niobures's picture
ffmpeg (v6.0/v7.x), gensim, numpy, opencv
be94e5d verified
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../precomp.hpp"
#include "../usac.hpp"
#include "../polynom_solver.h"
#ifdef HAVE_EIGEN
#include <Eigen/Eigen>
#endif
namespace cv { namespace usac {
class FundamentalMinimalSolver7ptsImpl: public FundamentalMinimalSolver7pts {
private:
Mat points_mat;
const bool use_ge;
public:
explicit FundamentalMinimalSolver7ptsImpl (const Mat &points_, bool use_ge_) :
points_mat (points_), use_ge(use_ge_)
{
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
}
int estimate (const std::vector<int> &sample, std::vector<Mat> &models) const override {
const int m = 7, n = 9; // rows, cols
std::vector<double> a(63); // m*n
auto * a_ = &a[0];
const float * points = points_mat.ptr<float>();
for (int i = 0; i < m; i++ ) {
const int smpl = 4*sample[i];
const auto x1 = points[smpl ], y1 = points[smpl+1],
x2 = points[smpl+2], y2 = points[smpl+3];
(*a_++) = x2*x1;
(*a_++) = x2*y1;
(*a_++) = x2;
(*a_++) = y2*x1;
(*a_++) = y2*y1;
(*a_++) = y2;
(*a_++) = x1;
(*a_++) = y1;
(*a_++) = 1;
}
double f1[9], f2[9];
if (use_ge) {
if (!Math::eliminateUpperTriangular(a, m, n))
return 0;
/*
[a11 a12 a13 a14 a15 a16 a17 a18 a19]
[ 0 a22 a23 a24 a25 a26 a27 a28 a29]
[ 0 0 a33 a34 a35 a36 a37 a38 a39]
[ 0 0 0 a44 a45 a46 a47 a48 a49]
[ 0 0 0 0 a55 a56 a57 a58 a59]
[ 0 0 0 0 0 a66 a67 a68 a69]
[ 0 0 0 0 0 0 a77 a78 a79]
*/
f1[8] = 1.;
f1[7] = 0.;
f1[6] = -a[6*n+8] / a[6*n+6];
f2[8] = 0.;
f2[7] = -a[6*n+6] / a[6*n+7];
f2[6] = 1;
// start from the last row
for (int i = m-2; i >= 0; i--) {
const int row_i = i*n;
double acc1 = 0, acc2 = 0;
for (int j = i+1; j < n; j++) {
acc1 -= a[row_i + j] * f1[j];
acc2 -= a[row_i + j] * f2[j];
}
f1[i] = acc1 / a[row_i + i];
f2[i] = acc2 / a[row_i + i];
if (std::isnan(f1[i]) || std::isnan(f2[i]))
return 0; // due to numerical errors return 0 solutions
}
} else {
Mat U, Vt, D;
cv::Matx<double, 7, 9> A(&a[0]);
SVD::compute(A, D, U, Vt, SVD::FULL_UV+SVD::MODIFY_A);
const auto * const vt = (double *) Vt.data;
int i1 = 8*9, i2 = 7*9;
for (int i = 0; i < 9; i++) {
f1[i] = vt[i1+i];
f2[i] = vt[i2+i];
}
}
// OpenCV:
double c[4] = { 0 }, r[3] = { 0 };
double t0 = 0, t1 = 0, t2 = 0;
for (int i = 0; i < 9; i++)
f1[i] -= f2[i];
t0 = f2[4]*f2[8] - f2[5]*f2[7];
t1 = f2[3]*f2[8] - f2[5]*f2[6];
t2 = f2[3]*f2[7] - f2[4]*f2[6];
c[3] = f2[0]*t0 - f2[1]*t1 + f2[2]*t2;
c[2] = f1[0]*t0 - f1[1]*t1 + f1[2]*t2 -
f1[3]*(f2[1]*f2[8] - f2[2]*f2[7]) +
f1[4]*(f2[0]*f2[8] - f2[2]*f2[6]) -
f1[5]*(f2[0]*f2[7] - f2[1]*f2[6]) +
f1[6]*(f2[1]*f2[5] - f2[2]*f2[4]) -
f1[7]*(f2[0]*f2[5] - f2[2]*f2[3]) +
f1[8]*(f2[0]*f2[4] - f2[1]*f2[3]);
t0 = f1[4]*f1[8] - f1[5]*f1[7];
t1 = f1[3]*f1[8] - f1[5]*f1[6];
t2 = f1[3]*f1[7] - f1[4]*f1[6];
c[1] = f2[0]*t0 - f2[1]*t1 + f2[2]*t2 -
f2[3]*(f1[1]*f1[8] - f1[2]*f1[7]) +
f2[4]*(f1[0]*f1[8] - f1[2]*f1[6]) -
f2[5]*(f1[0]*f1[7] - f1[1]*f1[6]) +
f2[6]*(f1[1]*f1[5] - f1[2]*f1[4]) -
f2[7]*(f1[0]*f1[5] - f1[2]*f1[3]) +
f2[8]*(f1[0]*f1[4] - f1[1]*f1[3]);
c[0] = f1[0]*t0 - f1[1]*t1 + f1[2]*t2;
// solve the cubic equation; there can be 1 to 3 roots ...
const int nroots = solve_deg3(c[0], c[1], c[2], c[3], r[0], r[1], r[2]);
if (nroots < 1) return 0;
models = std::vector<Mat>(nroots);
for (int k = 0; k < nroots; k++) {
models[k] = Mat_<double>(3,3);
auto * F_ptr = (double *) models[k].data;
// for each root form the fundamental matrix
double lambda = r[k], mu = 1;
double s = f1[8]*lambda + f2[8];
// normalize each matrix, so that F(3,3) (~F[8]) == 1
if (fabs(s) > FLT_EPSILON) {
mu = 1/s;
lambda *= mu;
F_ptr[8] = 1;
} else
F_ptr[8] = 0;
for (int i = 0; i < 8; i++)
F_ptr[i] = f1[i] * lambda + f2[i] * mu;
}
return nroots;
}
int getMaxNumberOfSolutions () const override { return 3; }
int getSampleSize() const override { return 7; }
};
Ptr<FundamentalMinimalSolver7pts> FundamentalMinimalSolver7pts::create(const Mat &points, bool use_ge) {
return makePtr<FundamentalMinimalSolver7ptsImpl>(points, use_ge);
}
class FundamentalMinimalSolver8ptsImpl : public FundamentalMinimalSolver8pts {
private:
Mat points_mat;
public:
explicit FundamentalMinimalSolver8ptsImpl (const Mat &points_) :
points_mat (points_)
{
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
}
int estimate (const std::vector<int> &sample, std::vector<Mat> &models) const override {
const int m = 8, n = 9; // rows, cols
std::vector<double> a(72); // m*n
auto * a_ = &a[0];
const float * points = points_mat.ptr<float>();
for (int i = 0; i < m; i++ ) {
const int smpl = 4*sample[i];
const auto x1 = points[smpl ], y1 = points[smpl+1],
x2 = points[smpl+2], y2 = points[smpl+3];
(*a_++) = x2*x1;
(*a_++) = x2*y1;
(*a_++) = x2;
(*a_++) = y2*x1;
(*a_++) = y2*y1;
(*a_++) = y2;
(*a_++) = x1;
(*a_++) = y1;
(*a_++) = 1;
}
if (!Math::eliminateUpperTriangular(a, m, n))
return 0;
/*
[a11 a12 a13 a14 a15 a16 a17 a18 a19]
[ 0 a22 a23 a24 a25 a26 a27 a28 a29]
[ 0 0 a33 a34 a35 a36 a37 a38 a39]
[ 0 0 0 a44 a45 a46 a47 a48 a49]
[ 0 0 0 0 a55 a56 a57 a58 a59]
[ 0 0 0 0 0 a66 a67 a68 a69]
[ 0 0 0 0 0 0 a77 a78 a79]
[ 0 0 0 0 0 0 0 a88 a89]
f9 = 1
f8 = (-a89*f9) / a88
f7 = (-a79*f9 - a78*f8) / a77
f6 = (-a69*f9 - a68*f8 - a69*f9) / a66
...
*/
models = std::vector<Mat>{ Mat_<double>(3,3) };
auto * f = (double *) models[0].data;
f[8] = 1.;
// start from the last row
for (int i = m-1; i >= 0; i--) {
double acc = 0;
for (int j = i+1; j < n; j++)
acc -= a[i*n+j]*f[j];
f[i] = acc / a[i*n+i];
// due to numerical errors return 0 solutions
if (std::isnan(f[i]))
return 0;
}
return 1;
}
int getMaxNumberOfSolutions () const override { return 1; }
int getSampleSize() const override { return 8; }
};
Ptr<FundamentalMinimalSolver8pts> FundamentalMinimalSolver8pts::create(const Mat &points_) {
return makePtr<FundamentalMinimalSolver8ptsImpl>(points_);
}
class EpipolarNonMinimalSolverImpl : public EpipolarNonMinimalSolver {
private:
Mat points_mat;
const bool do_norm;
Matx33d _T1, _T2;
Ptr<NormTransform> normTr = nullptr;
bool enforce_rank = true, is_fundamental, use_ge;
public:
explicit EpipolarNonMinimalSolverImpl (const Mat &points_, const Matx33d &T1, const Matx33d &T2, bool use_ge_)
: points_mat(points_), do_norm(false), _T1(T1), _T2(T2), is_fundamental(true), use_ge(use_ge_) {
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
}
explicit EpipolarNonMinimalSolverImpl (const Mat &points_, bool is_fundamental_) :
points_mat(points_), do_norm(is_fundamental_), use_ge(false) {
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
is_fundamental = is_fundamental_;
if (is_fundamental)
normTr = NormTransform::create(points_);
}
void enforceRankConstraint (bool enforce) override { enforce_rank = enforce; }
int estimate (const std::vector<int> &sample, int sample_size, std::vector<Mat>
&models, const std::vector<double> &weights) const override {
if (sample_size < getMinimumRequiredSampleSize())
return 0;
Matx33d T1, T2;
Mat norm_points;
if (do_norm)
normTr->getNormTransformation(norm_points, sample, sample_size, T1, T2);
const float * const norm_pts = do_norm ? norm_points.ptr<const float>() : points_mat.ptr<float>();
if (use_ge) {
double a[8];
std::vector<double> AtAb(72, 0); // 8x9
if (weights.empty()) {
for (int i = 0; i < sample_size; i++) {
const int idx = do_norm ? 4*i : 4*sample[i];
const double x1 = norm_pts[idx], y1 = norm_pts[idx+1], x2 = norm_pts[idx+2], y2 = norm_pts[idx+3];
a[0] = x2*x1;
a[1] = x2*y1;
a[2] = x2;
a[3] = y2*x1;
a[4] = y2*y1;
a[5] = y2;
a[6] = x1;
a[7] = y1;
// calculate covariance for eigen
for (int row = 0; row < 8; row++) {
for (int col = row; col < 8; col++)
AtAb[row * 9 + col] += a[row] * a[col];
AtAb[row * 9 + 8] += a[row];
}
}
} else { // use weights
for (int i = 0; i < sample_size; i++) {
const auto weight = weights[i];
if (weight < FLT_EPSILON) continue;
const int idx = do_norm ? 4*i : 4*sample[i];
const double x1 = norm_pts[idx], y1 = norm_pts[idx+1], x2 = norm_pts[idx+2], y2 = norm_pts[idx+3];
const double weight_times_x2 = weight * x2, weight_times_y2 = weight * y2;
a[0] = weight_times_x2 * x1;
a[1] = weight_times_x2 * y1;
a[2] = weight_times_x2;
a[3] = weight_times_y2 * x1;
a[4] = weight_times_y2 * y1;
a[5] = weight_times_y2;
a[6] = weight * x1;
a[7] = weight * y1;
// calculate covariance for eigen
for (int row = 0; row < 8; row++) {
for (int col = row; col < 8; col++)
AtAb[row * 9 + col] += a[row] * a[col];
AtAb[row * 9 + 8] += a[row];
}
}
}
// copy symmetric part of covariance matrix
for (int j = 1; j < 8; j++)
for (int z = 0; z < j; z++)
AtAb[j*9+z] = AtAb[z*9+j];
Math::eliminateUpperTriangular(AtAb, 8, 9);
models = std::vector<Mat>{ Mat_<double>(3,3) };
auto * f = (double *) models[0].data;
f[8] = 1.;
const int m = 8, n = 9;
// start from the last row
for (int i = m-1; i >= 0; i--) {
double acc = 0;
for (int j = i+1; j < n; j++)
acc -= AtAb[i*n+j]*f[j];
f[i] = acc / AtAb[i*n+i];
// due to numerical errors return 0 solutions
if (std::isnan(f[i]))
return 0;
}
} else {
// ------- 8 points algorithm with Eigen and covariance matrix --------------
double a[9] = {0, 0, 0, 0, 0, 0, 0, 0, 1}, AtA[81] = {0}; // 9x9
if (weights.empty()) {
for (int i = 0; i < sample_size; i++) {
const int idx = do_norm ? 4*i : 4*sample[i];
const auto x1 = norm_pts[idx], y1 = norm_pts[idx+1], x2 = norm_pts[idx+2], y2 = norm_pts[idx+3];
a[0] = x2*x1;
a[1] = x2*y1;
a[2] = x2;
a[3] = y2*x1;
a[4] = y2*y1;
a[5] = y2;
a[6] = x1;
a[7] = y1;
// calculate covariance matrix
for (int row = 0; row < 9; row++)
for (int col = row; col < 9; col++)
AtA[row*9+col] += a[row]*a[col];
}
} else { // use weights
for (int i = 0; i < sample_size; i++) {
const auto weight = weights[i];
if (weight < FLT_EPSILON) continue;
const int smpl = do_norm ? 4*i : 4*sample[i];
const auto x1 = norm_pts[smpl], y1 = norm_pts[smpl+1], x2 = norm_pts[smpl+2], y2 = norm_pts[smpl+3];
const double weight_times_x2 = weight * x2, weight_times_y2 = weight * y2;
a[0] = weight_times_x2 * x1;
a[1] = weight_times_x2 * y1;
a[2] = weight_times_x2;
a[3] = weight_times_y2 * x1;
a[4] = weight_times_y2 * y1;
a[5] = weight_times_y2;
a[6] = weight * x1;
a[7] = weight * y1;
a[8] = weight;
for (int row = 0; row < 9; row++)
for (int col = row; col < 9; col++)
AtA[row*9+col] += a[row]*a[col];
}
}
for (int j = 1; j < 9; j++)
for (int z = 0; z < j; z++)
AtA[j*9+z] = AtA[z*9+j];
#ifdef HAVE_EIGEN
models = std::vector<Mat>{ Mat_<double>(3,3) };
// extract the last null-vector
Eigen::Map<Eigen::Matrix<double, 9, 1>>((double *)models[0].data) = Eigen::JacobiSVD
<Eigen::Matrix<double, 9, 9>> ((Eigen::Matrix<double, 9, 9>(AtA)),
Eigen::ComputeFullV).matrixV().col(8);
#else
Matx<double, 9, 9> AtA_(AtA), U, Vt;
Vec<double, 9> W;
SVD::compute(AtA_, W, U, Vt, SVD::FULL_UV + SVD::MODIFY_A);
models = std::vector<Mat> { Mat_<double>(3, 3, Vt.val + 72 /*=8*9*/) };
#endif
}
if (enforce_rank)
FundamentalDegeneracy::recoverRank(models[0], is_fundamental);
if (is_fundamental) {
const auto * const f = (double *) models[0].data;
const auto * const t1 = do_norm ? T1.val : _T1.val, * t2 = do_norm ? T2.val : _T2.val;
// F = T2^T F T1
models[0] = Mat(Matx33d(t1[0]*t2[0]*f[0],t1[0]*t2[0]*f[1], t2[0]*f[2] + t2[0]*f[0]*t1[2] +
t2[0]*f[1]*t1[5], t1[0]*t2[0]*f[3],t1[0]*t2[0]*f[4], t2[0]*f[5] + t2[0]*f[3]*t1[2] +
t2[0]*f[4]*t1[5], t1[0]*(f[6] + f[0]*t2[2] + f[3]*t2[5]), t1[0]*(f[7] + f[1]*t2[2] +
f[4]*t2[5]), f[8] + t1[2]*(f[6] + f[0]*t2[2] + f[3]*t2[5]) + t1[5]*(f[7] + f[1]*t2[2] +
f[4]*t2[5]) + f[2]*t2[2] + f[5]*t2[5]));
}
return 1;
}
int estimate (const std::vector<bool> &/*mask*/, std::vector<Mat> &/*models*/,
const std::vector<double> &/*weights*/) override {
return 0;
}
int getMinimumRequiredSampleSize() const override { return 8; }
int getMaxNumberOfSolutions () const override { return 1; }
};
Ptr<EpipolarNonMinimalSolver> EpipolarNonMinimalSolver::create(const Mat &points_, bool is_fundamental) {
return makePtr<EpipolarNonMinimalSolverImpl>(points_, is_fundamental);
}
Ptr<EpipolarNonMinimalSolver> EpipolarNonMinimalSolver::create(const Mat &points_, const Matx33d &T1, const Matx33d &T2, bool use_ge) {
return makePtr<EpipolarNonMinimalSolverImpl>(points_, T1, T2, use_ge);
}
class CovarianceEpipolarSolverImpl : public CovarianceEpipolarSolver {
private:
Mat norm_pts;
Matx33d T1, T2;
float * norm_points;
std::vector<bool> mask;
int points_size;
double covariance[81] = {0}, * t1, * t2;
bool is_fundamental, enforce_rank = true;
public:
explicit CovarianceEpipolarSolverImpl (const Mat &norm_points_, const Matx33d &T1_, const Matx33d &T2_)
: norm_pts(norm_points_), T1(T1_), T2(T2_) {
points_size = norm_points_.rows;
norm_points = (float *) norm_pts.data;
t1 = T1.val; t2 = T2.val;
mask = std::vector<bool>(points_size, false);
is_fundamental = true;
}
explicit CovarianceEpipolarSolverImpl (const Mat &points_, bool is_fundamental_) {
points_size = points_.rows;
is_fundamental = is_fundamental_;
if (is_fundamental) { // normalize image points only for fundamental matrix
std::vector<int> sample(points_size);
for (int i = 0; i < points_size; i++) sample[i] = i;
const Ptr<NormTransform> normTr = NormTransform::create(points_);
normTr->getNormTransformation(norm_pts, sample, points_size, T1, T2);
t1 = T1.val; t2 = T2.val;
} else norm_pts = points_; // otherwise points are normalized by intrinsics
norm_points = (float *)norm_pts.data;
mask = std::vector<bool>(points_size, false);
}
void enforceRankConstraint (bool enforce_) override { enforce_rank = enforce_; }
void reset () override {
std::fill(covariance, covariance+81, 0);
std::fill(mask.begin(), mask.end(), false);
}
/*
* Find fundamental matrix using 8-point algorithm with covariance matrix and PCA
*/
int estimate (const std::vector<bool> &new_mask, std::vector<Mat> &models,
const std::vector<double> &/*weights*/) override {
double a[9] = {0, 0, 0, 0, 0, 0, 0, 0, 1};
for (int i = 0; i < points_size; i++) {
if (mask[i] != new_mask[i]) {
const int smpl = 4*i;
const double x1 = norm_points[smpl ], y1 = norm_points[smpl+1],
x2 = norm_points[smpl+2], y2 = norm_points[smpl+3];
a[0] = x2*x1;
a[1] = x2*y1;
a[2] = x2;
a[3] = y2*x1;
a[4] = y2*y1;
a[5] = y2;
a[6] = x1;
a[7] = y1;
if (mask[i]) // if mask[i] is true then new_mask[i] must be false
for (int j = 0; j < 9; j++)
for (int z = j; z < 9; z++)
covariance[j*9+z] -= a[j]*a[z];
else
for (int j = 0; j < 9; j++)
for (int z = j; z < 9; z++)
covariance[j*9+z] += a[j]*a[z];
}
}
mask = new_mask;
// copy symmetric part of covariance matrix
for (int j = 1; j < 9; j++)
for (int z = 0; z < j; z++)
covariance[j*9+z] = covariance[z*9+j];
#ifdef HAVE_EIGEN
models = std::vector<Mat>{ Mat_<double>(3,3) };
// extract the last null-vector
Eigen::Map<Eigen::Matrix<double, 9, 1>>((double *)models[0].data) = Eigen::JacobiSVD
<Eigen::Matrix<double, 9, 9>> ((Eigen::Matrix<double, 9, 9>(covariance)),
Eigen::ComputeFullV).matrixV().col(8);
#else
Matx<double, 9, 9> AtA_(covariance), U, Vt;
Vec<double, 9> W;
SVD::compute(AtA_, W, U, Vt, SVD::FULL_UV + SVD::MODIFY_A);
models = std::vector<Mat> { Mat_<double>(3, 3, Vt.val + 72 /*=8*9*/) };
#endif
if (enforce_rank)
FundamentalDegeneracy::recoverRank(models[0], is_fundamental);
if (is_fundamental) {
const auto * const f = (double *) models[0].data;
// F = T2^T F T1
models[0] = Mat(Matx33d(t1[0]*t2[0]*f[0],t1[0]*t2[0]*f[1], t2[0]*f[2] + t2[0]*f[0]*t1[2] +
t2[0]*f[1]*t1[5], t1[0]*t2[0]*f[3],t1[0]*t2[0]*f[4], t2[0]*f[5] + t2[0]*f[3]*t1[2] +
t2[0]*f[4]*t1[5], t1[0]*(f[6] + f[0]*t2[2] + f[3]*t2[5]), t1[0]*(f[7] + f[1]*t2[2] +
f[4]*t2[5]), f[8] + t1[2]*(f[6] + f[0]*t2[2] + f[3]*t2[5]) + t1[5]*(f[7] + f[1]*t2[2] +
f[4]*t2[5]) + f[2]*t2[2] + f[5]*t2[5]));
}
return 1;
}
int getMinimumRequiredSampleSize() const override { return 8; }
int getMaxNumberOfSolutions () const override { return 1; }
};
Ptr<CovarianceEpipolarSolver> CovarianceEpipolarSolver::create (const Mat &points, bool is_fundamental) {
return makePtr<CovarianceEpipolarSolverImpl>(points, is_fundamental);
}
Ptr<CovarianceEpipolarSolver> CovarianceEpipolarSolver::create (const Mat &points, const Matx33d &T1, const Matx33d &T2) {
return makePtr<CovarianceEpipolarSolverImpl>(points, T1, T2);
}
class LarssonOptimizerImpl : public LarssonOptimizer {
private:
const Mat &calib_points;
Matx33d K1, K2, K2_t, K1_inv, K2_inv_t;
bool is_fundamental;
BundleOptions opt;
public:
LarssonOptimizerImpl (const Mat &calib_points_, const Matx33d &K1_, const Matx33d &K2_, int max_iters_, bool is_fundamental_) :
calib_points(calib_points_), K1(K1_), K2(K2_){
is_fundamental = is_fundamental_;
opt.max_iterations = max_iters_;
opt.loss_scale = Utils::getCalibratedThreshold(std::max(1.5, opt.loss_scale), Mat(K1), Mat(K2));
if (is_fundamental) {
K1_inv = K1.inv();
K2_t = K2.t();
K2_inv_t = K2_t.inv();
}
}
int estimate (const Mat &model, const std::vector<int> &sample, int sample_size, std::vector<Mat>
&models, const std::vector<double> &weights) const override {
if (sample_size < 5) return 0;
const Matx33d E = is_fundamental ? K2_t * Matx33d(model) * K1 : model;
RNG rng (sample_size);
cv::Matx33d R1, R2; cv::Vec3d t;
cv::decomposeEssentialMat(E, R1, R2, t);
int positive_depth[4] = {0};
const auto * const pts_ = (float *) calib_points.data;
// a few point are enough to test
// actually due to Sampson error minimization, the input R,t do not really matter
// for a correct pair there is a slightly faster convergence
for (int i = 0; i < 3; i++) { // could be 1 point
const int rand_inl = 4 * sample[rng.uniform(0, sample_size)];
Vec3d p1 (pts_[rand_inl], pts_[rand_inl+1], 1), p2(pts_[rand_inl+2], pts_[rand_inl+3], 1);
p1 /= norm(p1); p2 /= norm(p2);
if (satisfyCheirality(R1, t, p1, p2)) positive_depth[0]++;
if (satisfyCheirality(R1, -t, p1, p2)) positive_depth[1]++;
if (satisfyCheirality(R2, t, p1, p2)) positive_depth[2]++;
if (satisfyCheirality(R2, -t, p1, p2)) positive_depth[3]++;
}
int corr_idx = 0, max_good_pts = positive_depth[0];
for (int i = 1; i < 4; i++) {
if (max_good_pts < positive_depth[i]) {
max_good_pts = positive_depth[i];
corr_idx = i;
}
}
CameraPose pose;
pose.R = corr_idx < 2 ? R1 : R2;
pose.t = corr_idx % 2 == 1 ? -t : t;
refine_relpose(calib_points, sample, sample_size, &pose, opt, &weights[0]);
Matx33d model_new = Math::getSkewSymmetric(pose.t) * pose.R;
if (is_fundamental)
model_new = K2_inv_t * model_new * K1_inv;
models = std::vector<Mat> { Mat(model_new) };
return 1;
}
int estimate (const std::vector<int>&, int, std::vector<Mat>&, const std::vector<double>&) const override {
return 0;
}
int estimate (const std::vector<bool> &/*mask*/, std::vector<Mat> &/*models*/,
const std::vector<double> &/*weights*/) override {
return 0;
}
void enforceRankConstraint (bool /*enforce*/) override {}
int getMinimumRequiredSampleSize() const override { return 5; }
int getMaxNumberOfSolutions () const override { return 1; }
};
Ptr<LarssonOptimizer> LarssonOptimizer::create(const Mat &calib_points_, const Matx33d &K1, const Matx33d &K2, int max_iters_, bool is_fundamental) {
return makePtr<LarssonOptimizerImpl>(calib_points_, K1, K2, max_iters_, is_fundamental);
}
}}