| //============================================================================= | |
| // | |
| // fed.cpp | |
| // Authors: Pablo F. Alcantarilla (1), Jesus Nuevo (2) | |
| // Institutions: Georgia Institute of Technology (1) | |
| // TrueVision Solutions (2) | |
| // Date: 15/09/2013 | |
| // Email: pablofdezalc@gmail.com | |
| // | |
| // AKAZE Features Copyright 2013, Pablo F. Alcantarilla, Jesus Nuevo | |
| // All Rights Reserved | |
| // See LICENSE for the license information | |
| //============================================================================= | |
| /** | |
| * @file fed.cpp | |
| * @brief Functions for performing Fast Explicit Diffusion and building the | |
| * nonlinear scale space | |
| * @date Sep 15, 2013 | |
| * @author Pablo F. Alcantarilla, Jesus Nuevo | |
| * @note This code is derived from FED/FJ library from Grewenig et al., | |
| * The FED/FJ library allows solving more advanced problems | |
| * Please look at the following papers for more information about FED: | |
| * [1] S. Grewenig, J. Weickert, C. Schroers, A. Bruhn. Cyclic Schemes for | |
| * PDE-Based Image Analysis. Technical Report No. 327, Department of Mathematics, | |
| * Saarland University, Saarbrücken, Germany, March 2013 | |
| * [2] S. Grewenig, J. Weickert, A. Bruhn. From box filtering to fast explicit diffusion. | |
| * DAGM, 2010 | |
| * | |
| */ | |
| using namespace std; | |
| //************************************************************************************* | |
| //************************************************************************************* | |
| /** | |
| * @brief This function allocates an array of the least number of time steps such | |
| * that a certain stopping time for the whole process can be obtained and fills | |
| * it with the respective FED time step sizes for one cycle | |
| * The function returns the number of time steps per cycle or 0 on failure | |
| * @param T Desired process stopping time | |
| * @param M Desired number of cycles | |
| * @param tau_max Stability limit for the explicit scheme | |
| * @param reordering Reordering flag | |
| * @param tau The vector with the dynamic step sizes | |
| */ | |
| int fed_tau_by_process_time(const float& T, const int& M, const float& tau_max, | |
| const bool& reordering, std::vector<float>& tau) { | |
| // All cycles have the same fraction of the stopping time | |
| return fed_tau_by_cycle_time(T/(float)M,tau_max,reordering,tau); | |
| } | |
| //************************************************************************************* | |
| //************************************************************************************* | |
| /** | |
| * @brief This function allocates an array of the least number of time steps such | |
| * that a certain stopping time for the whole process can be obtained and fills it | |
| * it with the respective FED time step sizes for one cycle | |
| * The function returns the number of time steps per cycle or 0 on failure | |
| * @param t Desired cycle stopping time | |
| * @param tau_max Stability limit for the explicit scheme | |
| * @param reordering Reordering flag | |
| * @param tau The vector with the dynamic step sizes | |
| */ | |
| int fed_tau_by_cycle_time(const float& t, const float& tau_max, | |
| const bool& reordering, std::vector<float> &tau) { | |
| int n = 0; // Number of time steps | |
| float scale = 0.0; // Ratio of t we search to maximal t | |
| // Compute necessary number of time steps | |
| n = cvCeil(sqrtf(3.0f*t/tau_max+0.25f)-0.5f-1.0e-8f); | |
| scale = 3.0f*t/(tau_max*(float)(n*(n+1))); | |
| // Call internal FED time step creation routine | |
| return fed_tau_internal(n,scale,tau_max,reordering,tau); | |
| } | |
| //************************************************************************************* | |
| //************************************************************************************* | |
| /** | |
| * @brief This function allocates an array of time steps and fills it with FED | |
| * time step sizes | |
| * The function returns the number of time steps per cycle or 0 on failure | |
| * @param n Number of internal steps | |
| * @param scale Ratio of t we search to maximal t | |
| * @param tau_max Stability limit for the explicit scheme | |
| * @param reordering Reordering flag | |
| * @param tau The vector with the dynamic step sizes | |
| */ | |
| int fed_tau_internal(const int& n, const float& scale, const float& tau_max, | |
| const bool& reordering, std::vector<float> &tau) { | |
| float c = 0.0, d = 0.0; // Time savers | |
| vector<float> tauh; // Helper vector for unsorted taus | |
| if (n <= 0) { | |
| return 0; | |
| } | |
| // Allocate memory for the time step size | |
| tau = vector<float>(n); | |
| if (reordering) { | |
| tauh = vector<float>(n); | |
| } | |
| // Compute time saver | |
| c = 1.0f / (4.0f * (float)n + 2.0f); | |
| d = scale * tau_max / 2.0f; | |
| // Set up originally ordered tau vector | |
| for (int k = 0; k < n; ++k) { | |
| float h = cosf((float)CV_PI * (2.0f * (float)k + 1.0f) * c); | |
| if (reordering) { | |
| tauh[k] = d / (h * h); | |
| } | |
| else { | |
| tau[k] = d / (h * h); | |
| } | |
| } | |
| // Permute list of time steps according to chosen reordering function | |
| int kappa = 0, prime = 0; | |
| if (reordering == true) { | |
| // Choose kappa cycle with k = n/2 | |
| // This is a heuristic. We can use Leja ordering instead!! | |
| kappa = n / 2; | |
| // Get modulus for permutation | |
| prime = n + 1; | |
| while (!fed_is_prime_internal(prime)) { | |
| prime++; | |
| } | |
| // Perform permutation | |
| for (int k = 0, l = 0; l < n; ++k, ++l) { | |
| int index = 0; | |
| while ((index = ((k+1)*kappa) % prime - 1) >= n) { | |
| k++; | |
| } | |
| tau[l] = tauh[index]; | |
| } | |
| } | |
| return n; | |
| } | |
| //************************************************************************************* | |
| //************************************************************************************* | |
| /** | |
| * @brief This function checks if a number is prime or not | |
| * @param number Number to check if it is prime or not | |
| * @return true if the number is prime | |
| */ | |
| bool fed_is_prime_internal(const int& number) { | |
| bool is_prime = false; | |
| if (number <= 1) { | |
| return false; | |
| } | |
| else if (number == 1 || number == 2 || number == 3 || number == 5 || number == 7) { | |
| return true; | |
| } | |
| else if ((number % 2) == 0 || (number % 3) == 0 || (number % 5) == 0 || (number % 7) == 0) { | |
| return false; | |
| } | |
| else { | |
| is_prime = true; | |
| int upperLimit = (int)sqrt(1.0f + number); | |
| int divisor = 11; | |
| while (divisor <= upperLimit ) { | |
| if (number % divisor == 0) | |
| { | |
| is_prime = false; | |
| } | |
| divisor +=2; | |
| } | |
| return is_prime; | |
| } | |
| } | |