlgebra.600_0.ewE75DLNneOU8G5
|
instance (priority
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
src✝¹ : BooleanAlgebra α := inst✝
src✝ : GeneralizedCoheytingAlgebra α := GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
a b c : α
⊢ a ≤ b ⇨ c ↔ a ⊓ b ≤ c
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by
|
rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le]
|
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by
|
Mathlib.Order.BooleanAlgebra.609_0.ewE75DLNneOU8G5
|
instance (priority
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
src✝¹ : BooleanAlgebra α := inst✝
src✝ : GeneralizedCoheytingAlgebra α := GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
a : α
⊢ ⊤ \ a = ¬a
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by
|
rw [sdiff_eq, top_inf_eq]
|
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by
|
Mathlib.Order.BooleanAlgebra.609_0.ewE75DLNneOU8G5
|
instance (priority
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
src✝¹ : BooleanAlgebra α := inst✝
src✝ : GeneralizedCoheytingAlgebra α := GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
a : α
⊢ aᶜ = ¬a
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq];
|
rfl
|
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq];
|
Mathlib.Order.BooleanAlgebra.609_0.ewE75DLNneOU8G5
|
instance (priority
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
h : x = yᶜ
⊢ IsCompl x y
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
|
rw [h]
|
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
|
Mathlib.Order.BooleanAlgebra.627_0.ewE75DLNneOU8G5
|
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
h : x = yᶜ
⊢ IsCompl yᶜ y
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
|
exact isCompl_compl.symm
|
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
|
Mathlib.Order.BooleanAlgebra.627_0.ewE75DLNneOU8G5
|
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
h : xᶜ = y
⊢ IsCompl x y
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
|
rw [← h]
|
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
|
Mathlib.Order.BooleanAlgebra.633_0.ewE75DLNneOU8G5
|
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
h : xᶜ = y
⊢ IsCompl x xᶜ
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
|
exact isCompl_compl
|
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
|
Mathlib.Order.BooleanAlgebra.633_0.ewE75DLNneOU8G5
|
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
⊢ xᶜ = y ↔ yᶜ = x
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
|
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
|
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
|
Mathlib.Order.BooleanAlgebra.639_0.ewE75DLNneOU8G5
|
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
⊢ x = yᶜ ↔ y = xᶜ
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
|
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
|
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
|
Mathlib.Order.BooleanAlgebra.643_0.ewE75DLNneOU8G5
|
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
h : yᶜ ≤ xᶜ
⊢ x ≤ y
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by
|
have h := compl_le_compl h
|
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by
|
Mathlib.Order.BooleanAlgebra.697_0.ewE75DLNneOU8G5
|
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
h✝ : yᶜ ≤ xᶜ
h : xᶜᶜ ≤ yᶜᶜ
⊢ x ≤ y
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h;
|
simp at h
|
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h;
|
Mathlib.Order.BooleanAlgebra.697_0.ewE75DLNneOU8G5
|
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
h✝ : yᶜ ≤ xᶜ
h : x ≤ y
⊢ x ≤ y
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h;
|
assumption
|
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h;
|
Mathlib.Order.BooleanAlgebra.697_0.ewE75DLNneOU8G5
|
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
h : yᶜ ≤ x
⊢ xᶜ ≤ y
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
|
simpa only [compl_compl] using compl_le_compl h
|
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
|
Mathlib.Order.BooleanAlgebra.705_0.ewE75DLNneOU8G5
|
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
⊢ xᶜ ≤ x ↔ x = ⊤
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by
|
simpa using le_compl_self (a := xᶜ)
|
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by
|
Mathlib.Order.BooleanAlgebra.713_0.ewE75DLNneOU8G5
|
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝¹ : BooleanAlgebra α
inst✝ : Nontrivial α
⊢ xᶜ < x ↔ x = ⊤
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
|
simpa using lt_compl_self (a := xᶜ)
|
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
|
Mathlib.Order.BooleanAlgebra.715_0.ewE75DLNneOU8G5
|
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
⊢ x \ yᶜ = x ⊓ y
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by
|
rw [sdiff_eq, compl_compl]
|
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by
|
Mathlib.Order.BooleanAlgebra.718_0.ewE75DLNneOU8G5
|
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
⊢ x ⊓ y ⊔ x ⊓ yᶜ = x
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by
|
rw [← sdiff_eq, sup_inf_sdiff _ _]
|
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by
|
Mathlib.Order.BooleanAlgebra.732_0.ewE75DLNneOU8G5
|
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
⊢ (x \ y)ᶜ = x ⇨ y
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
|
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
|
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
|
Mathlib.Order.BooleanAlgebra.736_0.ewE75DLNneOU8G5
|
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
⊢ xᶜ \ yᶜ = y \ x
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by
|
rw [sdiff_compl, sdiff_eq, inf_comm]
|
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by
|
Mathlib.Order.BooleanAlgebra.746_0.ewE75DLNneOU8G5
|
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
⊢ Disjoint xᶜ y ↔ y ≤ x
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm]
#align compl_sdiff_compl compl_sdiff_compl
@[simp]
theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x :=
@compl_sdiff_compl αᵒᵈ _ _ _
#align compl_himp_compl compl_himp_compl
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
|
rw [← le_compl_iff_disjoint_left, compl_compl]
|
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
|
Mathlib.Order.BooleanAlgebra.754_0.ewE75DLNneOU8G5
|
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝ : BooleanAlgebra α
⊢ Disjoint x yᶜ ↔ x ≤ y
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm]
#align compl_sdiff_compl compl_sdiff_compl
@[simp]
theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x :=
@compl_sdiff_compl αᵒᵈ _ _ _
#align compl_himp_compl compl_himp_compl
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
rw [← le_compl_iff_disjoint_left, compl_compl]
#align disjoint_compl_left_iff disjoint_compl_left_iff
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
|
rw [← le_compl_iff_disjoint_right, compl_compl]
|
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
|
Mathlib.Order.BooleanAlgebra.758_0.ewE75DLNneOU8G5
|
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y
|
Mathlib_Order_BooleanAlgebra
|
α✝ : Type u
β✝ : Type u_1
w x✝ y z : α✝
α : Type ?u.69761
β : Type ?u.69764
inst✝¹ : BooleanAlgebra α
inst✝ : BooleanAlgebra β
src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra
src✝ : DistribLattice (α × β) := distribLattice α β
x : α × β
⊢ x ⊓ xᶜ ≤ ⊥
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm]
#align compl_sdiff_compl compl_sdiff_compl
@[simp]
theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x :=
@compl_sdiff_compl αᵒᵈ _ _ _
#align compl_himp_compl compl_himp_compl
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
rw [← le_compl_iff_disjoint_left, compl_compl]
#align disjoint_compl_left_iff disjoint_compl_left_iff
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
rw [← le_compl_iff_disjoint_right, compl_compl]
#align disjoint_compl_right_iff disjoint_compl_right_iff
theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x :=
@disjoint_sdiff_self_left αᵒᵈ _ _ _
#align codisjoint_himp_self_left codisjoint_himp_self_left
theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) :=
@disjoint_sdiff_self_right αᵒᵈ _ _ _
#align codisjoint_himp_self_right codisjoint_himp_self_right
theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z :=
(@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _
#align himp_le himp_le
end BooleanAlgebra
instance Prop.booleanAlgebra : BooleanAlgebra Prop :=
{ Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with
compl := Not,
himp_eq := fun p q => propext imp_iff_or_not,
inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp,
top_le_sup_compl := fun p _ => Classical.em p }
#align Prop.boolean_algebra Prop.booleanAlgebra
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;> simp [sdiff_eq]
inf_compl_le_bot x := by
|
constructor
|
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;> simp [sdiff_eq]
inf_compl_le_bot x := by
|
Mathlib.Order.BooleanAlgebra.784_0.ewE75DLNneOU8G5
|
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__
|
Mathlib_Order_BooleanAlgebra
|
case left
α✝ : Type u
β✝ : Type u_1
w x✝ y z : α✝
α : Type ?u.69761
β : Type ?u.69764
inst✝¹ : BooleanAlgebra α
inst✝ : BooleanAlgebra β
src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra
src✝ : DistribLattice (α × β) := distribLattice α β
x : α × β
⊢ (x ⊓ xᶜ).1 ≤ ⊥.1
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm]
#align compl_sdiff_compl compl_sdiff_compl
@[simp]
theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x :=
@compl_sdiff_compl αᵒᵈ _ _ _
#align compl_himp_compl compl_himp_compl
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
rw [← le_compl_iff_disjoint_left, compl_compl]
#align disjoint_compl_left_iff disjoint_compl_left_iff
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
rw [← le_compl_iff_disjoint_right, compl_compl]
#align disjoint_compl_right_iff disjoint_compl_right_iff
theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x :=
@disjoint_sdiff_self_left αᵒᵈ _ _ _
#align codisjoint_himp_self_left codisjoint_himp_self_left
theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) :=
@disjoint_sdiff_self_right αᵒᵈ _ _ _
#align codisjoint_himp_self_right codisjoint_himp_self_right
theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z :=
(@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _
#align himp_le himp_le
end BooleanAlgebra
instance Prop.booleanAlgebra : BooleanAlgebra Prop :=
{ Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with
compl := Not,
himp_eq := fun p q => propext imp_iff_or_not,
inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp,
top_le_sup_compl := fun p _ => Classical.em p }
#align Prop.boolean_algebra Prop.booleanAlgebra
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;> simp [sdiff_eq]
inf_compl_le_bot x := by constructor <;>
|
simp
|
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;> simp [sdiff_eq]
inf_compl_le_bot x := by constructor <;>
|
Mathlib.Order.BooleanAlgebra.784_0.ewE75DLNneOU8G5
|
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__
|
Mathlib_Order_BooleanAlgebra
|
case right
α✝ : Type u
β✝ : Type u_1
w x✝ y z : α✝
α : Type ?u.69761
β : Type ?u.69764
inst✝¹ : BooleanAlgebra α
inst✝ : BooleanAlgebra β
src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra
src✝ : DistribLattice (α × β) := distribLattice α β
x : α × β
⊢ (x ⊓ xᶜ).2 ≤ ⊥.2
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm]
#align compl_sdiff_compl compl_sdiff_compl
@[simp]
theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x :=
@compl_sdiff_compl αᵒᵈ _ _ _
#align compl_himp_compl compl_himp_compl
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
rw [← le_compl_iff_disjoint_left, compl_compl]
#align disjoint_compl_left_iff disjoint_compl_left_iff
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
rw [← le_compl_iff_disjoint_right, compl_compl]
#align disjoint_compl_right_iff disjoint_compl_right_iff
theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x :=
@disjoint_sdiff_self_left αᵒᵈ _ _ _
#align codisjoint_himp_self_left codisjoint_himp_self_left
theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) :=
@disjoint_sdiff_self_right αᵒᵈ _ _ _
#align codisjoint_himp_self_right codisjoint_himp_self_right
theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z :=
(@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _
#align himp_le himp_le
end BooleanAlgebra
instance Prop.booleanAlgebra : BooleanAlgebra Prop :=
{ Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with
compl := Not,
himp_eq := fun p q => propext imp_iff_or_not,
inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp,
top_le_sup_compl := fun p _ => Classical.em p }
#align Prop.boolean_algebra Prop.booleanAlgebra
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;> simp [sdiff_eq]
inf_compl_le_bot x := by constructor <;>
|
simp
|
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;> simp [sdiff_eq]
inf_compl_le_bot x := by constructor <;>
|
Mathlib.Order.BooleanAlgebra.784_0.ewE75DLNneOU8G5
|
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__
|
Mathlib_Order_BooleanAlgebra
|
α✝ : Type u
β✝ : Type u_1
w x✝ y z : α✝
α : Type ?u.69761
β : Type ?u.69764
inst✝¹ : BooleanAlgebra α
inst✝ : BooleanAlgebra β
src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra
src✝ : DistribLattice (α × β) := distribLattice α β
x : α × β
⊢ ⊤ ≤ x ⊔ xᶜ
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm]
#align compl_sdiff_compl compl_sdiff_compl
@[simp]
theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x :=
@compl_sdiff_compl αᵒᵈ _ _ _
#align compl_himp_compl compl_himp_compl
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
rw [← le_compl_iff_disjoint_left, compl_compl]
#align disjoint_compl_left_iff disjoint_compl_left_iff
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
rw [← le_compl_iff_disjoint_right, compl_compl]
#align disjoint_compl_right_iff disjoint_compl_right_iff
theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x :=
@disjoint_sdiff_self_left αᵒᵈ _ _ _
#align codisjoint_himp_self_left codisjoint_himp_self_left
theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) :=
@disjoint_sdiff_self_right αᵒᵈ _ _ _
#align codisjoint_himp_self_right codisjoint_himp_self_right
theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z :=
(@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _
#align himp_le himp_le
end BooleanAlgebra
instance Prop.booleanAlgebra : BooleanAlgebra Prop :=
{ Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with
compl := Not,
himp_eq := fun p q => propext imp_iff_or_not,
inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp,
top_le_sup_compl := fun p _ => Classical.em p }
#align Prop.boolean_algebra Prop.booleanAlgebra
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;> simp [sdiff_eq]
inf_compl_le_bot x := by constructor <;> simp
top_le_sup_compl x := by
|
constructor
|
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;> simp [sdiff_eq]
inf_compl_le_bot x := by constructor <;> simp
top_le_sup_compl x := by
|
Mathlib.Order.BooleanAlgebra.784_0.ewE75DLNneOU8G5
|
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__
|
Mathlib_Order_BooleanAlgebra
|
case left
α✝ : Type u
β✝ : Type u_1
w x✝ y z : α✝
α : Type ?u.69761
β : Type ?u.69764
inst✝¹ : BooleanAlgebra α
inst✝ : BooleanAlgebra β
src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra
src✝ : DistribLattice (α × β) := distribLattice α β
x : α × β
⊢ ⊤.1 ≤ (x ⊔ xᶜ).1
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm]
#align compl_sdiff_compl compl_sdiff_compl
@[simp]
theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x :=
@compl_sdiff_compl αᵒᵈ _ _ _
#align compl_himp_compl compl_himp_compl
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
rw [← le_compl_iff_disjoint_left, compl_compl]
#align disjoint_compl_left_iff disjoint_compl_left_iff
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
rw [← le_compl_iff_disjoint_right, compl_compl]
#align disjoint_compl_right_iff disjoint_compl_right_iff
theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x :=
@disjoint_sdiff_self_left αᵒᵈ _ _ _
#align codisjoint_himp_self_left codisjoint_himp_self_left
theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) :=
@disjoint_sdiff_self_right αᵒᵈ _ _ _
#align codisjoint_himp_self_right codisjoint_himp_self_right
theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z :=
(@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _
#align himp_le himp_le
end BooleanAlgebra
instance Prop.booleanAlgebra : BooleanAlgebra Prop :=
{ Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with
compl := Not,
himp_eq := fun p q => propext imp_iff_or_not,
inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp,
top_le_sup_compl := fun p _ => Classical.em p }
#align Prop.boolean_algebra Prop.booleanAlgebra
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;> simp [sdiff_eq]
inf_compl_le_bot x := by constructor <;> simp
top_le_sup_compl x := by constructor <;>
|
simp
|
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;> simp [sdiff_eq]
inf_compl_le_bot x := by constructor <;> simp
top_le_sup_compl x := by constructor <;>
|
Mathlib.Order.BooleanAlgebra.784_0.ewE75DLNneOU8G5
|
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__
|
Mathlib_Order_BooleanAlgebra
|
case right
α✝ : Type u
β✝ : Type u_1
w x✝ y z : α✝
α : Type ?u.69761
β : Type ?u.69764
inst✝¹ : BooleanAlgebra α
inst✝ : BooleanAlgebra β
src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra
src✝ : DistribLattice (α × β) := distribLattice α β
x : α × β
⊢ ⊤.2 ≤ (x ⊔ xᶜ).2
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm]
#align compl_sdiff_compl compl_sdiff_compl
@[simp]
theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x :=
@compl_sdiff_compl αᵒᵈ _ _ _
#align compl_himp_compl compl_himp_compl
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
rw [← le_compl_iff_disjoint_left, compl_compl]
#align disjoint_compl_left_iff disjoint_compl_left_iff
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
rw [← le_compl_iff_disjoint_right, compl_compl]
#align disjoint_compl_right_iff disjoint_compl_right_iff
theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x :=
@disjoint_sdiff_self_left αᵒᵈ _ _ _
#align codisjoint_himp_self_left codisjoint_himp_self_left
theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) :=
@disjoint_sdiff_self_right αᵒᵈ _ _ _
#align codisjoint_himp_self_right codisjoint_himp_self_right
theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z :=
(@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _
#align himp_le himp_le
end BooleanAlgebra
instance Prop.booleanAlgebra : BooleanAlgebra Prop :=
{ Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with
compl := Not,
himp_eq := fun p q => propext imp_iff_or_not,
inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp,
top_le_sup_compl := fun p _ => Classical.em p }
#align Prop.boolean_algebra Prop.booleanAlgebra
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;> simp [sdiff_eq]
inf_compl_le_bot x := by constructor <;> simp
top_le_sup_compl x := by constructor <;>
|
simp
|
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;> simp [sdiff_eq]
inf_compl_le_bot x := by constructor <;> simp
top_le_sup_compl x := by constructor <;>
|
Mathlib.Order.BooleanAlgebra.784_0.ewE75DLNneOU8G5
|
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__
|
Mathlib_Order_BooleanAlgebra
|
α✝ : Type u
β✝ : Type u_1
w x✝ y✝ z : α✝
α : Type ?u.69761
β : Type ?u.69764
inst✝¹ : BooleanAlgebra α
inst✝ : BooleanAlgebra β
src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra
src✝ : DistribLattice (α × β) := distribLattice α β
x y : α × β
⊢ x \ y = x ⊓ yᶜ
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm]
#align compl_sdiff_compl compl_sdiff_compl
@[simp]
theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x :=
@compl_sdiff_compl αᵒᵈ _ _ _
#align compl_himp_compl compl_himp_compl
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
rw [← le_compl_iff_disjoint_left, compl_compl]
#align disjoint_compl_left_iff disjoint_compl_left_iff
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
rw [← le_compl_iff_disjoint_right, compl_compl]
#align disjoint_compl_right_iff disjoint_compl_right_iff
theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x :=
@disjoint_sdiff_self_left αᵒᵈ _ _ _
#align codisjoint_himp_self_left codisjoint_himp_self_left
theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) :=
@disjoint_sdiff_self_right αᵒᵈ _ _ _
#align codisjoint_himp_self_right codisjoint_himp_self_right
theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z :=
(@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _
#align himp_le himp_le
end BooleanAlgebra
instance Prop.booleanAlgebra : BooleanAlgebra Prop :=
{ Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with
compl := Not,
himp_eq := fun p q => propext imp_iff_or_not,
inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp,
top_le_sup_compl := fun p _ => Classical.em p }
#align Prop.boolean_algebra Prop.booleanAlgebra
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by
|
ext
|
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by
|
Mathlib.Order.BooleanAlgebra.784_0.ewE75DLNneOU8G5
|
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__
|
Mathlib_Order_BooleanAlgebra
|
case a
α✝ : Type u
β✝ : Type u_1
w x✝ y✝ z : α✝
α : Type ?u.69761
β : Type ?u.69764
inst✝¹ : BooleanAlgebra α
inst✝ : BooleanAlgebra β
src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra
src✝ : DistribLattice (α × β) := distribLattice α β
x y : α × β
⊢ (x \ y).1 = (x ⊓ yᶜ).1
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm]
#align compl_sdiff_compl compl_sdiff_compl
@[simp]
theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x :=
@compl_sdiff_compl αᵒᵈ _ _ _
#align compl_himp_compl compl_himp_compl
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
rw [← le_compl_iff_disjoint_left, compl_compl]
#align disjoint_compl_left_iff disjoint_compl_left_iff
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
rw [← le_compl_iff_disjoint_right, compl_compl]
#align disjoint_compl_right_iff disjoint_compl_right_iff
theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x :=
@disjoint_sdiff_self_left αᵒᵈ _ _ _
#align codisjoint_himp_self_left codisjoint_himp_self_left
theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) :=
@disjoint_sdiff_self_right αᵒᵈ _ _ _
#align codisjoint_himp_self_right codisjoint_himp_self_right
theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z :=
(@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _
#align himp_le himp_le
end BooleanAlgebra
instance Prop.booleanAlgebra : BooleanAlgebra Prop :=
{ Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with
compl := Not,
himp_eq := fun p q => propext imp_iff_or_not,
inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp,
top_le_sup_compl := fun p _ => Classical.em p }
#align Prop.boolean_algebra Prop.booleanAlgebra
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;>
|
simp [sdiff_eq]
|
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;>
|
Mathlib.Order.BooleanAlgebra.784_0.ewE75DLNneOU8G5
|
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__
|
Mathlib_Order_BooleanAlgebra
|
case a
α✝ : Type u
β✝ : Type u_1
w x✝ y✝ z : α✝
α : Type ?u.69761
β : Type ?u.69764
inst✝¹ : BooleanAlgebra α
inst✝ : BooleanAlgebra β
src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra
src✝ : DistribLattice (α × β) := distribLattice α β
x y : α × β
⊢ (x \ y).2 = (x ⊓ yᶜ).2
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm]
#align compl_sdiff_compl compl_sdiff_compl
@[simp]
theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x :=
@compl_sdiff_compl αᵒᵈ _ _ _
#align compl_himp_compl compl_himp_compl
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
rw [← le_compl_iff_disjoint_left, compl_compl]
#align disjoint_compl_left_iff disjoint_compl_left_iff
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
rw [← le_compl_iff_disjoint_right, compl_compl]
#align disjoint_compl_right_iff disjoint_compl_right_iff
theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x :=
@disjoint_sdiff_self_left αᵒᵈ _ _ _
#align codisjoint_himp_self_left codisjoint_himp_self_left
theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) :=
@disjoint_sdiff_self_right αᵒᵈ _ _ _
#align codisjoint_himp_self_right codisjoint_himp_self_right
theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z :=
(@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _
#align himp_le himp_le
end BooleanAlgebra
instance Prop.booleanAlgebra : BooleanAlgebra Prop :=
{ Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with
compl := Not,
himp_eq := fun p q => propext imp_iff_or_not,
inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp,
top_le_sup_compl := fun p _ => Classical.em p }
#align Prop.boolean_algebra Prop.booleanAlgebra
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;>
|
simp [sdiff_eq]
|
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;>
|
Mathlib.Order.BooleanAlgebra.784_0.ewE75DLNneOU8G5
|
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__
|
Mathlib_Order_BooleanAlgebra
|
α✝ : Type u
β✝ : Type u_1
w x✝ y✝ z : α✝
α : Type ?u.69761
β : Type ?u.69764
inst✝¹ : BooleanAlgebra α
inst✝ : BooleanAlgebra β
src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra
src✝ : DistribLattice (α × β) := distribLattice α β
x y : α × β
⊢ x ⇨ y = y ⊔ xᶜ
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm]
#align compl_sdiff_compl compl_sdiff_compl
@[simp]
theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x :=
@compl_sdiff_compl αᵒᵈ _ _ _
#align compl_himp_compl compl_himp_compl
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
rw [← le_compl_iff_disjoint_left, compl_compl]
#align disjoint_compl_left_iff disjoint_compl_left_iff
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
rw [← le_compl_iff_disjoint_right, compl_compl]
#align disjoint_compl_right_iff disjoint_compl_right_iff
theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x :=
@disjoint_sdiff_self_left αᵒᵈ _ _ _
#align codisjoint_himp_self_left codisjoint_himp_self_left
theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) :=
@disjoint_sdiff_self_right αᵒᵈ _ _ _
#align codisjoint_himp_self_right codisjoint_himp_self_right
theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z :=
(@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _
#align himp_le himp_le
end BooleanAlgebra
instance Prop.booleanAlgebra : BooleanAlgebra Prop :=
{ Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with
compl := Not,
himp_eq := fun p q => propext imp_iff_or_not,
inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp,
top_le_sup_compl := fun p _ => Classical.em p }
#align Prop.boolean_algebra Prop.booleanAlgebra
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by
|
ext
|
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by
|
Mathlib.Order.BooleanAlgebra.784_0.ewE75DLNneOU8G5
|
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__
|
Mathlib_Order_BooleanAlgebra
|
case a
α✝ : Type u
β✝ : Type u_1
w x✝ y✝ z : α✝
α : Type ?u.69761
β : Type ?u.69764
inst✝¹ : BooleanAlgebra α
inst✝ : BooleanAlgebra β
src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra
src✝ : DistribLattice (α × β) := distribLattice α β
x y : α × β
⊢ (x ⇨ y).1 = (y ⊔ xᶜ).1
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm]
#align compl_sdiff_compl compl_sdiff_compl
@[simp]
theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x :=
@compl_sdiff_compl αᵒᵈ _ _ _
#align compl_himp_compl compl_himp_compl
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
rw [← le_compl_iff_disjoint_left, compl_compl]
#align disjoint_compl_left_iff disjoint_compl_left_iff
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
rw [← le_compl_iff_disjoint_right, compl_compl]
#align disjoint_compl_right_iff disjoint_compl_right_iff
theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x :=
@disjoint_sdiff_self_left αᵒᵈ _ _ _
#align codisjoint_himp_self_left codisjoint_himp_self_left
theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) :=
@disjoint_sdiff_self_right αᵒᵈ _ _ _
#align codisjoint_himp_self_right codisjoint_himp_self_right
theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z :=
(@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _
#align himp_le himp_le
end BooleanAlgebra
instance Prop.booleanAlgebra : BooleanAlgebra Prop :=
{ Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with
compl := Not,
himp_eq := fun p q => propext imp_iff_or_not,
inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp,
top_le_sup_compl := fun p _ => Classical.em p }
#align Prop.boolean_algebra Prop.booleanAlgebra
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;>
|
simp [himp_eq]
|
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;>
|
Mathlib.Order.BooleanAlgebra.784_0.ewE75DLNneOU8G5
|
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__
|
Mathlib_Order_BooleanAlgebra
|
case a
α✝ : Type u
β✝ : Type u_1
w x✝ y✝ z : α✝
α : Type ?u.69761
β : Type ?u.69764
inst✝¹ : BooleanAlgebra α
inst✝ : BooleanAlgebra β
src✝¹ : HeytingAlgebra (α × β) := heytingAlgebra
src✝ : DistribLattice (α × β) := distribLattice α β
x y : α × β
⊢ (x ⇨ y).2 = (y ⊔ xᶜ).2
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm]
#align compl_sdiff_compl compl_sdiff_compl
@[simp]
theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x :=
@compl_sdiff_compl αᵒᵈ _ _ _
#align compl_himp_compl compl_himp_compl
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
rw [← le_compl_iff_disjoint_left, compl_compl]
#align disjoint_compl_left_iff disjoint_compl_left_iff
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
rw [← le_compl_iff_disjoint_right, compl_compl]
#align disjoint_compl_right_iff disjoint_compl_right_iff
theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x :=
@disjoint_sdiff_self_left αᵒᵈ _ _ _
#align codisjoint_himp_self_left codisjoint_himp_self_left
theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) :=
@disjoint_sdiff_self_right αᵒᵈ _ _ _
#align codisjoint_himp_self_right codisjoint_himp_self_right
theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z :=
(@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _
#align himp_le himp_le
end BooleanAlgebra
instance Prop.booleanAlgebra : BooleanAlgebra Prop :=
{ Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with
compl := Not,
himp_eq := fun p q => propext imp_iff_or_not,
inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp,
top_le_sup_compl := fun p _ => Classical.em p }
#align Prop.boolean_algebra Prop.booleanAlgebra
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;>
|
simp [himp_eq]
|
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;>
|
Mathlib.Order.BooleanAlgebra.784_0.ewE75DLNneOU8G5
|
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝⁴ : Sup α
inst✝³ : Inf α
inst✝² : Bot α
inst✝¹ : SDiff α
inst✝ : GeneralizedBooleanAlgebra β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_bot : f ⊥ = ⊥
map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b
src✝¹ : GeneralizedCoheytingAlgebra α := Injective.generalizedCoheytingAlgebra f hf map_sup map_inf map_bot map_sdiff
src✝ : DistribLattice α := Injective.distribLattice f hf map_sup map_inf
a b : α
⊢ f (a ⊓ b ⊔ a \ b) = f a
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm]
#align compl_sdiff_compl compl_sdiff_compl
@[simp]
theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x :=
@compl_sdiff_compl αᵒᵈ _ _ _
#align compl_himp_compl compl_himp_compl
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
rw [← le_compl_iff_disjoint_left, compl_compl]
#align disjoint_compl_left_iff disjoint_compl_left_iff
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
rw [← le_compl_iff_disjoint_right, compl_compl]
#align disjoint_compl_right_iff disjoint_compl_right_iff
theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x :=
@disjoint_sdiff_self_left αᵒᵈ _ _ _
#align codisjoint_himp_self_left codisjoint_himp_self_left
theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) :=
@disjoint_sdiff_self_right αᵒᵈ _ _ _
#align codisjoint_himp_self_right codisjoint_himp_self_right
theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z :=
(@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _
#align himp_le himp_le
end BooleanAlgebra
instance Prop.booleanAlgebra : BooleanAlgebra Prop :=
{ Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with
compl := Not,
himp_eq := fun p q => propext imp_iff_or_not,
inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp,
top_le_sup_compl := fun p _ => Classical.em p }
#align Prop.boolean_algebra Prop.booleanAlgebra
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;> simp [sdiff_eq]
inf_compl_le_bot x := by constructor <;> simp
top_le_sup_compl x := by constructor <;> simp
instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] :
BooleanAlgebra (∀ i, α i) :=
{ Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with
sdiff_eq := fun _ _ => funext fun _ => sdiff_eq,
himp_eq := fun _ _ => funext fun _ => himp_eq,
inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _,
top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ }
#align pi.boolean_algebra Pi.booleanAlgebra
instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where
__ := Bool.linearOrder
__ := Bool.boundedOrder
__ := Bool.instDistribLattice
compl := not
inf_compl_le_bot a := a.and_not_self.le
top_le_sup_compl a := a.or_not_self.ge
@[simp]
theorem Bool.sup_eq_bor : (· ⊔ ·) = or :=
rfl
#align bool.sup_eq_bor Bool.sup_eq_bor
@[simp]
theorem Bool.inf_eq_band : (· ⊓ ·) = and :=
rfl
#align bool.inf_eq_band Bool.inf_eq_band
@[simp]
theorem Bool.compl_eq_bnot : HasCompl.compl = not :=
rfl
#align bool.compl_eq_bnot Bool.compl_eq_bnot
section lift
-- See note [reducible non-instances]
/-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α]
[GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
GeneralizedBooleanAlgebra α :=
{ hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff,
hf.distribLattice f map_sup map_inf with
sup_inf_sdiff := fun a b => hf <| by
|
erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff]
|
/-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α]
[GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
GeneralizedBooleanAlgebra α :=
{ hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff,
hf.distribLattice f map_sup map_inf with
sup_inf_sdiff := fun a b => hf <| by
|
Mathlib.Order.BooleanAlgebra.828_0.ewE75DLNneOU8G5
|
/-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α]
[GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
GeneralizedBooleanAlgebra α
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝⁴ : Sup α
inst✝³ : Inf α
inst✝² : Bot α
inst✝¹ : SDiff α
inst✝ : GeneralizedBooleanAlgebra β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_bot : f ⊥ = ⊥
map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b
src✝¹ : GeneralizedCoheytingAlgebra α := Injective.generalizedCoheytingAlgebra f hf map_sup map_inf map_bot map_sdiff
src✝ : DistribLattice α := Injective.distribLattice f hf map_sup map_inf
a b : α
⊢ f (a ⊓ b ⊓ a \ b) = f ⊥
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm]
#align compl_sdiff_compl compl_sdiff_compl
@[simp]
theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x :=
@compl_sdiff_compl αᵒᵈ _ _ _
#align compl_himp_compl compl_himp_compl
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
rw [← le_compl_iff_disjoint_left, compl_compl]
#align disjoint_compl_left_iff disjoint_compl_left_iff
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
rw [← le_compl_iff_disjoint_right, compl_compl]
#align disjoint_compl_right_iff disjoint_compl_right_iff
theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x :=
@disjoint_sdiff_self_left αᵒᵈ _ _ _
#align codisjoint_himp_self_left codisjoint_himp_self_left
theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) :=
@disjoint_sdiff_self_right αᵒᵈ _ _ _
#align codisjoint_himp_self_right codisjoint_himp_self_right
theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z :=
(@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _
#align himp_le himp_le
end BooleanAlgebra
instance Prop.booleanAlgebra : BooleanAlgebra Prop :=
{ Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with
compl := Not,
himp_eq := fun p q => propext imp_iff_or_not,
inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp,
top_le_sup_compl := fun p _ => Classical.em p }
#align Prop.boolean_algebra Prop.booleanAlgebra
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;> simp [sdiff_eq]
inf_compl_le_bot x := by constructor <;> simp
top_le_sup_compl x := by constructor <;> simp
instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] :
BooleanAlgebra (∀ i, α i) :=
{ Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with
sdiff_eq := fun _ _ => funext fun _ => sdiff_eq,
himp_eq := fun _ _ => funext fun _ => himp_eq,
inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _,
top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ }
#align pi.boolean_algebra Pi.booleanAlgebra
instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where
__ := Bool.linearOrder
__ := Bool.boundedOrder
__ := Bool.instDistribLattice
compl := not
inf_compl_le_bot a := a.and_not_self.le
top_le_sup_compl a := a.or_not_self.ge
@[simp]
theorem Bool.sup_eq_bor : (· ⊔ ·) = or :=
rfl
#align bool.sup_eq_bor Bool.sup_eq_bor
@[simp]
theorem Bool.inf_eq_band : (· ⊓ ·) = and :=
rfl
#align bool.inf_eq_band Bool.inf_eq_band
@[simp]
theorem Bool.compl_eq_bnot : HasCompl.compl = not :=
rfl
#align bool.compl_eq_bnot Bool.compl_eq_bnot
section lift
-- See note [reducible non-instances]
/-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α]
[GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
GeneralizedBooleanAlgebra α :=
{ hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff,
hf.distribLattice f map_sup map_inf with
sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff],
inf_inf_sdiff := fun a b => hf <| by
|
erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot]
|
/-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α]
[GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
GeneralizedBooleanAlgebra α :=
{ hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff,
hf.distribLattice f map_sup map_inf with
sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff],
inf_inf_sdiff := fun a b => hf <| by
|
Mathlib.Order.BooleanAlgebra.828_0.ewE75DLNneOU8G5
|
/-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α]
[GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
GeneralizedBooleanAlgebra α
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝⁶ : Sup α
inst✝⁵ : Inf α
inst✝⁴ : Top α
inst✝³ : Bot α
inst✝² : HasCompl α
inst✝¹ : SDiff α
inst✝ : BooleanAlgebra β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_top : f ⊤ = ⊤
map_bot : f ⊥ = ⊥
map_compl : ∀ (a : α), f aᶜ = (f a)ᶜ
map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b
src✝ : GeneralizedBooleanAlgebra α := Injective.generalizedBooleanAlgebra f hf map_sup map_inf map_bot map_sdiff
a : α
⊢ f a ⊓ f aᶜ = f ⊥
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm]
#align compl_sdiff_compl compl_sdiff_compl
@[simp]
theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x :=
@compl_sdiff_compl αᵒᵈ _ _ _
#align compl_himp_compl compl_himp_compl
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
rw [← le_compl_iff_disjoint_left, compl_compl]
#align disjoint_compl_left_iff disjoint_compl_left_iff
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
rw [← le_compl_iff_disjoint_right, compl_compl]
#align disjoint_compl_right_iff disjoint_compl_right_iff
theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x :=
@disjoint_sdiff_self_left αᵒᵈ _ _ _
#align codisjoint_himp_self_left codisjoint_himp_self_left
theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) :=
@disjoint_sdiff_self_right αᵒᵈ _ _ _
#align codisjoint_himp_self_right codisjoint_himp_self_right
theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z :=
(@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _
#align himp_le himp_le
end BooleanAlgebra
instance Prop.booleanAlgebra : BooleanAlgebra Prop :=
{ Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with
compl := Not,
himp_eq := fun p q => propext imp_iff_or_not,
inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp,
top_le_sup_compl := fun p _ => Classical.em p }
#align Prop.boolean_algebra Prop.booleanAlgebra
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;> simp [sdiff_eq]
inf_compl_le_bot x := by constructor <;> simp
top_le_sup_compl x := by constructor <;> simp
instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] :
BooleanAlgebra (∀ i, α i) :=
{ Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with
sdiff_eq := fun _ _ => funext fun _ => sdiff_eq,
himp_eq := fun _ _ => funext fun _ => himp_eq,
inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _,
top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ }
#align pi.boolean_algebra Pi.booleanAlgebra
instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where
__ := Bool.linearOrder
__ := Bool.boundedOrder
__ := Bool.instDistribLattice
compl := not
inf_compl_le_bot a := a.and_not_self.le
top_le_sup_compl a := a.or_not_self.ge
@[simp]
theorem Bool.sup_eq_bor : (· ⊔ ·) = or :=
rfl
#align bool.sup_eq_bor Bool.sup_eq_bor
@[simp]
theorem Bool.inf_eq_band : (· ⊓ ·) = and :=
rfl
#align bool.inf_eq_band Bool.inf_eq_band
@[simp]
theorem Bool.compl_eq_bnot : HasCompl.compl = not :=
rfl
#align bool.compl_eq_bnot Bool.compl_eq_bnot
section lift
-- See note [reducible non-instances]
/-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α]
[GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
GeneralizedBooleanAlgebra α :=
{ hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff,
hf.distribLattice f map_sup map_inf with
sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff],
inf_inf_sdiff := fun a b => hf <| by erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot] }
#align function.injective.generalized_boolean_algebra Function.Injective.generalizedBooleanAlgebra
-- See note [reducible non-instances]
/-- Pullback a `BooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α]
[SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ)
(map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α :=
{ hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with
compl := compl,
top := ⊤,
le_top := fun a => (@le_top β _ _ _).trans map_top.ge,
bot_le := fun a => map_bot.le.trans bot_le,
inf_compl_le_bot :=
fun a => ((map_inf _ _).trans <| by
|
rw [map_compl, inf_compl_eq_bot, map_bot]
|
/-- Pullback a `BooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α]
[SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ)
(map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α :=
{ hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with
compl := compl,
top := ⊤,
le_top := fun a => (@le_top β _ _ _).trans map_top.ge,
bot_le := fun a => map_bot.le.trans bot_le,
inf_compl_le_bot :=
fun a => ((map_inf _ _).trans <| by
|
Mathlib.Order.BooleanAlgebra.842_0.ewE75DLNneOU8G5
|
/-- Pullback a `BooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α]
[SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ)
(map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝⁶ : Sup α
inst✝⁵ : Inf α
inst✝⁴ : Top α
inst✝³ : Bot α
inst✝² : HasCompl α
inst✝¹ : SDiff α
inst✝ : BooleanAlgebra β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_top : f ⊤ = ⊤
map_bot : f ⊥ = ⊥
map_compl : ∀ (a : α), f aᶜ = (f a)ᶜ
map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b
src✝ : GeneralizedBooleanAlgebra α := Injective.generalizedBooleanAlgebra f hf map_sup map_inf map_bot map_sdiff
a : α
⊢ f a ⊔ f aᶜ = f ⊤
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm]
#align compl_sdiff_compl compl_sdiff_compl
@[simp]
theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x :=
@compl_sdiff_compl αᵒᵈ _ _ _
#align compl_himp_compl compl_himp_compl
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
rw [← le_compl_iff_disjoint_left, compl_compl]
#align disjoint_compl_left_iff disjoint_compl_left_iff
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
rw [← le_compl_iff_disjoint_right, compl_compl]
#align disjoint_compl_right_iff disjoint_compl_right_iff
theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x :=
@disjoint_sdiff_self_left αᵒᵈ _ _ _
#align codisjoint_himp_self_left codisjoint_himp_self_left
theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) :=
@disjoint_sdiff_self_right αᵒᵈ _ _ _
#align codisjoint_himp_self_right codisjoint_himp_self_right
theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z :=
(@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _
#align himp_le himp_le
end BooleanAlgebra
instance Prop.booleanAlgebra : BooleanAlgebra Prop :=
{ Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with
compl := Not,
himp_eq := fun p q => propext imp_iff_or_not,
inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp,
top_le_sup_compl := fun p _ => Classical.em p }
#align Prop.boolean_algebra Prop.booleanAlgebra
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;> simp [sdiff_eq]
inf_compl_le_bot x := by constructor <;> simp
top_le_sup_compl x := by constructor <;> simp
instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] :
BooleanAlgebra (∀ i, α i) :=
{ Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with
sdiff_eq := fun _ _ => funext fun _ => sdiff_eq,
himp_eq := fun _ _ => funext fun _ => himp_eq,
inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _,
top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ }
#align pi.boolean_algebra Pi.booleanAlgebra
instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where
__ := Bool.linearOrder
__ := Bool.boundedOrder
__ := Bool.instDistribLattice
compl := not
inf_compl_le_bot a := a.and_not_self.le
top_le_sup_compl a := a.or_not_self.ge
@[simp]
theorem Bool.sup_eq_bor : (· ⊔ ·) = or :=
rfl
#align bool.sup_eq_bor Bool.sup_eq_bor
@[simp]
theorem Bool.inf_eq_band : (· ⊓ ·) = and :=
rfl
#align bool.inf_eq_band Bool.inf_eq_band
@[simp]
theorem Bool.compl_eq_bnot : HasCompl.compl = not :=
rfl
#align bool.compl_eq_bnot Bool.compl_eq_bnot
section lift
-- See note [reducible non-instances]
/-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α]
[GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
GeneralizedBooleanAlgebra α :=
{ hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff,
hf.distribLattice f map_sup map_inf with
sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff],
inf_inf_sdiff := fun a b => hf <| by erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot] }
#align function.injective.generalized_boolean_algebra Function.Injective.generalizedBooleanAlgebra
-- See note [reducible non-instances]
/-- Pullback a `BooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α]
[SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ)
(map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α :=
{ hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with
compl := compl,
top := ⊤,
le_top := fun a => (@le_top β _ _ _).trans map_top.ge,
bot_le := fun a => map_bot.le.trans bot_le,
inf_compl_le_bot :=
fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le,
top_le_sup_compl :=
fun a => ((map_sup _ _).trans <| by
|
rw [map_compl, sup_compl_eq_top, map_top]
|
/-- Pullback a `BooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α]
[SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ)
(map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α :=
{ hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with
compl := compl,
top := ⊤,
le_top := fun a => (@le_top β _ _ _).trans map_top.ge,
bot_le := fun a => map_bot.le.trans bot_le,
inf_compl_le_bot :=
fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le,
top_le_sup_compl :=
fun a => ((map_sup _ _).trans <| by
|
Mathlib.Order.BooleanAlgebra.842_0.ewE75DLNneOU8G5
|
/-- Pullback a `BooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α]
[SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ)
(map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝⁶ : Sup α
inst✝⁵ : Inf α
inst✝⁴ : Top α
inst✝³ : Bot α
inst✝² : HasCompl α
inst✝¹ : SDiff α
inst✝ : BooleanAlgebra β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_top : f ⊤ = ⊤
map_bot : f ⊥ = ⊥
map_compl : ∀ (a : α), f aᶜ = (f a)ᶜ
map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b
src✝ : GeneralizedBooleanAlgebra α := Injective.generalizedBooleanAlgebra f hf map_sup map_inf map_bot map_sdiff
a b : α
⊢ a \ b = a ⊓ bᶜ
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm]
#align compl_sdiff_compl compl_sdiff_compl
@[simp]
theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x :=
@compl_sdiff_compl αᵒᵈ _ _ _
#align compl_himp_compl compl_himp_compl
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
rw [← le_compl_iff_disjoint_left, compl_compl]
#align disjoint_compl_left_iff disjoint_compl_left_iff
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
rw [← le_compl_iff_disjoint_right, compl_compl]
#align disjoint_compl_right_iff disjoint_compl_right_iff
theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x :=
@disjoint_sdiff_self_left αᵒᵈ _ _ _
#align codisjoint_himp_self_left codisjoint_himp_self_left
theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) :=
@disjoint_sdiff_self_right αᵒᵈ _ _ _
#align codisjoint_himp_self_right codisjoint_himp_self_right
theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z :=
(@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _
#align himp_le himp_le
end BooleanAlgebra
instance Prop.booleanAlgebra : BooleanAlgebra Prop :=
{ Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with
compl := Not,
himp_eq := fun p q => propext imp_iff_or_not,
inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp,
top_le_sup_compl := fun p _ => Classical.em p }
#align Prop.boolean_algebra Prop.booleanAlgebra
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;> simp [sdiff_eq]
inf_compl_le_bot x := by constructor <;> simp
top_le_sup_compl x := by constructor <;> simp
instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] :
BooleanAlgebra (∀ i, α i) :=
{ Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with
sdiff_eq := fun _ _ => funext fun _ => sdiff_eq,
himp_eq := fun _ _ => funext fun _ => himp_eq,
inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _,
top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ }
#align pi.boolean_algebra Pi.booleanAlgebra
instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where
__ := Bool.linearOrder
__ := Bool.boundedOrder
__ := Bool.instDistribLattice
compl := not
inf_compl_le_bot a := a.and_not_self.le
top_le_sup_compl a := a.or_not_self.ge
@[simp]
theorem Bool.sup_eq_bor : (· ⊔ ·) = or :=
rfl
#align bool.sup_eq_bor Bool.sup_eq_bor
@[simp]
theorem Bool.inf_eq_band : (· ⊓ ·) = and :=
rfl
#align bool.inf_eq_band Bool.inf_eq_band
@[simp]
theorem Bool.compl_eq_bnot : HasCompl.compl = not :=
rfl
#align bool.compl_eq_bnot Bool.compl_eq_bnot
section lift
-- See note [reducible non-instances]
/-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α]
[GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
GeneralizedBooleanAlgebra α :=
{ hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff,
hf.distribLattice f map_sup map_inf with
sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff],
inf_inf_sdiff := fun a b => hf <| by erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot] }
#align function.injective.generalized_boolean_algebra Function.Injective.generalizedBooleanAlgebra
-- See note [reducible non-instances]
/-- Pullback a `BooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α]
[SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ)
(map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α :=
{ hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with
compl := compl,
top := ⊤,
le_top := fun a => (@le_top β _ _ _).trans map_top.ge,
bot_le := fun a => map_bot.le.trans bot_le,
inf_compl_le_bot :=
fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le,
top_le_sup_compl :=
fun a => ((map_sup _ _).trans <| by rw [map_compl, sup_compl_eq_top, map_top]).ge,
sdiff_eq := fun a b => by
|
refine hf ((map_sdiff _ _).trans (sdiff_eq.trans ?_))
|
/-- Pullback a `BooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α]
[SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ)
(map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α :=
{ hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with
compl := compl,
top := ⊤,
le_top := fun a => (@le_top β _ _ _).trans map_top.ge,
bot_le := fun a => map_bot.le.trans bot_le,
inf_compl_le_bot :=
fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le,
top_le_sup_compl :=
fun a => ((map_sup _ _).trans <| by rw [map_compl, sup_compl_eq_top, map_top]).ge,
sdiff_eq := fun a b => by
|
Mathlib.Order.BooleanAlgebra.842_0.ewE75DLNneOU8G5
|
/-- Pullback a `BooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α]
[SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ)
(map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
inst✝⁶ : Sup α
inst✝⁵ : Inf α
inst✝⁴ : Top α
inst✝³ : Bot α
inst✝² : HasCompl α
inst✝¹ : SDiff α
inst✝ : BooleanAlgebra β
f : α → β
hf : Injective f
map_sup : ∀ (a b : α), f (a ⊔ b) = f a ⊔ f b
map_inf : ∀ (a b : α), f (a ⊓ b) = f a ⊓ f b
map_top : f ⊤ = ⊤
map_bot : f ⊥ = ⊥
map_compl : ∀ (a : α), f aᶜ = (f a)ᶜ
map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b
src✝ : GeneralizedBooleanAlgebra α := Injective.generalizedBooleanAlgebra f hf map_sup map_inf map_bot map_sdiff
a b : α
⊢ f a ⊓ (f b)ᶜ = f (a ⊓ bᶜ)
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm]
#align compl_sdiff_compl compl_sdiff_compl
@[simp]
theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x :=
@compl_sdiff_compl αᵒᵈ _ _ _
#align compl_himp_compl compl_himp_compl
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
rw [← le_compl_iff_disjoint_left, compl_compl]
#align disjoint_compl_left_iff disjoint_compl_left_iff
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
rw [← le_compl_iff_disjoint_right, compl_compl]
#align disjoint_compl_right_iff disjoint_compl_right_iff
theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x :=
@disjoint_sdiff_self_left αᵒᵈ _ _ _
#align codisjoint_himp_self_left codisjoint_himp_self_left
theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) :=
@disjoint_sdiff_self_right αᵒᵈ _ _ _
#align codisjoint_himp_self_right codisjoint_himp_self_right
theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z :=
(@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _
#align himp_le himp_le
end BooleanAlgebra
instance Prop.booleanAlgebra : BooleanAlgebra Prop :=
{ Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with
compl := Not,
himp_eq := fun p q => propext imp_iff_or_not,
inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp,
top_le_sup_compl := fun p _ => Classical.em p }
#align Prop.boolean_algebra Prop.booleanAlgebra
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;> simp [sdiff_eq]
inf_compl_le_bot x := by constructor <;> simp
top_le_sup_compl x := by constructor <;> simp
instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] :
BooleanAlgebra (∀ i, α i) :=
{ Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with
sdiff_eq := fun _ _ => funext fun _ => sdiff_eq,
himp_eq := fun _ _ => funext fun _ => himp_eq,
inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _,
top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ }
#align pi.boolean_algebra Pi.booleanAlgebra
instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where
__ := Bool.linearOrder
__ := Bool.boundedOrder
__ := Bool.instDistribLattice
compl := not
inf_compl_le_bot a := a.and_not_self.le
top_le_sup_compl a := a.or_not_self.ge
@[simp]
theorem Bool.sup_eq_bor : (· ⊔ ·) = or :=
rfl
#align bool.sup_eq_bor Bool.sup_eq_bor
@[simp]
theorem Bool.inf_eq_band : (· ⊓ ·) = and :=
rfl
#align bool.inf_eq_band Bool.inf_eq_band
@[simp]
theorem Bool.compl_eq_bnot : HasCompl.compl = not :=
rfl
#align bool.compl_eq_bnot Bool.compl_eq_bnot
section lift
-- See note [reducible non-instances]
/-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α]
[GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
GeneralizedBooleanAlgebra α :=
{ hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff,
hf.distribLattice f map_sup map_inf with
sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff],
inf_inf_sdiff := fun a b => hf <| by erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot] }
#align function.injective.generalized_boolean_algebra Function.Injective.generalizedBooleanAlgebra
-- See note [reducible non-instances]
/-- Pullback a `BooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α]
[SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ)
(map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α :=
{ hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with
compl := compl,
top := ⊤,
le_top := fun a => (@le_top β _ _ _).trans map_top.ge,
bot_le := fun a => map_bot.le.trans bot_le,
inf_compl_le_bot :=
fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le,
top_le_sup_compl :=
fun a => ((map_sup _ _).trans <| by rw [map_compl, sup_compl_eq_top, map_top]).ge,
sdiff_eq := fun a b => by
refine hf ((map_sdiff _ _).trans (sdiff_eq.trans ?_))
|
rw [map_inf, map_compl]
|
/-- Pullback a `BooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α]
[SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ)
(map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α :=
{ hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with
compl := compl,
top := ⊤,
le_top := fun a => (@le_top β _ _ _).trans map_top.ge,
bot_le := fun a => map_bot.le.trans bot_le,
inf_compl_le_bot :=
fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le,
top_le_sup_compl :=
fun a => ((map_sup _ _).trans <| by rw [map_compl, sup_compl_eq_top, map_top]).ge,
sdiff_eq := fun a b => by
refine hf ((map_sdiff _ _).trans (sdiff_eq.trans ?_))
|
Mathlib.Order.BooleanAlgebra.842_0.ewE75DLNneOU8G5
|
/-- Pullback a `BooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α]
[SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ)
(map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α
|
Mathlib_Order_BooleanAlgebra
|
α : Type u
β : Type u_1
w x y z : α
⊢ BooleanAlgebra PUnit.{?u.90848 + 1}
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm]
#align compl_sdiff_compl compl_sdiff_compl
@[simp]
theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x :=
@compl_sdiff_compl αᵒᵈ _ _ _
#align compl_himp_compl compl_himp_compl
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
rw [← le_compl_iff_disjoint_left, compl_compl]
#align disjoint_compl_left_iff disjoint_compl_left_iff
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
rw [← le_compl_iff_disjoint_right, compl_compl]
#align disjoint_compl_right_iff disjoint_compl_right_iff
theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x :=
@disjoint_sdiff_self_left αᵒᵈ _ _ _
#align codisjoint_himp_self_left codisjoint_himp_self_left
theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) :=
@disjoint_sdiff_self_right αᵒᵈ _ _ _
#align codisjoint_himp_self_right codisjoint_himp_self_right
theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z :=
(@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _
#align himp_le himp_le
end BooleanAlgebra
instance Prop.booleanAlgebra : BooleanAlgebra Prop :=
{ Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with
compl := Not,
himp_eq := fun p q => propext imp_iff_or_not,
inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp,
top_le_sup_compl := fun p _ => Classical.em p }
#align Prop.boolean_algebra Prop.booleanAlgebra
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;> simp [sdiff_eq]
inf_compl_le_bot x := by constructor <;> simp
top_le_sup_compl x := by constructor <;> simp
instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] :
BooleanAlgebra (∀ i, α i) :=
{ Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with
sdiff_eq := fun _ _ => funext fun _ => sdiff_eq,
himp_eq := fun _ _ => funext fun _ => himp_eq,
inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _,
top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ }
#align pi.boolean_algebra Pi.booleanAlgebra
instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where
__ := Bool.linearOrder
__ := Bool.boundedOrder
__ := Bool.instDistribLattice
compl := not
inf_compl_le_bot a := a.and_not_self.le
top_le_sup_compl a := a.or_not_self.ge
@[simp]
theorem Bool.sup_eq_bor : (· ⊔ ·) = or :=
rfl
#align bool.sup_eq_bor Bool.sup_eq_bor
@[simp]
theorem Bool.inf_eq_band : (· ⊓ ·) = and :=
rfl
#align bool.inf_eq_band Bool.inf_eq_band
@[simp]
theorem Bool.compl_eq_bnot : HasCompl.compl = not :=
rfl
#align bool.compl_eq_bnot Bool.compl_eq_bnot
section lift
-- See note [reducible non-instances]
/-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α]
[GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
GeneralizedBooleanAlgebra α :=
{ hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff,
hf.distribLattice f map_sup map_inf with
sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff],
inf_inf_sdiff := fun a b => hf <| by erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot] }
#align function.injective.generalized_boolean_algebra Function.Injective.generalizedBooleanAlgebra
-- See note [reducible non-instances]
/-- Pullback a `BooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α]
[SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ)
(map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α :=
{ hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with
compl := compl,
top := ⊤,
le_top := fun a => (@le_top β _ _ _).trans map_top.ge,
bot_le := fun a => map_bot.le.trans bot_le,
inf_compl_le_bot :=
fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le,
top_le_sup_compl :=
fun a => ((map_sup _ _).trans <| by rw [map_compl, sup_compl_eq_top, map_top]).ge,
sdiff_eq := fun a b => by
refine hf ((map_sdiff _ _).trans (sdiff_eq.trans ?_))
rw [map_inf, map_compl] }
#align function.injective.boolean_algebra Function.Injective.booleanAlgebra
end lift
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by
|
refine'
{ PUnit.biheytingAlgebra with
.. }
|
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by
|
Mathlib.Order.BooleanAlgebra.865_0.ewE75DLNneOU8G5
|
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit
|
Mathlib_Order_BooleanAlgebra
|
case refine'_1
α : Type u
β : Type u_1
w x y z : α
src✝ : BiheytingAlgebra PUnit.{?u.90854 + 1} := biheytingAlgebra
⊢ ∀ (x y z : PUnit.{?u.90854 + 1}), (x ⊔ y) ⊓ (x ⊔ z) ≤ x ⊔ y ⊓ z
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm]
#align compl_sdiff_compl compl_sdiff_compl
@[simp]
theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x :=
@compl_sdiff_compl αᵒᵈ _ _ _
#align compl_himp_compl compl_himp_compl
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
rw [← le_compl_iff_disjoint_left, compl_compl]
#align disjoint_compl_left_iff disjoint_compl_left_iff
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
rw [← le_compl_iff_disjoint_right, compl_compl]
#align disjoint_compl_right_iff disjoint_compl_right_iff
theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x :=
@disjoint_sdiff_self_left αᵒᵈ _ _ _
#align codisjoint_himp_self_left codisjoint_himp_self_left
theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) :=
@disjoint_sdiff_self_right αᵒᵈ _ _ _
#align codisjoint_himp_self_right codisjoint_himp_self_right
theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z :=
(@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _
#align himp_le himp_le
end BooleanAlgebra
instance Prop.booleanAlgebra : BooleanAlgebra Prop :=
{ Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with
compl := Not,
himp_eq := fun p q => propext imp_iff_or_not,
inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp,
top_le_sup_compl := fun p _ => Classical.em p }
#align Prop.boolean_algebra Prop.booleanAlgebra
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;> simp [sdiff_eq]
inf_compl_le_bot x := by constructor <;> simp
top_le_sup_compl x := by constructor <;> simp
instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] :
BooleanAlgebra (∀ i, α i) :=
{ Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with
sdiff_eq := fun _ _ => funext fun _ => sdiff_eq,
himp_eq := fun _ _ => funext fun _ => himp_eq,
inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _,
top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ }
#align pi.boolean_algebra Pi.booleanAlgebra
instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where
__ := Bool.linearOrder
__ := Bool.boundedOrder
__ := Bool.instDistribLattice
compl := not
inf_compl_le_bot a := a.and_not_self.le
top_le_sup_compl a := a.or_not_self.ge
@[simp]
theorem Bool.sup_eq_bor : (· ⊔ ·) = or :=
rfl
#align bool.sup_eq_bor Bool.sup_eq_bor
@[simp]
theorem Bool.inf_eq_band : (· ⊓ ·) = and :=
rfl
#align bool.inf_eq_band Bool.inf_eq_band
@[simp]
theorem Bool.compl_eq_bnot : HasCompl.compl = not :=
rfl
#align bool.compl_eq_bnot Bool.compl_eq_bnot
section lift
-- See note [reducible non-instances]
/-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α]
[GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
GeneralizedBooleanAlgebra α :=
{ hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff,
hf.distribLattice f map_sup map_inf with
sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff],
inf_inf_sdiff := fun a b => hf <| by erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot] }
#align function.injective.generalized_boolean_algebra Function.Injective.generalizedBooleanAlgebra
-- See note [reducible non-instances]
/-- Pullback a `BooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α]
[SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ)
(map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α :=
{ hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with
compl := compl,
top := ⊤,
le_top := fun a => (@le_top β _ _ _).trans map_top.ge,
bot_le := fun a => map_bot.le.trans bot_le,
inf_compl_le_bot :=
fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le,
top_le_sup_compl :=
fun a => ((map_sup _ _).trans <| by rw [map_compl, sup_compl_eq_top, map_top]).ge,
sdiff_eq := fun a b => by
refine hf ((map_sdiff _ _).trans (sdiff_eq.trans ?_))
rw [map_inf, map_compl] }
#align function.injective.boolean_algebra Function.Injective.booleanAlgebra
end lift
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by
refine'
{ PUnit.biheytingAlgebra with
.. } <;> (
|
intros
|
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by
refine'
{ PUnit.biheytingAlgebra with
.. } <;> (
|
Mathlib.Order.BooleanAlgebra.865_0.ewE75DLNneOU8G5
|
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit
|
Mathlib_Order_BooleanAlgebra
|
case refine'_1
α : Type u
β : Type u_1
w x y z : α
src✝ : BiheytingAlgebra PUnit.{?u.90854 + 1} := biheytingAlgebra
x✝ y✝ z✝ : PUnit.{?u.90854 + 1}
⊢ (x✝ ⊔ y✝) ⊓ (x✝ ⊔ z✝) ≤ x✝ ⊔ y✝ ⊓ z✝
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm]
#align compl_sdiff_compl compl_sdiff_compl
@[simp]
theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x :=
@compl_sdiff_compl αᵒᵈ _ _ _
#align compl_himp_compl compl_himp_compl
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
rw [← le_compl_iff_disjoint_left, compl_compl]
#align disjoint_compl_left_iff disjoint_compl_left_iff
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
rw [← le_compl_iff_disjoint_right, compl_compl]
#align disjoint_compl_right_iff disjoint_compl_right_iff
theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x :=
@disjoint_sdiff_self_left αᵒᵈ _ _ _
#align codisjoint_himp_self_left codisjoint_himp_self_left
theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) :=
@disjoint_sdiff_self_right αᵒᵈ _ _ _
#align codisjoint_himp_self_right codisjoint_himp_self_right
theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z :=
(@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _
#align himp_le himp_le
end BooleanAlgebra
instance Prop.booleanAlgebra : BooleanAlgebra Prop :=
{ Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with
compl := Not,
himp_eq := fun p q => propext imp_iff_or_not,
inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp,
top_le_sup_compl := fun p _ => Classical.em p }
#align Prop.boolean_algebra Prop.booleanAlgebra
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;> simp [sdiff_eq]
inf_compl_le_bot x := by constructor <;> simp
top_le_sup_compl x := by constructor <;> simp
instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] :
BooleanAlgebra (∀ i, α i) :=
{ Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with
sdiff_eq := fun _ _ => funext fun _ => sdiff_eq,
himp_eq := fun _ _ => funext fun _ => himp_eq,
inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _,
top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ }
#align pi.boolean_algebra Pi.booleanAlgebra
instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where
__ := Bool.linearOrder
__ := Bool.boundedOrder
__ := Bool.instDistribLattice
compl := not
inf_compl_le_bot a := a.and_not_self.le
top_le_sup_compl a := a.or_not_self.ge
@[simp]
theorem Bool.sup_eq_bor : (· ⊔ ·) = or :=
rfl
#align bool.sup_eq_bor Bool.sup_eq_bor
@[simp]
theorem Bool.inf_eq_band : (· ⊓ ·) = and :=
rfl
#align bool.inf_eq_band Bool.inf_eq_band
@[simp]
theorem Bool.compl_eq_bnot : HasCompl.compl = not :=
rfl
#align bool.compl_eq_bnot Bool.compl_eq_bnot
section lift
-- See note [reducible non-instances]
/-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α]
[GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
GeneralizedBooleanAlgebra α :=
{ hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff,
hf.distribLattice f map_sup map_inf with
sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff],
inf_inf_sdiff := fun a b => hf <| by erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot] }
#align function.injective.generalized_boolean_algebra Function.Injective.generalizedBooleanAlgebra
-- See note [reducible non-instances]
/-- Pullback a `BooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α]
[SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ)
(map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α :=
{ hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with
compl := compl,
top := ⊤,
le_top := fun a => (@le_top β _ _ _).trans map_top.ge,
bot_le := fun a => map_bot.le.trans bot_le,
inf_compl_le_bot :=
fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le,
top_le_sup_compl :=
fun a => ((map_sup _ _).trans <| by rw [map_compl, sup_compl_eq_top, map_top]).ge,
sdiff_eq := fun a b => by
refine hf ((map_sdiff _ _).trans (sdiff_eq.trans ?_))
rw [map_inf, map_compl] }
#align function.injective.boolean_algebra Function.Injective.booleanAlgebra
end lift
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by
refine'
{ PUnit.biheytingAlgebra with
.. } <;> (intros;
|
trivial
|
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by
refine'
{ PUnit.biheytingAlgebra with
.. } <;> (intros;
|
Mathlib.Order.BooleanAlgebra.865_0.ewE75DLNneOU8G5
|
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit
|
Mathlib_Order_BooleanAlgebra
|
case refine'_2
α : Type u
β : Type u_1
w x y z : α
src✝ : BiheytingAlgebra PUnit.{?u.90854 + 1} := biheytingAlgebra
⊢ ∀ (x : PUnit.{?u.90854 + 1}), x ⊓ xᶜ ≤ ⊥
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm]
#align compl_sdiff_compl compl_sdiff_compl
@[simp]
theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x :=
@compl_sdiff_compl αᵒᵈ _ _ _
#align compl_himp_compl compl_himp_compl
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
rw [← le_compl_iff_disjoint_left, compl_compl]
#align disjoint_compl_left_iff disjoint_compl_left_iff
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
rw [← le_compl_iff_disjoint_right, compl_compl]
#align disjoint_compl_right_iff disjoint_compl_right_iff
theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x :=
@disjoint_sdiff_self_left αᵒᵈ _ _ _
#align codisjoint_himp_self_left codisjoint_himp_self_left
theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) :=
@disjoint_sdiff_self_right αᵒᵈ _ _ _
#align codisjoint_himp_self_right codisjoint_himp_self_right
theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z :=
(@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _
#align himp_le himp_le
end BooleanAlgebra
instance Prop.booleanAlgebra : BooleanAlgebra Prop :=
{ Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with
compl := Not,
himp_eq := fun p q => propext imp_iff_or_not,
inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp,
top_le_sup_compl := fun p _ => Classical.em p }
#align Prop.boolean_algebra Prop.booleanAlgebra
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;> simp [sdiff_eq]
inf_compl_le_bot x := by constructor <;> simp
top_le_sup_compl x := by constructor <;> simp
instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] :
BooleanAlgebra (∀ i, α i) :=
{ Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with
sdiff_eq := fun _ _ => funext fun _ => sdiff_eq,
himp_eq := fun _ _ => funext fun _ => himp_eq,
inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _,
top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ }
#align pi.boolean_algebra Pi.booleanAlgebra
instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where
__ := Bool.linearOrder
__ := Bool.boundedOrder
__ := Bool.instDistribLattice
compl := not
inf_compl_le_bot a := a.and_not_self.le
top_le_sup_compl a := a.or_not_self.ge
@[simp]
theorem Bool.sup_eq_bor : (· ⊔ ·) = or :=
rfl
#align bool.sup_eq_bor Bool.sup_eq_bor
@[simp]
theorem Bool.inf_eq_band : (· ⊓ ·) = and :=
rfl
#align bool.inf_eq_band Bool.inf_eq_band
@[simp]
theorem Bool.compl_eq_bnot : HasCompl.compl = not :=
rfl
#align bool.compl_eq_bnot Bool.compl_eq_bnot
section lift
-- See note [reducible non-instances]
/-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α]
[GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
GeneralizedBooleanAlgebra α :=
{ hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff,
hf.distribLattice f map_sup map_inf with
sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff],
inf_inf_sdiff := fun a b => hf <| by erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot] }
#align function.injective.generalized_boolean_algebra Function.Injective.generalizedBooleanAlgebra
-- See note [reducible non-instances]
/-- Pullback a `BooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α]
[SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ)
(map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α :=
{ hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with
compl := compl,
top := ⊤,
le_top := fun a => (@le_top β _ _ _).trans map_top.ge,
bot_le := fun a => map_bot.le.trans bot_le,
inf_compl_le_bot :=
fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le,
top_le_sup_compl :=
fun a => ((map_sup _ _).trans <| by rw [map_compl, sup_compl_eq_top, map_top]).ge,
sdiff_eq := fun a b => by
refine hf ((map_sdiff _ _).trans (sdiff_eq.trans ?_))
rw [map_inf, map_compl] }
#align function.injective.boolean_algebra Function.Injective.booleanAlgebra
end lift
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by
refine'
{ PUnit.biheytingAlgebra with
.. } <;> (
|
intros
|
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by
refine'
{ PUnit.biheytingAlgebra with
.. } <;> (
|
Mathlib.Order.BooleanAlgebra.865_0.ewE75DLNneOU8G5
|
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit
|
Mathlib_Order_BooleanAlgebra
|
case refine'_2
α : Type u
β : Type u_1
w x y z : α
src✝ : BiheytingAlgebra PUnit.{?u.90854 + 1} := biheytingAlgebra
x✝ : PUnit.{?u.90854 + 1}
⊢ x✝ ⊓ x✝ᶜ ≤ ⊥
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm]
#align compl_sdiff_compl compl_sdiff_compl
@[simp]
theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x :=
@compl_sdiff_compl αᵒᵈ _ _ _
#align compl_himp_compl compl_himp_compl
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
rw [← le_compl_iff_disjoint_left, compl_compl]
#align disjoint_compl_left_iff disjoint_compl_left_iff
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
rw [← le_compl_iff_disjoint_right, compl_compl]
#align disjoint_compl_right_iff disjoint_compl_right_iff
theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x :=
@disjoint_sdiff_self_left αᵒᵈ _ _ _
#align codisjoint_himp_self_left codisjoint_himp_self_left
theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) :=
@disjoint_sdiff_self_right αᵒᵈ _ _ _
#align codisjoint_himp_self_right codisjoint_himp_self_right
theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z :=
(@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _
#align himp_le himp_le
end BooleanAlgebra
instance Prop.booleanAlgebra : BooleanAlgebra Prop :=
{ Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with
compl := Not,
himp_eq := fun p q => propext imp_iff_or_not,
inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp,
top_le_sup_compl := fun p _ => Classical.em p }
#align Prop.boolean_algebra Prop.booleanAlgebra
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;> simp [sdiff_eq]
inf_compl_le_bot x := by constructor <;> simp
top_le_sup_compl x := by constructor <;> simp
instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] :
BooleanAlgebra (∀ i, α i) :=
{ Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with
sdiff_eq := fun _ _ => funext fun _ => sdiff_eq,
himp_eq := fun _ _ => funext fun _ => himp_eq,
inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _,
top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ }
#align pi.boolean_algebra Pi.booleanAlgebra
instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where
__ := Bool.linearOrder
__ := Bool.boundedOrder
__ := Bool.instDistribLattice
compl := not
inf_compl_le_bot a := a.and_not_self.le
top_le_sup_compl a := a.or_not_self.ge
@[simp]
theorem Bool.sup_eq_bor : (· ⊔ ·) = or :=
rfl
#align bool.sup_eq_bor Bool.sup_eq_bor
@[simp]
theorem Bool.inf_eq_band : (· ⊓ ·) = and :=
rfl
#align bool.inf_eq_band Bool.inf_eq_band
@[simp]
theorem Bool.compl_eq_bnot : HasCompl.compl = not :=
rfl
#align bool.compl_eq_bnot Bool.compl_eq_bnot
section lift
-- See note [reducible non-instances]
/-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α]
[GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
GeneralizedBooleanAlgebra α :=
{ hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff,
hf.distribLattice f map_sup map_inf with
sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff],
inf_inf_sdiff := fun a b => hf <| by erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot] }
#align function.injective.generalized_boolean_algebra Function.Injective.generalizedBooleanAlgebra
-- See note [reducible non-instances]
/-- Pullback a `BooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α]
[SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ)
(map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α :=
{ hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with
compl := compl,
top := ⊤,
le_top := fun a => (@le_top β _ _ _).trans map_top.ge,
bot_le := fun a => map_bot.le.trans bot_le,
inf_compl_le_bot :=
fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le,
top_le_sup_compl :=
fun a => ((map_sup _ _).trans <| by rw [map_compl, sup_compl_eq_top, map_top]).ge,
sdiff_eq := fun a b => by
refine hf ((map_sdiff _ _).trans (sdiff_eq.trans ?_))
rw [map_inf, map_compl] }
#align function.injective.boolean_algebra Function.Injective.booleanAlgebra
end lift
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by
refine'
{ PUnit.biheytingAlgebra with
.. } <;> (intros;
|
trivial
|
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by
refine'
{ PUnit.biheytingAlgebra with
.. } <;> (intros;
|
Mathlib.Order.BooleanAlgebra.865_0.ewE75DLNneOU8G5
|
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit
|
Mathlib_Order_BooleanAlgebra
|
case refine'_3
α : Type u
β : Type u_1
w x y z : α
src✝ : BiheytingAlgebra PUnit.{?u.90854 + 1} := biheytingAlgebra
⊢ ∀ (x : PUnit.{?u.90854 + 1}), ⊤ ≤ x ⊔ xᶜ
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm]
#align compl_sdiff_compl compl_sdiff_compl
@[simp]
theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x :=
@compl_sdiff_compl αᵒᵈ _ _ _
#align compl_himp_compl compl_himp_compl
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
rw [← le_compl_iff_disjoint_left, compl_compl]
#align disjoint_compl_left_iff disjoint_compl_left_iff
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
rw [← le_compl_iff_disjoint_right, compl_compl]
#align disjoint_compl_right_iff disjoint_compl_right_iff
theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x :=
@disjoint_sdiff_self_left αᵒᵈ _ _ _
#align codisjoint_himp_self_left codisjoint_himp_self_left
theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) :=
@disjoint_sdiff_self_right αᵒᵈ _ _ _
#align codisjoint_himp_self_right codisjoint_himp_self_right
theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z :=
(@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _
#align himp_le himp_le
end BooleanAlgebra
instance Prop.booleanAlgebra : BooleanAlgebra Prop :=
{ Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with
compl := Not,
himp_eq := fun p q => propext imp_iff_or_not,
inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp,
top_le_sup_compl := fun p _ => Classical.em p }
#align Prop.boolean_algebra Prop.booleanAlgebra
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;> simp [sdiff_eq]
inf_compl_le_bot x := by constructor <;> simp
top_le_sup_compl x := by constructor <;> simp
instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] :
BooleanAlgebra (∀ i, α i) :=
{ Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with
sdiff_eq := fun _ _ => funext fun _ => sdiff_eq,
himp_eq := fun _ _ => funext fun _ => himp_eq,
inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _,
top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ }
#align pi.boolean_algebra Pi.booleanAlgebra
instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where
__ := Bool.linearOrder
__ := Bool.boundedOrder
__ := Bool.instDistribLattice
compl := not
inf_compl_le_bot a := a.and_not_self.le
top_le_sup_compl a := a.or_not_self.ge
@[simp]
theorem Bool.sup_eq_bor : (· ⊔ ·) = or :=
rfl
#align bool.sup_eq_bor Bool.sup_eq_bor
@[simp]
theorem Bool.inf_eq_band : (· ⊓ ·) = and :=
rfl
#align bool.inf_eq_band Bool.inf_eq_band
@[simp]
theorem Bool.compl_eq_bnot : HasCompl.compl = not :=
rfl
#align bool.compl_eq_bnot Bool.compl_eq_bnot
section lift
-- See note [reducible non-instances]
/-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α]
[GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
GeneralizedBooleanAlgebra α :=
{ hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff,
hf.distribLattice f map_sup map_inf with
sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff],
inf_inf_sdiff := fun a b => hf <| by erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot] }
#align function.injective.generalized_boolean_algebra Function.Injective.generalizedBooleanAlgebra
-- See note [reducible non-instances]
/-- Pullback a `BooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α]
[SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ)
(map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α :=
{ hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with
compl := compl,
top := ⊤,
le_top := fun a => (@le_top β _ _ _).trans map_top.ge,
bot_le := fun a => map_bot.le.trans bot_le,
inf_compl_le_bot :=
fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le,
top_le_sup_compl :=
fun a => ((map_sup _ _).trans <| by rw [map_compl, sup_compl_eq_top, map_top]).ge,
sdiff_eq := fun a b => by
refine hf ((map_sdiff _ _).trans (sdiff_eq.trans ?_))
rw [map_inf, map_compl] }
#align function.injective.boolean_algebra Function.Injective.booleanAlgebra
end lift
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by
refine'
{ PUnit.biheytingAlgebra with
.. } <;> (
|
intros
|
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by
refine'
{ PUnit.biheytingAlgebra with
.. } <;> (
|
Mathlib.Order.BooleanAlgebra.865_0.ewE75DLNneOU8G5
|
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit
|
Mathlib_Order_BooleanAlgebra
|
case refine'_3
α : Type u
β : Type u_1
w x y z : α
src✝ : BiheytingAlgebra PUnit.{?u.90854 + 1} := biheytingAlgebra
x✝ : PUnit.{?u.90854 + 1}
⊢ ⊤ ≤ x✝ ⊔ x✝ᶜ
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm]
#align compl_sdiff_compl compl_sdiff_compl
@[simp]
theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x :=
@compl_sdiff_compl αᵒᵈ _ _ _
#align compl_himp_compl compl_himp_compl
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
rw [← le_compl_iff_disjoint_left, compl_compl]
#align disjoint_compl_left_iff disjoint_compl_left_iff
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
rw [← le_compl_iff_disjoint_right, compl_compl]
#align disjoint_compl_right_iff disjoint_compl_right_iff
theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x :=
@disjoint_sdiff_self_left αᵒᵈ _ _ _
#align codisjoint_himp_self_left codisjoint_himp_self_left
theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) :=
@disjoint_sdiff_self_right αᵒᵈ _ _ _
#align codisjoint_himp_self_right codisjoint_himp_self_right
theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z :=
(@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _
#align himp_le himp_le
end BooleanAlgebra
instance Prop.booleanAlgebra : BooleanAlgebra Prop :=
{ Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with
compl := Not,
himp_eq := fun p q => propext imp_iff_or_not,
inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp,
top_le_sup_compl := fun p _ => Classical.em p }
#align Prop.boolean_algebra Prop.booleanAlgebra
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;> simp [sdiff_eq]
inf_compl_le_bot x := by constructor <;> simp
top_le_sup_compl x := by constructor <;> simp
instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] :
BooleanAlgebra (∀ i, α i) :=
{ Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with
sdiff_eq := fun _ _ => funext fun _ => sdiff_eq,
himp_eq := fun _ _ => funext fun _ => himp_eq,
inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _,
top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ }
#align pi.boolean_algebra Pi.booleanAlgebra
instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where
__ := Bool.linearOrder
__ := Bool.boundedOrder
__ := Bool.instDistribLattice
compl := not
inf_compl_le_bot a := a.and_not_self.le
top_le_sup_compl a := a.or_not_self.ge
@[simp]
theorem Bool.sup_eq_bor : (· ⊔ ·) = or :=
rfl
#align bool.sup_eq_bor Bool.sup_eq_bor
@[simp]
theorem Bool.inf_eq_band : (· ⊓ ·) = and :=
rfl
#align bool.inf_eq_band Bool.inf_eq_band
@[simp]
theorem Bool.compl_eq_bnot : HasCompl.compl = not :=
rfl
#align bool.compl_eq_bnot Bool.compl_eq_bnot
section lift
-- See note [reducible non-instances]
/-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α]
[GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
GeneralizedBooleanAlgebra α :=
{ hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff,
hf.distribLattice f map_sup map_inf with
sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff],
inf_inf_sdiff := fun a b => hf <| by erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot] }
#align function.injective.generalized_boolean_algebra Function.Injective.generalizedBooleanAlgebra
-- See note [reducible non-instances]
/-- Pullback a `BooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α]
[SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ)
(map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α :=
{ hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with
compl := compl,
top := ⊤,
le_top := fun a => (@le_top β _ _ _).trans map_top.ge,
bot_le := fun a => map_bot.le.trans bot_le,
inf_compl_le_bot :=
fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le,
top_le_sup_compl :=
fun a => ((map_sup _ _).trans <| by rw [map_compl, sup_compl_eq_top, map_top]).ge,
sdiff_eq := fun a b => by
refine hf ((map_sdiff _ _).trans (sdiff_eq.trans ?_))
rw [map_inf, map_compl] }
#align function.injective.boolean_algebra Function.Injective.booleanAlgebra
end lift
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by
refine'
{ PUnit.biheytingAlgebra with
.. } <;> (intros;
|
trivial
|
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by
refine'
{ PUnit.biheytingAlgebra with
.. } <;> (intros;
|
Mathlib.Order.BooleanAlgebra.865_0.ewE75DLNneOU8G5
|
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit
|
Mathlib_Order_BooleanAlgebra
|
case refine'_4
α : Type u
β : Type u_1
w x y z : α
src✝ : BiheytingAlgebra PUnit.{?u.90854 + 1} := biheytingAlgebra
⊢ ∀ (x y : PUnit.{?u.90854 + 1}), x \ y = x ⊓ yᶜ
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm]
#align compl_sdiff_compl compl_sdiff_compl
@[simp]
theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x :=
@compl_sdiff_compl αᵒᵈ _ _ _
#align compl_himp_compl compl_himp_compl
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
rw [← le_compl_iff_disjoint_left, compl_compl]
#align disjoint_compl_left_iff disjoint_compl_left_iff
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
rw [← le_compl_iff_disjoint_right, compl_compl]
#align disjoint_compl_right_iff disjoint_compl_right_iff
theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x :=
@disjoint_sdiff_self_left αᵒᵈ _ _ _
#align codisjoint_himp_self_left codisjoint_himp_self_left
theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) :=
@disjoint_sdiff_self_right αᵒᵈ _ _ _
#align codisjoint_himp_self_right codisjoint_himp_self_right
theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z :=
(@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _
#align himp_le himp_le
end BooleanAlgebra
instance Prop.booleanAlgebra : BooleanAlgebra Prop :=
{ Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with
compl := Not,
himp_eq := fun p q => propext imp_iff_or_not,
inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp,
top_le_sup_compl := fun p _ => Classical.em p }
#align Prop.boolean_algebra Prop.booleanAlgebra
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;> simp [sdiff_eq]
inf_compl_le_bot x := by constructor <;> simp
top_le_sup_compl x := by constructor <;> simp
instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] :
BooleanAlgebra (∀ i, α i) :=
{ Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with
sdiff_eq := fun _ _ => funext fun _ => sdiff_eq,
himp_eq := fun _ _ => funext fun _ => himp_eq,
inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _,
top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ }
#align pi.boolean_algebra Pi.booleanAlgebra
instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where
__ := Bool.linearOrder
__ := Bool.boundedOrder
__ := Bool.instDistribLattice
compl := not
inf_compl_le_bot a := a.and_not_self.le
top_le_sup_compl a := a.or_not_self.ge
@[simp]
theorem Bool.sup_eq_bor : (· ⊔ ·) = or :=
rfl
#align bool.sup_eq_bor Bool.sup_eq_bor
@[simp]
theorem Bool.inf_eq_band : (· ⊓ ·) = and :=
rfl
#align bool.inf_eq_band Bool.inf_eq_band
@[simp]
theorem Bool.compl_eq_bnot : HasCompl.compl = not :=
rfl
#align bool.compl_eq_bnot Bool.compl_eq_bnot
section lift
-- See note [reducible non-instances]
/-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α]
[GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
GeneralizedBooleanAlgebra α :=
{ hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff,
hf.distribLattice f map_sup map_inf with
sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff],
inf_inf_sdiff := fun a b => hf <| by erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot] }
#align function.injective.generalized_boolean_algebra Function.Injective.generalizedBooleanAlgebra
-- See note [reducible non-instances]
/-- Pullback a `BooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α]
[SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ)
(map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α :=
{ hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with
compl := compl,
top := ⊤,
le_top := fun a => (@le_top β _ _ _).trans map_top.ge,
bot_le := fun a => map_bot.le.trans bot_le,
inf_compl_le_bot :=
fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le,
top_le_sup_compl :=
fun a => ((map_sup _ _).trans <| by rw [map_compl, sup_compl_eq_top, map_top]).ge,
sdiff_eq := fun a b => by
refine hf ((map_sdiff _ _).trans (sdiff_eq.trans ?_))
rw [map_inf, map_compl] }
#align function.injective.boolean_algebra Function.Injective.booleanAlgebra
end lift
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by
refine'
{ PUnit.biheytingAlgebra with
.. } <;> (
|
intros
|
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by
refine'
{ PUnit.biheytingAlgebra with
.. } <;> (
|
Mathlib.Order.BooleanAlgebra.865_0.ewE75DLNneOU8G5
|
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit
|
Mathlib_Order_BooleanAlgebra
|
case refine'_4
α : Type u
β : Type u_1
w x y z : α
src✝ : BiheytingAlgebra PUnit.{?u.90854 + 1} := biheytingAlgebra
x✝ y✝ : PUnit.{?u.90854 + 1}
⊢ x✝ \ y✝ = x✝ ⊓ y✝ᶜ
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm]
#align compl_sdiff_compl compl_sdiff_compl
@[simp]
theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x :=
@compl_sdiff_compl αᵒᵈ _ _ _
#align compl_himp_compl compl_himp_compl
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
rw [← le_compl_iff_disjoint_left, compl_compl]
#align disjoint_compl_left_iff disjoint_compl_left_iff
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
rw [← le_compl_iff_disjoint_right, compl_compl]
#align disjoint_compl_right_iff disjoint_compl_right_iff
theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x :=
@disjoint_sdiff_self_left αᵒᵈ _ _ _
#align codisjoint_himp_self_left codisjoint_himp_self_left
theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) :=
@disjoint_sdiff_self_right αᵒᵈ _ _ _
#align codisjoint_himp_self_right codisjoint_himp_self_right
theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z :=
(@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _
#align himp_le himp_le
end BooleanAlgebra
instance Prop.booleanAlgebra : BooleanAlgebra Prop :=
{ Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with
compl := Not,
himp_eq := fun p q => propext imp_iff_or_not,
inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp,
top_le_sup_compl := fun p _ => Classical.em p }
#align Prop.boolean_algebra Prop.booleanAlgebra
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;> simp [sdiff_eq]
inf_compl_le_bot x := by constructor <;> simp
top_le_sup_compl x := by constructor <;> simp
instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] :
BooleanAlgebra (∀ i, α i) :=
{ Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with
sdiff_eq := fun _ _ => funext fun _ => sdiff_eq,
himp_eq := fun _ _ => funext fun _ => himp_eq,
inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _,
top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ }
#align pi.boolean_algebra Pi.booleanAlgebra
instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where
__ := Bool.linearOrder
__ := Bool.boundedOrder
__ := Bool.instDistribLattice
compl := not
inf_compl_le_bot a := a.and_not_self.le
top_le_sup_compl a := a.or_not_self.ge
@[simp]
theorem Bool.sup_eq_bor : (· ⊔ ·) = or :=
rfl
#align bool.sup_eq_bor Bool.sup_eq_bor
@[simp]
theorem Bool.inf_eq_band : (· ⊓ ·) = and :=
rfl
#align bool.inf_eq_band Bool.inf_eq_band
@[simp]
theorem Bool.compl_eq_bnot : HasCompl.compl = not :=
rfl
#align bool.compl_eq_bnot Bool.compl_eq_bnot
section lift
-- See note [reducible non-instances]
/-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α]
[GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
GeneralizedBooleanAlgebra α :=
{ hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff,
hf.distribLattice f map_sup map_inf with
sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff],
inf_inf_sdiff := fun a b => hf <| by erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot] }
#align function.injective.generalized_boolean_algebra Function.Injective.generalizedBooleanAlgebra
-- See note [reducible non-instances]
/-- Pullback a `BooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α]
[SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ)
(map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α :=
{ hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with
compl := compl,
top := ⊤,
le_top := fun a => (@le_top β _ _ _).trans map_top.ge,
bot_le := fun a => map_bot.le.trans bot_le,
inf_compl_le_bot :=
fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le,
top_le_sup_compl :=
fun a => ((map_sup _ _).trans <| by rw [map_compl, sup_compl_eq_top, map_top]).ge,
sdiff_eq := fun a b => by
refine hf ((map_sdiff _ _).trans (sdiff_eq.trans ?_))
rw [map_inf, map_compl] }
#align function.injective.boolean_algebra Function.Injective.booleanAlgebra
end lift
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by
refine'
{ PUnit.biheytingAlgebra with
.. } <;> (intros;
|
trivial
|
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by
refine'
{ PUnit.biheytingAlgebra with
.. } <;> (intros;
|
Mathlib.Order.BooleanAlgebra.865_0.ewE75DLNneOU8G5
|
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit
|
Mathlib_Order_BooleanAlgebra
|
case refine'_5
α : Type u
β : Type u_1
w x y z : α
src✝ : BiheytingAlgebra PUnit.{?u.90854 + 1} := biheytingAlgebra
⊢ ∀ (x y : PUnit.{?u.90854 + 1}), x ⇨ y = y ⊔ xᶜ
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm]
#align compl_sdiff_compl compl_sdiff_compl
@[simp]
theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x :=
@compl_sdiff_compl αᵒᵈ _ _ _
#align compl_himp_compl compl_himp_compl
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
rw [← le_compl_iff_disjoint_left, compl_compl]
#align disjoint_compl_left_iff disjoint_compl_left_iff
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
rw [← le_compl_iff_disjoint_right, compl_compl]
#align disjoint_compl_right_iff disjoint_compl_right_iff
theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x :=
@disjoint_sdiff_self_left αᵒᵈ _ _ _
#align codisjoint_himp_self_left codisjoint_himp_self_left
theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) :=
@disjoint_sdiff_self_right αᵒᵈ _ _ _
#align codisjoint_himp_self_right codisjoint_himp_self_right
theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z :=
(@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _
#align himp_le himp_le
end BooleanAlgebra
instance Prop.booleanAlgebra : BooleanAlgebra Prop :=
{ Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with
compl := Not,
himp_eq := fun p q => propext imp_iff_or_not,
inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp,
top_le_sup_compl := fun p _ => Classical.em p }
#align Prop.boolean_algebra Prop.booleanAlgebra
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;> simp [sdiff_eq]
inf_compl_le_bot x := by constructor <;> simp
top_le_sup_compl x := by constructor <;> simp
instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] :
BooleanAlgebra (∀ i, α i) :=
{ Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with
sdiff_eq := fun _ _ => funext fun _ => sdiff_eq,
himp_eq := fun _ _ => funext fun _ => himp_eq,
inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _,
top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ }
#align pi.boolean_algebra Pi.booleanAlgebra
instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where
__ := Bool.linearOrder
__ := Bool.boundedOrder
__ := Bool.instDistribLattice
compl := not
inf_compl_le_bot a := a.and_not_self.le
top_le_sup_compl a := a.or_not_self.ge
@[simp]
theorem Bool.sup_eq_bor : (· ⊔ ·) = or :=
rfl
#align bool.sup_eq_bor Bool.sup_eq_bor
@[simp]
theorem Bool.inf_eq_band : (· ⊓ ·) = and :=
rfl
#align bool.inf_eq_band Bool.inf_eq_band
@[simp]
theorem Bool.compl_eq_bnot : HasCompl.compl = not :=
rfl
#align bool.compl_eq_bnot Bool.compl_eq_bnot
section lift
-- See note [reducible non-instances]
/-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α]
[GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
GeneralizedBooleanAlgebra α :=
{ hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff,
hf.distribLattice f map_sup map_inf with
sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff],
inf_inf_sdiff := fun a b => hf <| by erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot] }
#align function.injective.generalized_boolean_algebra Function.Injective.generalizedBooleanAlgebra
-- See note [reducible non-instances]
/-- Pullback a `BooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α]
[SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ)
(map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α :=
{ hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with
compl := compl,
top := ⊤,
le_top := fun a => (@le_top β _ _ _).trans map_top.ge,
bot_le := fun a => map_bot.le.trans bot_le,
inf_compl_le_bot :=
fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le,
top_le_sup_compl :=
fun a => ((map_sup _ _).trans <| by rw [map_compl, sup_compl_eq_top, map_top]).ge,
sdiff_eq := fun a b => by
refine hf ((map_sdiff _ _).trans (sdiff_eq.trans ?_))
rw [map_inf, map_compl] }
#align function.injective.boolean_algebra Function.Injective.booleanAlgebra
end lift
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by
refine'
{ PUnit.biheytingAlgebra with
.. } <;> (
|
intros
|
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by
refine'
{ PUnit.biheytingAlgebra with
.. } <;> (
|
Mathlib.Order.BooleanAlgebra.865_0.ewE75DLNneOU8G5
|
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit
|
Mathlib_Order_BooleanAlgebra
|
case refine'_5
α : Type u
β : Type u_1
w x y z : α
src✝ : BiheytingAlgebra PUnit.{?u.90854 + 1} := biheytingAlgebra
x✝ y✝ : PUnit.{?u.90854 + 1}
⊢ x✝ ⇨ y✝ = y✝ ⊔ x✝ᶜ
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Bryan Gin-ge Chen
-/
import Mathlib.Order.Heyting.Basic
#align_import order.boolean_algebra from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
/-!
# (Generalized) Boolean algebras
A Boolean algebra is a bounded distributive lattice with a complement operator. Boolean algebras
generalize the (classical) logic of propositions and the lattice of subsets of a set.
Generalized Boolean algebras may be less familiar, but they are essentially Boolean algebras which
do not necessarily have a top element (`⊤`) (and hence not all elements may have complements). One
example in mathlib is `Finset α`, the type of all finite subsets of an arbitrary
(not-necessarily-finite) type `α`.
`GeneralizedBooleanAlgebra α` is defined to be a distributive lattice with bottom (`⊥`) admitting
a *relative* complement operator, written using "set difference" notation as `x \ y` (`sdiff x y`).
For convenience, the `BooleanAlgebra` type class is defined to extend `GeneralizedBooleanAlgebra`
so that it is also bundled with a `\` operator.
(A terminological point: `x \ y` is the complement of `y` relative to the interval `[⊥, x]`. We do
not yet have relative complements for arbitrary intervals, as we do not even have lattice
intervals.)
## Main declarations
* `GeneralizedBooleanAlgebra`: a type class for generalized Boolean algebras
* `BooleanAlgebra`: a type class for Boolean algebras.
* `Prop.booleanAlgebra`: the Boolean algebra instance on `Prop`
## Implementation notes
The `sup_inf_sdiff` and `inf_inf_sdiff` axioms for the relative complement operator in
`GeneralizedBooleanAlgebra` are taken from
[Wikipedia](https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations).
[Stone's paper introducing generalized Boolean algebras][Stone1935] does not define a relative
complement operator `a \ b` for all `a`, `b`. Instead, the postulates there amount to an assumption
that for all `a, b : α` where `a ≤ b`, the equations `x ⊔ a = b` and `x ⊓ a = ⊥` have a solution
`x`. `Disjoint.sdiff_unique` proves that this `x` is in fact `b \ a`.
## References
* <https://en.wikipedia.org/wiki/Boolean_algebra_(structure)#Generalizations>
* [*Postulates for Boolean Algebras and Generalized Boolean Algebras*, M.H. Stone][Stone1935]
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
## Tags
generalized Boolean algebras, Boolean algebras, lattices, sdiff, compl
-/
open Function OrderDual
universe u v
variable {α : Type u} {β : Type*} {w x y z : α}
/-!
### Generalized Boolean algebras
Some of the lemmas in this section are from:
* [*Lattice Theory: Foundation*, George Grätzer][Gratzer2011]
* <https://ncatlab.org/nlab/show/relative+complement>
* <https://people.math.gatech.edu/~mccuan/courses/4317/symmetricdifference.pdf>
-/
/-- A generalized Boolean algebra is a distributive lattice with `⊥` and a relative complement
operation `\` (called `sdiff`, after "set difference") satisfying `(a ⊓ b) ⊔ (a \ b) = a` and
`(a ⊓ b) ⊓ (a \ b) = ⊥`, i.e. `a \ b` is the complement of `b` in `a`.
This is a generalization of Boolean algebras which applies to `Finset α` for arbitrary
(not-necessarily-`Fintype`) `α`. -/
class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where
/-- For any `a`, `b`, `(a ⊓ b) ⊔ (a / b) = a` -/
sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a
/-- For any `a`, `b`, `(a ⊓ b) ⊓ (a / b) = ⊥` -/
inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥
#align generalized_boolean_algebra GeneralizedBooleanAlgebra
-- We might want an `IsCompl_of` predicate (for relative complements) generalizing `IsCompl`,
-- however we'd need another type class for lattices with bot, and all the API for that.
section GeneralizedBooleanAlgebra
variable [GeneralizedBooleanAlgebra α]
@[simp]
theorem sup_inf_sdiff (x y : α) : x ⊓ y ⊔ x \ y = x :=
GeneralizedBooleanAlgebra.sup_inf_sdiff _ _
#align sup_inf_sdiff sup_inf_sdiff
@[simp]
theorem inf_inf_sdiff (x y : α) : x ⊓ y ⊓ x \ y = ⊥ :=
GeneralizedBooleanAlgebra.inf_inf_sdiff _ _
#align inf_inf_sdiff inf_inf_sdiff
@[simp]
theorem sup_sdiff_inf (x y : α) : x \ y ⊔ x ⊓ y = x := by rw [sup_comm, sup_inf_sdiff]
#align sup_sdiff_inf sup_sdiff_inf
@[simp]
theorem inf_sdiff_inf (x y : α) : x \ y ⊓ (x ⊓ y) = ⊥ := by rw [inf_comm, inf_inf_sdiff]
#align inf_sdiff_inf inf_sdiff_inf
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α :=
{ GeneralizedBooleanAlgebra.toBot with
bot_le := fun a => by
rw [← inf_inf_sdiff a a, inf_assoc]
exact inf_le_left }
#align generalized_boolean_algebra.to_order_bot GeneralizedBooleanAlgebra.toOrderBot
theorem disjoint_inf_sdiff : Disjoint (x ⊓ y) (x \ y) :=
disjoint_iff_inf_le.mpr (inf_inf_sdiff x y).le
#align disjoint_inf_sdiff disjoint_inf_sdiff
-- TODO: in distributive lattices, relative complements are unique when they exist
theorem sdiff_unique (s : x ⊓ y ⊔ z = x) (i : x ⊓ y ⊓ z = ⊥) : x \ y = z := by
conv_rhs at s => rw [← sup_inf_sdiff x y, sup_comm]
rw [sup_comm] at s
conv_rhs at i => rw [← inf_inf_sdiff x y, inf_comm]
rw [inf_comm] at i
exact (eq_of_inf_eq_sup_eq i s).symm
#align sdiff_unique sdiff_unique
-- Use `sdiff_le`
private theorem sdiff_le' : x \ y ≤ x :=
calc
x \ y ≤ x ⊓ y ⊔ x \ y := le_sup_right
_ = x := sup_inf_sdiff x y
-- Use `sdiff_sup_self`
private theorem sdiff_sup_self' : y \ x ⊔ x = y ⊔ x :=
calc
y \ x ⊔ x = y \ x ⊔ (x ⊔ x ⊓ y) := by rw [sup_inf_self]
_ = y ⊓ x ⊔ y \ x ⊔ x := by ac_rfl
_ = y ⊔ x := by rw [sup_inf_sdiff]
@[simp]
theorem sdiff_inf_sdiff : x \ y ⊓ y \ x = ⊥ :=
Eq.symm <|
calc
⊥ = x ⊓ y ⊓ x \ y := by rw [inf_inf_sdiff]
_ = x ⊓ (y ⊓ x ⊔ y \ x) ⊓ x \ y := by rw [sup_inf_sdiff]
_ = (x ⊓ (y ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_sup_left]
_ = (y ⊓ (x ⊓ x) ⊔ x ⊓ y \ x) ⊓ x \ y := by ac_rfl
_ = (y ⊓ x ⊔ x ⊓ y \ x) ⊓ x \ y := by rw [inf_idem]
_ = x ⊓ y ⊓ x \ y ⊔ x ⊓ y \ x ⊓ x \ y := by rw [inf_sup_right, @inf_comm _ _ x y]
_ = x ⊓ y \ x ⊓ x \ y := by rw [inf_inf_sdiff, bot_sup_eq]
_ = x ⊓ x \ y ⊓ y \ x := by ac_rfl
_ = x \ y ⊓ y \ x := by rw [inf_of_le_right sdiff_le']
#align sdiff_inf_sdiff sdiff_inf_sdiff
theorem disjoint_sdiff_sdiff : Disjoint (x \ y) (y \ x) :=
disjoint_iff_inf_le.mpr sdiff_inf_sdiff.le
#align disjoint_sdiff_sdiff disjoint_sdiff_sdiff
@[simp]
theorem inf_sdiff_self_right : x ⊓ y \ x = ⊥ :=
calc
x ⊓ y \ x = (x ⊓ y ⊔ x \ y) ⊓ y \ x := by rw [sup_inf_sdiff]
_ = x ⊓ y ⊓ y \ x ⊔ x \ y ⊓ y \ x := by rw [inf_sup_right]
_ = ⊥ := by rw [@inf_comm _ _ x y, inf_inf_sdiff, sdiff_inf_sdiff, bot_sup_eq]
#align inf_sdiff_self_right inf_sdiff_self_right
@[simp]
theorem inf_sdiff_self_left : y \ x ⊓ x = ⊥ := by rw [inf_comm, inf_sdiff_self_right]
#align inf_sdiff_self_left inf_sdiff_self_left
-- see Note [lower instance priority]
instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra :
GeneralizedCoheytingAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot with
sdiff := (· \ ·),
sdiff_le_iff := fun y x z =>
⟨fun h =>
le_of_inf_le_sup_le
(le_of_eq
(calc
y ⊓ y \ x = y \ x := inf_of_le_right sdiff_le'
_ = x ⊓ y \ x ⊔ z ⊓ y \ x :=
by rw [inf_eq_right.2 h, inf_sdiff_self_right, bot_sup_eq]
_ = (x ⊔ z) ⊓ y \ x := inf_sup_right.symm))
(calc
y ⊔ y \ x = y := sup_of_le_left sdiff_le'
_ ≤ y ⊔ (x ⊔ z) := le_sup_left
_ = y \ x ⊔ x ⊔ z := by rw [← sup_assoc, ← @sdiff_sup_self' _ x y]
_ = x ⊔ z ⊔ y \ x := by ac_rfl),
fun h =>
le_of_inf_le_sup_le
(calc
y \ x ⊓ x = ⊥ := inf_sdiff_self_left
_ ≤ z ⊓ x := bot_le)
(calc
y \ x ⊔ x = y ⊔ x := sdiff_sup_self'
_ ≤ x ⊔ z ⊔ x := sup_le_sup_right h x
_ ≤ z ⊔ x := by rw [sup_assoc, sup_comm, sup_assoc, sup_idem])⟩ }
#align generalized_boolean_algebra.to_generalized_coheyting_algebra GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
theorem disjoint_sdiff_self_left : Disjoint (y \ x) x :=
disjoint_iff_inf_le.mpr inf_sdiff_self_left.le
#align disjoint_sdiff_self_left disjoint_sdiff_self_left
theorem disjoint_sdiff_self_right : Disjoint x (y \ x) :=
disjoint_iff_inf_le.mpr inf_sdiff_self_right.le
#align disjoint_sdiff_self_right disjoint_sdiff_self_right
lemma le_sdiff : x ≤ y \ z ↔ x ≤ y ∧ Disjoint x z :=
⟨fun h ↦ ⟨h.trans sdiff_le, disjoint_sdiff_self_left.mono_left h⟩, fun h ↦
by rw [← h.2.sdiff_eq_left]; exact sdiff_le_sdiff_right h.1⟩
#align le_sdiff le_sdiff
@[simp] lemma sdiff_eq_left : x \ y = x ↔ Disjoint x y :=
⟨fun h ↦ disjoint_sdiff_self_left.mono_left h.ge, Disjoint.sdiff_eq_left⟩
#align sdiff_eq_left sdiff_eq_left
/- TODO: we could make an alternative constructor for `GeneralizedBooleanAlgebra` using
`Disjoint x (y \ x)` and `x ⊔ (y \ x) = y` as axioms. -/
theorem Disjoint.sdiff_eq_of_sup_eq (hi : Disjoint x z) (hs : x ⊔ z = y) : y \ x = z :=
have h : y ⊓ x = x := inf_eq_right.2 <| le_sup_left.trans hs.le
sdiff_unique (by rw [h, hs]) (by rw [h, hi.eq_bot])
#align disjoint.sdiff_eq_of_sup_eq Disjoint.sdiff_eq_of_sup_eq
protected theorem Disjoint.sdiff_unique (hd : Disjoint x z) (hz : z ≤ y) (hs : y ≤ x ⊔ z) :
y \ x = z :=
sdiff_unique
(by
rw [← inf_eq_right] at hs
rwa [sup_inf_right, inf_sup_right, @sup_comm _ _ x, inf_sup_self, inf_comm, @sup_comm _ _ z,
hs, sup_eq_left])
(by rw [inf_assoc, hd.eq_bot, inf_bot_eq])
#align disjoint.sdiff_unique Disjoint.sdiff_unique
-- cf. `IsCompl.disjoint_left_iff` and `IsCompl.disjoint_right_iff`
theorem disjoint_sdiff_iff_le (hz : z ≤ y) (hx : x ≤ y) : Disjoint z (y \ x) ↔ z ≤ x :=
⟨fun H =>
le_of_inf_le_sup_le (le_trans H.le_bot bot_le)
(by
rw [sup_sdiff_cancel_right hx]
refine' le_trans (sup_le_sup_left sdiff_le z) _
rw [sup_eq_right.2 hz]),
fun H => disjoint_sdiff_self_right.mono_left H⟩
#align disjoint_sdiff_iff_le disjoint_sdiff_iff_le
-- cf. `IsCompl.le_left_iff` and `IsCompl.le_right_iff`
theorem le_iff_disjoint_sdiff (hz : z ≤ y) (hx : x ≤ y) : z ≤ x ↔ Disjoint z (y \ x) :=
(disjoint_sdiff_iff_le hz hx).symm
#align le_iff_disjoint_sdiff le_iff_disjoint_sdiff
-- cf. `IsCompl.inf_left_eq_bot_iff` and `IsCompl.inf_right_eq_bot_iff`
theorem inf_sdiff_eq_bot_iff (hz : z ≤ y) (hx : x ≤ y) : z ⊓ y \ x = ⊥ ↔ z ≤ x := by
rw [← disjoint_iff]
exact disjoint_sdiff_iff_le hz hx
#align inf_sdiff_eq_bot_iff inf_sdiff_eq_bot_iff
-- cf. `IsCompl.left_le_iff` and `IsCompl.right_le_iff`
theorem le_iff_eq_sup_sdiff (hz : z ≤ y) (hx : x ≤ y) : x ≤ z ↔ y = z ⊔ y \ x :=
⟨fun H => by
apply le_antisymm
· conv_lhs => rw [← sup_inf_sdiff y x]
apply sup_le_sup_right
rwa [inf_eq_right.2 hx]
· apply le_trans
· apply sup_le_sup_right hz
· rw [sup_sdiff_left],
fun H => by
conv_lhs at H => rw [← sup_sdiff_cancel_right hx]
refine' le_of_inf_le_sup_le _ H.le
rw [inf_sdiff_self_right]
exact bot_le⟩
#align le_iff_eq_sup_sdiff le_iff_eq_sup_sdiff
-- cf. `IsCompl.sup_inf`
theorem sdiff_sup : y \ (x ⊔ z) = y \ x ⊓ y \ z :=
sdiff_unique
(calc
y ⊓ (x ⊔ z) ⊔ y \ x ⊓ y \ z = (y ⊓ (x ⊔ z) ⊔ y \ x) ⊓ (y ⊓ (x ⊔ z) ⊔ y \ z) :=
by rw [sup_inf_left]
_ = (y ⊓ x ⊔ y ⊓ z ⊔ y \ x) ⊓ (y ⊓ x ⊔ y ⊓ z ⊔ y \ z) := by rw [@inf_sup_left _ _ y]
_ = (y ⊓ z ⊔ (y ⊓ x ⊔ y \ x)) ⊓ (y ⊓ x ⊔ (y ⊓ z ⊔ y \ z)) := by ac_rfl
_ = (y ⊓ z ⊔ y) ⊓ (y ⊓ x ⊔ y) := by rw [sup_inf_sdiff, sup_inf_sdiff]
_ = (y ⊔ y ⊓ z) ⊓ (y ⊔ y ⊓ x) := by ac_rfl
_ = y := by rw [sup_inf_self, sup_inf_self, inf_idem])
(calc
y ⊓ (x ⊔ z) ⊓ (y \ x ⊓ y \ z) = (y ⊓ x ⊔ y ⊓ z) ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_left]
_ = y ⊓ x ⊓ (y \ x ⊓ y \ z) ⊔ y ⊓ z ⊓ (y \ x ⊓ y \ z) := by rw [inf_sup_right]
_ = y ⊓ x ⊓ y \ x ⊓ y \ z ⊔ y \ x ⊓ (y \ z ⊓ (y ⊓ z)) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, bot_inf_eq, bot_sup_eq, @inf_comm _ _ (y \ z),
inf_inf_sdiff, inf_bot_eq])
#align sdiff_sup sdiff_sup
theorem sdiff_eq_sdiff_iff_inf_eq_inf : y \ x = y \ z ↔ y ⊓ x = y ⊓ z :=
⟨fun h => eq_of_inf_eq_sup_eq (by rw [inf_inf_sdiff, h, inf_inf_sdiff])
(by rw [sup_inf_sdiff, h, sup_inf_sdiff]),
fun h => by rw [← sdiff_inf_self_right, ← sdiff_inf_self_right z y, inf_comm, h, inf_comm]⟩
#align sdiff_eq_sdiff_iff_inf_eq_inf sdiff_eq_sdiff_iff_inf_eq_inf
theorem sdiff_eq_self_iff_disjoint : x \ y = x ↔ Disjoint y x :=
calc
x \ y = x ↔ x \ y = x \ ⊥ := by rw [sdiff_bot]
_ ↔ x ⊓ y = x ⊓ ⊥ := sdiff_eq_sdiff_iff_inf_eq_inf
_ ↔ Disjoint y x := by rw [inf_bot_eq, inf_comm, disjoint_iff]
#align sdiff_eq_self_iff_disjoint sdiff_eq_self_iff_disjoint
theorem sdiff_eq_self_iff_disjoint' : x \ y = x ↔ Disjoint x y := by
rw [sdiff_eq_self_iff_disjoint, disjoint_comm]
#align sdiff_eq_self_iff_disjoint' sdiff_eq_self_iff_disjoint'
theorem sdiff_lt (hx : y ≤ x) (hy : y ≠ ⊥) : x \ y < x := by
refine' sdiff_le.lt_of_ne fun h => hy _
rw [sdiff_eq_self_iff_disjoint', disjoint_iff] at h
rw [← h, inf_eq_right.mpr hx]
#align sdiff_lt sdiff_lt
@[simp]
theorem le_sdiff_iff : x ≤ y \ x ↔ x = ⊥ :=
⟨fun h => disjoint_self.1 (disjoint_sdiff_self_right.mono_right h), fun h => h.le.trans bot_le⟩
#align le_sdiff_iff le_sdiff_iff
theorem sdiff_lt_sdiff_right (h : x < y) (hz : z ≤ x) : x \ z < y \ z :=
(sdiff_le_sdiff_right h.le).lt_of_not_le
fun h' => h.not_le <| le_sdiff_sup.trans <| sup_le_of_le_sdiff_right h' hz
#align sdiff_lt_sdiff_right sdiff_lt_sdiff_right
theorem sup_inf_inf_sdiff : x ⊓ y ⊓ z ⊔ y \ z = x ⊓ y ⊔ y \ z :=
calc
x ⊓ y ⊓ z ⊔ y \ z = x ⊓ (y ⊓ z) ⊔ y \ z := by rw [inf_assoc]
_ = (x ⊔ y \ z) ⊓ y := by rw [sup_inf_right, sup_inf_sdiff]
_ = x ⊓ y ⊔ y \ z := by rw [inf_sup_right, inf_sdiff_left]
#align sup_inf_inf_sdiff sup_inf_inf_sdiff
theorem sdiff_sdiff_right : x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := by
rw [sup_comm, inf_comm, ← inf_assoc, sup_inf_inf_sdiff]
apply sdiff_unique
· calc
x ⊓ y \ z ⊔ (z ⊓ x ⊔ x \ y) = (x ⊔ (z ⊓ x ⊔ x \ y)) ⊓ (y \ z ⊔ (z ⊓ x ⊔ x \ y)) :=
by rw [sup_inf_right]
_ = (x ⊔ x ⊓ z ⊔ x \ y) ⊓ (y \ z ⊔ (x ⊓ z ⊔ x \ y)) := by ac_rfl
_ = x ⊓ (y \ z ⊔ x ⊓ z ⊔ x \ y) := by rw [sup_inf_self, sup_sdiff_left, ← sup_assoc]
_ = x ⊓ (y \ z ⊓ (z ⊔ y) ⊔ x ⊓ (z ⊔ y) ⊔ x \ y) :=
by rw [sup_inf_left, sdiff_sup_self', inf_sup_right, @sup_comm _ _ y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ x ⊓ y) ⊔ x \ y) :=
by rw [inf_sdiff_sup_right, @inf_sup_left _ _ x z y]
_ = x ⊓ (y \ z ⊔ (x ⊓ z ⊔ (x ⊓ y ⊔ x \ y))) := by ac_rfl
_ = x ⊓ (y \ z ⊔ (x ⊔ x ⊓ z)) := by rw [sup_inf_sdiff, @sup_comm _ _ (x ⊓ z)]
_ = x := by rw [sup_inf_self, sup_comm, inf_sup_self]
· calc
x ⊓ y \ z ⊓ (z ⊓ x ⊔ x \ y) = x ⊓ y \ z ⊓ (z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by rw [inf_sup_left]
_ = x ⊓ (y \ z ⊓ z ⊓ x) ⊔ x ⊓ y \ z ⊓ x \ y := by ac_rfl
_ = x ⊓ y \ z ⊓ x \ y := by rw [inf_sdiff_self_left, bot_inf_eq, inf_bot_eq, bot_sup_eq]
_ = x ⊓ (y \ z ⊓ y) ⊓ x \ y := by conv_lhs => rw [← inf_sdiff_left]
_ = x ⊓ (y \ z ⊓ (y ⊓ x \ y)) := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, inf_bot_eq]
#align sdiff_sdiff_right sdiff_sdiff_right
theorem sdiff_sdiff_right' : x \ (y \ z) = x \ y ⊔ x ⊓ z :=
calc
x \ (y \ z) = x \ y ⊔ x ⊓ y ⊓ z := sdiff_sdiff_right
_ = z ⊓ x ⊓ y ⊔ x \ y := by ac_rfl
_ = x \ y ⊔ x ⊓ z := by rw [sup_inf_inf_sdiff, sup_comm, inf_comm]
#align sdiff_sdiff_right' sdiff_sdiff_right'
theorem sdiff_sdiff_eq_sdiff_sup (h : z ≤ x) : x \ (y \ z) = x \ y ⊔ z := by
rw [sdiff_sdiff_right', inf_eq_right.2 h]
#align sdiff_sdiff_eq_sdiff_sup sdiff_sdiff_eq_sdiff_sup
@[simp]
theorem sdiff_sdiff_right_self : x \ (x \ y) = x ⊓ y := by
rw [sdiff_sdiff_right, inf_idem, sdiff_self, bot_sup_eq]
#align sdiff_sdiff_right_self sdiff_sdiff_right_self
theorem sdiff_sdiff_eq_self (h : y ≤ x) : x \ (x \ y) = y := by
rw [sdiff_sdiff_right_self, inf_of_le_right h]
#align sdiff_sdiff_eq_self sdiff_sdiff_eq_self
theorem sdiff_eq_symm (hy : y ≤ x) (h : x \ y = z) : x \ z = y := by
rw [← h, sdiff_sdiff_eq_self hy]
#align sdiff_eq_symm sdiff_eq_symm
theorem sdiff_eq_comm (hy : y ≤ x) (hz : z ≤ x) : x \ y = z ↔ x \ z = y :=
⟨sdiff_eq_symm hy, sdiff_eq_symm hz⟩
#align sdiff_eq_comm sdiff_eq_comm
theorem eq_of_sdiff_eq_sdiff (hxz : x ≤ z) (hyz : y ≤ z) (h : z \ x = z \ y) : x = y := by
rw [← sdiff_sdiff_eq_self hxz, h, sdiff_sdiff_eq_self hyz]
#align eq_of_sdiff_eq_sdiff eq_of_sdiff_eq_sdiff
theorem sdiff_sdiff_left' : (x \ y) \ z = x \ y ⊓ x \ z := by rw [sdiff_sdiff_left, sdiff_sup]
#align sdiff_sdiff_left' sdiff_sdiff_left'
theorem sdiff_sdiff_sup_sdiff : z \ (x \ y ⊔ y \ x) = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) :=
calc
z \ (x \ y ⊔ y \ x) = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) :=
by rw [sdiff_sup, sdiff_sdiff_right, sdiff_sdiff_right]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sup_inf_left, sup_comm, sup_inf_sdiff]
_ = z ⊓ (z \ x ⊔ y) ⊓ (z ⊓ (z \ y ⊔ x)) :=
by rw [sup_inf_left, @sup_comm _ _ (z \ y), sup_inf_sdiff]
_ = z ⊓ z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by ac_rfl
_ = z ⊓ (z \ x ⊔ y) ⊓ (z \ y ⊔ x) := by rw [inf_idem]
#align sdiff_sdiff_sup_sdiff sdiff_sdiff_sup_sdiff
theorem sdiff_sdiff_sup_sdiff' : z \ (x \ y ⊔ y \ x) = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y :=
calc
z \ (x \ y ⊔ y \ x) = z \ (x \ y) ⊓ z \ (y \ x) := sdiff_sup
_ = (z \ x ⊔ z ⊓ x ⊓ y) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by rw [sdiff_sdiff_right, sdiff_sdiff_right]
_ = (z \ x ⊔ z ⊓ y ⊓ x) ⊓ (z \ y ⊔ z ⊓ y ⊓ x) := by ac_rfl
_ = z \ x ⊓ z \ y ⊔ z ⊓ y ⊓ x := sup_inf_right.symm
_ = z ⊓ x ⊓ y ⊔ z \ x ⊓ z \ y := by ac_rfl
#align sdiff_sdiff_sup_sdiff' sdiff_sdiff_sup_sdiff'
lemma sdiff_sdiff_sdiff_cancel_left (hca : z ≤ x) : (x \ y) \ (x \ z) = z \ y :=
sdiff_sdiff_sdiff_le_sdiff.antisymm <|
(disjoint_sdiff_self_right.mono_left sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_right hca
lemma sdiff_sdiff_sdiff_cancel_right (hcb : z ≤ y) : (x \ z) \ (y \ z) = x \ y := by
rw [le_antisymm_iff, sdiff_le_comm]
exact ⟨sdiff_sdiff_sdiff_le_sdiff,
(disjoint_sdiff_self_left.mono_right sdiff_le).le_sdiff_of_le_left <| sdiff_le_sdiff_left hcb⟩
theorem inf_sdiff : (x ⊓ y) \ z = x \ z ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x \ z ⊓ y \ z = (x ⊓ y ⊓ z ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by rw [sup_inf_left]
_ = (x ⊓ y ⊓ (z ⊔ x) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) :=
by rw [sup_inf_right, sup_sdiff_self_right, inf_sup_right, inf_sdiff_sup_right]
_ = (y ⊓ (x ⊓ (x ⊔ z)) ⊔ x \ z) ⊓ (x ⊓ y ⊓ z ⊔ y \ z) := by ac_rfl
_ = (y ⊓ x ⊔ x \ z) ⊓ (x ⊓ y ⊔ y \ z) := by rw [inf_sup_self, sup_inf_inf_sdiff]
_ = x ⊓ y ⊔ x \ z ⊓ y \ z := by rw [@inf_comm _ _ y, sup_inf_left]
_ = x ⊓ y := sup_eq_left.2 (inf_le_inf sdiff_le sdiff_le))
(calc
x ⊓ y ⊓ z ⊓ (x \ z ⊓ y \ z) = x ⊓ y ⊓ (z ⊓ x \ z) ⊓ y \ z := by ac_rfl
_ = ⊥ := by rw [inf_sdiff_self_right, inf_bot_eq, bot_inf_eq])
#align inf_sdiff inf_sdiff
theorem inf_sdiff_assoc : (x ⊓ y) \ z = x ⊓ y \ z :=
sdiff_unique
(calc
x ⊓ y ⊓ z ⊔ x ⊓ y \ z = x ⊓ (y ⊓ z) ⊔ x ⊓ y \ z := by rw [inf_assoc]
_ = x ⊓ (y ⊓ z ⊔ y \ z) := inf_sup_left.symm
_ = x ⊓ y := by rw [sup_inf_sdiff])
(calc
x ⊓ y ⊓ z ⊓ (x ⊓ y \ z) = x ⊓ x ⊓ (y ⊓ z ⊓ y \ z) := by ac_rfl
_ = ⊥ := by rw [inf_inf_sdiff, inf_bot_eq])
#align inf_sdiff_assoc inf_sdiff_assoc
theorem inf_sdiff_right_comm : x \ z ⊓ y = (x ⊓ y) \ z := by
rw [@inf_comm _ _ x, inf_comm, inf_sdiff_assoc]
#align inf_sdiff_right_comm inf_sdiff_right_comm
theorem inf_sdiff_distrib_left (a b c : α) : a ⊓ b \ c = (a ⊓ b) \ (a ⊓ c) := by
rw [sdiff_inf, sdiff_eq_bot_iff.2 inf_le_left, bot_sup_eq, inf_sdiff_assoc]
#align inf_sdiff_distrib_left inf_sdiff_distrib_left
theorem inf_sdiff_distrib_right (a b c : α) : a \ b ⊓ c = (a ⊓ c) \ (b ⊓ c) := by
simp_rw [@inf_comm _ _ _ c, inf_sdiff_distrib_left]
#align inf_sdiff_distrib_right inf_sdiff_distrib_right
theorem disjoint_sdiff_comm : Disjoint (x \ z) y ↔ Disjoint x (y \ z) := by
simp_rw [disjoint_iff, inf_sdiff_right_comm, inf_sdiff_assoc]
#align disjoint_sdiff_comm disjoint_sdiff_comm
theorem sup_eq_sdiff_sup_sdiff_sup_inf : x ⊔ y = x \ y ⊔ y \ x ⊔ x ⊓ y :=
Eq.symm <|
calc
x \ y ⊔ y \ x ⊔ x ⊓ y = (x \ y ⊔ y \ x ⊔ x) ⊓ (x \ y ⊔ y \ x ⊔ y) := by rw [sup_inf_left]
_ = (x \ y ⊔ x ⊔ y \ x) ⊓ (x \ y ⊔ (y \ x ⊔ y)) := by ac_rfl
_ = (x ⊔ y \ x) ⊓ (x \ y ⊔ y) := by rw [sup_sdiff_right, sup_sdiff_right]
_ = x ⊔ y := by rw [sup_sdiff_self_right, sup_sdiff_self_left, inf_idem]
#align sup_eq_sdiff_sup_sdiff_sup_inf sup_eq_sdiff_sup_sdiff_sup_inf
theorem sup_lt_of_lt_sdiff_left (h : y < z \ x) (hxz : x ≤ z) : x ⊔ y < z := by
rw [← sup_sdiff_cancel_right hxz]
refine' (sup_le_sup_left h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_left h').trans sdiff_le
#align sup_lt_of_lt_sdiff_left sup_lt_of_lt_sdiff_left
theorem sup_lt_of_lt_sdiff_right (h : x < z \ y) (hyz : y ≤ z) : x ⊔ y < z := by
rw [← sdiff_sup_cancel hyz]
refine' (sup_le_sup_right h.le _).lt_of_not_le fun h' => h.not_le _
rw [← sdiff_idem]
exact (sdiff_le_sdiff_of_sup_le_sup_right h').trans sdiff_le
#align sup_lt_of_lt_sdiff_right sup_lt_of_lt_sdiff_right
instance Prod.instGeneralizedBooleanAlgebra [GeneralizedBooleanAlgebra β] :
GeneralizedBooleanAlgebra (α × β) where
sup_inf_sdiff _ _ := Prod.ext (sup_inf_sdiff _ _) (sup_inf_sdiff _ _)
inf_inf_sdiff _ _ := Prod.ext (inf_inf_sdiff _ _) (inf_inf_sdiff _ _)
-- Porting note:
-- Once `pi_instance` has been ported, this is just `by pi_instance`.
instance Pi.instGeneralizedBooleanAlgebra {ι : Type*} {α : ι → Type*}
[∀ i, GeneralizedBooleanAlgebra (α i)] : GeneralizedBooleanAlgebra (∀ i, α i) where
sup_inf_sdiff := fun f g => funext fun a => sup_inf_sdiff (f a) (g a)
inf_inf_sdiff := fun f g => funext fun a => inf_inf_sdiff (f a) (g a)
#align pi.generalized_boolean_algebra Pi.instGeneralizedBooleanAlgebra
end GeneralizedBooleanAlgebra
/-!
### Boolean algebras
-/
/-- A Boolean algebra is a bounded distributive lattice with a complement operator `ᶜ` such that
`x ⊓ xᶜ = ⊥` and `x ⊔ xᶜ = ⊤`. For convenience, it must also provide a set difference operation `\`
and a Heyting implication `⇨` satisfying `x \ y = x ⊓ yᶜ` and `x ⇨ y = y ⊔ xᶜ`.
This is a generalization of (classical) logic of propositions, or the powerset lattice.
Since `BoundedOrder`, `OrderBot`, and `OrderTop` are mixins that require `LE`
to be present at define-time, the `extends` mechanism does not work with them.
Instead, we extend using the underlying `Bot` and `Top` data typeclasses, and replicate the
order axioms of those classes here. A "forgetful" instance back to `BoundedOrder` is provided.
-/
class BooleanAlgebra (α : Type u) extends
DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where
/-- The infimum of `x` and `xᶜ` is at most `⊥` -/
inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥
/-- The supremum of `x` and `xᶜ` is at least `⊤` -/
top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ
/-- `⊤` is the greatest element -/
le_top : ∀ a : α, a ≤ ⊤
/-- `⊥` is the least element -/
bot_le : ∀ a : α, ⊥ ≤ a
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff := fun x y => x ⊓ yᶜ
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp := fun x y => y ⊔ xᶜ
/-- `x \ y` is equal to `x ⊓ yᶜ` -/
sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ := by aesop
/-- `x ⇨ y` is equal to `y ⊔ xᶜ` -/
himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ := by aesop
#align boolean_algebra BooleanAlgebra
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBoundedOrder [h : BooleanAlgebra α] : BoundedOrder α :=
{ h with }
#align boolean_algebra.to_bounded_order BooleanAlgebra.toBoundedOrder
-- See note [reducible non instances]
/-- A bounded generalized boolean algebra is a boolean algebra. -/
@[reducible]
def GeneralizedBooleanAlgebra.toBooleanAlgebra [GeneralizedBooleanAlgebra α] [OrderTop α] :
BooleanAlgebra α :=
{ ‹GeneralizedBooleanAlgebra α›, GeneralizedBooleanAlgebra.toOrderBot, ‹OrderTop α› with
compl := fun a => ⊤ \ a,
inf_compl_le_bot := fun _ => disjoint_sdiff_self_right.le_bot,
top_le_sup_compl := fun _ => le_sup_sdiff,
sdiff_eq := fun _ _ => by
-- Porting note: changed `rw` to `erw` here.
-- https://github.com/leanprover-community/mathlib4/issues/5164
erw [← inf_sdiff_assoc, inf_top_eq] }
#align generalized_boolean_algebra.to_boolean_algebra GeneralizedBooleanAlgebra.toBooleanAlgebra
section BooleanAlgebra
variable [BooleanAlgebra α]
theorem inf_compl_eq_bot' : x ⊓ xᶜ = ⊥ :=
bot_unique <| BooleanAlgebra.inf_compl_le_bot x
#align inf_compl_eq_bot' inf_compl_eq_bot'
@[simp]
theorem sup_compl_eq_top : x ⊔ xᶜ = ⊤ :=
top_unique <| BooleanAlgebra.top_le_sup_compl x
#align sup_compl_eq_top sup_compl_eq_top
@[simp]
theorem compl_sup_eq_top : xᶜ ⊔ x = ⊤ :=
sup_comm.trans sup_compl_eq_top
#align compl_sup_eq_top compl_sup_eq_top
theorem isCompl_compl : IsCompl x xᶜ :=
IsCompl.of_eq inf_compl_eq_bot' sup_compl_eq_top
#align is_compl_compl isCompl_compl
theorem sdiff_eq : x \ y = x ⊓ yᶜ :=
BooleanAlgebra.sdiff_eq x y
#align sdiff_eq sdiff_eq
theorem himp_eq : x ⇨ y = y ⊔ xᶜ :=
BooleanAlgebra.himp_eq x y
#align himp_eq himp_eq
instance (priority := 100) BooleanAlgebra.toComplementedLattice : ComplementedLattice α :=
⟨fun x => ⟨xᶜ, isCompl_compl⟩⟩
#align boolean_algebra.to_complemented_lattice BooleanAlgebra.toComplementedLattice
-- see Note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra :
GeneralizedBooleanAlgebra α :=
{ ‹BooleanAlgebra α› with
sup_inf_sdiff := fun a b => by rw [sdiff_eq, ← inf_sup_left, sup_compl_eq_top, inf_top_eq],
inf_inf_sdiff := fun a b => by
rw [sdiff_eq, ← inf_inf_distrib_left, inf_compl_eq_bot', inf_bot_eq] }
#align boolean_algebra.to_generalized_boolean_algebra BooleanAlgebra.toGeneralizedBooleanAlgebra
-- See note [lower instance priority]
instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α :=
{ ‹BooleanAlgebra α›, GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra with
hnot := compl,
le_himp_iff := fun a b c => by rw [himp_eq, isCompl_compl.le_sup_right_iff_inf_left_le],
himp_bot := fun _ => _root_.himp_eq.trans bot_sup_eq,
top_sdiff := fun a => by rw [sdiff_eq, top_inf_eq]; rfl }
#align boolean_algebra.to_biheyting_algebra BooleanAlgebra.toBiheytingAlgebra
@[simp]
theorem hnot_eq_compl : ¬x = xᶜ :=
rfl
#align hnot_eq_compl hnot_eq_compl
/- NOTE: Is this theorem needed at all or can we use `top_sdiff'`. -/
theorem top_sdiff : ⊤ \ x = xᶜ :=
top_sdiff' x
#align top_sdiff top_sdiff
theorem eq_compl_iff_isCompl : x = yᶜ ↔ IsCompl x y :=
⟨fun h => by
rw [h]
exact isCompl_compl.symm, IsCompl.eq_compl⟩
#align eq_compl_iff_is_compl eq_compl_iff_isCompl
theorem compl_eq_iff_isCompl : xᶜ = y ↔ IsCompl x y :=
⟨fun h => by
rw [← h]
exact isCompl_compl, IsCompl.compl_eq⟩
#align compl_eq_iff_is_compl compl_eq_iff_isCompl
theorem compl_eq_comm : xᶜ = y ↔ yᶜ = x := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align compl_eq_comm compl_eq_comm
theorem eq_compl_comm : x = yᶜ ↔ y = xᶜ := by
rw [eq_comm, compl_eq_iff_isCompl, eq_compl_iff_isCompl]
#align eq_compl_comm eq_compl_comm
@[simp]
theorem compl_compl (x : α) : xᶜᶜ = x :=
(@isCompl_compl _ x _).symm.compl_eq
#align compl_compl compl_compl
theorem compl_comp_compl : compl ∘ compl = @id α :=
funext compl_compl
#align compl_comp_compl compl_comp_compl
@[simp]
theorem compl_involutive : Function.Involutive (compl : α → α) :=
compl_compl
#align compl_involutive compl_involutive
theorem compl_bijective : Function.Bijective (compl : α → α) :=
compl_involutive.bijective
#align compl_bijective compl_bijective
theorem compl_surjective : Function.Surjective (compl : α → α) :=
compl_involutive.surjective
#align compl_surjective compl_surjective
theorem compl_injective : Function.Injective (compl : α → α) :=
compl_involutive.injective
#align compl_injective compl_injective
@[simp]
theorem compl_inj_iff : xᶜ = yᶜ ↔ x = y :=
compl_injective.eq_iff
#align compl_inj_iff compl_inj_iff
theorem IsCompl.compl_eq_iff (h : IsCompl x y) : zᶜ = y ↔ z = x :=
h.compl_eq ▸ compl_inj_iff
#align is_compl.compl_eq_iff IsCompl.compl_eq_iff
@[simp]
theorem compl_eq_top : xᶜ = ⊤ ↔ x = ⊥ :=
isCompl_bot_top.compl_eq_iff
#align compl_eq_top compl_eq_top
@[simp]
theorem compl_eq_bot : xᶜ = ⊥ ↔ x = ⊤ :=
isCompl_top_bot.compl_eq_iff
#align compl_eq_bot compl_eq_bot
@[simp]
theorem compl_inf : (x ⊓ y)ᶜ = xᶜ ⊔ yᶜ :=
hnot_inf_distrib _ _
#align compl_inf compl_inf
@[simp]
theorem compl_le_compl_iff_le : yᶜ ≤ xᶜ ↔ x ≤ y :=
⟨fun h => by have h := compl_le_compl h; simp at h; assumption, compl_le_compl⟩
#align compl_le_compl_iff_le compl_le_compl_iff_le
@[simp] lemma compl_lt_compl_iff_lt : yᶜ < xᶜ ↔ x < y :=
lt_iff_lt_of_le_iff_le' compl_le_compl_iff_le compl_le_compl_iff_le
theorem compl_le_of_compl_le (h : yᶜ ≤ x) : xᶜ ≤ y := by
simpa only [compl_compl] using compl_le_compl h
#align compl_le_of_compl_le compl_le_of_compl_le
theorem compl_le_iff_compl_le : xᶜ ≤ y ↔ yᶜ ≤ x :=
⟨compl_le_of_compl_le, compl_le_of_compl_le⟩
#align compl_le_iff_compl_le compl_le_iff_compl_le
@[simp] theorem compl_le_self : xᶜ ≤ x ↔ x = ⊤ := by simpa using le_compl_self (a := xᶜ)
@[simp] theorem compl_lt_self [Nontrivial α] : xᶜ < x ↔ x = ⊤ := by
simpa using lt_compl_self (a := xᶜ)
@[simp]
theorem sdiff_compl : x \ yᶜ = x ⊓ y := by rw [sdiff_eq, compl_compl]
#align sdiff_compl sdiff_compl
instance OrderDual.booleanAlgebra (α) [BooleanAlgebra α] : BooleanAlgebra αᵒᵈ :=
{ OrderDual.distribLattice α, OrderDual.boundedOrder α with
compl := fun a => toDual (ofDual aᶜ),
sdiff :=
fun a b => toDual (ofDual b ⇨ ofDual a), himp := fun a b => toDual (ofDual b \ ofDual a),
inf_compl_le_bot := fun a => (@codisjoint_hnot_right _ _ (ofDual a)).top_le,
top_le_sup_compl := fun a => (@disjoint_compl_right _ _ (ofDual a)).le_bot,
sdiff_eq := fun _ _ => @himp_eq α _ _ _,
himp_eq := fun _ _ => @sdiff_eq α _ _ _, }
@[simp]
theorem sup_inf_inf_compl : x ⊓ y ⊔ x ⊓ yᶜ = x := by rw [← sdiff_eq, sup_inf_sdiff _ _]
#align sup_inf_inf_compl sup_inf_inf_compl
@[simp]
theorem compl_sdiff : (x \ y)ᶜ = x ⇨ y := by
rw [sdiff_eq, himp_eq, compl_inf, compl_compl, sup_comm]
#align compl_sdiff compl_sdiff
@[simp]
theorem compl_himp : (x ⇨ y)ᶜ = x \ y :=
@compl_sdiff αᵒᵈ _ _ _
#align compl_himp compl_himp
theorem compl_sdiff_compl : xᶜ \ yᶜ = y \ x := by rw [sdiff_compl, sdiff_eq, inf_comm]
#align compl_sdiff_compl compl_sdiff_compl
@[simp]
theorem compl_himp_compl : xᶜ ⇨ yᶜ = y ⇨ x :=
@compl_sdiff_compl αᵒᵈ _ _ _
#align compl_himp_compl compl_himp_compl
theorem disjoint_compl_left_iff : Disjoint xᶜ y ↔ y ≤ x := by
rw [← le_compl_iff_disjoint_left, compl_compl]
#align disjoint_compl_left_iff disjoint_compl_left_iff
theorem disjoint_compl_right_iff : Disjoint x yᶜ ↔ x ≤ y := by
rw [← le_compl_iff_disjoint_right, compl_compl]
#align disjoint_compl_right_iff disjoint_compl_right_iff
theorem codisjoint_himp_self_left : Codisjoint (x ⇨ y) x :=
@disjoint_sdiff_self_left αᵒᵈ _ _ _
#align codisjoint_himp_self_left codisjoint_himp_self_left
theorem codisjoint_himp_self_right : Codisjoint x (x ⇨ y) :=
@disjoint_sdiff_self_right αᵒᵈ _ _ _
#align codisjoint_himp_self_right codisjoint_himp_self_right
theorem himp_le : x ⇨ y ≤ z ↔ y ≤ z ∧ Codisjoint x z :=
(@le_sdiff αᵒᵈ _ _ _ _).trans <| and_congr_right' $ @Codisjoint_comm _ (_) _ _ _
#align himp_le himp_le
end BooleanAlgebra
instance Prop.booleanAlgebra : BooleanAlgebra Prop :=
{ Prop.heytingAlgebra, GeneralizedHeytingAlgebra.toDistribLattice with
compl := Not,
himp_eq := fun p q => propext imp_iff_or_not,
inf_compl_le_bot := fun p ⟨Hp, Hpc⟩ => Hpc Hp,
top_le_sup_compl := fun p _ => Classical.em p }
#align Prop.boolean_algebra Prop.booleanAlgebra
instance Prod.booleanAlgebra (α β) [BooleanAlgebra α] [BooleanAlgebra β] :
BooleanAlgebra (α × β) where
__ := Prod.heytingAlgebra
__ := Prod.distribLattice α β
himp_eq x y := by ext <;> simp [himp_eq]
sdiff_eq x y := by ext <;> simp [sdiff_eq]
inf_compl_le_bot x := by constructor <;> simp
top_le_sup_compl x := by constructor <;> simp
instance Pi.booleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] :
BooleanAlgebra (∀ i, α i) :=
{ Pi.sdiff, Pi.heytingAlgebra, @Pi.distribLattice ι α _ with
sdiff_eq := fun _ _ => funext fun _ => sdiff_eq,
himp_eq := fun _ _ => funext fun _ => himp_eq,
inf_compl_le_bot := fun _ _ => BooleanAlgebra.inf_compl_le_bot _,
top_le_sup_compl := fun _ _ => BooleanAlgebra.top_le_sup_compl _ }
#align pi.boolean_algebra Pi.booleanAlgebra
instance Bool.instBooleanAlgebra : BooleanAlgebra Bool where
__ := Bool.linearOrder
__ := Bool.boundedOrder
__ := Bool.instDistribLattice
compl := not
inf_compl_le_bot a := a.and_not_self.le
top_le_sup_compl a := a.or_not_self.ge
@[simp]
theorem Bool.sup_eq_bor : (· ⊔ ·) = or :=
rfl
#align bool.sup_eq_bor Bool.sup_eq_bor
@[simp]
theorem Bool.inf_eq_band : (· ⊓ ·) = and :=
rfl
#align bool.inf_eq_band Bool.inf_eq_band
@[simp]
theorem Bool.compl_eq_bnot : HasCompl.compl = not :=
rfl
#align bool.compl_eq_bnot Bool.compl_eq_bnot
section lift
-- See note [reducible non-instances]
/-- Pullback a `GeneralizedBooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.generalizedBooleanAlgebra [Sup α] [Inf α] [Bot α] [SDiff α]
[GeneralizedBooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
GeneralizedBooleanAlgebra α :=
{ hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff,
hf.distribLattice f map_sup map_inf with
sup_inf_sdiff := fun a b => hf <| by erw [map_sup, map_sdiff, map_inf, sup_inf_sdiff],
inf_inf_sdiff := fun a b => hf <| by erw [map_inf, map_sdiff, map_inf, inf_inf_sdiff, map_bot] }
#align function.injective.generalized_boolean_algebra Function.Injective.generalizedBooleanAlgebra
-- See note [reducible non-instances]
/-- Pullback a `BooleanAlgebra` along an injection. -/
@[reducible]
protected def Function.Injective.booleanAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α]
[SDiff α] [BooleanAlgebra β] (f : α → β) (hf : Injective f)
(map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
(map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ)
(map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : BooleanAlgebra α :=
{ hf.generalizedBooleanAlgebra f map_sup map_inf map_bot map_sdiff with
compl := compl,
top := ⊤,
le_top := fun a => (@le_top β _ _ _).trans map_top.ge,
bot_le := fun a => map_bot.le.trans bot_le,
inf_compl_le_bot :=
fun a => ((map_inf _ _).trans <| by rw [map_compl, inf_compl_eq_bot, map_bot]).le,
top_le_sup_compl :=
fun a => ((map_sup _ _).trans <| by rw [map_compl, sup_compl_eq_top, map_top]).ge,
sdiff_eq := fun a b => by
refine hf ((map_sdiff _ _).trans (sdiff_eq.trans ?_))
rw [map_inf, map_compl] }
#align function.injective.boolean_algebra Function.Injective.booleanAlgebra
end lift
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by
refine'
{ PUnit.biheytingAlgebra with
.. } <;> (intros;
|
trivial
|
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit := by
refine'
{ PUnit.biheytingAlgebra with
.. } <;> (intros;
|
Mathlib.Order.BooleanAlgebra.865_0.ewE75DLNneOU8G5
|
instance PUnit.booleanAlgebra : BooleanAlgebra PUnit
|
Mathlib_Order_BooleanAlgebra
|
K : Type u_1
g : GeneralizedContinuedFraction K
n : ℕ
inst✝ : DivisionRing K
gp ppred pred : Pair K
nth_s_eq : Stream'.Seq.get? g.s n = some gp
nth_conts_aux_eq : continuantsAux g n = ppred
succ_nth_conts_aux_eq : continuantsAux g (n + 1) = pred
⊢ continuantsAux g (n + 2) = { a := gp.b * pred.a + gp.a * ppred.a, b := gp.b * pred.b + gp.a * ppred.b }
|
/-
Copyright (c) 2019 Kevin Kappelmann. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kevin Kappelmann
-/
import Mathlib.Algebra.ContinuedFractions.Translations
#align_import algebra.continued_fractions.continuants_recurrence from "leanprover-community/mathlib"@"5f11361a98ae4acd77f5c1837686f6f0102cdc25"
/-!
# Recurrence Lemmas for the `continuants` Function of Continued Fractions.
## Summary
Given a generalized continued fraction `g`, for all `n ≥ 1`, we prove that the `continuants`
function indeed satisfies the following recurrences:
- `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`, and
- `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`.
-/
namespace GeneralizedContinuedFraction
variable {K : Type*} {g : GeneralizedContinuedFraction K} {n : ℕ} [DivisionRing K]
theorem continuantsAux_recurrence {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp)
(nth_conts_aux_eq : g.continuantsAux n = ppred)
(succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) :
g.continuantsAux (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ :=
by
|
simp [*, continuantsAux, nextContinuants, nextDenominator, nextNumerator]
|
theorem continuantsAux_recurrence {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp)
(nth_conts_aux_eq : g.continuantsAux n = ppred)
(succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) :
g.continuantsAux (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ :=
by
|
Mathlib.Algebra.ContinuedFractions.ContinuantsRecurrence.26_0.nOytPSFGrohRR6p
|
theorem continuantsAux_recurrence {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp)
(nth_conts_aux_eq : g.continuantsAux n = ppred)
(succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) :
g.continuantsAux (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩
|
Mathlib_Algebra_ContinuedFractions_ContinuantsRecurrence
|
K : Type u_1
g : GeneralizedContinuedFraction K
n : ℕ
inst✝ : DivisionRing K
gp ppred pred : Pair K
nth_s_eq : Stream'.Seq.get? g.s n = some gp
nth_conts_aux_eq : continuantsAux g n = ppred
succ_nth_conts_aux_eq : continuantsAux g (n + 1) = pred
⊢ continuants g (n + 1) = { a := gp.b * pred.a + gp.a * ppred.a, b := gp.b * pred.b + gp.a * ppred.b }
|
/-
Copyright (c) 2019 Kevin Kappelmann. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kevin Kappelmann
-/
import Mathlib.Algebra.ContinuedFractions.Translations
#align_import algebra.continued_fractions.continuants_recurrence from "leanprover-community/mathlib"@"5f11361a98ae4acd77f5c1837686f6f0102cdc25"
/-!
# Recurrence Lemmas for the `continuants` Function of Continued Fractions.
## Summary
Given a generalized continued fraction `g`, for all `n ≥ 1`, we prove that the `continuants`
function indeed satisfies the following recurrences:
- `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`, and
- `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`.
-/
namespace GeneralizedContinuedFraction
variable {K : Type*} {g : GeneralizedContinuedFraction K} {n : ℕ} [DivisionRing K]
theorem continuantsAux_recurrence {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp)
(nth_conts_aux_eq : g.continuantsAux n = ppred)
(succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) :
g.continuantsAux (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ :=
by simp [*, continuantsAux, nextContinuants, nextDenominator, nextNumerator]
#align generalized_continued_fraction.continuants_aux_recurrence GeneralizedContinuedFraction.continuantsAux_recurrence
theorem continuants_recurrenceAux {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp)
(nth_conts_aux_eq : g.continuantsAux n = ppred)
(succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) :
g.continuants (n + 1) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
|
simp [nth_cont_eq_succ_nth_cont_aux,
continuantsAux_recurrence nth_s_eq nth_conts_aux_eq succ_nth_conts_aux_eq]
|
theorem continuants_recurrenceAux {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp)
(nth_conts_aux_eq : g.continuantsAux n = ppred)
(succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) :
g.continuants (n + 1) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
|
Mathlib.Algebra.ContinuedFractions.ContinuantsRecurrence.33_0.nOytPSFGrohRR6p
|
theorem continuants_recurrenceAux {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp)
(nth_conts_aux_eq : g.continuantsAux n = ppred)
(succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) :
g.continuants (n + 1) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩
|
Mathlib_Algebra_ContinuedFractions_ContinuantsRecurrence
|
K : Type u_1
g : GeneralizedContinuedFraction K
n : ℕ
inst✝ : DivisionRing K
gp ppred pred : Pair K
succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp
nth_conts_eq : continuants g n = ppred
succ_nth_conts_eq : continuants g (n + 1) = pred
⊢ continuants g (n + 2) = { a := gp.b * pred.a + gp.a * ppred.a, b := gp.b * pred.b + gp.a * ppred.b }
|
/-
Copyright (c) 2019 Kevin Kappelmann. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kevin Kappelmann
-/
import Mathlib.Algebra.ContinuedFractions.Translations
#align_import algebra.continued_fractions.continuants_recurrence from "leanprover-community/mathlib"@"5f11361a98ae4acd77f5c1837686f6f0102cdc25"
/-!
# Recurrence Lemmas for the `continuants` Function of Continued Fractions.
## Summary
Given a generalized continued fraction `g`, for all `n ≥ 1`, we prove that the `continuants`
function indeed satisfies the following recurrences:
- `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`, and
- `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`.
-/
namespace GeneralizedContinuedFraction
variable {K : Type*} {g : GeneralizedContinuedFraction K} {n : ℕ} [DivisionRing K]
theorem continuantsAux_recurrence {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp)
(nth_conts_aux_eq : g.continuantsAux n = ppred)
(succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) :
g.continuantsAux (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ :=
by simp [*, continuantsAux, nextContinuants, nextDenominator, nextNumerator]
#align generalized_continued_fraction.continuants_aux_recurrence GeneralizedContinuedFraction.continuantsAux_recurrence
theorem continuants_recurrenceAux {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp)
(nth_conts_aux_eq : g.continuantsAux n = ppred)
(succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) :
g.continuants (n + 1) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
simp [nth_cont_eq_succ_nth_cont_aux,
continuantsAux_recurrence nth_s_eq nth_conts_aux_eq succ_nth_conts_aux_eq]
#align generalized_continued_fraction.continuants_recurrence_aux GeneralizedContinuedFraction.continuants_recurrenceAux
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂` and `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/
theorem continuants_recurrence {gp ppred pred : Pair K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp)
(nth_conts_eq : g.continuants n = ppred) (succ_nth_conts_eq : g.continuants (n + 1) = pred) :
g.continuants (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
|
rw [nth_cont_eq_succ_nth_cont_aux] at nth_conts_eq succ_nth_conts_eq
|
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂` and `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/
theorem continuants_recurrence {gp ppred pred : Pair K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp)
(nth_conts_eq : g.continuants n = ppred) (succ_nth_conts_eq : g.continuants (n + 1) = pred) :
g.continuants (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
|
Mathlib.Algebra.ContinuedFractions.ContinuantsRecurrence.41_0.nOytPSFGrohRR6p
|
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂` and `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/
theorem continuants_recurrence {gp ppred pred : Pair K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp)
(nth_conts_eq : g.continuants n = ppred) (succ_nth_conts_eq : g.continuants (n + 1) = pred) :
g.continuants (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩
|
Mathlib_Algebra_ContinuedFractions_ContinuantsRecurrence
|
K : Type u_1
g : GeneralizedContinuedFraction K
n : ℕ
inst✝ : DivisionRing K
gp ppred pred : Pair K
succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp
nth_conts_eq : continuantsAux g (n + 1) = ppred
succ_nth_conts_eq : continuantsAux g (n + 1 + 1) = pred
⊢ continuants g (n + 2) = { a := gp.b * pred.a + gp.a * ppred.a, b := gp.b * pred.b + gp.a * ppred.b }
|
/-
Copyright (c) 2019 Kevin Kappelmann. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kevin Kappelmann
-/
import Mathlib.Algebra.ContinuedFractions.Translations
#align_import algebra.continued_fractions.continuants_recurrence from "leanprover-community/mathlib"@"5f11361a98ae4acd77f5c1837686f6f0102cdc25"
/-!
# Recurrence Lemmas for the `continuants` Function of Continued Fractions.
## Summary
Given a generalized continued fraction `g`, for all `n ≥ 1`, we prove that the `continuants`
function indeed satisfies the following recurrences:
- `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`, and
- `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`.
-/
namespace GeneralizedContinuedFraction
variable {K : Type*} {g : GeneralizedContinuedFraction K} {n : ℕ} [DivisionRing K]
theorem continuantsAux_recurrence {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp)
(nth_conts_aux_eq : g.continuantsAux n = ppred)
(succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) :
g.continuantsAux (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ :=
by simp [*, continuantsAux, nextContinuants, nextDenominator, nextNumerator]
#align generalized_continued_fraction.continuants_aux_recurrence GeneralizedContinuedFraction.continuantsAux_recurrence
theorem continuants_recurrenceAux {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp)
(nth_conts_aux_eq : g.continuantsAux n = ppred)
(succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) :
g.continuants (n + 1) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
simp [nth_cont_eq_succ_nth_cont_aux,
continuantsAux_recurrence nth_s_eq nth_conts_aux_eq succ_nth_conts_aux_eq]
#align generalized_continued_fraction.continuants_recurrence_aux GeneralizedContinuedFraction.continuants_recurrenceAux
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂` and `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/
theorem continuants_recurrence {gp ppred pred : Pair K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp)
(nth_conts_eq : g.continuants n = ppred) (succ_nth_conts_eq : g.continuants (n + 1) = pred) :
g.continuants (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
rw [nth_cont_eq_succ_nth_cont_aux] at nth_conts_eq succ_nth_conts_eq
|
exact continuants_recurrenceAux succ_nth_s_eq nth_conts_eq succ_nth_conts_eq
|
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂` and `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/
theorem continuants_recurrence {gp ppred pred : Pair K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp)
(nth_conts_eq : g.continuants n = ppred) (succ_nth_conts_eq : g.continuants (n + 1) = pred) :
g.continuants (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
rw [nth_cont_eq_succ_nth_cont_aux] at nth_conts_eq succ_nth_conts_eq
|
Mathlib.Algebra.ContinuedFractions.ContinuantsRecurrence.41_0.nOytPSFGrohRR6p
|
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂` and `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/
theorem continuants_recurrence {gp ppred pred : Pair K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp)
(nth_conts_eq : g.continuants n = ppred) (succ_nth_conts_eq : g.continuants (n + 1) = pred) :
g.continuants (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩
|
Mathlib_Algebra_ContinuedFractions_ContinuantsRecurrence
|
K : Type u_1
g : GeneralizedContinuedFraction K
n : ℕ
inst✝ : DivisionRing K
gp : Pair K
ppredA predA : K
succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp
nth_num_eq : numerators g n = ppredA
succ_nth_num_eq : numerators g (n + 1) = predA
⊢ numerators g (n + 2) = gp.b * predA + gp.a * ppredA
|
/-
Copyright (c) 2019 Kevin Kappelmann. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kevin Kappelmann
-/
import Mathlib.Algebra.ContinuedFractions.Translations
#align_import algebra.continued_fractions.continuants_recurrence from "leanprover-community/mathlib"@"5f11361a98ae4acd77f5c1837686f6f0102cdc25"
/-!
# Recurrence Lemmas for the `continuants` Function of Continued Fractions.
## Summary
Given a generalized continued fraction `g`, for all `n ≥ 1`, we prove that the `continuants`
function indeed satisfies the following recurrences:
- `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`, and
- `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`.
-/
namespace GeneralizedContinuedFraction
variable {K : Type*} {g : GeneralizedContinuedFraction K} {n : ℕ} [DivisionRing K]
theorem continuantsAux_recurrence {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp)
(nth_conts_aux_eq : g.continuantsAux n = ppred)
(succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) :
g.continuantsAux (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ :=
by simp [*, continuantsAux, nextContinuants, nextDenominator, nextNumerator]
#align generalized_continued_fraction.continuants_aux_recurrence GeneralizedContinuedFraction.continuantsAux_recurrence
theorem continuants_recurrenceAux {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp)
(nth_conts_aux_eq : g.continuantsAux n = ppred)
(succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) :
g.continuants (n + 1) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
simp [nth_cont_eq_succ_nth_cont_aux,
continuantsAux_recurrence nth_s_eq nth_conts_aux_eq succ_nth_conts_aux_eq]
#align generalized_continued_fraction.continuants_recurrence_aux GeneralizedContinuedFraction.continuants_recurrenceAux
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂` and `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/
theorem continuants_recurrence {gp ppred pred : Pair K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp)
(nth_conts_eq : g.continuants n = ppred) (succ_nth_conts_eq : g.continuants (n + 1) = pred) :
g.continuants (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
rw [nth_cont_eq_succ_nth_cont_aux] at nth_conts_eq succ_nth_conts_eq
exact continuants_recurrenceAux succ_nth_s_eq nth_conts_eq succ_nth_conts_eq
#align generalized_continued_fraction.continuants_recurrence GeneralizedContinuedFraction.continuants_recurrence
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/
theorem numerators_recurrence {gp : Pair K} {ppredA predA : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA)
(succ_nth_num_eq : g.numerators (n + 1) = predA) :
g.numerators (n + 2) = gp.b * predA + gp.a * ppredA := by
|
obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.a = ppredA
|
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/
theorem numerators_recurrence {gp : Pair K} {ppredA predA : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA)
(succ_nth_num_eq : g.numerators (n + 1) = predA) :
g.numerators (n + 2) = gp.b * predA + gp.a * ppredA := by
|
Mathlib.Algebra.ContinuedFractions.ContinuantsRecurrence.49_0.nOytPSFGrohRR6p
|
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/
theorem numerators_recurrence {gp : Pair K} {ppredA predA : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA)
(succ_nth_num_eq : g.numerators (n + 1) = predA) :
g.numerators (n + 2) = gp.b * predA + gp.a * ppredA
|
Mathlib_Algebra_ContinuedFractions_ContinuantsRecurrence
|
K : Type u_1
g : GeneralizedContinuedFraction K
n : ℕ
inst✝ : DivisionRing K
gp : Pair K
ppredA predA : K
succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp
nth_num_eq : numerators g n = ppredA
succ_nth_num_eq : numerators g (n + 1) = predA
⊢ ∃ conts, continuants g n = conts ∧ conts.a = ppredA
case intro.intro.refl
K : Type u_1
g : GeneralizedContinuedFraction K
n : ℕ
inst✝ : DivisionRing K
gp : Pair K
predA : K
succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp
succ_nth_num_eq : numerators g (n + 1) = predA
ppredConts : Pair K
nth_conts_eq : continuants g n = ppredConts
nth_num_eq : numerators g n = ppredConts.a
⊢ numerators g (n + 2) = gp.b * predA + gp.a * ppredConts.a
|
/-
Copyright (c) 2019 Kevin Kappelmann. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kevin Kappelmann
-/
import Mathlib.Algebra.ContinuedFractions.Translations
#align_import algebra.continued_fractions.continuants_recurrence from "leanprover-community/mathlib"@"5f11361a98ae4acd77f5c1837686f6f0102cdc25"
/-!
# Recurrence Lemmas for the `continuants` Function of Continued Fractions.
## Summary
Given a generalized continued fraction `g`, for all `n ≥ 1`, we prove that the `continuants`
function indeed satisfies the following recurrences:
- `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`, and
- `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`.
-/
namespace GeneralizedContinuedFraction
variable {K : Type*} {g : GeneralizedContinuedFraction K} {n : ℕ} [DivisionRing K]
theorem continuantsAux_recurrence {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp)
(nth_conts_aux_eq : g.continuantsAux n = ppred)
(succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) :
g.continuantsAux (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ :=
by simp [*, continuantsAux, nextContinuants, nextDenominator, nextNumerator]
#align generalized_continued_fraction.continuants_aux_recurrence GeneralizedContinuedFraction.continuantsAux_recurrence
theorem continuants_recurrenceAux {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp)
(nth_conts_aux_eq : g.continuantsAux n = ppred)
(succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) :
g.continuants (n + 1) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
simp [nth_cont_eq_succ_nth_cont_aux,
continuantsAux_recurrence nth_s_eq nth_conts_aux_eq succ_nth_conts_aux_eq]
#align generalized_continued_fraction.continuants_recurrence_aux GeneralizedContinuedFraction.continuants_recurrenceAux
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂` and `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/
theorem continuants_recurrence {gp ppred pred : Pair K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp)
(nth_conts_eq : g.continuants n = ppred) (succ_nth_conts_eq : g.continuants (n + 1) = pred) :
g.continuants (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
rw [nth_cont_eq_succ_nth_cont_aux] at nth_conts_eq succ_nth_conts_eq
exact continuants_recurrenceAux succ_nth_s_eq nth_conts_eq succ_nth_conts_eq
#align generalized_continued_fraction.continuants_recurrence GeneralizedContinuedFraction.continuants_recurrence
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/
theorem numerators_recurrence {gp : Pair K} {ppredA predA : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA)
(succ_nth_num_eq : g.numerators (n + 1) = predA) :
g.numerators (n + 2) = gp.b * predA + gp.a * ppredA := by
obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.a = ppredA
|
exact exists_conts_a_of_num nth_num_eq
|
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/
theorem numerators_recurrence {gp : Pair K} {ppredA predA : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA)
(succ_nth_num_eq : g.numerators (n + 1) = predA) :
g.numerators (n + 2) = gp.b * predA + gp.a * ppredA := by
obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.a = ppredA
|
Mathlib.Algebra.ContinuedFractions.ContinuantsRecurrence.49_0.nOytPSFGrohRR6p
|
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/
theorem numerators_recurrence {gp : Pair K} {ppredA predA : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA)
(succ_nth_num_eq : g.numerators (n + 1) = predA) :
g.numerators (n + 2) = gp.b * predA + gp.a * ppredA
|
Mathlib_Algebra_ContinuedFractions_ContinuantsRecurrence
|
case intro.intro.refl
K : Type u_1
g : GeneralizedContinuedFraction K
n : ℕ
inst✝ : DivisionRing K
gp : Pair K
predA : K
succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp
succ_nth_num_eq : numerators g (n + 1) = predA
ppredConts : Pair K
nth_conts_eq : continuants g n = ppredConts
nth_num_eq : numerators g n = ppredConts.a
⊢ numerators g (n + 2) = gp.b * predA + gp.a * ppredConts.a
|
/-
Copyright (c) 2019 Kevin Kappelmann. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kevin Kappelmann
-/
import Mathlib.Algebra.ContinuedFractions.Translations
#align_import algebra.continued_fractions.continuants_recurrence from "leanprover-community/mathlib"@"5f11361a98ae4acd77f5c1837686f6f0102cdc25"
/-!
# Recurrence Lemmas for the `continuants` Function of Continued Fractions.
## Summary
Given a generalized continued fraction `g`, for all `n ≥ 1`, we prove that the `continuants`
function indeed satisfies the following recurrences:
- `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`, and
- `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`.
-/
namespace GeneralizedContinuedFraction
variable {K : Type*} {g : GeneralizedContinuedFraction K} {n : ℕ} [DivisionRing K]
theorem continuantsAux_recurrence {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp)
(nth_conts_aux_eq : g.continuantsAux n = ppred)
(succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) :
g.continuantsAux (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ :=
by simp [*, continuantsAux, nextContinuants, nextDenominator, nextNumerator]
#align generalized_continued_fraction.continuants_aux_recurrence GeneralizedContinuedFraction.continuantsAux_recurrence
theorem continuants_recurrenceAux {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp)
(nth_conts_aux_eq : g.continuantsAux n = ppred)
(succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) :
g.continuants (n + 1) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
simp [nth_cont_eq_succ_nth_cont_aux,
continuantsAux_recurrence nth_s_eq nth_conts_aux_eq succ_nth_conts_aux_eq]
#align generalized_continued_fraction.continuants_recurrence_aux GeneralizedContinuedFraction.continuants_recurrenceAux
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂` and `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/
theorem continuants_recurrence {gp ppred pred : Pair K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp)
(nth_conts_eq : g.continuants n = ppred) (succ_nth_conts_eq : g.continuants (n + 1) = pred) :
g.continuants (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
rw [nth_cont_eq_succ_nth_cont_aux] at nth_conts_eq succ_nth_conts_eq
exact continuants_recurrenceAux succ_nth_s_eq nth_conts_eq succ_nth_conts_eq
#align generalized_continued_fraction.continuants_recurrence GeneralizedContinuedFraction.continuants_recurrence
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/
theorem numerators_recurrence {gp : Pair K} {ppredA predA : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA)
(succ_nth_num_eq : g.numerators (n + 1) = predA) :
g.numerators (n + 2) = gp.b * predA + gp.a * ppredA := by
obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.a = ppredA
exact exists_conts_a_of_num nth_num_eq
|
obtain ⟨predConts, succ_nth_conts_eq, ⟨rfl⟩⟩ :
∃ conts, g.continuants (n + 1) = conts ∧ conts.a = predA
|
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/
theorem numerators_recurrence {gp : Pair K} {ppredA predA : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA)
(succ_nth_num_eq : g.numerators (n + 1) = predA) :
g.numerators (n + 2) = gp.b * predA + gp.a * ppredA := by
obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.a = ppredA
exact exists_conts_a_of_num nth_num_eq
|
Mathlib.Algebra.ContinuedFractions.ContinuantsRecurrence.49_0.nOytPSFGrohRR6p
|
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/
theorem numerators_recurrence {gp : Pair K} {ppredA predA : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA)
(succ_nth_num_eq : g.numerators (n + 1) = predA) :
g.numerators (n + 2) = gp.b * predA + gp.a * ppredA
|
Mathlib_Algebra_ContinuedFractions_ContinuantsRecurrence
|
K : Type u_1
g : GeneralizedContinuedFraction K
n : ℕ
inst✝ : DivisionRing K
gp : Pair K
predA : K
succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp
succ_nth_num_eq : numerators g (n + 1) = predA
ppredConts : Pair K
nth_conts_eq : continuants g n = ppredConts
nth_num_eq : numerators g n = ppredConts.a
⊢ ∃ conts, continuants g (n + 1) = conts ∧ conts.a = predA
case intro.intro.refl.intro.intro.refl
K : Type u_1
g : GeneralizedContinuedFraction K
n : ℕ
inst✝ : DivisionRing K
gp : Pair K
succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp
ppredConts : Pair K
nth_conts_eq : continuants g n = ppredConts
nth_num_eq : numerators g n = ppredConts.a
predConts : Pair K
succ_nth_conts_eq : continuants g (n + 1) = predConts
succ_nth_num_eq : numerators g (n + 1) = predConts.a
⊢ numerators g (n + 2) = gp.b * predConts.a + gp.a * ppredConts.a
|
/-
Copyright (c) 2019 Kevin Kappelmann. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kevin Kappelmann
-/
import Mathlib.Algebra.ContinuedFractions.Translations
#align_import algebra.continued_fractions.continuants_recurrence from "leanprover-community/mathlib"@"5f11361a98ae4acd77f5c1837686f6f0102cdc25"
/-!
# Recurrence Lemmas for the `continuants` Function of Continued Fractions.
## Summary
Given a generalized continued fraction `g`, for all `n ≥ 1`, we prove that the `continuants`
function indeed satisfies the following recurrences:
- `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`, and
- `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`.
-/
namespace GeneralizedContinuedFraction
variable {K : Type*} {g : GeneralizedContinuedFraction K} {n : ℕ} [DivisionRing K]
theorem continuantsAux_recurrence {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp)
(nth_conts_aux_eq : g.continuantsAux n = ppred)
(succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) :
g.continuantsAux (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ :=
by simp [*, continuantsAux, nextContinuants, nextDenominator, nextNumerator]
#align generalized_continued_fraction.continuants_aux_recurrence GeneralizedContinuedFraction.continuantsAux_recurrence
theorem continuants_recurrenceAux {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp)
(nth_conts_aux_eq : g.continuantsAux n = ppred)
(succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) :
g.continuants (n + 1) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
simp [nth_cont_eq_succ_nth_cont_aux,
continuantsAux_recurrence nth_s_eq nth_conts_aux_eq succ_nth_conts_aux_eq]
#align generalized_continued_fraction.continuants_recurrence_aux GeneralizedContinuedFraction.continuants_recurrenceAux
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂` and `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/
theorem continuants_recurrence {gp ppred pred : Pair K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp)
(nth_conts_eq : g.continuants n = ppred) (succ_nth_conts_eq : g.continuants (n + 1) = pred) :
g.continuants (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
rw [nth_cont_eq_succ_nth_cont_aux] at nth_conts_eq succ_nth_conts_eq
exact continuants_recurrenceAux succ_nth_s_eq nth_conts_eq succ_nth_conts_eq
#align generalized_continued_fraction.continuants_recurrence GeneralizedContinuedFraction.continuants_recurrence
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/
theorem numerators_recurrence {gp : Pair K} {ppredA predA : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA)
(succ_nth_num_eq : g.numerators (n + 1) = predA) :
g.numerators (n + 2) = gp.b * predA + gp.a * ppredA := by
obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.a = ppredA
exact exists_conts_a_of_num nth_num_eq
obtain ⟨predConts, succ_nth_conts_eq, ⟨rfl⟩⟩ :
∃ conts, g.continuants (n + 1) = conts ∧ conts.a = predA
|
exact exists_conts_a_of_num succ_nth_num_eq
|
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/
theorem numerators_recurrence {gp : Pair K} {ppredA predA : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA)
(succ_nth_num_eq : g.numerators (n + 1) = predA) :
g.numerators (n + 2) = gp.b * predA + gp.a * ppredA := by
obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.a = ppredA
exact exists_conts_a_of_num nth_num_eq
obtain ⟨predConts, succ_nth_conts_eq, ⟨rfl⟩⟩ :
∃ conts, g.continuants (n + 1) = conts ∧ conts.a = predA
|
Mathlib.Algebra.ContinuedFractions.ContinuantsRecurrence.49_0.nOytPSFGrohRR6p
|
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/
theorem numerators_recurrence {gp : Pair K} {ppredA predA : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA)
(succ_nth_num_eq : g.numerators (n + 1) = predA) :
g.numerators (n + 2) = gp.b * predA + gp.a * ppredA
|
Mathlib_Algebra_ContinuedFractions_ContinuantsRecurrence
|
case intro.intro.refl.intro.intro.refl
K : Type u_1
g : GeneralizedContinuedFraction K
n : ℕ
inst✝ : DivisionRing K
gp : Pair K
succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp
ppredConts : Pair K
nth_conts_eq : continuants g n = ppredConts
nth_num_eq : numerators g n = ppredConts.a
predConts : Pair K
succ_nth_conts_eq : continuants g (n + 1) = predConts
succ_nth_num_eq : numerators g (n + 1) = predConts.a
⊢ numerators g (n + 2) = gp.b * predConts.a + gp.a * ppredConts.a
|
/-
Copyright (c) 2019 Kevin Kappelmann. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kevin Kappelmann
-/
import Mathlib.Algebra.ContinuedFractions.Translations
#align_import algebra.continued_fractions.continuants_recurrence from "leanprover-community/mathlib"@"5f11361a98ae4acd77f5c1837686f6f0102cdc25"
/-!
# Recurrence Lemmas for the `continuants` Function of Continued Fractions.
## Summary
Given a generalized continued fraction `g`, for all `n ≥ 1`, we prove that the `continuants`
function indeed satisfies the following recurrences:
- `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`, and
- `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`.
-/
namespace GeneralizedContinuedFraction
variable {K : Type*} {g : GeneralizedContinuedFraction K} {n : ℕ} [DivisionRing K]
theorem continuantsAux_recurrence {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp)
(nth_conts_aux_eq : g.continuantsAux n = ppred)
(succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) :
g.continuantsAux (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ :=
by simp [*, continuantsAux, nextContinuants, nextDenominator, nextNumerator]
#align generalized_continued_fraction.continuants_aux_recurrence GeneralizedContinuedFraction.continuantsAux_recurrence
theorem continuants_recurrenceAux {gp ppred pred : Pair K} (nth_s_eq : g.s.get? n = some gp)
(nth_conts_aux_eq : g.continuantsAux n = ppred)
(succ_nth_conts_aux_eq : g.continuantsAux (n + 1) = pred) :
g.continuants (n + 1) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
simp [nth_cont_eq_succ_nth_cont_aux,
continuantsAux_recurrence nth_s_eq nth_conts_aux_eq succ_nth_conts_aux_eq]
#align generalized_continued_fraction.continuants_recurrence_aux GeneralizedContinuedFraction.continuants_recurrenceAux
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂` and `Bₙ = bₙ * Bₙ₋₁ + aₙ * Bₙ₋₂`. -/
theorem continuants_recurrence {gp ppred pred : Pair K} (succ_nth_s_eq : g.s.get? (n + 1) = some gp)
(nth_conts_eq : g.continuants n = ppred) (succ_nth_conts_eq : g.continuants (n + 1) = pred) :
g.continuants (n + 2) = ⟨gp.b * pred.a + gp.a * ppred.a, gp.b * pred.b + gp.a * ppred.b⟩ := by
rw [nth_cont_eq_succ_nth_cont_aux] at nth_conts_eq succ_nth_conts_eq
exact continuants_recurrenceAux succ_nth_s_eq nth_conts_eq succ_nth_conts_eq
#align generalized_continued_fraction.continuants_recurrence GeneralizedContinuedFraction.continuants_recurrence
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/
theorem numerators_recurrence {gp : Pair K} {ppredA predA : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA)
(succ_nth_num_eq : g.numerators (n + 1) = predA) :
g.numerators (n + 2) = gp.b * predA + gp.a * ppredA := by
obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.a = ppredA
exact exists_conts_a_of_num nth_num_eq
obtain ⟨predConts, succ_nth_conts_eq, ⟨rfl⟩⟩ :
∃ conts, g.continuants (n + 1) = conts ∧ conts.a = predA
exact exists_conts_a_of_num succ_nth_num_eq
|
rw [num_eq_conts_a, continuants_recurrence succ_nth_s_eq nth_conts_eq succ_nth_conts_eq]
|
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/
theorem numerators_recurrence {gp : Pair K} {ppredA predA : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA)
(succ_nth_num_eq : g.numerators (n + 1) = predA) :
g.numerators (n + 2) = gp.b * predA + gp.a * ppredA := by
obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.a = ppredA
exact exists_conts_a_of_num nth_num_eq
obtain ⟨predConts, succ_nth_conts_eq, ⟨rfl⟩⟩ :
∃ conts, g.continuants (n + 1) = conts ∧ conts.a = predA
exact exists_conts_a_of_num succ_nth_num_eq
|
Mathlib.Algebra.ContinuedFractions.ContinuantsRecurrence.49_0.nOytPSFGrohRR6p
|
/-- Shows that `Aₙ = bₙ * Aₙ₋₁ + aₙ * Aₙ₋₂`. -/
theorem numerators_recurrence {gp : Pair K} {ppredA predA : K}
(succ_nth_s_eq : g.s.get? (n + 1) = some gp) (nth_num_eq : g.numerators n = ppredA)
(succ_nth_num_eq : g.numerators (n + 1) = predA) :
g.numerators (n + 2) = gp.b * predA + gp.a * ppredA
|
Mathlib_Algebra_ContinuedFractions_ContinuantsRecurrence
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.