id
int64
1
3.71k
title
stringlengths
3
79
difficulty
stringclasses
3 values
description
stringlengths
430
25.4k
tags
stringlengths
0
131
language
stringclasses
19 values
solution
stringlengths
47
20.6k
2,903
Find Indices With Index and Value Difference I
Easy
<p>You are given a <strong>0-indexed</strong> integer array <code>nums</code> having length <code>n</code>, an integer <code>indexDifference</code>, and an integer <code>valueDifference</code>.</p> <p>Your task is to find <strong>two</strong> indices <code>i</code> and <code>j</code>, both in the range <code>[0, n - 1]</code>, that satisfy the following conditions:</p> <ul> <li><code>abs(i - j) &gt;= indexDifference</code>, and</li> <li><code>abs(nums[i] - nums[j]) &gt;= valueDifference</code></li> </ul> <p>Return <em>an integer array</em> <code>answer</code>, <em>where</em> <code>answer = [i, j]</code> <em>if there are two such indices</em>, <em>and</em> <code>answer = [-1, -1]</code> <em>otherwise</em>. If there are multiple choices for the two indices, return <em>any of them</em>.</p> <p><strong>Note:</strong> <code>i</code> and <code>j</code> may be <strong>equal</strong>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [5,1,4,1], indexDifference = 2, valueDifference = 4 <strong>Output:</strong> [0,3] <strong>Explanation:</strong> In this example, i = 0 and j = 3 can be selected. abs(0 - 3) &gt;= 2 and abs(nums[0] - nums[3]) &gt;= 4. Hence, a valid answer is [0,3]. [3,0] is also a valid answer. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [2,1], indexDifference = 0, valueDifference = 0 <strong>Output:</strong> [0,0] <strong>Explanation:</strong> In this example, i = 0 and j = 0 can be selected. abs(0 - 0) &gt;= 0 and abs(nums[0] - nums[0]) &gt;= 0. Hence, a valid answer is [0,0]. Other valid answers are [0,1], [1,0], and [1,1]. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [1,2,3], indexDifference = 2, valueDifference = 4 <strong>Output:</strong> [-1,-1] <strong>Explanation:</strong> In this example, it can be shown that it is impossible to find two indices that satisfy both conditions. Hence, [-1,-1] is returned.</pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n == nums.length &lt;= 100</code></li> <li><code>0 &lt;= nums[i] &lt;= 50</code></li> <li><code>0 &lt;= indexDifference &lt;= 100</code></li> <li><code>0 &lt;= valueDifference &lt;= 50</code></li> </ul>
Array; Two Pointers
Go
func findIndices(nums []int, indexDifference int, valueDifference int) []int { mi, mx := 0, 0 for i := indexDifference; i < len(nums); i++ { j := i - indexDifference if nums[j] < nums[mi] { mi = j } if nums[j] > nums[mx] { mx = j } if nums[i]-nums[mi] >= valueDifference { return []int{mi, i} } if nums[mx]-nums[i] >= valueDifference { return []int{mx, i} } } return []int{-1, -1} }
2,903
Find Indices With Index and Value Difference I
Easy
<p>You are given a <strong>0-indexed</strong> integer array <code>nums</code> having length <code>n</code>, an integer <code>indexDifference</code>, and an integer <code>valueDifference</code>.</p> <p>Your task is to find <strong>two</strong> indices <code>i</code> and <code>j</code>, both in the range <code>[0, n - 1]</code>, that satisfy the following conditions:</p> <ul> <li><code>abs(i - j) &gt;= indexDifference</code>, and</li> <li><code>abs(nums[i] - nums[j]) &gt;= valueDifference</code></li> </ul> <p>Return <em>an integer array</em> <code>answer</code>, <em>where</em> <code>answer = [i, j]</code> <em>if there are two such indices</em>, <em>and</em> <code>answer = [-1, -1]</code> <em>otherwise</em>. If there are multiple choices for the two indices, return <em>any of them</em>.</p> <p><strong>Note:</strong> <code>i</code> and <code>j</code> may be <strong>equal</strong>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [5,1,4,1], indexDifference = 2, valueDifference = 4 <strong>Output:</strong> [0,3] <strong>Explanation:</strong> In this example, i = 0 and j = 3 can be selected. abs(0 - 3) &gt;= 2 and abs(nums[0] - nums[3]) &gt;= 4. Hence, a valid answer is [0,3]. [3,0] is also a valid answer. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [2,1], indexDifference = 0, valueDifference = 0 <strong>Output:</strong> [0,0] <strong>Explanation:</strong> In this example, i = 0 and j = 0 can be selected. abs(0 - 0) &gt;= 0 and abs(nums[0] - nums[0]) &gt;= 0. Hence, a valid answer is [0,0]. Other valid answers are [0,1], [1,0], and [1,1]. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [1,2,3], indexDifference = 2, valueDifference = 4 <strong>Output:</strong> [-1,-1] <strong>Explanation:</strong> In this example, it can be shown that it is impossible to find two indices that satisfy both conditions. Hence, [-1,-1] is returned.</pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n == nums.length &lt;= 100</code></li> <li><code>0 &lt;= nums[i] &lt;= 50</code></li> <li><code>0 &lt;= indexDifference &lt;= 100</code></li> <li><code>0 &lt;= valueDifference &lt;= 50</code></li> </ul>
Array; Two Pointers
Java
class Solution { public int[] findIndices(int[] nums, int indexDifference, int valueDifference) { int mi = 0; int mx = 0; for (int i = indexDifference; i < nums.length; ++i) { int j = i - indexDifference; if (nums[j] < nums[mi]) { mi = j; } if (nums[j] > nums[mx]) { mx = j; } if (nums[i] - nums[mi] >= valueDifference) { return new int[] {mi, i}; } if (nums[mx] - nums[i] >= valueDifference) { return new int[] {mx, i}; } } return new int[] {-1, -1}; } }
2,903
Find Indices With Index and Value Difference I
Easy
<p>You are given a <strong>0-indexed</strong> integer array <code>nums</code> having length <code>n</code>, an integer <code>indexDifference</code>, and an integer <code>valueDifference</code>.</p> <p>Your task is to find <strong>two</strong> indices <code>i</code> and <code>j</code>, both in the range <code>[0, n - 1]</code>, that satisfy the following conditions:</p> <ul> <li><code>abs(i - j) &gt;= indexDifference</code>, and</li> <li><code>abs(nums[i] - nums[j]) &gt;= valueDifference</code></li> </ul> <p>Return <em>an integer array</em> <code>answer</code>, <em>where</em> <code>answer = [i, j]</code> <em>if there are two such indices</em>, <em>and</em> <code>answer = [-1, -1]</code> <em>otherwise</em>. If there are multiple choices for the two indices, return <em>any of them</em>.</p> <p><strong>Note:</strong> <code>i</code> and <code>j</code> may be <strong>equal</strong>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [5,1,4,1], indexDifference = 2, valueDifference = 4 <strong>Output:</strong> [0,3] <strong>Explanation:</strong> In this example, i = 0 and j = 3 can be selected. abs(0 - 3) &gt;= 2 and abs(nums[0] - nums[3]) &gt;= 4. Hence, a valid answer is [0,3]. [3,0] is also a valid answer. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [2,1], indexDifference = 0, valueDifference = 0 <strong>Output:</strong> [0,0] <strong>Explanation:</strong> In this example, i = 0 and j = 0 can be selected. abs(0 - 0) &gt;= 0 and abs(nums[0] - nums[0]) &gt;= 0. Hence, a valid answer is [0,0]. Other valid answers are [0,1], [1,0], and [1,1]. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [1,2,3], indexDifference = 2, valueDifference = 4 <strong>Output:</strong> [-1,-1] <strong>Explanation:</strong> In this example, it can be shown that it is impossible to find two indices that satisfy both conditions. Hence, [-1,-1] is returned.</pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n == nums.length &lt;= 100</code></li> <li><code>0 &lt;= nums[i] &lt;= 50</code></li> <li><code>0 &lt;= indexDifference &lt;= 100</code></li> <li><code>0 &lt;= valueDifference &lt;= 50</code></li> </ul>
Array; Two Pointers
Python
class Solution: def findIndices( self, nums: List[int], indexDifference: int, valueDifference: int ) -> List[int]: mi = mx = 0 for i in range(indexDifference, len(nums)): j = i - indexDifference if nums[j] < nums[mi]: mi = j if nums[j] > nums[mx]: mx = j if nums[i] - nums[mi] >= valueDifference: return [mi, i] if nums[mx] - nums[i] >= valueDifference: return [mx, i] return [-1, -1]
2,903
Find Indices With Index and Value Difference I
Easy
<p>You are given a <strong>0-indexed</strong> integer array <code>nums</code> having length <code>n</code>, an integer <code>indexDifference</code>, and an integer <code>valueDifference</code>.</p> <p>Your task is to find <strong>two</strong> indices <code>i</code> and <code>j</code>, both in the range <code>[0, n - 1]</code>, that satisfy the following conditions:</p> <ul> <li><code>abs(i - j) &gt;= indexDifference</code>, and</li> <li><code>abs(nums[i] - nums[j]) &gt;= valueDifference</code></li> </ul> <p>Return <em>an integer array</em> <code>answer</code>, <em>where</em> <code>answer = [i, j]</code> <em>if there are two such indices</em>, <em>and</em> <code>answer = [-1, -1]</code> <em>otherwise</em>. If there are multiple choices for the two indices, return <em>any of them</em>.</p> <p><strong>Note:</strong> <code>i</code> and <code>j</code> may be <strong>equal</strong>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [5,1,4,1], indexDifference = 2, valueDifference = 4 <strong>Output:</strong> [0,3] <strong>Explanation:</strong> In this example, i = 0 and j = 3 can be selected. abs(0 - 3) &gt;= 2 and abs(nums[0] - nums[3]) &gt;= 4. Hence, a valid answer is [0,3]. [3,0] is also a valid answer. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [2,1], indexDifference = 0, valueDifference = 0 <strong>Output:</strong> [0,0] <strong>Explanation:</strong> In this example, i = 0 and j = 0 can be selected. abs(0 - 0) &gt;= 0 and abs(nums[0] - nums[0]) &gt;= 0. Hence, a valid answer is [0,0]. Other valid answers are [0,1], [1,0], and [1,1]. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [1,2,3], indexDifference = 2, valueDifference = 4 <strong>Output:</strong> [-1,-1] <strong>Explanation:</strong> In this example, it can be shown that it is impossible to find two indices that satisfy both conditions. Hence, [-1,-1] is returned.</pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n == nums.length &lt;= 100</code></li> <li><code>0 &lt;= nums[i] &lt;= 50</code></li> <li><code>0 &lt;= indexDifference &lt;= 100</code></li> <li><code>0 &lt;= valueDifference &lt;= 50</code></li> </ul>
Array; Two Pointers
Rust
impl Solution { pub fn find_indices(nums: Vec<i32>, index_difference: i32, value_difference: i32) -> Vec<i32> { let index_difference = index_difference as usize; let mut mi = 0; let mut mx = 0; for i in index_difference..nums.len() { let j = i - index_difference; if nums[j] < nums[mi] { mi = j; } if nums[j] > nums[mx] { mx = j; } if nums[i] - nums[mi] >= value_difference { return vec![mi as i32, i as i32]; } if nums[mx] - nums[i] >= value_difference { return vec![mx as i32, i as i32]; } } vec![-1, -1] } }
2,903
Find Indices With Index and Value Difference I
Easy
<p>You are given a <strong>0-indexed</strong> integer array <code>nums</code> having length <code>n</code>, an integer <code>indexDifference</code>, and an integer <code>valueDifference</code>.</p> <p>Your task is to find <strong>two</strong> indices <code>i</code> and <code>j</code>, both in the range <code>[0, n - 1]</code>, that satisfy the following conditions:</p> <ul> <li><code>abs(i - j) &gt;= indexDifference</code>, and</li> <li><code>abs(nums[i] - nums[j]) &gt;= valueDifference</code></li> </ul> <p>Return <em>an integer array</em> <code>answer</code>, <em>where</em> <code>answer = [i, j]</code> <em>if there are two such indices</em>, <em>and</em> <code>answer = [-1, -1]</code> <em>otherwise</em>. If there are multiple choices for the two indices, return <em>any of them</em>.</p> <p><strong>Note:</strong> <code>i</code> and <code>j</code> may be <strong>equal</strong>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [5,1,4,1], indexDifference = 2, valueDifference = 4 <strong>Output:</strong> [0,3] <strong>Explanation:</strong> In this example, i = 0 and j = 3 can be selected. abs(0 - 3) &gt;= 2 and abs(nums[0] - nums[3]) &gt;= 4. Hence, a valid answer is [0,3]. [3,0] is also a valid answer. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [2,1], indexDifference = 0, valueDifference = 0 <strong>Output:</strong> [0,0] <strong>Explanation:</strong> In this example, i = 0 and j = 0 can be selected. abs(0 - 0) &gt;= 0 and abs(nums[0] - nums[0]) &gt;= 0. Hence, a valid answer is [0,0]. Other valid answers are [0,1], [1,0], and [1,1]. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [1,2,3], indexDifference = 2, valueDifference = 4 <strong>Output:</strong> [-1,-1] <strong>Explanation:</strong> In this example, it can be shown that it is impossible to find two indices that satisfy both conditions. Hence, [-1,-1] is returned.</pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n == nums.length &lt;= 100</code></li> <li><code>0 &lt;= nums[i] &lt;= 50</code></li> <li><code>0 &lt;= indexDifference &lt;= 100</code></li> <li><code>0 &lt;= valueDifference &lt;= 50</code></li> </ul>
Array; Two Pointers
TypeScript
function findIndices(nums: number[], indexDifference: number, valueDifference: number): number[] { let [mi, mx] = [0, 0]; for (let i = indexDifference; i < nums.length; ++i) { const j = i - indexDifference; if (nums[j] < nums[mi]) { mi = j; } if (nums[j] > nums[mx]) { mx = j; } if (nums[i] - nums[mi] >= valueDifference) { return [mi, i]; } if (nums[mx] - nums[i] >= valueDifference) { return [mx, i]; } } return [-1, -1]; }
2,904
Shortest and Lexicographically Smallest Beautiful String
Medium
<p>You are given a binary string <code>s</code> and a positive integer <code>k</code>.</p> <p>A substring of <code>s</code> is <strong>beautiful</strong> if the number of <code>1</code>&#39;s in it is exactly <code>k</code>.</p> <p>Let <code>len</code> be the length of the <strong>shortest</strong> beautiful substring.</p> <p>Return <em>the lexicographically <strong>smallest</strong> beautiful substring of string </em><code>s</code><em> with length equal to </em><code>len</code>. If <code>s</code> doesn&#39;t contain a beautiful substring, return <em>an <strong>empty</strong> string</em>.</p> <p>A string <code>a</code> is lexicographically <strong>larger</strong> than a string <code>b</code> (of the same length) if in the first position where <code>a</code> and <code>b</code> differ, <code>a</code> has a character strictly larger than the corresponding character in <code>b</code>.</p> <ul> <li>For example, <code>&quot;abcd&quot;</code> is lexicographically larger than <code>&quot;abcc&quot;</code> because the first position they differ is at the fourth character, and <code>d</code> is greater than <code>c</code>.</li> </ul> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> s = &quot;100011001&quot;, k = 3 <strong>Output:</strong> &quot;11001&quot; <strong>Explanation:</strong> There are 7 beautiful substrings in this example: 1. The substring &quot;<u>100011</u>001&quot;. 2. The substring &quot;<u>1000110</u>01&quot;. 3. The substring &quot;<u>10001100</u>1&quot;. 4. The substring &quot;1<u>00011001</u>&quot;. 5. The substring &quot;10<u>0011001</u>&quot;. 6. The substring &quot;100<u>011001</u>&quot;. 7. The substring &quot;1000<u>11001</u>&quot;. The length of the shortest beautiful substring is 5. The lexicographically smallest beautiful substring with length 5 is the substring &quot;11001&quot;. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> s = &quot;1011&quot;, k = 2 <strong>Output:</strong> &quot;11&quot; <strong>Explanation:</strong> There are 3 beautiful substrings in this example: 1. The substring &quot;<u>101</u>1&quot;. 2. The substring &quot;1<u>011</u>&quot;. 3. The substring &quot;10<u>11</u>&quot;. The length of the shortest beautiful substring is 2. The lexicographically smallest beautiful substring with length 2 is the substring &quot;11&quot;. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> s = &quot;000&quot;, k = 1 <strong>Output:</strong> &quot;&quot; <strong>Explanation:</strong> There are no beautiful substrings in this example. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= s.length &lt;= 100</code></li> <li><code>1 &lt;= k &lt;= s.length</code></li> </ul>
String; Sliding Window
C++
class Solution { public: string shortestBeautifulSubstring(string s, int k) { int n = s.size(); string ans = ""; for (int i = 0; i < n; ++i) { for (int j = i + k; j <= n; ++j) { string t = s.substr(i, j - i); int cnt = count(t.begin(), t.end(), '1'); if (cnt == k && (ans == "" || j - i < ans.size() || (j - i == ans.size() && t < ans))) { ans = t; } } } return ans; } };
2,904
Shortest and Lexicographically Smallest Beautiful String
Medium
<p>You are given a binary string <code>s</code> and a positive integer <code>k</code>.</p> <p>A substring of <code>s</code> is <strong>beautiful</strong> if the number of <code>1</code>&#39;s in it is exactly <code>k</code>.</p> <p>Let <code>len</code> be the length of the <strong>shortest</strong> beautiful substring.</p> <p>Return <em>the lexicographically <strong>smallest</strong> beautiful substring of string </em><code>s</code><em> with length equal to </em><code>len</code>. If <code>s</code> doesn&#39;t contain a beautiful substring, return <em>an <strong>empty</strong> string</em>.</p> <p>A string <code>a</code> is lexicographically <strong>larger</strong> than a string <code>b</code> (of the same length) if in the first position where <code>a</code> and <code>b</code> differ, <code>a</code> has a character strictly larger than the corresponding character in <code>b</code>.</p> <ul> <li>For example, <code>&quot;abcd&quot;</code> is lexicographically larger than <code>&quot;abcc&quot;</code> because the first position they differ is at the fourth character, and <code>d</code> is greater than <code>c</code>.</li> </ul> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> s = &quot;100011001&quot;, k = 3 <strong>Output:</strong> &quot;11001&quot; <strong>Explanation:</strong> There are 7 beautiful substrings in this example: 1. The substring &quot;<u>100011</u>001&quot;. 2. The substring &quot;<u>1000110</u>01&quot;. 3. The substring &quot;<u>10001100</u>1&quot;. 4. The substring &quot;1<u>00011001</u>&quot;. 5. The substring &quot;10<u>0011001</u>&quot;. 6. The substring &quot;100<u>011001</u>&quot;. 7. The substring &quot;1000<u>11001</u>&quot;. The length of the shortest beautiful substring is 5. The lexicographically smallest beautiful substring with length 5 is the substring &quot;11001&quot;. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> s = &quot;1011&quot;, k = 2 <strong>Output:</strong> &quot;11&quot; <strong>Explanation:</strong> There are 3 beautiful substrings in this example: 1. The substring &quot;<u>101</u>1&quot;. 2. The substring &quot;1<u>011</u>&quot;. 3. The substring &quot;10<u>11</u>&quot;. The length of the shortest beautiful substring is 2. The lexicographically smallest beautiful substring with length 2 is the substring &quot;11&quot;. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> s = &quot;000&quot;, k = 1 <strong>Output:</strong> &quot;&quot; <strong>Explanation:</strong> There are no beautiful substrings in this example. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= s.length &lt;= 100</code></li> <li><code>1 &lt;= k &lt;= s.length</code></li> </ul>
String; Sliding Window
Go
func shortestBeautifulSubstring(s string, k int) (ans string) { n := len(s) for i := 0; i < n; i++ { for j := i + k; j <= n; j++ { t := s[i:j] cnt := 0 for _, c := range t { if c == '1' { cnt++ } } if cnt == k && (ans == "" || j-i < len(ans) || (j-i == len(ans) && t < ans)) { ans = t } } } return }
2,904
Shortest and Lexicographically Smallest Beautiful String
Medium
<p>You are given a binary string <code>s</code> and a positive integer <code>k</code>.</p> <p>A substring of <code>s</code> is <strong>beautiful</strong> if the number of <code>1</code>&#39;s in it is exactly <code>k</code>.</p> <p>Let <code>len</code> be the length of the <strong>shortest</strong> beautiful substring.</p> <p>Return <em>the lexicographically <strong>smallest</strong> beautiful substring of string </em><code>s</code><em> with length equal to </em><code>len</code>. If <code>s</code> doesn&#39;t contain a beautiful substring, return <em>an <strong>empty</strong> string</em>.</p> <p>A string <code>a</code> is lexicographically <strong>larger</strong> than a string <code>b</code> (of the same length) if in the first position where <code>a</code> and <code>b</code> differ, <code>a</code> has a character strictly larger than the corresponding character in <code>b</code>.</p> <ul> <li>For example, <code>&quot;abcd&quot;</code> is lexicographically larger than <code>&quot;abcc&quot;</code> because the first position they differ is at the fourth character, and <code>d</code> is greater than <code>c</code>.</li> </ul> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> s = &quot;100011001&quot;, k = 3 <strong>Output:</strong> &quot;11001&quot; <strong>Explanation:</strong> There are 7 beautiful substrings in this example: 1. The substring &quot;<u>100011</u>001&quot;. 2. The substring &quot;<u>1000110</u>01&quot;. 3. The substring &quot;<u>10001100</u>1&quot;. 4. The substring &quot;1<u>00011001</u>&quot;. 5. The substring &quot;10<u>0011001</u>&quot;. 6. The substring &quot;100<u>011001</u>&quot;. 7. The substring &quot;1000<u>11001</u>&quot;. The length of the shortest beautiful substring is 5. The lexicographically smallest beautiful substring with length 5 is the substring &quot;11001&quot;. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> s = &quot;1011&quot;, k = 2 <strong>Output:</strong> &quot;11&quot; <strong>Explanation:</strong> There are 3 beautiful substrings in this example: 1. The substring &quot;<u>101</u>1&quot;. 2. The substring &quot;1<u>011</u>&quot;. 3. The substring &quot;10<u>11</u>&quot;. The length of the shortest beautiful substring is 2. The lexicographically smallest beautiful substring with length 2 is the substring &quot;11&quot;. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> s = &quot;000&quot;, k = 1 <strong>Output:</strong> &quot;&quot; <strong>Explanation:</strong> There are no beautiful substrings in this example. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= s.length &lt;= 100</code></li> <li><code>1 &lt;= k &lt;= s.length</code></li> </ul>
String; Sliding Window
Java
class Solution { public String shortestBeautifulSubstring(String s, int k) { int n = s.length(); String ans = ""; for (int i = 0; i < n; ++i) { for (int j = i + k; j <= n; ++j) { String t = s.substring(i, j); int cnt = 0; for (char c : t.toCharArray()) { cnt += c - '0'; } if (cnt == k && ("".equals(ans) || j - i < ans.length() || (j - i == ans.length() && t.compareTo(ans) < 0))) { ans = t; } } } return ans; } }
2,904
Shortest and Lexicographically Smallest Beautiful String
Medium
<p>You are given a binary string <code>s</code> and a positive integer <code>k</code>.</p> <p>A substring of <code>s</code> is <strong>beautiful</strong> if the number of <code>1</code>&#39;s in it is exactly <code>k</code>.</p> <p>Let <code>len</code> be the length of the <strong>shortest</strong> beautiful substring.</p> <p>Return <em>the lexicographically <strong>smallest</strong> beautiful substring of string </em><code>s</code><em> with length equal to </em><code>len</code>. If <code>s</code> doesn&#39;t contain a beautiful substring, return <em>an <strong>empty</strong> string</em>.</p> <p>A string <code>a</code> is lexicographically <strong>larger</strong> than a string <code>b</code> (of the same length) if in the first position where <code>a</code> and <code>b</code> differ, <code>a</code> has a character strictly larger than the corresponding character in <code>b</code>.</p> <ul> <li>For example, <code>&quot;abcd&quot;</code> is lexicographically larger than <code>&quot;abcc&quot;</code> because the first position they differ is at the fourth character, and <code>d</code> is greater than <code>c</code>.</li> </ul> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> s = &quot;100011001&quot;, k = 3 <strong>Output:</strong> &quot;11001&quot; <strong>Explanation:</strong> There are 7 beautiful substrings in this example: 1. The substring &quot;<u>100011</u>001&quot;. 2. The substring &quot;<u>1000110</u>01&quot;. 3. The substring &quot;<u>10001100</u>1&quot;. 4. The substring &quot;1<u>00011001</u>&quot;. 5. The substring &quot;10<u>0011001</u>&quot;. 6. The substring &quot;100<u>011001</u>&quot;. 7. The substring &quot;1000<u>11001</u>&quot;. The length of the shortest beautiful substring is 5. The lexicographically smallest beautiful substring with length 5 is the substring &quot;11001&quot;. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> s = &quot;1011&quot;, k = 2 <strong>Output:</strong> &quot;11&quot; <strong>Explanation:</strong> There are 3 beautiful substrings in this example: 1. The substring &quot;<u>101</u>1&quot;. 2. The substring &quot;1<u>011</u>&quot;. 3. The substring &quot;10<u>11</u>&quot;. The length of the shortest beautiful substring is 2. The lexicographically smallest beautiful substring with length 2 is the substring &quot;11&quot;. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> s = &quot;000&quot;, k = 1 <strong>Output:</strong> &quot;&quot; <strong>Explanation:</strong> There are no beautiful substrings in this example. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= s.length &lt;= 100</code></li> <li><code>1 &lt;= k &lt;= s.length</code></li> </ul>
String; Sliding Window
Python
class Solution: def shortestBeautifulSubstring(self, s: str, k: int) -> str: n = len(s) ans = "" for i in range(n): for j in range(i + k, n + 1): t = s[i:j] if t.count("1") == k and ( not ans or j - i < len(ans) or (j - i == len(ans) and t < ans) ): ans = t return ans
2,904
Shortest and Lexicographically Smallest Beautiful String
Medium
<p>You are given a binary string <code>s</code> and a positive integer <code>k</code>.</p> <p>A substring of <code>s</code> is <strong>beautiful</strong> if the number of <code>1</code>&#39;s in it is exactly <code>k</code>.</p> <p>Let <code>len</code> be the length of the <strong>shortest</strong> beautiful substring.</p> <p>Return <em>the lexicographically <strong>smallest</strong> beautiful substring of string </em><code>s</code><em> with length equal to </em><code>len</code>. If <code>s</code> doesn&#39;t contain a beautiful substring, return <em>an <strong>empty</strong> string</em>.</p> <p>A string <code>a</code> is lexicographically <strong>larger</strong> than a string <code>b</code> (of the same length) if in the first position where <code>a</code> and <code>b</code> differ, <code>a</code> has a character strictly larger than the corresponding character in <code>b</code>.</p> <ul> <li>For example, <code>&quot;abcd&quot;</code> is lexicographically larger than <code>&quot;abcc&quot;</code> because the first position they differ is at the fourth character, and <code>d</code> is greater than <code>c</code>.</li> </ul> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> s = &quot;100011001&quot;, k = 3 <strong>Output:</strong> &quot;11001&quot; <strong>Explanation:</strong> There are 7 beautiful substrings in this example: 1. The substring &quot;<u>100011</u>001&quot;. 2. The substring &quot;<u>1000110</u>01&quot;. 3. The substring &quot;<u>10001100</u>1&quot;. 4. The substring &quot;1<u>00011001</u>&quot;. 5. The substring &quot;10<u>0011001</u>&quot;. 6. The substring &quot;100<u>011001</u>&quot;. 7. The substring &quot;1000<u>11001</u>&quot;. The length of the shortest beautiful substring is 5. The lexicographically smallest beautiful substring with length 5 is the substring &quot;11001&quot;. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> s = &quot;1011&quot;, k = 2 <strong>Output:</strong> &quot;11&quot; <strong>Explanation:</strong> There are 3 beautiful substrings in this example: 1. The substring &quot;<u>101</u>1&quot;. 2. The substring &quot;1<u>011</u>&quot;. 3. The substring &quot;10<u>11</u>&quot;. The length of the shortest beautiful substring is 2. The lexicographically smallest beautiful substring with length 2 is the substring &quot;11&quot;. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> s = &quot;000&quot;, k = 1 <strong>Output:</strong> &quot;&quot; <strong>Explanation:</strong> There are no beautiful substrings in this example. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= s.length &lt;= 100</code></li> <li><code>1 &lt;= k &lt;= s.length</code></li> </ul>
String; Sliding Window
Rust
impl Solution { pub fn shortest_beautiful_substring(s: String, k: i32) -> String { let n = s.len(); let mut ans = String::new(); for i in 0..n { for j in i + (k as usize)..=n { let t = &s[i..j]; if (t.matches('1').count() as i32) == k && (ans.is_empty() || j - i < ans.len() || (j - i == ans.len() && t < &ans)) { ans = t.to_string(); } } } ans } }
2,904
Shortest and Lexicographically Smallest Beautiful String
Medium
<p>You are given a binary string <code>s</code> and a positive integer <code>k</code>.</p> <p>A substring of <code>s</code> is <strong>beautiful</strong> if the number of <code>1</code>&#39;s in it is exactly <code>k</code>.</p> <p>Let <code>len</code> be the length of the <strong>shortest</strong> beautiful substring.</p> <p>Return <em>the lexicographically <strong>smallest</strong> beautiful substring of string </em><code>s</code><em> with length equal to </em><code>len</code>. If <code>s</code> doesn&#39;t contain a beautiful substring, return <em>an <strong>empty</strong> string</em>.</p> <p>A string <code>a</code> is lexicographically <strong>larger</strong> than a string <code>b</code> (of the same length) if in the first position where <code>a</code> and <code>b</code> differ, <code>a</code> has a character strictly larger than the corresponding character in <code>b</code>.</p> <ul> <li>For example, <code>&quot;abcd&quot;</code> is lexicographically larger than <code>&quot;abcc&quot;</code> because the first position they differ is at the fourth character, and <code>d</code> is greater than <code>c</code>.</li> </ul> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> s = &quot;100011001&quot;, k = 3 <strong>Output:</strong> &quot;11001&quot; <strong>Explanation:</strong> There are 7 beautiful substrings in this example: 1. The substring &quot;<u>100011</u>001&quot;. 2. The substring &quot;<u>1000110</u>01&quot;. 3. The substring &quot;<u>10001100</u>1&quot;. 4. The substring &quot;1<u>00011001</u>&quot;. 5. The substring &quot;10<u>0011001</u>&quot;. 6. The substring &quot;100<u>011001</u>&quot;. 7. The substring &quot;1000<u>11001</u>&quot;. The length of the shortest beautiful substring is 5. The lexicographically smallest beautiful substring with length 5 is the substring &quot;11001&quot;. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> s = &quot;1011&quot;, k = 2 <strong>Output:</strong> &quot;11&quot; <strong>Explanation:</strong> There are 3 beautiful substrings in this example: 1. The substring &quot;<u>101</u>1&quot;. 2. The substring &quot;1<u>011</u>&quot;. 3. The substring &quot;10<u>11</u>&quot;. The length of the shortest beautiful substring is 2. The lexicographically smallest beautiful substring with length 2 is the substring &quot;11&quot;. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> s = &quot;000&quot;, k = 1 <strong>Output:</strong> &quot;&quot; <strong>Explanation:</strong> There are no beautiful substrings in this example. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= s.length &lt;= 100</code></li> <li><code>1 &lt;= k &lt;= s.length</code></li> </ul>
String; Sliding Window
TypeScript
function shortestBeautifulSubstring(s: string, k: number): string { const n = s.length; let ans: string = ''; for (let i = 0; i < n; ++i) { for (let j = i + k; j <= n; ++j) { const t = s.slice(i, j); const cnt = t.split('').filter(c => c === '1').length; if ( cnt === k && (ans === '' || j - i < ans.length || (j - i === ans.length && t < ans)) ) { ans = t; } } } return ans; }
2,905
Find Indices With Index and Value Difference II
Medium
<p>You are given a <strong>0-indexed</strong> integer array <code>nums</code> having length <code>n</code>, an integer <code>indexDifference</code>, and an integer <code>valueDifference</code>.</p> <p>Your task is to find <strong>two</strong> indices <code>i</code> and <code>j</code>, both in the range <code>[0, n - 1]</code>, that satisfy the following conditions:</p> <ul> <li><code>abs(i - j) &gt;= indexDifference</code>, and</li> <li><code>abs(nums[i] - nums[j]) &gt;= valueDifference</code></li> </ul> <p>Return <em>an integer array</em> <code>answer</code>, <em>where</em> <code>answer = [i, j]</code> <em>if there are two such indices</em>, <em>and</em> <code>answer = [-1, -1]</code> <em>otherwise</em>. If there are multiple choices for the two indices, return <em>any of them</em>.</p> <p><strong>Note:</strong> <code>i</code> and <code>j</code> may be <strong>equal</strong>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [5,1,4,1], indexDifference = 2, valueDifference = 4 <strong>Output:</strong> [0,3] <strong>Explanation:</strong> In this example, i = 0 and j = 3 can be selected. abs(0 - 3) &gt;= 2 and abs(nums[0] - nums[3]) &gt;= 4. Hence, a valid answer is [0,3]. [3,0] is also a valid answer. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [2,1], indexDifference = 0, valueDifference = 0 <strong>Output:</strong> [0,0] <strong>Explanation:</strong> In this example, i = 0 and j = 0 can be selected. abs(0 - 0) &gt;= 0 and abs(nums[0] - nums[0]) &gt;= 0. Hence, a valid answer is [0,0]. Other valid answers are [0,1], [1,0], and [1,1]. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [1,2,3], indexDifference = 2, valueDifference = 4 <strong>Output:</strong> [-1,-1] <strong>Explanation:</strong> In this example, it can be shown that it is impossible to find two indices that satisfy both conditions. Hence, [-1,-1] is returned.</pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n == nums.length &lt;= 10<sup>5</sup></code></li> <li><code>0 &lt;= nums[i] &lt;= 10<sup>9</sup></code></li> <li><code>0 &lt;= indexDifference &lt;= 10<sup>5</sup></code></li> <li><code>0 &lt;= valueDifference &lt;= 10<sup>9</sup></code></li> </ul>
Array; Two Pointers
C++
class Solution { public: vector<int> findIndices(vector<int>& nums, int indexDifference, int valueDifference) { int mi = 0, mx = 0; for (int i = indexDifference; i < nums.size(); ++i) { int j = i - indexDifference; if (nums[j] < nums[mi]) { mi = j; } if (nums[j] > nums[mx]) { mx = j; } if (nums[i] - nums[mi] >= valueDifference) { return {mi, i}; } if (nums[mx] - nums[i] >= valueDifference) { return {mx, i}; } } return {-1, -1}; } };
2,905
Find Indices With Index and Value Difference II
Medium
<p>You are given a <strong>0-indexed</strong> integer array <code>nums</code> having length <code>n</code>, an integer <code>indexDifference</code>, and an integer <code>valueDifference</code>.</p> <p>Your task is to find <strong>two</strong> indices <code>i</code> and <code>j</code>, both in the range <code>[0, n - 1]</code>, that satisfy the following conditions:</p> <ul> <li><code>abs(i - j) &gt;= indexDifference</code>, and</li> <li><code>abs(nums[i] - nums[j]) &gt;= valueDifference</code></li> </ul> <p>Return <em>an integer array</em> <code>answer</code>, <em>where</em> <code>answer = [i, j]</code> <em>if there are two such indices</em>, <em>and</em> <code>answer = [-1, -1]</code> <em>otherwise</em>. If there are multiple choices for the two indices, return <em>any of them</em>.</p> <p><strong>Note:</strong> <code>i</code> and <code>j</code> may be <strong>equal</strong>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [5,1,4,1], indexDifference = 2, valueDifference = 4 <strong>Output:</strong> [0,3] <strong>Explanation:</strong> In this example, i = 0 and j = 3 can be selected. abs(0 - 3) &gt;= 2 and abs(nums[0] - nums[3]) &gt;= 4. Hence, a valid answer is [0,3]. [3,0] is also a valid answer. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [2,1], indexDifference = 0, valueDifference = 0 <strong>Output:</strong> [0,0] <strong>Explanation:</strong> In this example, i = 0 and j = 0 can be selected. abs(0 - 0) &gt;= 0 and abs(nums[0] - nums[0]) &gt;= 0. Hence, a valid answer is [0,0]. Other valid answers are [0,1], [1,0], and [1,1]. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [1,2,3], indexDifference = 2, valueDifference = 4 <strong>Output:</strong> [-1,-1] <strong>Explanation:</strong> In this example, it can be shown that it is impossible to find two indices that satisfy both conditions. Hence, [-1,-1] is returned.</pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n == nums.length &lt;= 10<sup>5</sup></code></li> <li><code>0 &lt;= nums[i] &lt;= 10<sup>9</sup></code></li> <li><code>0 &lt;= indexDifference &lt;= 10<sup>5</sup></code></li> <li><code>0 &lt;= valueDifference &lt;= 10<sup>9</sup></code></li> </ul>
Array; Two Pointers
Go
func findIndices(nums []int, indexDifference int, valueDifference int) []int { mi, mx := 0, 0 for i := indexDifference; i < len(nums); i++ { j := i - indexDifference if nums[j] < nums[mi] { mi = j } if nums[j] > nums[mx] { mx = j } if nums[i]-nums[mi] >= valueDifference { return []int{mi, i} } if nums[mx]-nums[i] >= valueDifference { return []int{mx, i} } } return []int{-1, -1} }
2,905
Find Indices With Index and Value Difference II
Medium
<p>You are given a <strong>0-indexed</strong> integer array <code>nums</code> having length <code>n</code>, an integer <code>indexDifference</code>, and an integer <code>valueDifference</code>.</p> <p>Your task is to find <strong>two</strong> indices <code>i</code> and <code>j</code>, both in the range <code>[0, n - 1]</code>, that satisfy the following conditions:</p> <ul> <li><code>abs(i - j) &gt;= indexDifference</code>, and</li> <li><code>abs(nums[i] - nums[j]) &gt;= valueDifference</code></li> </ul> <p>Return <em>an integer array</em> <code>answer</code>, <em>where</em> <code>answer = [i, j]</code> <em>if there are two such indices</em>, <em>and</em> <code>answer = [-1, -1]</code> <em>otherwise</em>. If there are multiple choices for the two indices, return <em>any of them</em>.</p> <p><strong>Note:</strong> <code>i</code> and <code>j</code> may be <strong>equal</strong>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [5,1,4,1], indexDifference = 2, valueDifference = 4 <strong>Output:</strong> [0,3] <strong>Explanation:</strong> In this example, i = 0 and j = 3 can be selected. abs(0 - 3) &gt;= 2 and abs(nums[0] - nums[3]) &gt;= 4. Hence, a valid answer is [0,3]. [3,0] is also a valid answer. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [2,1], indexDifference = 0, valueDifference = 0 <strong>Output:</strong> [0,0] <strong>Explanation:</strong> In this example, i = 0 and j = 0 can be selected. abs(0 - 0) &gt;= 0 and abs(nums[0] - nums[0]) &gt;= 0. Hence, a valid answer is [0,0]. Other valid answers are [0,1], [1,0], and [1,1]. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [1,2,3], indexDifference = 2, valueDifference = 4 <strong>Output:</strong> [-1,-1] <strong>Explanation:</strong> In this example, it can be shown that it is impossible to find two indices that satisfy both conditions. Hence, [-1,-1] is returned.</pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n == nums.length &lt;= 10<sup>5</sup></code></li> <li><code>0 &lt;= nums[i] &lt;= 10<sup>9</sup></code></li> <li><code>0 &lt;= indexDifference &lt;= 10<sup>5</sup></code></li> <li><code>0 &lt;= valueDifference &lt;= 10<sup>9</sup></code></li> </ul>
Array; Two Pointers
Java
class Solution { public int[] findIndices(int[] nums, int indexDifference, int valueDifference) { int mi = 0; int mx = 0; for (int i = indexDifference; i < nums.length; ++i) { int j = i - indexDifference; if (nums[j] < nums[mi]) { mi = j; } if (nums[j] > nums[mx]) { mx = j; } if (nums[i] - nums[mi] >= valueDifference) { return new int[] {mi, i}; } if (nums[mx] - nums[i] >= valueDifference) { return new int[] {mx, i}; } } return new int[] {-1, -1}; } }
2,905
Find Indices With Index and Value Difference II
Medium
<p>You are given a <strong>0-indexed</strong> integer array <code>nums</code> having length <code>n</code>, an integer <code>indexDifference</code>, and an integer <code>valueDifference</code>.</p> <p>Your task is to find <strong>two</strong> indices <code>i</code> and <code>j</code>, both in the range <code>[0, n - 1]</code>, that satisfy the following conditions:</p> <ul> <li><code>abs(i - j) &gt;= indexDifference</code>, and</li> <li><code>abs(nums[i] - nums[j]) &gt;= valueDifference</code></li> </ul> <p>Return <em>an integer array</em> <code>answer</code>, <em>where</em> <code>answer = [i, j]</code> <em>if there are two such indices</em>, <em>and</em> <code>answer = [-1, -1]</code> <em>otherwise</em>. If there are multiple choices for the two indices, return <em>any of them</em>.</p> <p><strong>Note:</strong> <code>i</code> and <code>j</code> may be <strong>equal</strong>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [5,1,4,1], indexDifference = 2, valueDifference = 4 <strong>Output:</strong> [0,3] <strong>Explanation:</strong> In this example, i = 0 and j = 3 can be selected. abs(0 - 3) &gt;= 2 and abs(nums[0] - nums[3]) &gt;= 4. Hence, a valid answer is [0,3]. [3,0] is also a valid answer. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [2,1], indexDifference = 0, valueDifference = 0 <strong>Output:</strong> [0,0] <strong>Explanation:</strong> In this example, i = 0 and j = 0 can be selected. abs(0 - 0) &gt;= 0 and abs(nums[0] - nums[0]) &gt;= 0. Hence, a valid answer is [0,0]. Other valid answers are [0,1], [1,0], and [1,1]. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [1,2,3], indexDifference = 2, valueDifference = 4 <strong>Output:</strong> [-1,-1] <strong>Explanation:</strong> In this example, it can be shown that it is impossible to find two indices that satisfy both conditions. Hence, [-1,-1] is returned.</pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n == nums.length &lt;= 10<sup>5</sup></code></li> <li><code>0 &lt;= nums[i] &lt;= 10<sup>9</sup></code></li> <li><code>0 &lt;= indexDifference &lt;= 10<sup>5</sup></code></li> <li><code>0 &lt;= valueDifference &lt;= 10<sup>9</sup></code></li> </ul>
Array; Two Pointers
Python
class Solution: def findIndices( self, nums: List[int], indexDifference: int, valueDifference: int ) -> List[int]: mi = mx = 0 for i in range(indexDifference, len(nums)): j = i - indexDifference if nums[j] < nums[mi]: mi = j if nums[j] > nums[mx]: mx = j if nums[i] - nums[mi] >= valueDifference: return [mi, i] if nums[mx] - nums[i] >= valueDifference: return [mx, i] return [-1, -1]
2,905
Find Indices With Index and Value Difference II
Medium
<p>You are given a <strong>0-indexed</strong> integer array <code>nums</code> having length <code>n</code>, an integer <code>indexDifference</code>, and an integer <code>valueDifference</code>.</p> <p>Your task is to find <strong>two</strong> indices <code>i</code> and <code>j</code>, both in the range <code>[0, n - 1]</code>, that satisfy the following conditions:</p> <ul> <li><code>abs(i - j) &gt;= indexDifference</code>, and</li> <li><code>abs(nums[i] - nums[j]) &gt;= valueDifference</code></li> </ul> <p>Return <em>an integer array</em> <code>answer</code>, <em>where</em> <code>answer = [i, j]</code> <em>if there are two such indices</em>, <em>and</em> <code>answer = [-1, -1]</code> <em>otherwise</em>. If there are multiple choices for the two indices, return <em>any of them</em>.</p> <p><strong>Note:</strong> <code>i</code> and <code>j</code> may be <strong>equal</strong>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [5,1,4,1], indexDifference = 2, valueDifference = 4 <strong>Output:</strong> [0,3] <strong>Explanation:</strong> In this example, i = 0 and j = 3 can be selected. abs(0 - 3) &gt;= 2 and abs(nums[0] - nums[3]) &gt;= 4. Hence, a valid answer is [0,3]. [3,0] is also a valid answer. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [2,1], indexDifference = 0, valueDifference = 0 <strong>Output:</strong> [0,0] <strong>Explanation:</strong> In this example, i = 0 and j = 0 can be selected. abs(0 - 0) &gt;= 0 and abs(nums[0] - nums[0]) &gt;= 0. Hence, a valid answer is [0,0]. Other valid answers are [0,1], [1,0], and [1,1]. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [1,2,3], indexDifference = 2, valueDifference = 4 <strong>Output:</strong> [-1,-1] <strong>Explanation:</strong> In this example, it can be shown that it is impossible to find two indices that satisfy both conditions. Hence, [-1,-1] is returned.</pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n == nums.length &lt;= 10<sup>5</sup></code></li> <li><code>0 &lt;= nums[i] &lt;= 10<sup>9</sup></code></li> <li><code>0 &lt;= indexDifference &lt;= 10<sup>5</sup></code></li> <li><code>0 &lt;= valueDifference &lt;= 10<sup>9</sup></code></li> </ul>
Array; Two Pointers
Rust
impl Solution { pub fn find_indices(nums: Vec<i32>, index_difference: i32, value_difference: i32) -> Vec<i32> { let index_difference = index_difference as usize; let mut mi = 0; let mut mx = 0; for i in index_difference..nums.len() { let j = i - index_difference; if nums[j] < nums[mi] { mi = j; } if nums[j] > nums[mx] { mx = j; } if nums[i] - nums[mi] >= value_difference { return vec![mi as i32, i as i32]; } if nums[mx] - nums[i] >= value_difference { return vec![mx as i32, i as i32]; } } vec![-1, -1] } }
2,905
Find Indices With Index and Value Difference II
Medium
<p>You are given a <strong>0-indexed</strong> integer array <code>nums</code> having length <code>n</code>, an integer <code>indexDifference</code>, and an integer <code>valueDifference</code>.</p> <p>Your task is to find <strong>two</strong> indices <code>i</code> and <code>j</code>, both in the range <code>[0, n - 1]</code>, that satisfy the following conditions:</p> <ul> <li><code>abs(i - j) &gt;= indexDifference</code>, and</li> <li><code>abs(nums[i] - nums[j]) &gt;= valueDifference</code></li> </ul> <p>Return <em>an integer array</em> <code>answer</code>, <em>where</em> <code>answer = [i, j]</code> <em>if there are two such indices</em>, <em>and</em> <code>answer = [-1, -1]</code> <em>otherwise</em>. If there are multiple choices for the two indices, return <em>any of them</em>.</p> <p><strong>Note:</strong> <code>i</code> and <code>j</code> may be <strong>equal</strong>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [5,1,4,1], indexDifference = 2, valueDifference = 4 <strong>Output:</strong> [0,3] <strong>Explanation:</strong> In this example, i = 0 and j = 3 can be selected. abs(0 - 3) &gt;= 2 and abs(nums[0] - nums[3]) &gt;= 4. Hence, a valid answer is [0,3]. [3,0] is also a valid answer. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [2,1], indexDifference = 0, valueDifference = 0 <strong>Output:</strong> [0,0] <strong>Explanation:</strong> In this example, i = 0 and j = 0 can be selected. abs(0 - 0) &gt;= 0 and abs(nums[0] - nums[0]) &gt;= 0. Hence, a valid answer is [0,0]. Other valid answers are [0,1], [1,0], and [1,1]. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [1,2,3], indexDifference = 2, valueDifference = 4 <strong>Output:</strong> [-1,-1] <strong>Explanation:</strong> In this example, it can be shown that it is impossible to find two indices that satisfy both conditions. Hence, [-1,-1] is returned.</pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n == nums.length &lt;= 10<sup>5</sup></code></li> <li><code>0 &lt;= nums[i] &lt;= 10<sup>9</sup></code></li> <li><code>0 &lt;= indexDifference &lt;= 10<sup>5</sup></code></li> <li><code>0 &lt;= valueDifference &lt;= 10<sup>9</sup></code></li> </ul>
Array; Two Pointers
TypeScript
function findIndices(nums: number[], indexDifference: number, valueDifference: number): number[] { let [mi, mx] = [0, 0]; for (let i = indexDifference; i < nums.length; ++i) { const j = i - indexDifference; if (nums[j] < nums[mi]) { mi = j; } if (nums[j] > nums[mx]) { mx = j; } if (nums[i] - nums[mi] >= valueDifference) { return [mi, i]; } if (nums[mx] - nums[i] >= valueDifference) { return [mx, i]; } } return [-1, -1]; }
2,906
Construct Product Matrix
Medium
<p>Given a <strong>0-indexed</strong> 2D integer matrix <code><font face="monospace">grid</font></code><font face="monospace"> </font>of size <code>n * m</code>, we define a <strong>0-indexed</strong> 2D matrix <code>p</code> of size <code>n * m</code> as the <strong>product</strong> matrix of <code>grid</code> if the following condition is met:</p> <ul> <li>Each element <code>p[i][j]</code> is calculated as the product of all elements in <code>grid</code> except for the element <code>grid[i][j]</code>. This product is then taken modulo <code><font face="monospace">12345</font></code>.</li> </ul> <p>Return <em>the product matrix of</em> <code><font face="monospace">grid</font></code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> grid = [[1,2],[3,4]] <strong>Output:</strong> [[24,12],[8,6]] <strong>Explanation:</strong> p[0][0] = grid[0][1] * grid[1][0] * grid[1][1] = 2 * 3 * 4 = 24 p[0][1] = grid[0][0] * grid[1][0] * grid[1][1] = 1 * 3 * 4 = 12 p[1][0] = grid[0][0] * grid[0][1] * grid[1][1] = 1 * 2 * 4 = 8 p[1][1] = grid[0][0] * grid[0][1] * grid[1][0] = 1 * 2 * 3 = 6 So the answer is [[24,12],[8,6]].</pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> grid = [[12345],[2],[1]] <strong>Output:</strong> [[2],[0],[0]] <strong>Explanation:</strong> p[0][0] = grid[0][1] * grid[0][2] = 2 * 1 = 2. p[0][1] = grid[0][0] * grid[0][2] = 12345 * 1 = 12345. 12345 % 12345 = 0. So p[0][1] = 0. p[0][2] = grid[0][0] * grid[0][1] = 12345 * 2 = 24690. 24690 % 12345 = 0. So p[0][2] = 0. So the answer is [[2],[0],[0]].</pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n == grid.length&nbsp;&lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= m == grid[i].length&nbsp;&lt;= 10<sup>5</sup></code></li> <li><code>2 &lt;= n * m &lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= grid[i][j] &lt;= 10<sup>9</sup></code></li> </ul>
Array; Matrix; Prefix Sum
C++
class Solution { public: vector<vector<int>> constructProductMatrix(vector<vector<int>>& grid) { const int mod = 12345; int n = grid.size(), m = grid[0].size(); vector<vector<int>> p(n, vector<int>(m)); long long suf = 1; for (int i = n - 1; i >= 0; --i) { for (int j = m - 1; j >= 0; --j) { p[i][j] = suf; suf = suf * grid[i][j] % mod; } } long long pre = 1; for (int i = 0; i < n; ++i) { for (int j = 0; j < m; ++j) { p[i][j] = p[i][j] * pre % mod; pre = pre * grid[i][j] % mod; } } return p; } };
2,906
Construct Product Matrix
Medium
<p>Given a <strong>0-indexed</strong> 2D integer matrix <code><font face="monospace">grid</font></code><font face="monospace"> </font>of size <code>n * m</code>, we define a <strong>0-indexed</strong> 2D matrix <code>p</code> of size <code>n * m</code> as the <strong>product</strong> matrix of <code>grid</code> if the following condition is met:</p> <ul> <li>Each element <code>p[i][j]</code> is calculated as the product of all elements in <code>grid</code> except for the element <code>grid[i][j]</code>. This product is then taken modulo <code><font face="monospace">12345</font></code>.</li> </ul> <p>Return <em>the product matrix of</em> <code><font face="monospace">grid</font></code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> grid = [[1,2],[3,4]] <strong>Output:</strong> [[24,12],[8,6]] <strong>Explanation:</strong> p[0][0] = grid[0][1] * grid[1][0] * grid[1][1] = 2 * 3 * 4 = 24 p[0][1] = grid[0][0] * grid[1][0] * grid[1][1] = 1 * 3 * 4 = 12 p[1][0] = grid[0][0] * grid[0][1] * grid[1][1] = 1 * 2 * 4 = 8 p[1][1] = grid[0][0] * grid[0][1] * grid[1][0] = 1 * 2 * 3 = 6 So the answer is [[24,12],[8,6]].</pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> grid = [[12345],[2],[1]] <strong>Output:</strong> [[2],[0],[0]] <strong>Explanation:</strong> p[0][0] = grid[0][1] * grid[0][2] = 2 * 1 = 2. p[0][1] = grid[0][0] * grid[0][2] = 12345 * 1 = 12345. 12345 % 12345 = 0. So p[0][1] = 0. p[0][2] = grid[0][0] * grid[0][1] = 12345 * 2 = 24690. 24690 % 12345 = 0. So p[0][2] = 0. So the answer is [[2],[0],[0]].</pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n == grid.length&nbsp;&lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= m == grid[i].length&nbsp;&lt;= 10<sup>5</sup></code></li> <li><code>2 &lt;= n * m &lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= grid[i][j] &lt;= 10<sup>9</sup></code></li> </ul>
Array; Matrix; Prefix Sum
Go
func constructProductMatrix(grid [][]int) [][]int { const mod int = 12345 n, m := len(grid), len(grid[0]) p := make([][]int, n) for i := range p { p[i] = make([]int, m) } suf := 1 for i := n - 1; i >= 0; i-- { for j := m - 1; j >= 0; j-- { p[i][j] = suf suf = suf * grid[i][j] % mod } } pre := 1 for i := 0; i < n; i++ { for j := 0; j < m; j++ { p[i][j] = p[i][j] * pre % mod pre = pre * grid[i][j] % mod } } return p }
2,906
Construct Product Matrix
Medium
<p>Given a <strong>0-indexed</strong> 2D integer matrix <code><font face="monospace">grid</font></code><font face="monospace"> </font>of size <code>n * m</code>, we define a <strong>0-indexed</strong> 2D matrix <code>p</code> of size <code>n * m</code> as the <strong>product</strong> matrix of <code>grid</code> if the following condition is met:</p> <ul> <li>Each element <code>p[i][j]</code> is calculated as the product of all elements in <code>grid</code> except for the element <code>grid[i][j]</code>. This product is then taken modulo <code><font face="monospace">12345</font></code>.</li> </ul> <p>Return <em>the product matrix of</em> <code><font face="monospace">grid</font></code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> grid = [[1,2],[3,4]] <strong>Output:</strong> [[24,12],[8,6]] <strong>Explanation:</strong> p[0][0] = grid[0][1] * grid[1][0] * grid[1][1] = 2 * 3 * 4 = 24 p[0][1] = grid[0][0] * grid[1][0] * grid[1][1] = 1 * 3 * 4 = 12 p[1][0] = grid[0][0] * grid[0][1] * grid[1][1] = 1 * 2 * 4 = 8 p[1][1] = grid[0][0] * grid[0][1] * grid[1][0] = 1 * 2 * 3 = 6 So the answer is [[24,12],[8,6]].</pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> grid = [[12345],[2],[1]] <strong>Output:</strong> [[2],[0],[0]] <strong>Explanation:</strong> p[0][0] = grid[0][1] * grid[0][2] = 2 * 1 = 2. p[0][1] = grid[0][0] * grid[0][2] = 12345 * 1 = 12345. 12345 % 12345 = 0. So p[0][1] = 0. p[0][2] = grid[0][0] * grid[0][1] = 12345 * 2 = 24690. 24690 % 12345 = 0. So p[0][2] = 0. So the answer is [[2],[0],[0]].</pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n == grid.length&nbsp;&lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= m == grid[i].length&nbsp;&lt;= 10<sup>5</sup></code></li> <li><code>2 &lt;= n * m &lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= grid[i][j] &lt;= 10<sup>9</sup></code></li> </ul>
Array; Matrix; Prefix Sum
Java
class Solution { public int[][] constructProductMatrix(int[][] grid) { final int mod = 12345; int n = grid.length, m = grid[0].length; int[][] p = new int[n][m]; long suf = 1; for (int i = n - 1; i >= 0; --i) { for (int j = m - 1; j >= 0; --j) { p[i][j] = (int) suf; suf = suf * grid[i][j] % mod; } } long pre = 1; for (int i = 0; i < n; ++i) { for (int j = 0; j < m; ++j) { p[i][j] = (int) (p[i][j] * pre % mod); pre = pre * grid[i][j] % mod; } } return p; } }
2,906
Construct Product Matrix
Medium
<p>Given a <strong>0-indexed</strong> 2D integer matrix <code><font face="monospace">grid</font></code><font face="monospace"> </font>of size <code>n * m</code>, we define a <strong>0-indexed</strong> 2D matrix <code>p</code> of size <code>n * m</code> as the <strong>product</strong> matrix of <code>grid</code> if the following condition is met:</p> <ul> <li>Each element <code>p[i][j]</code> is calculated as the product of all elements in <code>grid</code> except for the element <code>grid[i][j]</code>. This product is then taken modulo <code><font face="monospace">12345</font></code>.</li> </ul> <p>Return <em>the product matrix of</em> <code><font face="monospace">grid</font></code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> grid = [[1,2],[3,4]] <strong>Output:</strong> [[24,12],[8,6]] <strong>Explanation:</strong> p[0][0] = grid[0][1] * grid[1][0] * grid[1][1] = 2 * 3 * 4 = 24 p[0][1] = grid[0][0] * grid[1][0] * grid[1][1] = 1 * 3 * 4 = 12 p[1][0] = grid[0][0] * grid[0][1] * grid[1][1] = 1 * 2 * 4 = 8 p[1][1] = grid[0][0] * grid[0][1] * grid[1][0] = 1 * 2 * 3 = 6 So the answer is [[24,12],[8,6]].</pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> grid = [[12345],[2],[1]] <strong>Output:</strong> [[2],[0],[0]] <strong>Explanation:</strong> p[0][0] = grid[0][1] * grid[0][2] = 2 * 1 = 2. p[0][1] = grid[0][0] * grid[0][2] = 12345 * 1 = 12345. 12345 % 12345 = 0. So p[0][1] = 0. p[0][2] = grid[0][0] * grid[0][1] = 12345 * 2 = 24690. 24690 % 12345 = 0. So p[0][2] = 0. So the answer is [[2],[0],[0]].</pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n == grid.length&nbsp;&lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= m == grid[i].length&nbsp;&lt;= 10<sup>5</sup></code></li> <li><code>2 &lt;= n * m &lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= grid[i][j] &lt;= 10<sup>9</sup></code></li> </ul>
Array; Matrix; Prefix Sum
Python
class Solution: def constructProductMatrix(self, grid: List[List[int]]) -> List[List[int]]: n, m = len(grid), len(grid[0]) p = [[0] * m for _ in range(n)] mod = 12345 suf = 1 for i in range(n - 1, -1, -1): for j in range(m - 1, -1, -1): p[i][j] = suf suf = suf * grid[i][j] % mod pre = 1 for i in range(n): for j in range(m): p[i][j] = p[i][j] * pre % mod pre = pre * grid[i][j] % mod return p
2,906
Construct Product Matrix
Medium
<p>Given a <strong>0-indexed</strong> 2D integer matrix <code><font face="monospace">grid</font></code><font face="monospace"> </font>of size <code>n * m</code>, we define a <strong>0-indexed</strong> 2D matrix <code>p</code> of size <code>n * m</code> as the <strong>product</strong> matrix of <code>grid</code> if the following condition is met:</p> <ul> <li>Each element <code>p[i][j]</code> is calculated as the product of all elements in <code>grid</code> except for the element <code>grid[i][j]</code>. This product is then taken modulo <code><font face="monospace">12345</font></code>.</li> </ul> <p>Return <em>the product matrix of</em> <code><font face="monospace">grid</font></code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> grid = [[1,2],[3,4]] <strong>Output:</strong> [[24,12],[8,6]] <strong>Explanation:</strong> p[0][0] = grid[0][1] * grid[1][0] * grid[1][1] = 2 * 3 * 4 = 24 p[0][1] = grid[0][0] * grid[1][0] * grid[1][1] = 1 * 3 * 4 = 12 p[1][0] = grid[0][0] * grid[0][1] * grid[1][1] = 1 * 2 * 4 = 8 p[1][1] = grid[0][0] * grid[0][1] * grid[1][0] = 1 * 2 * 3 = 6 So the answer is [[24,12],[8,6]].</pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> grid = [[12345],[2],[1]] <strong>Output:</strong> [[2],[0],[0]] <strong>Explanation:</strong> p[0][0] = grid[0][1] * grid[0][2] = 2 * 1 = 2. p[0][1] = grid[0][0] * grid[0][2] = 12345 * 1 = 12345. 12345 % 12345 = 0. So p[0][1] = 0. p[0][2] = grid[0][0] * grid[0][1] = 12345 * 2 = 24690. 24690 % 12345 = 0. So p[0][2] = 0. So the answer is [[2],[0],[0]].</pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n == grid.length&nbsp;&lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= m == grid[i].length&nbsp;&lt;= 10<sup>5</sup></code></li> <li><code>2 &lt;= n * m &lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= grid[i][j] &lt;= 10<sup>9</sup></code></li> </ul>
Array; Matrix; Prefix Sum
Rust
impl Solution { pub fn construct_product_matrix(grid: Vec<Vec<i32>>) -> Vec<Vec<i32>> { let modulo: i32 = 12345; let n = grid.len(); let m = grid[0].len(); let mut p: Vec<Vec<i32>> = vec![vec![0; m]; n]; let mut suf = 1; for i in (0..n).rev() { for j in (0..m).rev() { p[i][j] = suf; suf = (((suf as i64) * (grid[i][j] as i64)) % (modulo as i64)) as i32; } } let mut pre = 1; for i in 0..n { for j in 0..m { p[i][j] = (((p[i][j] as i64) * (pre as i64)) % (modulo as i64)) as i32; pre = (((pre as i64) * (grid[i][j] as i64)) % (modulo as i64)) as i32; } } p } }
2,906
Construct Product Matrix
Medium
<p>Given a <strong>0-indexed</strong> 2D integer matrix <code><font face="monospace">grid</font></code><font face="monospace"> </font>of size <code>n * m</code>, we define a <strong>0-indexed</strong> 2D matrix <code>p</code> of size <code>n * m</code> as the <strong>product</strong> matrix of <code>grid</code> if the following condition is met:</p> <ul> <li>Each element <code>p[i][j]</code> is calculated as the product of all elements in <code>grid</code> except for the element <code>grid[i][j]</code>. This product is then taken modulo <code><font face="monospace">12345</font></code>.</li> </ul> <p>Return <em>the product matrix of</em> <code><font face="monospace">grid</font></code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> grid = [[1,2],[3,4]] <strong>Output:</strong> [[24,12],[8,6]] <strong>Explanation:</strong> p[0][0] = grid[0][1] * grid[1][0] * grid[1][1] = 2 * 3 * 4 = 24 p[0][1] = grid[0][0] * grid[1][0] * grid[1][1] = 1 * 3 * 4 = 12 p[1][0] = grid[0][0] * grid[0][1] * grid[1][1] = 1 * 2 * 4 = 8 p[1][1] = grid[0][0] * grid[0][1] * grid[1][0] = 1 * 2 * 3 = 6 So the answer is [[24,12],[8,6]].</pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> grid = [[12345],[2],[1]] <strong>Output:</strong> [[2],[0],[0]] <strong>Explanation:</strong> p[0][0] = grid[0][1] * grid[0][2] = 2 * 1 = 2. p[0][1] = grid[0][0] * grid[0][2] = 12345 * 1 = 12345. 12345 % 12345 = 0. So p[0][1] = 0. p[0][2] = grid[0][0] * grid[0][1] = 12345 * 2 = 24690. 24690 % 12345 = 0. So p[0][2] = 0. So the answer is [[2],[0],[0]].</pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n == grid.length&nbsp;&lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= m == grid[i].length&nbsp;&lt;= 10<sup>5</sup></code></li> <li><code>2 &lt;= n * m &lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= grid[i][j] &lt;= 10<sup>9</sup></code></li> </ul>
Array; Matrix; Prefix Sum
TypeScript
function constructProductMatrix(grid: number[][]): number[][] { const mod = 12345; const [n, m] = [grid.length, grid[0].length]; const p: number[][] = Array.from({ length: n }, () => Array.from({ length: m }, () => 0)); let suf = 1; for (let i = n - 1; ~i; --i) { for (let j = m - 1; ~j; --j) { p[i][j] = suf; suf = (suf * grid[i][j]) % mod; } } let pre = 1; for (let i = 0; i < n; ++i) { for (let j = 0; j < m; ++j) { p[i][j] = (p[i][j] * pre) % mod; pre = (pre * grid[i][j]) % mod; } } return p; }
2,907
Maximum Profitable Triplets With Increasing Prices I
Medium
<p>Given the <strong>0-indexed</strong> arrays <code>prices</code> and <code>profits</code> of length <code>n</code>. There are <code>n</code> items in an store where the <code>i<sup>th</sup></code> item has a price of <code>prices[i]</code> and a profit of <code>profits[i]</code>.</p> <p>We have to pick three items with the following condition:</p> <ul> <li><code>prices[i] &lt; prices[j] &lt; prices[k]</code> where <code>i &lt; j &lt; k</code>.</li> </ul> <p>If we pick items with indices <code>i</code>, <code>j</code> and <code>k</code> satisfying the above condition, the profit would be <code>profits[i] + profits[j] + profits[k]</code>.</p> <p>Return<em> the <strong>maximum profit</strong> we can get, and </em><code>-1</code><em> if it&#39;s not possible to pick three items with the given condition.</em></p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> prices = [10,2,3,4], profits = [100,2,7,10] <strong>Output:</strong> 19 <strong>Explanation:</strong> We can&#39;t pick the item with index i=0 since there are no indices j and k such that the condition holds. So the only triplet we can pick, are the items with indices 1, 2 and 3 and it&#39;s a valid pick since prices[1] &lt; prices[2] &lt; prices[3]. The answer would be sum of their profits which is 2 + 7 + 10 = 19.</pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> prices = [1,2,3,4,5], profits = [1,5,3,4,6] <strong>Output:</strong> 15 <strong>Explanation:</strong> We can select any triplet of items since for each triplet of indices i, j and k such that i &lt; j &lt; k, the condition holds. Therefore the maximum profit we can get would be the 3 most profitable items which are indices 1, 3 and 4. The answer would be sum of their profits which is 5 + 4 + 6 = 15.</pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> prices = [4,3,2,1], profits = [33,20,19,87] <strong>Output:</strong> -1 <strong>Explanation:</strong> We can&#39;t select any triplet of indices such that the condition holds, so we return -1. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= prices.length == profits.length &lt;= 2000</code></li> <li><code>1 &lt;= prices[i] &lt;= 10<sup>6</sup></code></li> <li><code>1 &lt;= profits[i] &lt;= 10<sup>6</sup></code></li> </ul>
Binary Indexed Tree; Segment Tree; Array
C++
class Solution { public: int maxProfit(vector<int>& prices, vector<int>& profits) { int n = prices.size(); int ans = -1; for (int j = 0; j < n; ++j) { int left = 0, right = 0; for (int i = 0; i < j; ++i) { if (prices[i] < prices[j]) { left = max(left, profits[i]); } } for (int k = j + 1; k < n; ++k) { if (prices[j] < prices[k]) { right = max(right, profits[k]); } } if (left && right) { ans = max(ans, left + profits[j] + right); } } return ans; } };
2,907
Maximum Profitable Triplets With Increasing Prices I
Medium
<p>Given the <strong>0-indexed</strong> arrays <code>prices</code> and <code>profits</code> of length <code>n</code>. There are <code>n</code> items in an store where the <code>i<sup>th</sup></code> item has a price of <code>prices[i]</code> and a profit of <code>profits[i]</code>.</p> <p>We have to pick three items with the following condition:</p> <ul> <li><code>prices[i] &lt; prices[j] &lt; prices[k]</code> where <code>i &lt; j &lt; k</code>.</li> </ul> <p>If we pick items with indices <code>i</code>, <code>j</code> and <code>k</code> satisfying the above condition, the profit would be <code>profits[i] + profits[j] + profits[k]</code>.</p> <p>Return<em> the <strong>maximum profit</strong> we can get, and </em><code>-1</code><em> if it&#39;s not possible to pick three items with the given condition.</em></p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> prices = [10,2,3,4], profits = [100,2,7,10] <strong>Output:</strong> 19 <strong>Explanation:</strong> We can&#39;t pick the item with index i=0 since there are no indices j and k such that the condition holds. So the only triplet we can pick, are the items with indices 1, 2 and 3 and it&#39;s a valid pick since prices[1] &lt; prices[2] &lt; prices[3]. The answer would be sum of their profits which is 2 + 7 + 10 = 19.</pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> prices = [1,2,3,4,5], profits = [1,5,3,4,6] <strong>Output:</strong> 15 <strong>Explanation:</strong> We can select any triplet of items since for each triplet of indices i, j and k such that i &lt; j &lt; k, the condition holds. Therefore the maximum profit we can get would be the 3 most profitable items which are indices 1, 3 and 4. The answer would be sum of their profits which is 5 + 4 + 6 = 15.</pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> prices = [4,3,2,1], profits = [33,20,19,87] <strong>Output:</strong> -1 <strong>Explanation:</strong> We can&#39;t select any triplet of indices such that the condition holds, so we return -1. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= prices.length == profits.length &lt;= 2000</code></li> <li><code>1 &lt;= prices[i] &lt;= 10<sup>6</sup></code></li> <li><code>1 &lt;= profits[i] &lt;= 10<sup>6</sup></code></li> </ul>
Binary Indexed Tree; Segment Tree; Array
Go
func maxProfit(prices []int, profits []int) int { n := len(prices) ans := -1 for j, x := range profits { left, right := 0, 0 for i := 0; i < j; i++ { if prices[i] < prices[j] { left = max(left, profits[i]) } } for k := j + 1; k < n; k++ { if prices[j] < prices[k] { right = max(right, profits[k]) } } if left > 0 && right > 0 { ans = max(ans, left+x+right) } } return ans }
2,907
Maximum Profitable Triplets With Increasing Prices I
Medium
<p>Given the <strong>0-indexed</strong> arrays <code>prices</code> and <code>profits</code> of length <code>n</code>. There are <code>n</code> items in an store where the <code>i<sup>th</sup></code> item has a price of <code>prices[i]</code> and a profit of <code>profits[i]</code>.</p> <p>We have to pick three items with the following condition:</p> <ul> <li><code>prices[i] &lt; prices[j] &lt; prices[k]</code> where <code>i &lt; j &lt; k</code>.</li> </ul> <p>If we pick items with indices <code>i</code>, <code>j</code> and <code>k</code> satisfying the above condition, the profit would be <code>profits[i] + profits[j] + profits[k]</code>.</p> <p>Return<em> the <strong>maximum profit</strong> we can get, and </em><code>-1</code><em> if it&#39;s not possible to pick three items with the given condition.</em></p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> prices = [10,2,3,4], profits = [100,2,7,10] <strong>Output:</strong> 19 <strong>Explanation:</strong> We can&#39;t pick the item with index i=0 since there are no indices j and k such that the condition holds. So the only triplet we can pick, are the items with indices 1, 2 and 3 and it&#39;s a valid pick since prices[1] &lt; prices[2] &lt; prices[3]. The answer would be sum of their profits which is 2 + 7 + 10 = 19.</pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> prices = [1,2,3,4,5], profits = [1,5,3,4,6] <strong>Output:</strong> 15 <strong>Explanation:</strong> We can select any triplet of items since for each triplet of indices i, j and k such that i &lt; j &lt; k, the condition holds. Therefore the maximum profit we can get would be the 3 most profitable items which are indices 1, 3 and 4. The answer would be sum of their profits which is 5 + 4 + 6 = 15.</pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> prices = [4,3,2,1], profits = [33,20,19,87] <strong>Output:</strong> -1 <strong>Explanation:</strong> We can&#39;t select any triplet of indices such that the condition holds, so we return -1. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= prices.length == profits.length &lt;= 2000</code></li> <li><code>1 &lt;= prices[i] &lt;= 10<sup>6</sup></code></li> <li><code>1 &lt;= profits[i] &lt;= 10<sup>6</sup></code></li> </ul>
Binary Indexed Tree; Segment Tree; Array
Java
class Solution { public int maxProfit(int[] prices, int[] profits) { int n = prices.length; int ans = -1; for (int j = 0; j < n; ++j) { int left = 0, right = 0; for (int i = 0; i < j; ++i) { if (prices[i] < prices[j]) { left = Math.max(left, profits[i]); } } for (int k = j + 1; k < n; ++k) { if (prices[j] < prices[k]) { right = Math.max(right, profits[k]); } } if (left > 0 && right > 0) { ans = Math.max(ans, left + profits[j] + right); } } return ans; } }
2,907
Maximum Profitable Triplets With Increasing Prices I
Medium
<p>Given the <strong>0-indexed</strong> arrays <code>prices</code> and <code>profits</code> of length <code>n</code>. There are <code>n</code> items in an store where the <code>i<sup>th</sup></code> item has a price of <code>prices[i]</code> and a profit of <code>profits[i]</code>.</p> <p>We have to pick three items with the following condition:</p> <ul> <li><code>prices[i] &lt; prices[j] &lt; prices[k]</code> where <code>i &lt; j &lt; k</code>.</li> </ul> <p>If we pick items with indices <code>i</code>, <code>j</code> and <code>k</code> satisfying the above condition, the profit would be <code>profits[i] + profits[j] + profits[k]</code>.</p> <p>Return<em> the <strong>maximum profit</strong> we can get, and </em><code>-1</code><em> if it&#39;s not possible to pick three items with the given condition.</em></p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> prices = [10,2,3,4], profits = [100,2,7,10] <strong>Output:</strong> 19 <strong>Explanation:</strong> We can&#39;t pick the item with index i=0 since there are no indices j and k such that the condition holds. So the only triplet we can pick, are the items with indices 1, 2 and 3 and it&#39;s a valid pick since prices[1] &lt; prices[2] &lt; prices[3]. The answer would be sum of their profits which is 2 + 7 + 10 = 19.</pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> prices = [1,2,3,4,5], profits = [1,5,3,4,6] <strong>Output:</strong> 15 <strong>Explanation:</strong> We can select any triplet of items since for each triplet of indices i, j and k such that i &lt; j &lt; k, the condition holds. Therefore the maximum profit we can get would be the 3 most profitable items which are indices 1, 3 and 4. The answer would be sum of their profits which is 5 + 4 + 6 = 15.</pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> prices = [4,3,2,1], profits = [33,20,19,87] <strong>Output:</strong> -1 <strong>Explanation:</strong> We can&#39;t select any triplet of indices such that the condition holds, so we return -1. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= prices.length == profits.length &lt;= 2000</code></li> <li><code>1 &lt;= prices[i] &lt;= 10<sup>6</sup></code></li> <li><code>1 &lt;= profits[i] &lt;= 10<sup>6</sup></code></li> </ul>
Binary Indexed Tree; Segment Tree; Array
Python
class Solution: def maxProfit(self, prices: List[int], profits: List[int]) -> int: n = len(prices) ans = -1 for j, x in enumerate(profits): left = right = 0 for i in range(j): if prices[i] < prices[j] and left < profits[i]: left = profits[i] for k in range(j + 1, n): if prices[j] < prices[k] and right < profits[k]: right = profits[k] if left and right: ans = max(ans, left + x + right) return ans
2,907
Maximum Profitable Triplets With Increasing Prices I
Medium
<p>Given the <strong>0-indexed</strong> arrays <code>prices</code> and <code>profits</code> of length <code>n</code>. There are <code>n</code> items in an store where the <code>i<sup>th</sup></code> item has a price of <code>prices[i]</code> and a profit of <code>profits[i]</code>.</p> <p>We have to pick three items with the following condition:</p> <ul> <li><code>prices[i] &lt; prices[j] &lt; prices[k]</code> where <code>i &lt; j &lt; k</code>.</li> </ul> <p>If we pick items with indices <code>i</code>, <code>j</code> and <code>k</code> satisfying the above condition, the profit would be <code>profits[i] + profits[j] + profits[k]</code>.</p> <p>Return<em> the <strong>maximum profit</strong> we can get, and </em><code>-1</code><em> if it&#39;s not possible to pick three items with the given condition.</em></p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> prices = [10,2,3,4], profits = [100,2,7,10] <strong>Output:</strong> 19 <strong>Explanation:</strong> We can&#39;t pick the item with index i=0 since there are no indices j and k such that the condition holds. So the only triplet we can pick, are the items with indices 1, 2 and 3 and it&#39;s a valid pick since prices[1] &lt; prices[2] &lt; prices[3]. The answer would be sum of their profits which is 2 + 7 + 10 = 19.</pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> prices = [1,2,3,4,5], profits = [1,5,3,4,6] <strong>Output:</strong> 15 <strong>Explanation:</strong> We can select any triplet of items since for each triplet of indices i, j and k such that i &lt; j &lt; k, the condition holds. Therefore the maximum profit we can get would be the 3 most profitable items which are indices 1, 3 and 4. The answer would be sum of their profits which is 5 + 4 + 6 = 15.</pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> prices = [4,3,2,1], profits = [33,20,19,87] <strong>Output:</strong> -1 <strong>Explanation:</strong> We can&#39;t select any triplet of indices such that the condition holds, so we return -1. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= prices.length == profits.length &lt;= 2000</code></li> <li><code>1 &lt;= prices[i] &lt;= 10<sup>6</sup></code></li> <li><code>1 &lt;= profits[i] &lt;= 10<sup>6</sup></code></li> </ul>
Binary Indexed Tree; Segment Tree; Array
Rust
impl Solution { pub fn max_profit(prices: Vec<i32>, profits: Vec<i32>) -> i32 { let n = prices.len(); let mut ans = -1; for j in 0..n { let mut left = 0; let mut right = 0; for i in 0..j { if prices[i] < prices[j] { left = left.max(profits[i]); } } for k in j + 1..n { if prices[j] < prices[k] { right = right.max(profits[k]); } } if left > 0 && right > 0 { ans = ans.max(left + profits[j] + right); } } ans } }
2,907
Maximum Profitable Triplets With Increasing Prices I
Medium
<p>Given the <strong>0-indexed</strong> arrays <code>prices</code> and <code>profits</code> of length <code>n</code>. There are <code>n</code> items in an store where the <code>i<sup>th</sup></code> item has a price of <code>prices[i]</code> and a profit of <code>profits[i]</code>.</p> <p>We have to pick three items with the following condition:</p> <ul> <li><code>prices[i] &lt; prices[j] &lt; prices[k]</code> where <code>i &lt; j &lt; k</code>.</li> </ul> <p>If we pick items with indices <code>i</code>, <code>j</code> and <code>k</code> satisfying the above condition, the profit would be <code>profits[i] + profits[j] + profits[k]</code>.</p> <p>Return<em> the <strong>maximum profit</strong> we can get, and </em><code>-1</code><em> if it&#39;s not possible to pick three items with the given condition.</em></p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> prices = [10,2,3,4], profits = [100,2,7,10] <strong>Output:</strong> 19 <strong>Explanation:</strong> We can&#39;t pick the item with index i=0 since there are no indices j and k such that the condition holds. So the only triplet we can pick, are the items with indices 1, 2 and 3 and it&#39;s a valid pick since prices[1] &lt; prices[2] &lt; prices[3]. The answer would be sum of their profits which is 2 + 7 + 10 = 19.</pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> prices = [1,2,3,4,5], profits = [1,5,3,4,6] <strong>Output:</strong> 15 <strong>Explanation:</strong> We can select any triplet of items since for each triplet of indices i, j and k such that i &lt; j &lt; k, the condition holds. Therefore the maximum profit we can get would be the 3 most profitable items which are indices 1, 3 and 4. The answer would be sum of their profits which is 5 + 4 + 6 = 15.</pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> prices = [4,3,2,1], profits = [33,20,19,87] <strong>Output:</strong> -1 <strong>Explanation:</strong> We can&#39;t select any triplet of indices such that the condition holds, so we return -1. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= prices.length == profits.length &lt;= 2000</code></li> <li><code>1 &lt;= prices[i] &lt;= 10<sup>6</sup></code></li> <li><code>1 &lt;= profits[i] &lt;= 10<sup>6</sup></code></li> </ul>
Binary Indexed Tree; Segment Tree; Array
TypeScript
function maxProfit(prices: number[], profits: number[]): number { const n = prices.length; let ans = -1; for (let j = 0; j < n; ++j) { let [left, right] = [0, 0]; for (let i = 0; i < j; ++i) { if (prices[i] < prices[j]) { left = Math.max(left, profits[i]); } } for (let k = j + 1; k < n; ++k) { if (prices[j] < prices[k]) { right = Math.max(right, profits[k]); } } if (left > 0 && right > 0) { ans = Math.max(ans, left + profits[j] + right); } } return ans; }
2,908
Minimum Sum of Mountain Triplets I
Easy
<p>You are given a <strong>0-indexed</strong> array <code>nums</code> of integers.</p> <p>A triplet of indices <code>(i, j, k)</code> is a <strong>mountain</strong> if:</p> <ul> <li><code>i &lt; j &lt; k</code></li> <li><code>nums[i] &lt; nums[j]</code> and <code>nums[k] &lt; nums[j]</code></li> </ul> <p>Return <em>the <strong>minimum possible sum</strong> of a mountain triplet of</em> <code>nums</code>. <em>If no such triplet exists, return</em> <code>-1</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [8,6,1,5,3] <strong>Output:</strong> 9 <strong>Explanation:</strong> Triplet (2, 3, 4) is a mountain triplet of sum 9 since: - 2 &lt; 3 &lt; 4 - nums[2] &lt; nums[3] and nums[4] &lt; nums[3] And the sum of this triplet is nums[2] + nums[3] + nums[4] = 9. It can be shown that there are no mountain triplets with a sum of less than 9. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [5,4,8,7,10,2] <strong>Output:</strong> 13 <strong>Explanation:</strong> Triplet (1, 3, 5) is a mountain triplet of sum 13 since: - 1 &lt; 3 &lt; 5 - nums[1] &lt; nums[3] and nums[5] &lt; nums[3] And the sum of this triplet is nums[1] + nums[3] + nums[5] = 13. It can be shown that there are no mountain triplets with a sum of less than 13. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [6,5,4,3,4,5] <strong>Output:</strong> -1 <strong>Explanation:</strong> It can be shown that there are no mountain triplets in nums. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= nums.length &lt;= 50</code></li> <li><code>1 &lt;= nums[i] &lt;= 50</code></li> </ul>
Array
C++
class Solution { public: int minimumSum(vector<int>& nums) { int n = nums.size(); const int inf = 1 << 30; int right[n + 1]; right[n] = inf; for (int i = n - 1; ~i; --i) { right[i] = min(right[i + 1], nums[i]); } int ans = inf, left = inf; for (int i = 0; i < n; ++i) { if (left < nums[i] && right[i + 1] < nums[i]) { ans = min(ans, left + nums[i] + right[i + 1]); } left = min(left, nums[i]); } return ans == inf ? -1 : ans; } };
2,908
Minimum Sum of Mountain Triplets I
Easy
<p>You are given a <strong>0-indexed</strong> array <code>nums</code> of integers.</p> <p>A triplet of indices <code>(i, j, k)</code> is a <strong>mountain</strong> if:</p> <ul> <li><code>i &lt; j &lt; k</code></li> <li><code>nums[i] &lt; nums[j]</code> and <code>nums[k] &lt; nums[j]</code></li> </ul> <p>Return <em>the <strong>minimum possible sum</strong> of a mountain triplet of</em> <code>nums</code>. <em>If no such triplet exists, return</em> <code>-1</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [8,6,1,5,3] <strong>Output:</strong> 9 <strong>Explanation:</strong> Triplet (2, 3, 4) is a mountain triplet of sum 9 since: - 2 &lt; 3 &lt; 4 - nums[2] &lt; nums[3] and nums[4] &lt; nums[3] And the sum of this triplet is nums[2] + nums[3] + nums[4] = 9. It can be shown that there are no mountain triplets with a sum of less than 9. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [5,4,8,7,10,2] <strong>Output:</strong> 13 <strong>Explanation:</strong> Triplet (1, 3, 5) is a mountain triplet of sum 13 since: - 1 &lt; 3 &lt; 5 - nums[1] &lt; nums[3] and nums[5] &lt; nums[3] And the sum of this triplet is nums[1] + nums[3] + nums[5] = 13. It can be shown that there are no mountain triplets with a sum of less than 13. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [6,5,4,3,4,5] <strong>Output:</strong> -1 <strong>Explanation:</strong> It can be shown that there are no mountain triplets in nums. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= nums.length &lt;= 50</code></li> <li><code>1 &lt;= nums[i] &lt;= 50</code></li> </ul>
Array
Go
func minimumSum(nums []int) int { n := len(nums) const inf = 1 << 30 right := make([]int, n+1) right[n] = inf for i := n - 1; i >= 0; i-- { right[i] = min(right[i+1], nums[i]) } ans, left := inf, inf for i, x := range nums { if left < x && right[i+1] < x { ans = min(ans, left+x+right[i+1]) } left = min(left, x) } if ans == inf { return -1 } return ans }
2,908
Minimum Sum of Mountain Triplets I
Easy
<p>You are given a <strong>0-indexed</strong> array <code>nums</code> of integers.</p> <p>A triplet of indices <code>(i, j, k)</code> is a <strong>mountain</strong> if:</p> <ul> <li><code>i &lt; j &lt; k</code></li> <li><code>nums[i] &lt; nums[j]</code> and <code>nums[k] &lt; nums[j]</code></li> </ul> <p>Return <em>the <strong>minimum possible sum</strong> of a mountain triplet of</em> <code>nums</code>. <em>If no such triplet exists, return</em> <code>-1</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [8,6,1,5,3] <strong>Output:</strong> 9 <strong>Explanation:</strong> Triplet (2, 3, 4) is a mountain triplet of sum 9 since: - 2 &lt; 3 &lt; 4 - nums[2] &lt; nums[3] and nums[4] &lt; nums[3] And the sum of this triplet is nums[2] + nums[3] + nums[4] = 9. It can be shown that there are no mountain triplets with a sum of less than 9. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [5,4,8,7,10,2] <strong>Output:</strong> 13 <strong>Explanation:</strong> Triplet (1, 3, 5) is a mountain triplet of sum 13 since: - 1 &lt; 3 &lt; 5 - nums[1] &lt; nums[3] and nums[5] &lt; nums[3] And the sum of this triplet is nums[1] + nums[3] + nums[5] = 13. It can be shown that there are no mountain triplets with a sum of less than 13. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [6,5,4,3,4,5] <strong>Output:</strong> -1 <strong>Explanation:</strong> It can be shown that there are no mountain triplets in nums. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= nums.length &lt;= 50</code></li> <li><code>1 &lt;= nums[i] &lt;= 50</code></li> </ul>
Array
Java
class Solution { public int minimumSum(int[] nums) { int n = nums.length; int[] right = new int[n + 1]; final int inf = 1 << 30; right[n] = inf; for (int i = n - 1; i >= 0; --i) { right[i] = Math.min(right[i + 1], nums[i]); } int ans = inf, left = inf; for (int i = 0; i < n; ++i) { if (left < nums[i] && right[i + 1] < nums[i]) { ans = Math.min(ans, left + nums[i] + right[i + 1]); } left = Math.min(left, nums[i]); } return ans == inf ? -1 : ans; } }
2,908
Minimum Sum of Mountain Triplets I
Easy
<p>You are given a <strong>0-indexed</strong> array <code>nums</code> of integers.</p> <p>A triplet of indices <code>(i, j, k)</code> is a <strong>mountain</strong> if:</p> <ul> <li><code>i &lt; j &lt; k</code></li> <li><code>nums[i] &lt; nums[j]</code> and <code>nums[k] &lt; nums[j]</code></li> </ul> <p>Return <em>the <strong>minimum possible sum</strong> of a mountain triplet of</em> <code>nums</code>. <em>If no such triplet exists, return</em> <code>-1</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [8,6,1,5,3] <strong>Output:</strong> 9 <strong>Explanation:</strong> Triplet (2, 3, 4) is a mountain triplet of sum 9 since: - 2 &lt; 3 &lt; 4 - nums[2] &lt; nums[3] and nums[4] &lt; nums[3] And the sum of this triplet is nums[2] + nums[3] + nums[4] = 9. It can be shown that there are no mountain triplets with a sum of less than 9. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [5,4,8,7,10,2] <strong>Output:</strong> 13 <strong>Explanation:</strong> Triplet (1, 3, 5) is a mountain triplet of sum 13 since: - 1 &lt; 3 &lt; 5 - nums[1] &lt; nums[3] and nums[5] &lt; nums[3] And the sum of this triplet is nums[1] + nums[3] + nums[5] = 13. It can be shown that there are no mountain triplets with a sum of less than 13. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [6,5,4,3,4,5] <strong>Output:</strong> -1 <strong>Explanation:</strong> It can be shown that there are no mountain triplets in nums. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= nums.length &lt;= 50</code></li> <li><code>1 &lt;= nums[i] &lt;= 50</code></li> </ul>
Array
Python
class Solution: def minimumSum(self, nums: List[int]) -> int: n = len(nums) right = [inf] * (n + 1) for i in range(n - 1, -1, -1): right[i] = min(right[i + 1], nums[i]) ans = left = inf for i, x in enumerate(nums): if left < x and right[i + 1] < x: ans = min(ans, left + x + right[i + 1]) left = min(left, x) return -1 if ans == inf else ans
2,908
Minimum Sum of Mountain Triplets I
Easy
<p>You are given a <strong>0-indexed</strong> array <code>nums</code> of integers.</p> <p>A triplet of indices <code>(i, j, k)</code> is a <strong>mountain</strong> if:</p> <ul> <li><code>i &lt; j &lt; k</code></li> <li><code>nums[i] &lt; nums[j]</code> and <code>nums[k] &lt; nums[j]</code></li> </ul> <p>Return <em>the <strong>minimum possible sum</strong> of a mountain triplet of</em> <code>nums</code>. <em>If no such triplet exists, return</em> <code>-1</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [8,6,1,5,3] <strong>Output:</strong> 9 <strong>Explanation:</strong> Triplet (2, 3, 4) is a mountain triplet of sum 9 since: - 2 &lt; 3 &lt; 4 - nums[2] &lt; nums[3] and nums[4] &lt; nums[3] And the sum of this triplet is nums[2] + nums[3] + nums[4] = 9. It can be shown that there are no mountain triplets with a sum of less than 9. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [5,4,8,7,10,2] <strong>Output:</strong> 13 <strong>Explanation:</strong> Triplet (1, 3, 5) is a mountain triplet of sum 13 since: - 1 &lt; 3 &lt; 5 - nums[1] &lt; nums[3] and nums[5] &lt; nums[3] And the sum of this triplet is nums[1] + nums[3] + nums[5] = 13. It can be shown that there are no mountain triplets with a sum of less than 13. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [6,5,4,3,4,5] <strong>Output:</strong> -1 <strong>Explanation:</strong> It can be shown that there are no mountain triplets in nums. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= nums.length &lt;= 50</code></li> <li><code>1 &lt;= nums[i] &lt;= 50</code></li> </ul>
Array
TypeScript
function minimumSum(nums: number[]): number { const n = nums.length; const right: number[] = Array(n + 1).fill(Infinity); for (let i = n - 1; ~i; --i) { right[i] = Math.min(right[i + 1], nums[i]); } let [ans, left] = [Infinity, Infinity]; for (let i = 0; i < n; ++i) { if (left < nums[i] && right[i + 1] < nums[i]) { ans = Math.min(ans, left + nums[i] + right[i + 1]); } left = Math.min(left, nums[i]); } return ans === Infinity ? -1 : ans; }
2,909
Minimum Sum of Mountain Triplets II
Medium
<p>You are given a <strong>0-indexed</strong> array <code>nums</code> of integers.</p> <p>A triplet of indices <code>(i, j, k)</code> is a <strong>mountain</strong> if:</p> <ul> <li><code>i &lt; j &lt; k</code></li> <li><code>nums[i] &lt; nums[j]</code> and <code>nums[k] &lt; nums[j]</code></li> </ul> <p>Return <em>the <strong>minimum possible sum</strong> of a mountain triplet of</em> <code>nums</code>. <em>If no such triplet exists, return</em> <code>-1</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [8,6,1,5,3] <strong>Output:</strong> 9 <strong>Explanation:</strong> Triplet (2, 3, 4) is a mountain triplet of sum 9 since: - 2 &lt; 3 &lt; 4 - nums[2] &lt; nums[3] and nums[4] &lt; nums[3] And the sum of this triplet is nums[2] + nums[3] + nums[4] = 9. It can be shown that there are no mountain triplets with a sum of less than 9. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [5,4,8,7,10,2] <strong>Output:</strong> 13 <strong>Explanation:</strong> Triplet (1, 3, 5) is a mountain triplet of sum 13 since: - 1 &lt; 3 &lt; 5 - nums[1] &lt; nums[3] and nums[5] &lt; nums[3] And the sum of this triplet is nums[1] + nums[3] + nums[5] = 13. It can be shown that there are no mountain triplets with a sum of less than 13. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [6,5,4,3,4,5] <strong>Output:</strong> -1 <strong>Explanation:</strong> It can be shown that there are no mountain triplets in nums. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= nums.length &lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= nums[i] &lt;= 10<sup>8</sup></code></li> </ul>
Array
C++
class Solution { public: int minimumSum(vector<int>& nums) { int n = nums.size(); const int inf = 1 << 30; int right[n + 1]; right[n] = inf; for (int i = n - 1; ~i; --i) { right[i] = min(right[i + 1], nums[i]); } int ans = inf, left = inf; for (int i = 0; i < n; ++i) { if (left < nums[i] && right[i + 1] < nums[i]) { ans = min(ans, left + nums[i] + right[i + 1]); } left = min(left, nums[i]); } return ans == inf ? -1 : ans; } };
2,909
Minimum Sum of Mountain Triplets II
Medium
<p>You are given a <strong>0-indexed</strong> array <code>nums</code> of integers.</p> <p>A triplet of indices <code>(i, j, k)</code> is a <strong>mountain</strong> if:</p> <ul> <li><code>i &lt; j &lt; k</code></li> <li><code>nums[i] &lt; nums[j]</code> and <code>nums[k] &lt; nums[j]</code></li> </ul> <p>Return <em>the <strong>minimum possible sum</strong> of a mountain triplet of</em> <code>nums</code>. <em>If no such triplet exists, return</em> <code>-1</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [8,6,1,5,3] <strong>Output:</strong> 9 <strong>Explanation:</strong> Triplet (2, 3, 4) is a mountain triplet of sum 9 since: - 2 &lt; 3 &lt; 4 - nums[2] &lt; nums[3] and nums[4] &lt; nums[3] And the sum of this triplet is nums[2] + nums[3] + nums[4] = 9. It can be shown that there are no mountain triplets with a sum of less than 9. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [5,4,8,7,10,2] <strong>Output:</strong> 13 <strong>Explanation:</strong> Triplet (1, 3, 5) is a mountain triplet of sum 13 since: - 1 &lt; 3 &lt; 5 - nums[1] &lt; nums[3] and nums[5] &lt; nums[3] And the sum of this triplet is nums[1] + nums[3] + nums[5] = 13. It can be shown that there are no mountain triplets with a sum of less than 13. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [6,5,4,3,4,5] <strong>Output:</strong> -1 <strong>Explanation:</strong> It can be shown that there are no mountain triplets in nums. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= nums.length &lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= nums[i] &lt;= 10<sup>8</sup></code></li> </ul>
Array
Go
func minimumSum(nums []int) int { n := len(nums) const inf = 1 << 30 right := make([]int, n+1) right[n] = inf for i := n - 1; i >= 0; i-- { right[i] = min(right[i+1], nums[i]) } ans, left := inf, inf for i, x := range nums { if left < x && right[i+1] < x { ans = min(ans, left+x+right[i+1]) } left = min(left, x) } if ans == inf { return -1 } return ans }
2,909
Minimum Sum of Mountain Triplets II
Medium
<p>You are given a <strong>0-indexed</strong> array <code>nums</code> of integers.</p> <p>A triplet of indices <code>(i, j, k)</code> is a <strong>mountain</strong> if:</p> <ul> <li><code>i &lt; j &lt; k</code></li> <li><code>nums[i] &lt; nums[j]</code> and <code>nums[k] &lt; nums[j]</code></li> </ul> <p>Return <em>the <strong>minimum possible sum</strong> of a mountain triplet of</em> <code>nums</code>. <em>If no such triplet exists, return</em> <code>-1</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [8,6,1,5,3] <strong>Output:</strong> 9 <strong>Explanation:</strong> Triplet (2, 3, 4) is a mountain triplet of sum 9 since: - 2 &lt; 3 &lt; 4 - nums[2] &lt; nums[3] and nums[4] &lt; nums[3] And the sum of this triplet is nums[2] + nums[3] + nums[4] = 9. It can be shown that there are no mountain triplets with a sum of less than 9. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [5,4,8,7,10,2] <strong>Output:</strong> 13 <strong>Explanation:</strong> Triplet (1, 3, 5) is a mountain triplet of sum 13 since: - 1 &lt; 3 &lt; 5 - nums[1] &lt; nums[3] and nums[5] &lt; nums[3] And the sum of this triplet is nums[1] + nums[3] + nums[5] = 13. It can be shown that there are no mountain triplets with a sum of less than 13. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [6,5,4,3,4,5] <strong>Output:</strong> -1 <strong>Explanation:</strong> It can be shown that there are no mountain triplets in nums. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= nums.length &lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= nums[i] &lt;= 10<sup>8</sup></code></li> </ul>
Array
Java
class Solution { public int minimumSum(int[] nums) { int n = nums.length; int[] right = new int[n + 1]; final int inf = 1 << 30; right[n] = inf; for (int i = n - 1; i >= 0; --i) { right[i] = Math.min(right[i + 1], nums[i]); } int ans = inf, left = inf; for (int i = 0; i < n; ++i) { if (left < nums[i] && right[i + 1] < nums[i]) { ans = Math.min(ans, left + nums[i] + right[i + 1]); } left = Math.min(left, nums[i]); } return ans == inf ? -1 : ans; } }
2,909
Minimum Sum of Mountain Triplets II
Medium
<p>You are given a <strong>0-indexed</strong> array <code>nums</code> of integers.</p> <p>A triplet of indices <code>(i, j, k)</code> is a <strong>mountain</strong> if:</p> <ul> <li><code>i &lt; j &lt; k</code></li> <li><code>nums[i] &lt; nums[j]</code> and <code>nums[k] &lt; nums[j]</code></li> </ul> <p>Return <em>the <strong>minimum possible sum</strong> of a mountain triplet of</em> <code>nums</code>. <em>If no such triplet exists, return</em> <code>-1</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [8,6,1,5,3] <strong>Output:</strong> 9 <strong>Explanation:</strong> Triplet (2, 3, 4) is a mountain triplet of sum 9 since: - 2 &lt; 3 &lt; 4 - nums[2] &lt; nums[3] and nums[4] &lt; nums[3] And the sum of this triplet is nums[2] + nums[3] + nums[4] = 9. It can be shown that there are no mountain triplets with a sum of less than 9. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [5,4,8,7,10,2] <strong>Output:</strong> 13 <strong>Explanation:</strong> Triplet (1, 3, 5) is a mountain triplet of sum 13 since: - 1 &lt; 3 &lt; 5 - nums[1] &lt; nums[3] and nums[5] &lt; nums[3] And the sum of this triplet is nums[1] + nums[3] + nums[5] = 13. It can be shown that there are no mountain triplets with a sum of less than 13. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [6,5,4,3,4,5] <strong>Output:</strong> -1 <strong>Explanation:</strong> It can be shown that there are no mountain triplets in nums. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= nums.length &lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= nums[i] &lt;= 10<sup>8</sup></code></li> </ul>
Array
Python
class Solution: def minimumSum(self, nums: List[int]) -> int: n = len(nums) right = [inf] * (n + 1) for i in range(n - 1, -1, -1): right[i] = min(right[i + 1], nums[i]) ans = left = inf for i, x in enumerate(nums): if left < x and right[i + 1] < x: ans = min(ans, left + x + right[i + 1]) left = min(left, x) return -1 if ans == inf else ans
2,909
Minimum Sum of Mountain Triplets II
Medium
<p>You are given a <strong>0-indexed</strong> array <code>nums</code> of integers.</p> <p>A triplet of indices <code>(i, j, k)</code> is a <strong>mountain</strong> if:</p> <ul> <li><code>i &lt; j &lt; k</code></li> <li><code>nums[i] &lt; nums[j]</code> and <code>nums[k] &lt; nums[j]</code></li> </ul> <p>Return <em>the <strong>minimum possible sum</strong> of a mountain triplet of</em> <code>nums</code>. <em>If no such triplet exists, return</em> <code>-1</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [8,6,1,5,3] <strong>Output:</strong> 9 <strong>Explanation:</strong> Triplet (2, 3, 4) is a mountain triplet of sum 9 since: - 2 &lt; 3 &lt; 4 - nums[2] &lt; nums[3] and nums[4] &lt; nums[3] And the sum of this triplet is nums[2] + nums[3] + nums[4] = 9. It can be shown that there are no mountain triplets with a sum of less than 9. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [5,4,8,7,10,2] <strong>Output:</strong> 13 <strong>Explanation:</strong> Triplet (1, 3, 5) is a mountain triplet of sum 13 since: - 1 &lt; 3 &lt; 5 - nums[1] &lt; nums[3] and nums[5] &lt; nums[3] And the sum of this triplet is nums[1] + nums[3] + nums[5] = 13. It can be shown that there are no mountain triplets with a sum of less than 13. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [6,5,4,3,4,5] <strong>Output:</strong> -1 <strong>Explanation:</strong> It can be shown that there are no mountain triplets in nums. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= nums.length &lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= nums[i] &lt;= 10<sup>8</sup></code></li> </ul>
Array
TypeScript
function minimumSum(nums: number[]): number { const n = nums.length; const right: number[] = Array(n + 1).fill(Infinity); for (let i = n - 1; ~i; --i) { right[i] = Math.min(right[i + 1], nums[i]); } let [ans, left] = [Infinity, Infinity]; for (let i = 0; i < n; ++i) { if (left < nums[i] && right[i + 1] < nums[i]) { ans = Math.min(ans, left + nums[i] + right[i + 1]); } left = Math.min(left, nums[i]); } return ans === Infinity ? -1 : ans; }
2,910
Minimum Number of Groups to Create a Valid Assignment
Medium
<p>You are given a collection of numbered <code>balls</code>&nbsp;and instructed to sort them into boxes for a nearly balanced distribution. There are two rules you must follow:</p> <ul> <li>Balls with the same&nbsp;box must have the same value. But, if you have more than one ball with the same number, you can put them in different boxes.</li> <li>The biggest box can only have one more ball than the smallest box.</li> </ul> <p>​Return the <em>fewest number of boxes</em> to sort these balls following these rules.</p> <p>&nbsp;</p> <p><strong class="example">Example 1: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> balls = [3,2,3,2,3] </span></p> <p><strong>Output: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 2 </span></p> <p><strong>Explanation:</strong></p> <p>We can sort <code>balls</code> into boxes as follows:</p> <ul> <li><code>[3,3,3]</code></li> <li><code>[2,2]</code></li> </ul> <p>The size difference between the two boxes doesn&#39;t exceed one.</p> </div> <p><strong class="example">Example 2: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> balls = [10,10,10,3,1,1] </span></p> <p><strong>Output: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 4 </span></p> <p><strong>Explanation:</strong></p> <p>We can sort <code>balls</code> into boxes as follows:</p> <ul> </ul> <ul> <li><code>[10]</code></li> <li><code>[10,10]</code></li> <li><code>[3]</code></li> <li><code>[1,1]</code></li> </ul> <p>You can&#39;t use fewer than four boxes while still following the rules. For example, putting all three balls numbered 10 in one box would break the rule about the maximum size difference between boxes.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= nums[i] &lt;= 10<sup>9</sup></code></li> </ul>
Greedy; Array; Hash Table
C++
class Solution { public: int minGroupsForValidAssignment(vector<int>& nums) { unordered_map<int, int> cnt; for (int x : nums) { cnt[x]++; } int k = 1e9; for (auto& [_, v] : cnt) { ans = min(ans, v); } for (;; --k) { int ans = 0; for (auto& [_, v] : cnt) { if (v / k < v % k) { ans = 0; break; } ans += (v + k) / (k + 1); } if (ans) { return ans; } } } };
2,910
Minimum Number of Groups to Create a Valid Assignment
Medium
<p>You are given a collection of numbered <code>balls</code>&nbsp;and instructed to sort them into boxes for a nearly balanced distribution. There are two rules you must follow:</p> <ul> <li>Balls with the same&nbsp;box must have the same value. But, if you have more than one ball with the same number, you can put them in different boxes.</li> <li>The biggest box can only have one more ball than the smallest box.</li> </ul> <p>​Return the <em>fewest number of boxes</em> to sort these balls following these rules.</p> <p>&nbsp;</p> <p><strong class="example">Example 1: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> balls = [3,2,3,2,3] </span></p> <p><strong>Output: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 2 </span></p> <p><strong>Explanation:</strong></p> <p>We can sort <code>balls</code> into boxes as follows:</p> <ul> <li><code>[3,3,3]</code></li> <li><code>[2,2]</code></li> </ul> <p>The size difference between the two boxes doesn&#39;t exceed one.</p> </div> <p><strong class="example">Example 2: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> balls = [10,10,10,3,1,1] </span></p> <p><strong>Output: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 4 </span></p> <p><strong>Explanation:</strong></p> <p>We can sort <code>balls</code> into boxes as follows:</p> <ul> </ul> <ul> <li><code>[10]</code></li> <li><code>[10,10]</code></li> <li><code>[3]</code></li> <li><code>[1,1]</code></li> </ul> <p>You can&#39;t use fewer than four boxes while still following the rules. For example, putting all three balls numbered 10 in one box would break the rule about the maximum size difference between boxes.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= nums[i] &lt;= 10<sup>9</sup></code></li> </ul>
Greedy; Array; Hash Table
Go
func minGroupsForValidAssignment(nums []int) int { cnt := map[int]int{} for _, x := range nums { cnt[x]++ } k := len(nums) for _, v := range cnt { k = min(k, v) } for ; ; k-- { ans := 0 for _, v := range cnt { if v/k < v%k { ans = 0 break } ans += (v + k) / (k + 1) } if ans > 0 { return ans } } }
2,910
Minimum Number of Groups to Create a Valid Assignment
Medium
<p>You are given a collection of numbered <code>balls</code>&nbsp;and instructed to sort them into boxes for a nearly balanced distribution. There are two rules you must follow:</p> <ul> <li>Balls with the same&nbsp;box must have the same value. But, if you have more than one ball with the same number, you can put them in different boxes.</li> <li>The biggest box can only have one more ball than the smallest box.</li> </ul> <p>​Return the <em>fewest number of boxes</em> to sort these balls following these rules.</p> <p>&nbsp;</p> <p><strong class="example">Example 1: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> balls = [3,2,3,2,3] </span></p> <p><strong>Output: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 2 </span></p> <p><strong>Explanation:</strong></p> <p>We can sort <code>balls</code> into boxes as follows:</p> <ul> <li><code>[3,3,3]</code></li> <li><code>[2,2]</code></li> </ul> <p>The size difference between the two boxes doesn&#39;t exceed one.</p> </div> <p><strong class="example">Example 2: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> balls = [10,10,10,3,1,1] </span></p> <p><strong>Output: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 4 </span></p> <p><strong>Explanation:</strong></p> <p>We can sort <code>balls</code> into boxes as follows:</p> <ul> </ul> <ul> <li><code>[10]</code></li> <li><code>[10,10]</code></li> <li><code>[3]</code></li> <li><code>[1,1]</code></li> </ul> <p>You can&#39;t use fewer than four boxes while still following the rules. For example, putting all three balls numbered 10 in one box would break the rule about the maximum size difference between boxes.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= nums[i] &lt;= 10<sup>9</sup></code></li> </ul>
Greedy; Array; Hash Table
Java
class Solution { public int minGroupsForValidAssignment(int[] nums) { Map<Integer, Integer> cnt = new HashMap<>(); for (int x : nums) { cnt.merge(x, 1, Integer::sum); } int k = nums.length; for (int v : cnt.values()) { k = Math.min(k, v); } for (;; --k) { int ans = 0; for (int v : cnt.values()) { if (v / k < v % k) { ans = 0; break; } ans += (v + k) / (k + 1); } if (ans > 0) { return ans; } } } }
2,910
Minimum Number of Groups to Create a Valid Assignment
Medium
<p>You are given a collection of numbered <code>balls</code>&nbsp;and instructed to sort them into boxes for a nearly balanced distribution. There are two rules you must follow:</p> <ul> <li>Balls with the same&nbsp;box must have the same value. But, if you have more than one ball with the same number, you can put them in different boxes.</li> <li>The biggest box can only have one more ball than the smallest box.</li> </ul> <p>​Return the <em>fewest number of boxes</em> to sort these balls following these rules.</p> <p>&nbsp;</p> <p><strong class="example">Example 1: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> balls = [3,2,3,2,3] </span></p> <p><strong>Output: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 2 </span></p> <p><strong>Explanation:</strong></p> <p>We can sort <code>balls</code> into boxes as follows:</p> <ul> <li><code>[3,3,3]</code></li> <li><code>[2,2]</code></li> </ul> <p>The size difference between the two boxes doesn&#39;t exceed one.</p> </div> <p><strong class="example">Example 2: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> balls = [10,10,10,3,1,1] </span></p> <p><strong>Output: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 4 </span></p> <p><strong>Explanation:</strong></p> <p>We can sort <code>balls</code> into boxes as follows:</p> <ul> </ul> <ul> <li><code>[10]</code></li> <li><code>[10,10]</code></li> <li><code>[3]</code></li> <li><code>[1,1]</code></li> </ul> <p>You can&#39;t use fewer than four boxes while still following the rules. For example, putting all three balls numbered 10 in one box would break the rule about the maximum size difference between boxes.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= nums[i] &lt;= 10<sup>9</sup></code></li> </ul>
Greedy; Array; Hash Table
Python
class Solution: def minGroupsForValidAssignment(self, nums: List[int]) -> int: cnt = Counter(nums) for k in range(min(cnt.values()), 0, -1): ans = 0 for v in cnt.values(): if v // k < v % k: ans = 0 break ans += (v + k) // (k + 1) if ans: return ans
2,910
Minimum Number of Groups to Create a Valid Assignment
Medium
<p>You are given a collection of numbered <code>balls</code>&nbsp;and instructed to sort them into boxes for a nearly balanced distribution. There are two rules you must follow:</p> <ul> <li>Balls with the same&nbsp;box must have the same value. But, if you have more than one ball with the same number, you can put them in different boxes.</li> <li>The biggest box can only have one more ball than the smallest box.</li> </ul> <p>​Return the <em>fewest number of boxes</em> to sort these balls following these rules.</p> <p>&nbsp;</p> <p><strong class="example">Example 1: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> balls = [3,2,3,2,3] </span></p> <p><strong>Output: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 2 </span></p> <p><strong>Explanation:</strong></p> <p>We can sort <code>balls</code> into boxes as follows:</p> <ul> <li><code>[3,3,3]</code></li> <li><code>[2,2]</code></li> </ul> <p>The size difference between the two boxes doesn&#39;t exceed one.</p> </div> <p><strong class="example">Example 2: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> balls = [10,10,10,3,1,1] </span></p> <p><strong>Output: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 4 </span></p> <p><strong>Explanation:</strong></p> <p>We can sort <code>balls</code> into boxes as follows:</p> <ul> </ul> <ul> <li><code>[10]</code></li> <li><code>[10,10]</code></li> <li><code>[3]</code></li> <li><code>[1,1]</code></li> </ul> <p>You can&#39;t use fewer than four boxes while still following the rules. For example, putting all three balls numbered 10 in one box would break the rule about the maximum size difference between boxes.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= nums[i] &lt;= 10<sup>9</sup></code></li> </ul>
Greedy; Array; Hash Table
Rust
use std::collections::HashMap; impl Solution { pub fn min_groups_for_valid_assignment(nums: Vec<i32>) -> i32 { let mut cnt: HashMap<i32, i32> = HashMap::new(); for x in nums.iter() { let count = cnt.entry(*x).or_insert(0); *count += 1; } let mut k = i32::MAX; for &v in cnt.values() { k = k.min(v); } for k in (1..=k).rev() { let mut ans = 0; for &v in cnt.values() { if v / k < v % k { ans = 0; break; } ans += (v + k) / (k + 1); } if ans > 0 { return ans; } } 0 } }
2,910
Minimum Number of Groups to Create a Valid Assignment
Medium
<p>You are given a collection of numbered <code>balls</code>&nbsp;and instructed to sort them into boxes for a nearly balanced distribution. There are two rules you must follow:</p> <ul> <li>Balls with the same&nbsp;box must have the same value. But, if you have more than one ball with the same number, you can put them in different boxes.</li> <li>The biggest box can only have one more ball than the smallest box.</li> </ul> <p>​Return the <em>fewest number of boxes</em> to sort these balls following these rules.</p> <p>&nbsp;</p> <p><strong class="example">Example 1: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> balls = [3,2,3,2,3] </span></p> <p><strong>Output: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 2 </span></p> <p><strong>Explanation:</strong></p> <p>We can sort <code>balls</code> into boxes as follows:</p> <ul> <li><code>[3,3,3]</code></li> <li><code>[2,2]</code></li> </ul> <p>The size difference between the two boxes doesn&#39;t exceed one.</p> </div> <p><strong class="example">Example 2: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> balls = [10,10,10,3,1,1] </span></p> <p><strong>Output: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 4 </span></p> <p><strong>Explanation:</strong></p> <p>We can sort <code>balls</code> into boxes as follows:</p> <ul> </ul> <ul> <li><code>[10]</code></li> <li><code>[10,10]</code></li> <li><code>[3]</code></li> <li><code>[1,1]</code></li> </ul> <p>You can&#39;t use fewer than four boxes while still following the rules. For example, putting all three balls numbered 10 in one box would break the rule about the maximum size difference between boxes.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= nums[i] &lt;= 10<sup>9</sup></code></li> </ul>
Greedy; Array; Hash Table
TypeScript
function minGroupsForValidAssignment(nums: number[]): number { const cnt: Map<number, number> = new Map(); for (const x of nums) { cnt.set(x, (cnt.get(x) || 0) + 1); } for (let k = Math.min(...cnt.values()); ; --k) { let ans = 0; for (const [_, v] of cnt) { if (((v / k) | 0) < v % k) { ans = 0; break; } ans += Math.ceil(v / (k + 1)); } if (ans) { return ans; } } }
2,911
Minimum Changes to Make K Semi-palindromes
Hard
<p>Given a string <code>s</code> and an integer <code>k</code>, partition <code>s</code> into <code>k</code> <strong><span data-keyword="substring-nonempty">substrings</span></strong> such that the letter changes needed to make each substring a <strong>semi-palindrome</strong>&nbsp;are minimized.</p> <p>Return the <em><strong>minimum</strong> number of letter changes</em> required<em>.</em></p> <p>A <strong>semi-palindrome</strong> is a special type of string that can be divided into <strong><span data-keyword="palindrome">palindromes</span></strong> based on a repeating pattern. To check if a string is a semi-palindrome:​</p> <ol> <li>Choose a positive divisor <code>d</code> of the string&#39;s length. <code>d</code> can range from <code>1</code> up to, but not including, the string&#39;s length. For a string of length <code>1</code>, it does not have a valid divisor as per this definition, since the only divisor is its length, which is not allowed.</li> <li>For a given divisor <code>d</code>, divide the string into groups where each group contains characters from the string that follow a repeating pattern of length <code>d</code>. Specifically, the first group consists of characters at positions <code>1</code>, <code>1 + d</code>, <code>1 + 2d</code>, and so on; the second group includes characters at positions <code>2</code>, <code>2 + d</code>, <code>2 + 2d</code>, etc.</li> <li>The string is considered a semi-palindrome if each of these groups forms a palindrome.</li> </ol> <p>Consider the string <code>&quot;abcabc&quot;</code>:</p> <ul> <li>The length of <code>&quot;abcabc&quot;</code> is <code>6</code>. Valid divisors are <code>1</code>, <code>2</code>, and <code>3</code>.</li> <li>For <code>d = 1</code>: The entire string <code>&quot;abcabc&quot;</code> forms one group. Not a palindrome.</li> <li>For <code>d = 2</code>: <ul> <li>Group 1 (positions <code>1, 3, 5</code>): <code>&quot;acb&quot;</code></li> <li>Group 2 (positions <code>2, 4, 6</code>): <code>&quot;bac&quot;</code></li> <li>Neither group forms a palindrome.</li> </ul> </li> <li>For <code>d = 3</code>: <ul> <li>Group 1 (positions <code>1, 4</code>): <code>&quot;aa&quot;</code></li> <li>Group 2 (positions <code>2, 5</code>): <code>&quot;bb&quot;</code></li> <li>Group 3 (positions <code>3, 6</code>): <code>&quot;cc&quot;</code></li> <li>All groups form palindromes. Therefore, <code>&quot;abcabc&quot;</code> is a semi-palindrome.</li> </ul> </li> </ul> <p>&nbsp;</p> <p><strong class="example">Example 1: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> s = &quot;abcac&quot;, k = 2 </span></p> <p><strong>Output: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 1 </span></p> <p><strong>Explanation: </strong> Divide <code>s</code> into <code>&quot;ab&quot;</code> and <code>&quot;cac&quot;</code>. <code>&quot;cac&quot;</code> is already semi-palindrome. Change <code>&quot;ab&quot;</code> to <code>&quot;aa&quot;</code>, it becomes semi-palindrome with <code>d = 1</code>.</p> </div> <p><strong class="example">Example 2: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> s = &quot;abcdef&quot;, k = 2 </span></p> <p><strong>Output: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 2 </span></p> <p><strong>Explanation: </strong> Divide <code>s</code> into substrings <code>&quot;abc&quot;</code> and <code>&quot;def&quot;</code>. Each&nbsp;needs one change to become semi-palindrome.</p> </div> <p><strong class="example">Example 3: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> s = &quot;aabbaa&quot;, k = 3 </span></p> <p><strong>Output: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 0 </span></p> <p><strong>Explanation: </strong> Divide <code>s</code> into substrings <code>&quot;aa&quot;</code>, <code>&quot;bb&quot;</code> and <code>&quot;aa&quot;</code>.&nbsp;All are already semi-palindromes.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= s.length &lt;= 200</code></li> <li><code>1 &lt;= k &lt;= s.length / 2</code></li> <li><code>s</code> contains only lowercase English letters.</li> </ul>
Two Pointers; String; Dynamic Programming
C++
class Solution { public: int minimumChanges(string s, int k) { int n = s.size(); int g[n + 1][n + 1]; int f[n + 1][k + 1]; memset(g, 0x3f, sizeof(g)); memset(f, 0x3f, sizeof(f)); f[0][0] = 0; for (int i = 1; i <= n; ++i) { for (int j = i; j <= n; ++j) { int m = j - i + 1; for (int d = 1; d < m; ++d) { if (m % d == 0) { int cnt = 0; for (int l = 0; l < m; ++l) { int r = (m / d - 1 - l / d) * d + l % d; if (l >= r) { break; } if (s[i - 1 + l] != s[i - 1 + r]) { ++cnt; } } g[i][j] = min(g[i][j], cnt); } } } } for (int i = 1; i <= n; ++i) { for (int j = 1; j <= k; ++j) { for (int h = 0; h < i - 1; ++h) { f[i][j] = min(f[i][j], f[h][j - 1] + g[h + 1][i]); } } } return f[n][k]; } };
2,911
Minimum Changes to Make K Semi-palindromes
Hard
<p>Given a string <code>s</code> and an integer <code>k</code>, partition <code>s</code> into <code>k</code> <strong><span data-keyword="substring-nonempty">substrings</span></strong> such that the letter changes needed to make each substring a <strong>semi-palindrome</strong>&nbsp;are minimized.</p> <p>Return the <em><strong>minimum</strong> number of letter changes</em> required<em>.</em></p> <p>A <strong>semi-palindrome</strong> is a special type of string that can be divided into <strong><span data-keyword="palindrome">palindromes</span></strong> based on a repeating pattern. To check if a string is a semi-palindrome:​</p> <ol> <li>Choose a positive divisor <code>d</code> of the string&#39;s length. <code>d</code> can range from <code>1</code> up to, but not including, the string&#39;s length. For a string of length <code>1</code>, it does not have a valid divisor as per this definition, since the only divisor is its length, which is not allowed.</li> <li>For a given divisor <code>d</code>, divide the string into groups where each group contains characters from the string that follow a repeating pattern of length <code>d</code>. Specifically, the first group consists of characters at positions <code>1</code>, <code>1 + d</code>, <code>1 + 2d</code>, and so on; the second group includes characters at positions <code>2</code>, <code>2 + d</code>, <code>2 + 2d</code>, etc.</li> <li>The string is considered a semi-palindrome if each of these groups forms a palindrome.</li> </ol> <p>Consider the string <code>&quot;abcabc&quot;</code>:</p> <ul> <li>The length of <code>&quot;abcabc&quot;</code> is <code>6</code>. Valid divisors are <code>1</code>, <code>2</code>, and <code>3</code>.</li> <li>For <code>d = 1</code>: The entire string <code>&quot;abcabc&quot;</code> forms one group. Not a palindrome.</li> <li>For <code>d = 2</code>: <ul> <li>Group 1 (positions <code>1, 3, 5</code>): <code>&quot;acb&quot;</code></li> <li>Group 2 (positions <code>2, 4, 6</code>): <code>&quot;bac&quot;</code></li> <li>Neither group forms a palindrome.</li> </ul> </li> <li>For <code>d = 3</code>: <ul> <li>Group 1 (positions <code>1, 4</code>): <code>&quot;aa&quot;</code></li> <li>Group 2 (positions <code>2, 5</code>): <code>&quot;bb&quot;</code></li> <li>Group 3 (positions <code>3, 6</code>): <code>&quot;cc&quot;</code></li> <li>All groups form palindromes. Therefore, <code>&quot;abcabc&quot;</code> is a semi-palindrome.</li> </ul> </li> </ul> <p>&nbsp;</p> <p><strong class="example">Example 1: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> s = &quot;abcac&quot;, k = 2 </span></p> <p><strong>Output: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 1 </span></p> <p><strong>Explanation: </strong> Divide <code>s</code> into <code>&quot;ab&quot;</code> and <code>&quot;cac&quot;</code>. <code>&quot;cac&quot;</code> is already semi-palindrome. Change <code>&quot;ab&quot;</code> to <code>&quot;aa&quot;</code>, it becomes semi-palindrome with <code>d = 1</code>.</p> </div> <p><strong class="example">Example 2: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> s = &quot;abcdef&quot;, k = 2 </span></p> <p><strong>Output: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 2 </span></p> <p><strong>Explanation: </strong> Divide <code>s</code> into substrings <code>&quot;abc&quot;</code> and <code>&quot;def&quot;</code>. Each&nbsp;needs one change to become semi-palindrome.</p> </div> <p><strong class="example">Example 3: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> s = &quot;aabbaa&quot;, k = 3 </span></p> <p><strong>Output: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 0 </span></p> <p><strong>Explanation: </strong> Divide <code>s</code> into substrings <code>&quot;aa&quot;</code>, <code>&quot;bb&quot;</code> and <code>&quot;aa&quot;</code>.&nbsp;All are already semi-palindromes.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= s.length &lt;= 200</code></li> <li><code>1 &lt;= k &lt;= s.length / 2</code></li> <li><code>s</code> contains only lowercase English letters.</li> </ul>
Two Pointers; String; Dynamic Programming
Go
func minimumChanges(s string, k int) int { n := len(s) g := make([][]int, n+1) f := make([][]int, n+1) const inf int = 1 << 30 for i := range g { g[i] = make([]int, n+1) f[i] = make([]int, k+1) for j := range g[i] { g[i][j] = inf } for j := range f[i] { f[i][j] = inf } } f[0][0] = 0 for i := 1; i <= n; i++ { for j := i; j <= n; j++ { m := j - i + 1 for d := 1; d < m; d++ { if m%d == 0 { cnt := 0 for l := 0; l < m; l++ { r := (m/d-1-l/d)*d + l%d if l >= r { break } if s[i-1+l] != s[i-1+r] { cnt++ } } g[i][j] = min(g[i][j], cnt) } } } } for i := 1; i <= n; i++ { for j := 1; j <= k; j++ { for h := 0; h < i-1; h++ { f[i][j] = min(f[i][j], f[h][j-1]+g[h+1][i]) } } } return f[n][k] }
2,911
Minimum Changes to Make K Semi-palindromes
Hard
<p>Given a string <code>s</code> and an integer <code>k</code>, partition <code>s</code> into <code>k</code> <strong><span data-keyword="substring-nonempty">substrings</span></strong> such that the letter changes needed to make each substring a <strong>semi-palindrome</strong>&nbsp;are minimized.</p> <p>Return the <em><strong>minimum</strong> number of letter changes</em> required<em>.</em></p> <p>A <strong>semi-palindrome</strong> is a special type of string that can be divided into <strong><span data-keyword="palindrome">palindromes</span></strong> based on a repeating pattern. To check if a string is a semi-palindrome:​</p> <ol> <li>Choose a positive divisor <code>d</code> of the string&#39;s length. <code>d</code> can range from <code>1</code> up to, but not including, the string&#39;s length. For a string of length <code>1</code>, it does not have a valid divisor as per this definition, since the only divisor is its length, which is not allowed.</li> <li>For a given divisor <code>d</code>, divide the string into groups where each group contains characters from the string that follow a repeating pattern of length <code>d</code>. Specifically, the first group consists of characters at positions <code>1</code>, <code>1 + d</code>, <code>1 + 2d</code>, and so on; the second group includes characters at positions <code>2</code>, <code>2 + d</code>, <code>2 + 2d</code>, etc.</li> <li>The string is considered a semi-palindrome if each of these groups forms a palindrome.</li> </ol> <p>Consider the string <code>&quot;abcabc&quot;</code>:</p> <ul> <li>The length of <code>&quot;abcabc&quot;</code> is <code>6</code>. Valid divisors are <code>1</code>, <code>2</code>, and <code>3</code>.</li> <li>For <code>d = 1</code>: The entire string <code>&quot;abcabc&quot;</code> forms one group. Not a palindrome.</li> <li>For <code>d = 2</code>: <ul> <li>Group 1 (positions <code>1, 3, 5</code>): <code>&quot;acb&quot;</code></li> <li>Group 2 (positions <code>2, 4, 6</code>): <code>&quot;bac&quot;</code></li> <li>Neither group forms a palindrome.</li> </ul> </li> <li>For <code>d = 3</code>: <ul> <li>Group 1 (positions <code>1, 4</code>): <code>&quot;aa&quot;</code></li> <li>Group 2 (positions <code>2, 5</code>): <code>&quot;bb&quot;</code></li> <li>Group 3 (positions <code>3, 6</code>): <code>&quot;cc&quot;</code></li> <li>All groups form palindromes. Therefore, <code>&quot;abcabc&quot;</code> is a semi-palindrome.</li> </ul> </li> </ul> <p>&nbsp;</p> <p><strong class="example">Example 1: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> s = &quot;abcac&quot;, k = 2 </span></p> <p><strong>Output: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 1 </span></p> <p><strong>Explanation: </strong> Divide <code>s</code> into <code>&quot;ab&quot;</code> and <code>&quot;cac&quot;</code>. <code>&quot;cac&quot;</code> is already semi-palindrome. Change <code>&quot;ab&quot;</code> to <code>&quot;aa&quot;</code>, it becomes semi-palindrome with <code>d = 1</code>.</p> </div> <p><strong class="example">Example 2: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> s = &quot;abcdef&quot;, k = 2 </span></p> <p><strong>Output: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 2 </span></p> <p><strong>Explanation: </strong> Divide <code>s</code> into substrings <code>&quot;abc&quot;</code> and <code>&quot;def&quot;</code>. Each&nbsp;needs one change to become semi-palindrome.</p> </div> <p><strong class="example">Example 3: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> s = &quot;aabbaa&quot;, k = 3 </span></p> <p><strong>Output: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 0 </span></p> <p><strong>Explanation: </strong> Divide <code>s</code> into substrings <code>&quot;aa&quot;</code>, <code>&quot;bb&quot;</code> and <code>&quot;aa&quot;</code>.&nbsp;All are already semi-palindromes.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= s.length &lt;= 200</code></li> <li><code>1 &lt;= k &lt;= s.length / 2</code></li> <li><code>s</code> contains only lowercase English letters.</li> </ul>
Two Pointers; String; Dynamic Programming
Java
class Solution { public int minimumChanges(String s, int k) { int n = s.length(); int[][] g = new int[n + 1][n + 1]; int[][] f = new int[n + 1][k + 1]; final int inf = 1 << 30; for (int i = 0; i <= n; ++i) { Arrays.fill(g[i], inf); Arrays.fill(f[i], inf); } for (int i = 1; i <= n; ++i) { for (int j = i; j <= n; ++j) { int m = j - i + 1; for (int d = 1; d < m; ++d) { if (m % d == 0) { int cnt = 0; for (int l = 0; l < m; ++l) { int r = (m / d - 1 - l / d) * d + l % d; if (l >= r) { break; } if (s.charAt(i - 1 + l) != s.charAt(i - 1 + r)) { ++cnt; } } g[i][j] = Math.min(g[i][j], cnt); } } } } f[0][0] = 0; for (int i = 1; i <= n; ++i) { for (int j = 1; j <= k; ++j) { for (int h = 0; h < i - 1; ++h) { f[i][j] = Math.min(f[i][j], f[h][j - 1] + g[h + 1][i]); } } } return f[n][k]; } }
2,911
Minimum Changes to Make K Semi-palindromes
Hard
<p>Given a string <code>s</code> and an integer <code>k</code>, partition <code>s</code> into <code>k</code> <strong><span data-keyword="substring-nonempty">substrings</span></strong> such that the letter changes needed to make each substring a <strong>semi-palindrome</strong>&nbsp;are minimized.</p> <p>Return the <em><strong>minimum</strong> number of letter changes</em> required<em>.</em></p> <p>A <strong>semi-palindrome</strong> is a special type of string that can be divided into <strong><span data-keyword="palindrome">palindromes</span></strong> based on a repeating pattern. To check if a string is a semi-palindrome:​</p> <ol> <li>Choose a positive divisor <code>d</code> of the string&#39;s length. <code>d</code> can range from <code>1</code> up to, but not including, the string&#39;s length. For a string of length <code>1</code>, it does not have a valid divisor as per this definition, since the only divisor is its length, which is not allowed.</li> <li>For a given divisor <code>d</code>, divide the string into groups where each group contains characters from the string that follow a repeating pattern of length <code>d</code>. Specifically, the first group consists of characters at positions <code>1</code>, <code>1 + d</code>, <code>1 + 2d</code>, and so on; the second group includes characters at positions <code>2</code>, <code>2 + d</code>, <code>2 + 2d</code>, etc.</li> <li>The string is considered a semi-palindrome if each of these groups forms a palindrome.</li> </ol> <p>Consider the string <code>&quot;abcabc&quot;</code>:</p> <ul> <li>The length of <code>&quot;abcabc&quot;</code> is <code>6</code>. Valid divisors are <code>1</code>, <code>2</code>, and <code>3</code>.</li> <li>For <code>d = 1</code>: The entire string <code>&quot;abcabc&quot;</code> forms one group. Not a palindrome.</li> <li>For <code>d = 2</code>: <ul> <li>Group 1 (positions <code>1, 3, 5</code>): <code>&quot;acb&quot;</code></li> <li>Group 2 (positions <code>2, 4, 6</code>): <code>&quot;bac&quot;</code></li> <li>Neither group forms a palindrome.</li> </ul> </li> <li>For <code>d = 3</code>: <ul> <li>Group 1 (positions <code>1, 4</code>): <code>&quot;aa&quot;</code></li> <li>Group 2 (positions <code>2, 5</code>): <code>&quot;bb&quot;</code></li> <li>Group 3 (positions <code>3, 6</code>): <code>&quot;cc&quot;</code></li> <li>All groups form palindromes. Therefore, <code>&quot;abcabc&quot;</code> is a semi-palindrome.</li> </ul> </li> </ul> <p>&nbsp;</p> <p><strong class="example">Example 1: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> s = &quot;abcac&quot;, k = 2 </span></p> <p><strong>Output: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 1 </span></p> <p><strong>Explanation: </strong> Divide <code>s</code> into <code>&quot;ab&quot;</code> and <code>&quot;cac&quot;</code>. <code>&quot;cac&quot;</code> is already semi-palindrome. Change <code>&quot;ab&quot;</code> to <code>&quot;aa&quot;</code>, it becomes semi-palindrome with <code>d = 1</code>.</p> </div> <p><strong class="example">Example 2: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> s = &quot;abcdef&quot;, k = 2 </span></p> <p><strong>Output: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 2 </span></p> <p><strong>Explanation: </strong> Divide <code>s</code> into substrings <code>&quot;abc&quot;</code> and <code>&quot;def&quot;</code>. Each&nbsp;needs one change to become semi-palindrome.</p> </div> <p><strong class="example">Example 3: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> s = &quot;aabbaa&quot;, k = 3 </span></p> <p><strong>Output: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 0 </span></p> <p><strong>Explanation: </strong> Divide <code>s</code> into substrings <code>&quot;aa&quot;</code>, <code>&quot;bb&quot;</code> and <code>&quot;aa&quot;</code>.&nbsp;All are already semi-palindromes.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= s.length &lt;= 200</code></li> <li><code>1 &lt;= k &lt;= s.length / 2</code></li> <li><code>s</code> contains only lowercase English letters.</li> </ul>
Two Pointers; String; Dynamic Programming
Python
class Solution: def minimumChanges(self, s: str, k: int) -> int: n = len(s) g = [[inf] * (n + 1) for _ in range(n + 1)] for i in range(1, n + 1): for j in range(i, n + 1): m = j - i + 1 for d in range(1, m): if m % d == 0: cnt = 0 for l in range(m): r = (m // d - 1 - l // d) * d + l % d if l >= r: break if s[i - 1 + l] != s[i - 1 + r]: cnt += 1 g[i][j] = min(g[i][j], cnt) f = [[inf] * (k + 1) for _ in range(n + 1)] f[0][0] = 0 for i in range(1, n + 1): for j in range(1, k + 1): for h in range(i - 1): f[i][j] = min(f[i][j], f[h][j - 1] + g[h + 1][i]) return f[n][k]
2,911
Minimum Changes to Make K Semi-palindromes
Hard
<p>Given a string <code>s</code> and an integer <code>k</code>, partition <code>s</code> into <code>k</code> <strong><span data-keyword="substring-nonempty">substrings</span></strong> such that the letter changes needed to make each substring a <strong>semi-palindrome</strong>&nbsp;are minimized.</p> <p>Return the <em><strong>minimum</strong> number of letter changes</em> required<em>.</em></p> <p>A <strong>semi-palindrome</strong> is a special type of string that can be divided into <strong><span data-keyword="palindrome">palindromes</span></strong> based on a repeating pattern. To check if a string is a semi-palindrome:​</p> <ol> <li>Choose a positive divisor <code>d</code> of the string&#39;s length. <code>d</code> can range from <code>1</code> up to, but not including, the string&#39;s length. For a string of length <code>1</code>, it does not have a valid divisor as per this definition, since the only divisor is its length, which is not allowed.</li> <li>For a given divisor <code>d</code>, divide the string into groups where each group contains characters from the string that follow a repeating pattern of length <code>d</code>. Specifically, the first group consists of characters at positions <code>1</code>, <code>1 + d</code>, <code>1 + 2d</code>, and so on; the second group includes characters at positions <code>2</code>, <code>2 + d</code>, <code>2 + 2d</code>, etc.</li> <li>The string is considered a semi-palindrome if each of these groups forms a palindrome.</li> </ol> <p>Consider the string <code>&quot;abcabc&quot;</code>:</p> <ul> <li>The length of <code>&quot;abcabc&quot;</code> is <code>6</code>. Valid divisors are <code>1</code>, <code>2</code>, and <code>3</code>.</li> <li>For <code>d = 1</code>: The entire string <code>&quot;abcabc&quot;</code> forms one group. Not a palindrome.</li> <li>For <code>d = 2</code>: <ul> <li>Group 1 (positions <code>1, 3, 5</code>): <code>&quot;acb&quot;</code></li> <li>Group 2 (positions <code>2, 4, 6</code>): <code>&quot;bac&quot;</code></li> <li>Neither group forms a palindrome.</li> </ul> </li> <li>For <code>d = 3</code>: <ul> <li>Group 1 (positions <code>1, 4</code>): <code>&quot;aa&quot;</code></li> <li>Group 2 (positions <code>2, 5</code>): <code>&quot;bb&quot;</code></li> <li>Group 3 (positions <code>3, 6</code>): <code>&quot;cc&quot;</code></li> <li>All groups form palindromes. Therefore, <code>&quot;abcabc&quot;</code> is a semi-palindrome.</li> </ul> </li> </ul> <p>&nbsp;</p> <p><strong class="example">Example 1: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> s = &quot;abcac&quot;, k = 2 </span></p> <p><strong>Output: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 1 </span></p> <p><strong>Explanation: </strong> Divide <code>s</code> into <code>&quot;ab&quot;</code> and <code>&quot;cac&quot;</code>. <code>&quot;cac&quot;</code> is already semi-palindrome. Change <code>&quot;ab&quot;</code> to <code>&quot;aa&quot;</code>, it becomes semi-palindrome with <code>d = 1</code>.</p> </div> <p><strong class="example">Example 2: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> s = &quot;abcdef&quot;, k = 2 </span></p> <p><strong>Output: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 2 </span></p> <p><strong>Explanation: </strong> Divide <code>s</code> into substrings <code>&quot;abc&quot;</code> and <code>&quot;def&quot;</code>. Each&nbsp;needs one change to become semi-palindrome.</p> </div> <p><strong class="example">Example 3: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> s = &quot;aabbaa&quot;, k = 3 </span></p> <p><strong>Output: </strong> <span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 0 </span></p> <p><strong>Explanation: </strong> Divide <code>s</code> into substrings <code>&quot;aa&quot;</code>, <code>&quot;bb&quot;</code> and <code>&quot;aa&quot;</code>.&nbsp;All are already semi-palindromes.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= s.length &lt;= 200</code></li> <li><code>1 &lt;= k &lt;= s.length / 2</code></li> <li><code>s</code> contains only lowercase English letters.</li> </ul>
Two Pointers; String; Dynamic Programming
TypeScript
function minimumChanges(s: string, k: number): number { const n = s.length; const g = Array.from({ length: n + 1 }, () => Array.from({ length: n + 1 }, () => Infinity)); const f = Array.from({ length: n + 1 }, () => Array.from({ length: k + 1 }, () => Infinity)); f[0][0] = 0; for (let i = 1; i <= n; ++i) { for (let j = 1; j <= n; ++j) { const m = j - i + 1; for (let d = 1; d < m; ++d) { if (m % d === 0) { let cnt = 0; for (let l = 0; l < m; ++l) { const r = (((m / d) | 0) - 1 - ((l / d) | 0)) * d + (l % d); if (l >= r) { break; } if (s[i - 1 + l] !== s[i - 1 + r]) { ++cnt; } } g[i][j] = Math.min(g[i][j], cnt); } } } } for (let i = 1; i <= n; ++i) { for (let j = 1; j <= k; ++j) { for (let h = 0; h < i - 1; ++h) { f[i][j] = Math.min(f[i][j], f[h][j - 1] + g[h + 1][i]); } } } return f[n][k]; }
2,912
Number of Ways to Reach Destination in the Grid
Hard
<p>You are given two integers <code>n</code> and <code>m</code> which represent the size of a <strong>1-indexed </strong>grid. You are also given an integer <code>k</code>, a <strong>1-indexed</strong> integer array <code>source</code> and a <strong>1-indexed</strong> integer array <code>dest</code>, where <code>source</code> and <code>dest</code> are in the form <code>[x, y]</code> representing a cell on the given grid.</p> <p>You can move through the grid in the following way:</p> <ul> <li>You can go from cell <code>[x<sub>1</sub>, y<sub>1</sub>]</code> to cell <code>[x<sub>2</sub>, y<sub>2</sub>]</code> if either <code>x<sub>1</sub> == x<sub>2</sub></code> or <code>y<sub>1</sub> == y<sub>2</sub></code>.</li> <li>Note that you <strong>can&#39;t</strong> move to the cell you are already in e.g. <code>x<sub>1</sub> == x<sub>2</sub></code> and <code>y<sub>1</sub> == y<sub>2</sub></code>.</li> </ul> <p>Return <em>the number of ways you can reach</em> <code>dest</code> <em>from</em> <code>source</code> <em>by moving through the grid</em> <strong>exactly</strong> <code>k</code> <em>times.</em></p> <p>Since the answer may be very large, return it <strong>modulo</strong> <code>10<sup>9</sup> + 7</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> n = 3, m = 2, k = 2, source = [1,1], dest = [2,2] <strong>Output:</strong> 2 <strong>Explanation:</strong> There are 2 possible sequences of reaching [2,2] from [1,1]: - [1,1] -&gt; [1,2] -&gt; [2,2] - [1,1] -&gt; [2,1] -&gt; [2,2] </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> n = 3, m = 4, k = 3, source = [1,2], dest = [2,3] <strong>Output:</strong> 9 <strong>Explanation:</strong> There are 9 possible sequences of reaching [2,3] from [1,2]: - [1,2] -&gt; [1,1] -&gt; [1,3] -&gt; [2,3] - [1,2] -&gt; [1,1] -&gt; [2,1] -&gt; [2,3] - [1,2] -&gt; [1,3] -&gt; [3,3] -&gt; [2,3] - [1,2] -&gt; [1,4] -&gt; [1,3] -&gt; [2,3] - [1,2] -&gt; [1,4] -&gt; [2,4] -&gt; [2,3] - [1,2] -&gt; [2,2] -&gt; [2,1] -&gt; [2,3] - [1,2] -&gt; [2,2] -&gt; [2,4] -&gt; [2,3] - [1,2] -&gt; [3,2] -&gt; [2,2] -&gt; [2,3] - [1,2] -&gt; [3,2] -&gt; [3,3] -&gt; [2,3] </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= n, m &lt;= 10<sup>9</sup></code></li> <li><code>1 &lt;= k&nbsp;&lt;= 10<sup>5</sup></code></li> <li><code>source.length == dest.length == 2</code></li> <li><code>1 &lt;= source[1], dest[1] &lt;= n</code></li> <li><code>1 &lt;= source[2], dest[2] &lt;= m</code></li> </ul>
Math; Dynamic Programming; Combinatorics
C++
class Solution { public: int numberOfWays(int n, int m, int k, vector<int>& source, vector<int>& dest) { const int mod = 1e9 + 7; vector<long long> f(4); f[0] = 1; while (k--) { vector<long long> g(4); g[0] = ((n - 1) * f[1] + (m - 1) * f[2]) % mod; g[1] = (f[0] + (n - 2) * f[1] + (m - 1) * f[3]) % mod; g[2] = (f[0] + (m - 2) * f[2] + (n - 1) * f[3]) % mod; g[3] = (f[1] + f[2] + (n - 2) * f[3] + (m - 2) * f[3]) % mod; f = move(g); } if (source[0] == dest[0]) { return source[1] == dest[1] ? f[0] : f[2]; } return source[1] == dest[1] ? f[1] : f[3]; } };
2,912
Number of Ways to Reach Destination in the Grid
Hard
<p>You are given two integers <code>n</code> and <code>m</code> which represent the size of a <strong>1-indexed </strong>grid. You are also given an integer <code>k</code>, a <strong>1-indexed</strong> integer array <code>source</code> and a <strong>1-indexed</strong> integer array <code>dest</code>, where <code>source</code> and <code>dest</code> are in the form <code>[x, y]</code> representing a cell on the given grid.</p> <p>You can move through the grid in the following way:</p> <ul> <li>You can go from cell <code>[x<sub>1</sub>, y<sub>1</sub>]</code> to cell <code>[x<sub>2</sub>, y<sub>2</sub>]</code> if either <code>x<sub>1</sub> == x<sub>2</sub></code> or <code>y<sub>1</sub> == y<sub>2</sub></code>.</li> <li>Note that you <strong>can&#39;t</strong> move to the cell you are already in e.g. <code>x<sub>1</sub> == x<sub>2</sub></code> and <code>y<sub>1</sub> == y<sub>2</sub></code>.</li> </ul> <p>Return <em>the number of ways you can reach</em> <code>dest</code> <em>from</em> <code>source</code> <em>by moving through the grid</em> <strong>exactly</strong> <code>k</code> <em>times.</em></p> <p>Since the answer may be very large, return it <strong>modulo</strong> <code>10<sup>9</sup> + 7</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> n = 3, m = 2, k = 2, source = [1,1], dest = [2,2] <strong>Output:</strong> 2 <strong>Explanation:</strong> There are 2 possible sequences of reaching [2,2] from [1,1]: - [1,1] -&gt; [1,2] -&gt; [2,2] - [1,1] -&gt; [2,1] -&gt; [2,2] </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> n = 3, m = 4, k = 3, source = [1,2], dest = [2,3] <strong>Output:</strong> 9 <strong>Explanation:</strong> There are 9 possible sequences of reaching [2,3] from [1,2]: - [1,2] -&gt; [1,1] -&gt; [1,3] -&gt; [2,3] - [1,2] -&gt; [1,1] -&gt; [2,1] -&gt; [2,3] - [1,2] -&gt; [1,3] -&gt; [3,3] -&gt; [2,3] - [1,2] -&gt; [1,4] -&gt; [1,3] -&gt; [2,3] - [1,2] -&gt; [1,4] -&gt; [2,4] -&gt; [2,3] - [1,2] -&gt; [2,2] -&gt; [2,1] -&gt; [2,3] - [1,2] -&gt; [2,2] -&gt; [2,4] -&gt; [2,3] - [1,2] -&gt; [3,2] -&gt; [2,2] -&gt; [2,3] - [1,2] -&gt; [3,2] -&gt; [3,3] -&gt; [2,3] </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= n, m &lt;= 10<sup>9</sup></code></li> <li><code>1 &lt;= k&nbsp;&lt;= 10<sup>5</sup></code></li> <li><code>source.length == dest.length == 2</code></li> <li><code>1 &lt;= source[1], dest[1] &lt;= n</code></li> <li><code>1 &lt;= source[2], dest[2] &lt;= m</code></li> </ul>
Math; Dynamic Programming; Combinatorics
Go
func numberOfWays(n int, m int, k int, source []int, dest []int) int { const mod int = 1e9 + 7 f := []int{1, 0, 0, 0} for i := 0; i < k; i++ { g := make([]int, 4) g[0] = ((n-1)*f[1] + (m-1)*f[2]) % mod g[1] = (f[0] + (n-2)*f[1] + (m-1)*f[3]) % mod g[2] = (f[0] + (m-2)*f[2] + (n-1)*f[3]) % mod g[3] = (f[1] + f[2] + (n-2)*f[3] + (m-2)*f[3]) % mod f = g } if source[0] == dest[0] { if source[1] == dest[1] { return f[0] } return f[2] } if source[1] == dest[1] { return f[1] } return f[3] }
2,912
Number of Ways to Reach Destination in the Grid
Hard
<p>You are given two integers <code>n</code> and <code>m</code> which represent the size of a <strong>1-indexed </strong>grid. You are also given an integer <code>k</code>, a <strong>1-indexed</strong> integer array <code>source</code> and a <strong>1-indexed</strong> integer array <code>dest</code>, where <code>source</code> and <code>dest</code> are in the form <code>[x, y]</code> representing a cell on the given grid.</p> <p>You can move through the grid in the following way:</p> <ul> <li>You can go from cell <code>[x<sub>1</sub>, y<sub>1</sub>]</code> to cell <code>[x<sub>2</sub>, y<sub>2</sub>]</code> if either <code>x<sub>1</sub> == x<sub>2</sub></code> or <code>y<sub>1</sub> == y<sub>2</sub></code>.</li> <li>Note that you <strong>can&#39;t</strong> move to the cell you are already in e.g. <code>x<sub>1</sub> == x<sub>2</sub></code> and <code>y<sub>1</sub> == y<sub>2</sub></code>.</li> </ul> <p>Return <em>the number of ways you can reach</em> <code>dest</code> <em>from</em> <code>source</code> <em>by moving through the grid</em> <strong>exactly</strong> <code>k</code> <em>times.</em></p> <p>Since the answer may be very large, return it <strong>modulo</strong> <code>10<sup>9</sup> + 7</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> n = 3, m = 2, k = 2, source = [1,1], dest = [2,2] <strong>Output:</strong> 2 <strong>Explanation:</strong> There are 2 possible sequences of reaching [2,2] from [1,1]: - [1,1] -&gt; [1,2] -&gt; [2,2] - [1,1] -&gt; [2,1] -&gt; [2,2] </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> n = 3, m = 4, k = 3, source = [1,2], dest = [2,3] <strong>Output:</strong> 9 <strong>Explanation:</strong> There are 9 possible sequences of reaching [2,3] from [1,2]: - [1,2] -&gt; [1,1] -&gt; [1,3] -&gt; [2,3] - [1,2] -&gt; [1,1] -&gt; [2,1] -&gt; [2,3] - [1,2] -&gt; [1,3] -&gt; [3,3] -&gt; [2,3] - [1,2] -&gt; [1,4] -&gt; [1,3] -&gt; [2,3] - [1,2] -&gt; [1,4] -&gt; [2,4] -&gt; [2,3] - [1,2] -&gt; [2,2] -&gt; [2,1] -&gt; [2,3] - [1,2] -&gt; [2,2] -&gt; [2,4] -&gt; [2,3] - [1,2] -&gt; [3,2] -&gt; [2,2] -&gt; [2,3] - [1,2] -&gt; [3,2] -&gt; [3,3] -&gt; [2,3] </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= n, m &lt;= 10<sup>9</sup></code></li> <li><code>1 &lt;= k&nbsp;&lt;= 10<sup>5</sup></code></li> <li><code>source.length == dest.length == 2</code></li> <li><code>1 &lt;= source[1], dest[1] &lt;= n</code></li> <li><code>1 &lt;= source[2], dest[2] &lt;= m</code></li> </ul>
Math; Dynamic Programming; Combinatorics
Java
class Solution { public int numberOfWays(int n, int m, int k, int[] source, int[] dest) { final int mod = 1000000007; long[] f = new long[4]; f[0] = 1; while (k-- > 0) { long[] g = new long[4]; g[0] = ((n - 1) * f[1] + (m - 1) * f[2]) % mod; g[1] = (f[0] + (n - 2) * f[1] + (m - 1) * f[3]) % mod; g[2] = (f[0] + (m - 2) * f[2] + (n - 1) * f[3]) % mod; g[3] = (f[1] + f[2] + (n - 2) * f[3] + (m - 2) * f[3]) % mod; f = g; } if (source[0] == dest[0]) { return source[1] == dest[1] ? (int) f[0] : (int) f[2]; } return source[1] == dest[1] ? (int) f[1] : (int) f[3]; } }
2,912
Number of Ways to Reach Destination in the Grid
Hard
<p>You are given two integers <code>n</code> and <code>m</code> which represent the size of a <strong>1-indexed </strong>grid. You are also given an integer <code>k</code>, a <strong>1-indexed</strong> integer array <code>source</code> and a <strong>1-indexed</strong> integer array <code>dest</code>, where <code>source</code> and <code>dest</code> are in the form <code>[x, y]</code> representing a cell on the given grid.</p> <p>You can move through the grid in the following way:</p> <ul> <li>You can go from cell <code>[x<sub>1</sub>, y<sub>1</sub>]</code> to cell <code>[x<sub>2</sub>, y<sub>2</sub>]</code> if either <code>x<sub>1</sub> == x<sub>2</sub></code> or <code>y<sub>1</sub> == y<sub>2</sub></code>.</li> <li>Note that you <strong>can&#39;t</strong> move to the cell you are already in e.g. <code>x<sub>1</sub> == x<sub>2</sub></code> and <code>y<sub>1</sub> == y<sub>2</sub></code>.</li> </ul> <p>Return <em>the number of ways you can reach</em> <code>dest</code> <em>from</em> <code>source</code> <em>by moving through the grid</em> <strong>exactly</strong> <code>k</code> <em>times.</em></p> <p>Since the answer may be very large, return it <strong>modulo</strong> <code>10<sup>9</sup> + 7</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> n = 3, m = 2, k = 2, source = [1,1], dest = [2,2] <strong>Output:</strong> 2 <strong>Explanation:</strong> There are 2 possible sequences of reaching [2,2] from [1,1]: - [1,1] -&gt; [1,2] -&gt; [2,2] - [1,1] -&gt; [2,1] -&gt; [2,2] </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> n = 3, m = 4, k = 3, source = [1,2], dest = [2,3] <strong>Output:</strong> 9 <strong>Explanation:</strong> There are 9 possible sequences of reaching [2,3] from [1,2]: - [1,2] -&gt; [1,1] -&gt; [1,3] -&gt; [2,3] - [1,2] -&gt; [1,1] -&gt; [2,1] -&gt; [2,3] - [1,2] -&gt; [1,3] -&gt; [3,3] -&gt; [2,3] - [1,2] -&gt; [1,4] -&gt; [1,3] -&gt; [2,3] - [1,2] -&gt; [1,4] -&gt; [2,4] -&gt; [2,3] - [1,2] -&gt; [2,2] -&gt; [2,1] -&gt; [2,3] - [1,2] -&gt; [2,2] -&gt; [2,4] -&gt; [2,3] - [1,2] -&gt; [3,2] -&gt; [2,2] -&gt; [2,3] - [1,2] -&gt; [3,2] -&gt; [3,3] -&gt; [2,3] </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= n, m &lt;= 10<sup>9</sup></code></li> <li><code>1 &lt;= k&nbsp;&lt;= 10<sup>5</sup></code></li> <li><code>source.length == dest.length == 2</code></li> <li><code>1 &lt;= source[1], dest[1] &lt;= n</code></li> <li><code>1 &lt;= source[2], dest[2] &lt;= m</code></li> </ul>
Math; Dynamic Programming; Combinatorics
Python
class Solution: def numberOfWays( self, n: int, m: int, k: int, source: List[int], dest: List[int] ) -> int: mod = 10**9 + 7 a, b, c, d = 1, 0, 0, 0 for _ in range(k): aa = ((n - 1) * b + (m - 1) * c) % mod bb = (a + (n - 2) * b + (m - 1) * d) % mod cc = (a + (m - 2) * c + (n - 1) * d) % mod dd = (b + c + (n - 2) * d + (m - 2) * d) % mod a, b, c, d = aa, bb, cc, dd if source[0] == dest[0]: return a if source[1] == dest[1] else c return b if source[1] == dest[1] else d
2,913
Subarrays Distinct Element Sum of Squares I
Easy
<p>You are given a <strong>0-indexed </strong>integer array <code>nums</code>.</p> <p>The <strong>distinct count</strong> of a subarray of <code>nums</code> is defined as:</p> <ul> <li>Let <code>nums[i..j]</code> be a subarray of <code>nums</code> consisting of all the indices from <code>i</code> to <code>j</code> such that <code>0 &lt;= i &lt;= j &lt; nums.length</code>. Then the number of distinct values in <code>nums[i..j]</code> is called the distinct count of <code>nums[i..j]</code>.</li> </ul> <p>Return <em>the sum of the <strong>squares</strong> of <strong>distinct counts</strong> of all subarrays of </em><code>nums</code>.</p> <p>A subarray is a contiguous <strong>non-empty</strong> sequence of elements within an array.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [1,2,1] <strong>Output:</strong> 15 <strong>Explanation:</strong> Six possible subarrays are: [1]: 1 distinct value [2]: 1 distinct value [1]: 1 distinct value [1,2]: 2 distinct values [2,1]: 2 distinct values [1,2,1]: 2 distinct values The sum of the squares of the distinct counts in all subarrays is equal to 1<sup>2</sup> + 1<sup>2</sup> + 1<sup>2</sup> + 2<sup>2</sup> + 2<sup>2</sup> + 2<sup>2</sup> = 15. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [1,1] <strong>Output:</strong> 3 <strong>Explanation:</strong> Three possible subarrays are: [1]: 1 distinct value [1]: 1 distinct value [1,1]: 1 distinct value The sum of the squares of the distinct counts in all subarrays is equal to 1<sup>2</sup> + 1<sup>2</sup> + 1<sup>2</sup> = 3.</pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 100</code></li> <li><code>1 &lt;= nums[i] &lt;= 100</code></li> </ul>
Array; Hash Table
C++
class Solution { public: int sumCounts(vector<int>& nums) { int ans = 0; int n = nums.size(); for (int i = 0; i < n; ++i) { int s[101]{}; int cnt = 0; for (int j = i; j < n; ++j) { if (++s[nums[j]] == 1) { ++cnt; } ans += cnt * cnt; } } return ans; } };
2,913
Subarrays Distinct Element Sum of Squares I
Easy
<p>You are given a <strong>0-indexed </strong>integer array <code>nums</code>.</p> <p>The <strong>distinct count</strong> of a subarray of <code>nums</code> is defined as:</p> <ul> <li>Let <code>nums[i..j]</code> be a subarray of <code>nums</code> consisting of all the indices from <code>i</code> to <code>j</code> such that <code>0 &lt;= i &lt;= j &lt; nums.length</code>. Then the number of distinct values in <code>nums[i..j]</code> is called the distinct count of <code>nums[i..j]</code>.</li> </ul> <p>Return <em>the sum of the <strong>squares</strong> of <strong>distinct counts</strong> of all subarrays of </em><code>nums</code>.</p> <p>A subarray is a contiguous <strong>non-empty</strong> sequence of elements within an array.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [1,2,1] <strong>Output:</strong> 15 <strong>Explanation:</strong> Six possible subarrays are: [1]: 1 distinct value [2]: 1 distinct value [1]: 1 distinct value [1,2]: 2 distinct values [2,1]: 2 distinct values [1,2,1]: 2 distinct values The sum of the squares of the distinct counts in all subarrays is equal to 1<sup>2</sup> + 1<sup>2</sup> + 1<sup>2</sup> + 2<sup>2</sup> + 2<sup>2</sup> + 2<sup>2</sup> = 15. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [1,1] <strong>Output:</strong> 3 <strong>Explanation:</strong> Three possible subarrays are: [1]: 1 distinct value [1]: 1 distinct value [1,1]: 1 distinct value The sum of the squares of the distinct counts in all subarrays is equal to 1<sup>2</sup> + 1<sup>2</sup> + 1<sup>2</sup> = 3.</pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 100</code></li> <li><code>1 &lt;= nums[i] &lt;= 100</code></li> </ul>
Array; Hash Table
Go
func sumCounts(nums []int) (ans int) { for i := range nums { s := [101]int{} cnt := 0 for _, x := range nums[i:] { s[x]++ if s[x] == 1 { cnt++ } ans += cnt * cnt } } return }
2,913
Subarrays Distinct Element Sum of Squares I
Easy
<p>You are given a <strong>0-indexed </strong>integer array <code>nums</code>.</p> <p>The <strong>distinct count</strong> of a subarray of <code>nums</code> is defined as:</p> <ul> <li>Let <code>nums[i..j]</code> be a subarray of <code>nums</code> consisting of all the indices from <code>i</code> to <code>j</code> such that <code>0 &lt;= i &lt;= j &lt; nums.length</code>. Then the number of distinct values in <code>nums[i..j]</code> is called the distinct count of <code>nums[i..j]</code>.</li> </ul> <p>Return <em>the sum of the <strong>squares</strong> of <strong>distinct counts</strong> of all subarrays of </em><code>nums</code>.</p> <p>A subarray is a contiguous <strong>non-empty</strong> sequence of elements within an array.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [1,2,1] <strong>Output:</strong> 15 <strong>Explanation:</strong> Six possible subarrays are: [1]: 1 distinct value [2]: 1 distinct value [1]: 1 distinct value [1,2]: 2 distinct values [2,1]: 2 distinct values [1,2,1]: 2 distinct values The sum of the squares of the distinct counts in all subarrays is equal to 1<sup>2</sup> + 1<sup>2</sup> + 1<sup>2</sup> + 2<sup>2</sup> + 2<sup>2</sup> + 2<sup>2</sup> = 15. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [1,1] <strong>Output:</strong> 3 <strong>Explanation:</strong> Three possible subarrays are: [1]: 1 distinct value [1]: 1 distinct value [1,1]: 1 distinct value The sum of the squares of the distinct counts in all subarrays is equal to 1<sup>2</sup> + 1<sup>2</sup> + 1<sup>2</sup> = 3.</pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 100</code></li> <li><code>1 &lt;= nums[i] &lt;= 100</code></li> </ul>
Array; Hash Table
Java
class Solution { public int sumCounts(List<Integer> nums) { int ans = 0; int n = nums.size(); for (int i = 0; i < n; ++i) { int[] s = new int[101]; int cnt = 0; for (int j = i; j < n; ++j) { if (++s[nums.get(j)] == 1) { ++cnt; } ans += cnt * cnt; } } return ans; } }
2,913
Subarrays Distinct Element Sum of Squares I
Easy
<p>You are given a <strong>0-indexed </strong>integer array <code>nums</code>.</p> <p>The <strong>distinct count</strong> of a subarray of <code>nums</code> is defined as:</p> <ul> <li>Let <code>nums[i..j]</code> be a subarray of <code>nums</code> consisting of all the indices from <code>i</code> to <code>j</code> such that <code>0 &lt;= i &lt;= j &lt; nums.length</code>. Then the number of distinct values in <code>nums[i..j]</code> is called the distinct count of <code>nums[i..j]</code>.</li> </ul> <p>Return <em>the sum of the <strong>squares</strong> of <strong>distinct counts</strong> of all subarrays of </em><code>nums</code>.</p> <p>A subarray is a contiguous <strong>non-empty</strong> sequence of elements within an array.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [1,2,1] <strong>Output:</strong> 15 <strong>Explanation:</strong> Six possible subarrays are: [1]: 1 distinct value [2]: 1 distinct value [1]: 1 distinct value [1,2]: 2 distinct values [2,1]: 2 distinct values [1,2,1]: 2 distinct values The sum of the squares of the distinct counts in all subarrays is equal to 1<sup>2</sup> + 1<sup>2</sup> + 1<sup>2</sup> + 2<sup>2</sup> + 2<sup>2</sup> + 2<sup>2</sup> = 15. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [1,1] <strong>Output:</strong> 3 <strong>Explanation:</strong> Three possible subarrays are: [1]: 1 distinct value [1]: 1 distinct value [1,1]: 1 distinct value The sum of the squares of the distinct counts in all subarrays is equal to 1<sup>2</sup> + 1<sup>2</sup> + 1<sup>2</sup> = 3.</pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 100</code></li> <li><code>1 &lt;= nums[i] &lt;= 100</code></li> </ul>
Array; Hash Table
Python
class Solution: def sumCounts(self, nums: List[int]) -> int: ans, n = 0, len(nums) for i in range(n): s = set() for j in range(i, n): s.add(nums[j]) ans += len(s) * len(s) return ans
2,913
Subarrays Distinct Element Sum of Squares I
Easy
<p>You are given a <strong>0-indexed </strong>integer array <code>nums</code>.</p> <p>The <strong>distinct count</strong> of a subarray of <code>nums</code> is defined as:</p> <ul> <li>Let <code>nums[i..j]</code> be a subarray of <code>nums</code> consisting of all the indices from <code>i</code> to <code>j</code> such that <code>0 &lt;= i &lt;= j &lt; nums.length</code>. Then the number of distinct values in <code>nums[i..j]</code> is called the distinct count of <code>nums[i..j]</code>.</li> </ul> <p>Return <em>the sum of the <strong>squares</strong> of <strong>distinct counts</strong> of all subarrays of </em><code>nums</code>.</p> <p>A subarray is a contiguous <strong>non-empty</strong> sequence of elements within an array.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [1,2,1] <strong>Output:</strong> 15 <strong>Explanation:</strong> Six possible subarrays are: [1]: 1 distinct value [2]: 1 distinct value [1]: 1 distinct value [1,2]: 2 distinct values [2,1]: 2 distinct values [1,2,1]: 2 distinct values The sum of the squares of the distinct counts in all subarrays is equal to 1<sup>2</sup> + 1<sup>2</sup> + 1<sup>2</sup> + 2<sup>2</sup> + 2<sup>2</sup> + 2<sup>2</sup> = 15. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [1,1] <strong>Output:</strong> 3 <strong>Explanation:</strong> Three possible subarrays are: [1]: 1 distinct value [1]: 1 distinct value [1,1]: 1 distinct value The sum of the squares of the distinct counts in all subarrays is equal to 1<sup>2</sup> + 1<sup>2</sup> + 1<sup>2</sup> = 3.</pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 100</code></li> <li><code>1 &lt;= nums[i] &lt;= 100</code></li> </ul>
Array; Hash Table
TypeScript
function sumCounts(nums: number[]): number { let ans = 0; const n = nums.length; for (let i = 0; i < n; ++i) { const s: number[] = Array(101).fill(0); let cnt = 0; for (const x of nums.slice(i)) { if (++s[x] === 1) { ++cnt; } ans += cnt * cnt; } } return ans; }
2,914
Minimum Number of Changes to Make Binary String Beautiful
Medium
<p>You are given a <strong>0-indexed</strong> binary string <code>s</code> having an even length.</p> <p>A string is <strong>beautiful</strong> if it&#39;s possible to partition it into one or more substrings such that:</p> <ul> <li>Each substring has an <strong>even length</strong>.</li> <li>Each substring contains <strong>only</strong> <code>1</code>&#39;s or <strong>only</strong> <code>0</code>&#39;s.</li> </ul> <p>You can change any character in <code>s</code> to <code>0</code> or <code>1</code>.</p> <p>Return <em>the <strong>minimum</strong> number of changes required to make the string </em><code>s</code> <em>beautiful</em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> s = &quot;1001&quot; <strong>Output:</strong> 2 <strong>Explanation:</strong> We change s[1] to 1 and s[3] to 0 to get string &quot;1100&quot;. It can be seen that the string &quot;1100&quot; is beautiful because we can partition it into &quot;11|00&quot;. It can be proven that 2 is the minimum number of changes needed to make the string beautiful. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> s = &quot;10&quot; <strong>Output:</strong> 1 <strong>Explanation:</strong> We change s[1] to 1 to get string &quot;11&quot;. It can be seen that the string &quot;11&quot; is beautiful because we can partition it into &quot;11&quot;. It can be proven that 1 is the minimum number of changes needed to make the string beautiful. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> s = &quot;0000&quot; <strong>Output:</strong> 0 <strong>Explanation:</strong> We don&#39;t need to make any changes as the string &quot;0000&quot; is beautiful already. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= s.length &lt;= 10<sup>5</sup></code></li> <li><code>s</code> has an even length.</li> <li><code>s[i]</code> is either <code>&#39;0&#39;</code> or <code>&#39;1&#39;</code>.</li> </ul>
String
C++
class Solution { public: int minChanges(string s) { int ans = 0; int n = s.size(); for (int i = 1; i < n; i += 2) { ans += s[i] != s[i - 1]; } return ans; } };
2,914
Minimum Number of Changes to Make Binary String Beautiful
Medium
<p>You are given a <strong>0-indexed</strong> binary string <code>s</code> having an even length.</p> <p>A string is <strong>beautiful</strong> if it&#39;s possible to partition it into one or more substrings such that:</p> <ul> <li>Each substring has an <strong>even length</strong>.</li> <li>Each substring contains <strong>only</strong> <code>1</code>&#39;s or <strong>only</strong> <code>0</code>&#39;s.</li> </ul> <p>You can change any character in <code>s</code> to <code>0</code> or <code>1</code>.</p> <p>Return <em>the <strong>minimum</strong> number of changes required to make the string </em><code>s</code> <em>beautiful</em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> s = &quot;1001&quot; <strong>Output:</strong> 2 <strong>Explanation:</strong> We change s[1] to 1 and s[3] to 0 to get string &quot;1100&quot;. It can be seen that the string &quot;1100&quot; is beautiful because we can partition it into &quot;11|00&quot;. It can be proven that 2 is the minimum number of changes needed to make the string beautiful. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> s = &quot;10&quot; <strong>Output:</strong> 1 <strong>Explanation:</strong> We change s[1] to 1 to get string &quot;11&quot;. It can be seen that the string &quot;11&quot; is beautiful because we can partition it into &quot;11&quot;. It can be proven that 1 is the minimum number of changes needed to make the string beautiful. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> s = &quot;0000&quot; <strong>Output:</strong> 0 <strong>Explanation:</strong> We don&#39;t need to make any changes as the string &quot;0000&quot; is beautiful already. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= s.length &lt;= 10<sup>5</sup></code></li> <li><code>s</code> has an even length.</li> <li><code>s[i]</code> is either <code>&#39;0&#39;</code> or <code>&#39;1&#39;</code>.</li> </ul>
String
Go
func minChanges(s string) (ans int) { for i := 1; i < len(s); i += 2 { if s[i] != s[i-1] { ans++ } } return }
2,914
Minimum Number of Changes to Make Binary String Beautiful
Medium
<p>You are given a <strong>0-indexed</strong> binary string <code>s</code> having an even length.</p> <p>A string is <strong>beautiful</strong> if it&#39;s possible to partition it into one or more substrings such that:</p> <ul> <li>Each substring has an <strong>even length</strong>.</li> <li>Each substring contains <strong>only</strong> <code>1</code>&#39;s or <strong>only</strong> <code>0</code>&#39;s.</li> </ul> <p>You can change any character in <code>s</code> to <code>0</code> or <code>1</code>.</p> <p>Return <em>the <strong>minimum</strong> number of changes required to make the string </em><code>s</code> <em>beautiful</em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> s = &quot;1001&quot; <strong>Output:</strong> 2 <strong>Explanation:</strong> We change s[1] to 1 and s[3] to 0 to get string &quot;1100&quot;. It can be seen that the string &quot;1100&quot; is beautiful because we can partition it into &quot;11|00&quot;. It can be proven that 2 is the minimum number of changes needed to make the string beautiful. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> s = &quot;10&quot; <strong>Output:</strong> 1 <strong>Explanation:</strong> We change s[1] to 1 to get string &quot;11&quot;. It can be seen that the string &quot;11&quot; is beautiful because we can partition it into &quot;11&quot;. It can be proven that 1 is the minimum number of changes needed to make the string beautiful. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> s = &quot;0000&quot; <strong>Output:</strong> 0 <strong>Explanation:</strong> We don&#39;t need to make any changes as the string &quot;0000&quot; is beautiful already. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= s.length &lt;= 10<sup>5</sup></code></li> <li><code>s</code> has an even length.</li> <li><code>s[i]</code> is either <code>&#39;0&#39;</code> or <code>&#39;1&#39;</code>.</li> </ul>
String
Java
class Solution { public int minChanges(String s) { int ans = 0; for (int i = 1; i < s.length(); i += 2) { if (s.charAt(i) != s.charAt(i - 1)) { ++ans; } } return ans; } }
2,914
Minimum Number of Changes to Make Binary String Beautiful
Medium
<p>You are given a <strong>0-indexed</strong> binary string <code>s</code> having an even length.</p> <p>A string is <strong>beautiful</strong> if it&#39;s possible to partition it into one or more substrings such that:</p> <ul> <li>Each substring has an <strong>even length</strong>.</li> <li>Each substring contains <strong>only</strong> <code>1</code>&#39;s or <strong>only</strong> <code>0</code>&#39;s.</li> </ul> <p>You can change any character in <code>s</code> to <code>0</code> or <code>1</code>.</p> <p>Return <em>the <strong>minimum</strong> number of changes required to make the string </em><code>s</code> <em>beautiful</em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> s = &quot;1001&quot; <strong>Output:</strong> 2 <strong>Explanation:</strong> We change s[1] to 1 and s[3] to 0 to get string &quot;1100&quot;. It can be seen that the string &quot;1100&quot; is beautiful because we can partition it into &quot;11|00&quot;. It can be proven that 2 is the minimum number of changes needed to make the string beautiful. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> s = &quot;10&quot; <strong>Output:</strong> 1 <strong>Explanation:</strong> We change s[1] to 1 to get string &quot;11&quot;. It can be seen that the string &quot;11&quot; is beautiful because we can partition it into &quot;11&quot;. It can be proven that 1 is the minimum number of changes needed to make the string beautiful. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> s = &quot;0000&quot; <strong>Output:</strong> 0 <strong>Explanation:</strong> We don&#39;t need to make any changes as the string &quot;0000&quot; is beautiful already. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= s.length &lt;= 10<sup>5</sup></code></li> <li><code>s</code> has an even length.</li> <li><code>s[i]</code> is either <code>&#39;0&#39;</code> or <code>&#39;1&#39;</code>.</li> </ul>
String
Python
class Solution: def minChanges(self, s: str) -> int: return sum(s[i] != s[i - 1] for i in range(1, len(s), 2))
2,914
Minimum Number of Changes to Make Binary String Beautiful
Medium
<p>You are given a <strong>0-indexed</strong> binary string <code>s</code> having an even length.</p> <p>A string is <strong>beautiful</strong> if it&#39;s possible to partition it into one or more substrings such that:</p> <ul> <li>Each substring has an <strong>even length</strong>.</li> <li>Each substring contains <strong>only</strong> <code>1</code>&#39;s or <strong>only</strong> <code>0</code>&#39;s.</li> </ul> <p>You can change any character in <code>s</code> to <code>0</code> or <code>1</code>.</p> <p>Return <em>the <strong>minimum</strong> number of changes required to make the string </em><code>s</code> <em>beautiful</em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> s = &quot;1001&quot; <strong>Output:</strong> 2 <strong>Explanation:</strong> We change s[1] to 1 and s[3] to 0 to get string &quot;1100&quot;. It can be seen that the string &quot;1100&quot; is beautiful because we can partition it into &quot;11|00&quot;. It can be proven that 2 is the minimum number of changes needed to make the string beautiful. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> s = &quot;10&quot; <strong>Output:</strong> 1 <strong>Explanation:</strong> We change s[1] to 1 to get string &quot;11&quot;. It can be seen that the string &quot;11&quot; is beautiful because we can partition it into &quot;11&quot;. It can be proven that 1 is the minimum number of changes needed to make the string beautiful. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> s = &quot;0000&quot; <strong>Output:</strong> 0 <strong>Explanation:</strong> We don&#39;t need to make any changes as the string &quot;0000&quot; is beautiful already. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= s.length &lt;= 10<sup>5</sup></code></li> <li><code>s</code> has an even length.</li> <li><code>s[i]</code> is either <code>&#39;0&#39;</code> or <code>&#39;1&#39;</code>.</li> </ul>
String
TypeScript
function minChanges(s: string): number { let ans = 0; for (let i = 1; i < s.length; i += 2) { if (s[i] !== s[i - 1]) { ++ans; } } return ans; }
2,915
Length of the Longest Subsequence That Sums to Target
Medium
<p>You are given a <strong>0-indexed</strong> array of integers <code>nums</code>, and an integer <code>target</code>.</p> <p>Return <em>the <strong>length of the longest subsequence</strong> of</em> <code>nums</code> <em>that sums up to</em> <code>target</code>. <em>If no such subsequence exists, return</em> <code>-1</code>.</p> <p>A <strong>subsequence</strong> is an array that can be derived from another array by deleting some or no elements without changing the order of the remaining elements.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [1,2,3,4,5], target = 9 <strong>Output:</strong> 3 <strong>Explanation:</strong> There are 3 subsequences with a sum equal to 9: [4,5], [1,3,5], and [2,3,4]. The longest subsequences are [1,3,5], and [2,3,4]. Hence, the answer is 3. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [4,1,3,2,1,5], target = 7 <strong>Output:</strong> 4 <strong>Explanation:</strong> There are 5 subsequences with a sum equal to 7: [4,3], [4,1,2], [4,2,1], [1,1,5], and [1,3,2,1]. The longest subsequence is [1,3,2,1]. Hence, the answer is 4. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [1,1,5,4,5], target = 3 <strong>Output:</strong> -1 <strong>Explanation:</strong> It can be shown that nums has no subsequence that sums up to 3. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 1000</code></li> <li><code>1 &lt;= nums[i] &lt;= 1000</code></li> <li><code>1 &lt;= target &lt;= 1000</code></li> </ul>
Array; Dynamic Programming
C++
class Solution { public: int lengthOfLongestSubsequence(vector<int>& nums, int target) { int n = nums.size(); int f[n + 1][target + 1]; memset(f, -0x3f, sizeof(f)); f[0][0] = 0; for (int i = 1; i <= n; ++i) { int x = nums[i - 1]; for (int j = 0; j <= target; ++j) { f[i][j] = f[i - 1][j]; if (j >= x) { f[i][j] = max(f[i][j], f[i - 1][j - x] + 1); } } } return f[n][target] <= 0 ? -1 : f[n][target]; } };
2,915
Length of the Longest Subsequence That Sums to Target
Medium
<p>You are given a <strong>0-indexed</strong> array of integers <code>nums</code>, and an integer <code>target</code>.</p> <p>Return <em>the <strong>length of the longest subsequence</strong> of</em> <code>nums</code> <em>that sums up to</em> <code>target</code>. <em>If no such subsequence exists, return</em> <code>-1</code>.</p> <p>A <strong>subsequence</strong> is an array that can be derived from another array by deleting some or no elements without changing the order of the remaining elements.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [1,2,3,4,5], target = 9 <strong>Output:</strong> 3 <strong>Explanation:</strong> There are 3 subsequences with a sum equal to 9: [4,5], [1,3,5], and [2,3,4]. The longest subsequences are [1,3,5], and [2,3,4]. Hence, the answer is 3. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [4,1,3,2,1,5], target = 7 <strong>Output:</strong> 4 <strong>Explanation:</strong> There are 5 subsequences with a sum equal to 7: [4,3], [4,1,2], [4,2,1], [1,1,5], and [1,3,2,1]. The longest subsequence is [1,3,2,1]. Hence, the answer is 4. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [1,1,5,4,5], target = 3 <strong>Output:</strong> -1 <strong>Explanation:</strong> It can be shown that nums has no subsequence that sums up to 3. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 1000</code></li> <li><code>1 &lt;= nums[i] &lt;= 1000</code></li> <li><code>1 &lt;= target &lt;= 1000</code></li> </ul>
Array; Dynamic Programming
Go
func lengthOfLongestSubsequence(nums []int, target int) int { n := len(nums) f := make([][]int, n+1) for i := range f { f[i] = make([]int, target+1) for j := range f[i] { f[i][j] = -(1 << 30) } } f[0][0] = 0 for i := 1; i <= n; i++ { x := nums[i-1] for j := 0; j <= target; j++ { f[i][j] = f[i-1][j] if j >= x { f[i][j] = max(f[i][j], f[i-1][j-x]+1) } } } if f[n][target] <= 0 { return -1 } return f[n][target] }
2,915
Length of the Longest Subsequence That Sums to Target
Medium
<p>You are given a <strong>0-indexed</strong> array of integers <code>nums</code>, and an integer <code>target</code>.</p> <p>Return <em>the <strong>length of the longest subsequence</strong> of</em> <code>nums</code> <em>that sums up to</em> <code>target</code>. <em>If no such subsequence exists, return</em> <code>-1</code>.</p> <p>A <strong>subsequence</strong> is an array that can be derived from another array by deleting some or no elements without changing the order of the remaining elements.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [1,2,3,4,5], target = 9 <strong>Output:</strong> 3 <strong>Explanation:</strong> There are 3 subsequences with a sum equal to 9: [4,5], [1,3,5], and [2,3,4]. The longest subsequences are [1,3,5], and [2,3,4]. Hence, the answer is 3. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [4,1,3,2,1,5], target = 7 <strong>Output:</strong> 4 <strong>Explanation:</strong> There are 5 subsequences with a sum equal to 7: [4,3], [4,1,2], [4,2,1], [1,1,5], and [1,3,2,1]. The longest subsequence is [1,3,2,1]. Hence, the answer is 4. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [1,1,5,4,5], target = 3 <strong>Output:</strong> -1 <strong>Explanation:</strong> It can be shown that nums has no subsequence that sums up to 3. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 1000</code></li> <li><code>1 &lt;= nums[i] &lt;= 1000</code></li> <li><code>1 &lt;= target &lt;= 1000</code></li> </ul>
Array; Dynamic Programming
Java
class Solution { public int lengthOfLongestSubsequence(List<Integer> nums, int target) { int n = nums.size(); int[][] f = new int[n + 1][target + 1]; final int inf = 1 << 30; for (int[] g : f) { Arrays.fill(g, -inf); } f[0][0] = 0; for (int i = 1; i <= n; ++i) { int x = nums.get(i - 1); for (int j = 0; j <= target; ++j) { f[i][j] = f[i - 1][j]; if (j >= x) { f[i][j] = Math.max(f[i][j], f[i - 1][j - x] + 1); } } } return f[n][target] <= 0 ? -1 : f[n][target]; } }
2,915
Length of the Longest Subsequence That Sums to Target
Medium
<p>You are given a <strong>0-indexed</strong> array of integers <code>nums</code>, and an integer <code>target</code>.</p> <p>Return <em>the <strong>length of the longest subsequence</strong> of</em> <code>nums</code> <em>that sums up to</em> <code>target</code>. <em>If no such subsequence exists, return</em> <code>-1</code>.</p> <p>A <strong>subsequence</strong> is an array that can be derived from another array by deleting some or no elements without changing the order of the remaining elements.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [1,2,3,4,5], target = 9 <strong>Output:</strong> 3 <strong>Explanation:</strong> There are 3 subsequences with a sum equal to 9: [4,5], [1,3,5], and [2,3,4]. The longest subsequences are [1,3,5], and [2,3,4]. Hence, the answer is 3. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [4,1,3,2,1,5], target = 7 <strong>Output:</strong> 4 <strong>Explanation:</strong> There are 5 subsequences with a sum equal to 7: [4,3], [4,1,2], [4,2,1], [1,1,5], and [1,3,2,1]. The longest subsequence is [1,3,2,1]. Hence, the answer is 4. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [1,1,5,4,5], target = 3 <strong>Output:</strong> -1 <strong>Explanation:</strong> It can be shown that nums has no subsequence that sums up to 3. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 1000</code></li> <li><code>1 &lt;= nums[i] &lt;= 1000</code></li> <li><code>1 &lt;= target &lt;= 1000</code></li> </ul>
Array; Dynamic Programming
Python
class Solution: def lengthOfLongestSubsequence(self, nums: List[int], target: int) -> int: n = len(nums) f = [[-inf] * (target + 1) for _ in range(n + 1)] f[0][0] = 0 for i, x in enumerate(nums, 1): for j in range(target + 1): f[i][j] = f[i - 1][j] if j >= x: f[i][j] = max(f[i][j], f[i - 1][j - x] + 1) return -1 if f[n][target] <= 0 else f[n][target]
2,915
Length of the Longest Subsequence That Sums to Target
Medium
<p>You are given a <strong>0-indexed</strong> array of integers <code>nums</code>, and an integer <code>target</code>.</p> <p>Return <em>the <strong>length of the longest subsequence</strong> of</em> <code>nums</code> <em>that sums up to</em> <code>target</code>. <em>If no such subsequence exists, return</em> <code>-1</code>.</p> <p>A <strong>subsequence</strong> is an array that can be derived from another array by deleting some or no elements without changing the order of the remaining elements.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [1,2,3,4,5], target = 9 <strong>Output:</strong> 3 <strong>Explanation:</strong> There are 3 subsequences with a sum equal to 9: [4,5], [1,3,5], and [2,3,4]. The longest subsequences are [1,3,5], and [2,3,4]. Hence, the answer is 3. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [4,1,3,2,1,5], target = 7 <strong>Output:</strong> 4 <strong>Explanation:</strong> There are 5 subsequences with a sum equal to 7: [4,3], [4,1,2], [4,2,1], [1,1,5], and [1,3,2,1]. The longest subsequence is [1,3,2,1]. Hence, the answer is 4. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [1,1,5,4,5], target = 3 <strong>Output:</strong> -1 <strong>Explanation:</strong> It can be shown that nums has no subsequence that sums up to 3. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 1000</code></li> <li><code>1 &lt;= nums[i] &lt;= 1000</code></li> <li><code>1 &lt;= target &lt;= 1000</code></li> </ul>
Array; Dynamic Programming
TypeScript
function lengthOfLongestSubsequence(nums: number[], target: number): number { const n = nums.length; const f: number[][] = Array.from({ length: n + 1 }, () => Array(target + 1).fill(-Infinity)); f[0][0] = 0; for (let i = 1; i <= n; ++i) { const x = nums[i - 1]; for (let j = 0; j <= target; ++j) { f[i][j] = f[i - 1][j]; if (j >= x) { f[i][j] = Math.max(f[i][j], f[i - 1][j - x] + 1); } } } return f[n][target] <= 0 ? -1 : f[n][target]; }
2,917
Find the K-or of an Array
Easy
<p>You are given an integer array <code>nums</code>, and an integer <code>k</code>. Let&#39;s introduce&nbsp;<strong>K-or</strong> operation by extending the standard bitwise OR. In K-or, a bit position in the result is set to <code>1</code>&nbsp;if at least <code>k</code> numbers in <code>nums</code> have a <code>1</code> in that position.</p> <p>Return <em>the K-or of</em> <code>nums</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> nums = [7,12,9,8,9,15], k = 4 </span></p> <p><strong>Output:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 9 </span></p> <p><strong>Explanation: </strong></p> <p>Represent numbers in binary:</p> <table style="text-indent:10px; margin-bottom=20px;"> <tbody> <tr> <th><b>Number</b></th> <th>Bit 3</th> <th>Bit 2</th> <th>Bit 1</th> <th>Bit 0</th> </tr> <tr> <td><b>7</b></td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> </tr> <tr> <td><b>12</b></td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> </tr> <tr> <td><b>9</b></td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> </tr> <tr> <td><b>8</b></td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <td><b>9</b></td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> </tr> <tr> <td><b>15</b></td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> </tr> <tr> <td><b>Result = 9</b></td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> </tr> </tbody> </table> <p>Bit 0 is set in 7, 9, 9, and 15. Bit 3 is set in 12, 9, 8, 9, and 15.<br /> Only bits 0 and 3 qualify. The result is <code>(1001)<sub>2</sub> = 9</code>.</p> </div> <p><strong class="example">Example 2: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> nums = [2,12,1,11,4,5], k = 6 </span></p> <p><strong>Output:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 0 </span></p> <p><strong>Explanation:&nbsp;</strong>No bit appears as 1 in all six array numbers, as required for K-or with <code>k = 6</code>. Thus, the result is 0.</p> </div> <p><strong class="example">Example 3: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> nums = [10,8,5,9,11,6,8], k = 1 </span></p> <p><strong>Output:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 15 </span></p> <p><strong>Explanation: </strong> Since <code>k == 1</code>, the 1-or of the array is equal to the bitwise OR of all its elements. Hence, the answer is <code>10 OR 8 OR 5 OR 9 OR 11 OR 6 OR 8 = 15</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 50</code></li> <li><code>0 &lt;= nums[i] &lt; 2<sup>31</sup></code></li> <li><code>1 &lt;= k &lt;= nums.length</code></li> </ul>
Bit Manipulation; Array
C++
class Solution { public: int findKOr(vector<int>& nums, int k) { int ans = 0; for (int i = 0; i < 32; ++i) { int cnt = 0; for (int x : nums) { cnt += (x >> i & 1); } if (cnt >= k) { ans |= 1 << i; } } return ans; } };
2,917
Find the K-or of an Array
Easy
<p>You are given an integer array <code>nums</code>, and an integer <code>k</code>. Let&#39;s introduce&nbsp;<strong>K-or</strong> operation by extending the standard bitwise OR. In K-or, a bit position in the result is set to <code>1</code>&nbsp;if at least <code>k</code> numbers in <code>nums</code> have a <code>1</code> in that position.</p> <p>Return <em>the K-or of</em> <code>nums</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> nums = [7,12,9,8,9,15], k = 4 </span></p> <p><strong>Output:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 9 </span></p> <p><strong>Explanation: </strong></p> <p>Represent numbers in binary:</p> <table style="text-indent:10px; margin-bottom=20px;"> <tbody> <tr> <th><b>Number</b></th> <th>Bit 3</th> <th>Bit 2</th> <th>Bit 1</th> <th>Bit 0</th> </tr> <tr> <td><b>7</b></td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> </tr> <tr> <td><b>12</b></td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> </tr> <tr> <td><b>9</b></td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> </tr> <tr> <td><b>8</b></td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <td><b>9</b></td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> </tr> <tr> <td><b>15</b></td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> </tr> <tr> <td><b>Result = 9</b></td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> </tr> </tbody> </table> <p>Bit 0 is set in 7, 9, 9, and 15. Bit 3 is set in 12, 9, 8, 9, and 15.<br /> Only bits 0 and 3 qualify. The result is <code>(1001)<sub>2</sub> = 9</code>.</p> </div> <p><strong class="example">Example 2: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> nums = [2,12,1,11,4,5], k = 6 </span></p> <p><strong>Output:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 0 </span></p> <p><strong>Explanation:&nbsp;</strong>No bit appears as 1 in all six array numbers, as required for K-or with <code>k = 6</code>. Thus, the result is 0.</p> </div> <p><strong class="example">Example 3: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> nums = [10,8,5,9,11,6,8], k = 1 </span></p> <p><strong>Output:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 15 </span></p> <p><strong>Explanation: </strong> Since <code>k == 1</code>, the 1-or of the array is equal to the bitwise OR of all its elements. Hence, the answer is <code>10 OR 8 OR 5 OR 9 OR 11 OR 6 OR 8 = 15</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 50</code></li> <li><code>0 &lt;= nums[i] &lt; 2<sup>31</sup></code></li> <li><code>1 &lt;= k &lt;= nums.length</code></li> </ul>
Bit Manipulation; Array
C#
public class Solution { public int FindKOr(int[] nums, int k) { int ans = 0; for (int i = 0; i < 32; ++i) { int cnt = 0; foreach (int x in nums) { cnt += (x >> i & 1); } if (cnt >= k) { ans |= 1 << i; } } return ans; } }
2,917
Find the K-or of an Array
Easy
<p>You are given an integer array <code>nums</code>, and an integer <code>k</code>. Let&#39;s introduce&nbsp;<strong>K-or</strong> operation by extending the standard bitwise OR. In K-or, a bit position in the result is set to <code>1</code>&nbsp;if at least <code>k</code> numbers in <code>nums</code> have a <code>1</code> in that position.</p> <p>Return <em>the K-or of</em> <code>nums</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> nums = [7,12,9,8,9,15], k = 4 </span></p> <p><strong>Output:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 9 </span></p> <p><strong>Explanation: </strong></p> <p>Represent numbers in binary:</p> <table style="text-indent:10px; margin-bottom=20px;"> <tbody> <tr> <th><b>Number</b></th> <th>Bit 3</th> <th>Bit 2</th> <th>Bit 1</th> <th>Bit 0</th> </tr> <tr> <td><b>7</b></td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> </tr> <tr> <td><b>12</b></td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> </tr> <tr> <td><b>9</b></td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> </tr> <tr> <td><b>8</b></td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <td><b>9</b></td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> </tr> <tr> <td><b>15</b></td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> </tr> <tr> <td><b>Result = 9</b></td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> </tr> </tbody> </table> <p>Bit 0 is set in 7, 9, 9, and 15. Bit 3 is set in 12, 9, 8, 9, and 15.<br /> Only bits 0 and 3 qualify. The result is <code>(1001)<sub>2</sub> = 9</code>.</p> </div> <p><strong class="example">Example 2: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> nums = [2,12,1,11,4,5], k = 6 </span></p> <p><strong>Output:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 0 </span></p> <p><strong>Explanation:&nbsp;</strong>No bit appears as 1 in all six array numbers, as required for K-or with <code>k = 6</code>. Thus, the result is 0.</p> </div> <p><strong class="example">Example 3: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> nums = [10,8,5,9,11,6,8], k = 1 </span></p> <p><strong>Output:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 15 </span></p> <p><strong>Explanation: </strong> Since <code>k == 1</code>, the 1-or of the array is equal to the bitwise OR of all its elements. Hence, the answer is <code>10 OR 8 OR 5 OR 9 OR 11 OR 6 OR 8 = 15</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 50</code></li> <li><code>0 &lt;= nums[i] &lt; 2<sup>31</sup></code></li> <li><code>1 &lt;= k &lt;= nums.length</code></li> </ul>
Bit Manipulation; Array
Go
func findKOr(nums []int, k int) (ans int) { for i := 0; i < 32; i++ { cnt := 0 for _, x := range nums { cnt += (x >> i & 1) } if cnt >= k { ans |= 1 << i } } return }
2,917
Find the K-or of an Array
Easy
<p>You are given an integer array <code>nums</code>, and an integer <code>k</code>. Let&#39;s introduce&nbsp;<strong>K-or</strong> operation by extending the standard bitwise OR. In K-or, a bit position in the result is set to <code>1</code>&nbsp;if at least <code>k</code> numbers in <code>nums</code> have a <code>1</code> in that position.</p> <p>Return <em>the K-or of</em> <code>nums</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> nums = [7,12,9,8,9,15], k = 4 </span></p> <p><strong>Output:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 9 </span></p> <p><strong>Explanation: </strong></p> <p>Represent numbers in binary:</p> <table style="text-indent:10px; margin-bottom=20px;"> <tbody> <tr> <th><b>Number</b></th> <th>Bit 3</th> <th>Bit 2</th> <th>Bit 1</th> <th>Bit 0</th> </tr> <tr> <td><b>7</b></td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> </tr> <tr> <td><b>12</b></td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> </tr> <tr> <td><b>9</b></td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> </tr> <tr> <td><b>8</b></td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <td><b>9</b></td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> </tr> <tr> <td><b>15</b></td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> </tr> <tr> <td><b>Result = 9</b></td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> </tr> </tbody> </table> <p>Bit 0 is set in 7, 9, 9, and 15. Bit 3 is set in 12, 9, 8, 9, and 15.<br /> Only bits 0 and 3 qualify. The result is <code>(1001)<sub>2</sub> = 9</code>.</p> </div> <p><strong class="example">Example 2: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> nums = [2,12,1,11,4,5], k = 6 </span></p> <p><strong>Output:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 0 </span></p> <p><strong>Explanation:&nbsp;</strong>No bit appears as 1 in all six array numbers, as required for K-or with <code>k = 6</code>. Thus, the result is 0.</p> </div> <p><strong class="example">Example 3: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> nums = [10,8,5,9,11,6,8], k = 1 </span></p> <p><strong>Output:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 15 </span></p> <p><strong>Explanation: </strong> Since <code>k == 1</code>, the 1-or of the array is equal to the bitwise OR of all its elements. Hence, the answer is <code>10 OR 8 OR 5 OR 9 OR 11 OR 6 OR 8 = 15</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 50</code></li> <li><code>0 &lt;= nums[i] &lt; 2<sup>31</sup></code></li> <li><code>1 &lt;= k &lt;= nums.length</code></li> </ul>
Bit Manipulation; Array
Java
class Solution { public int findKOr(int[] nums, int k) { int ans = 0; for (int i = 0; i < 32; ++i) { int cnt = 0; for (int x : nums) { cnt += (x >> i & 1); } if (cnt >= k) { ans |= 1 << i; } } return ans; } }
2,917
Find the K-or of an Array
Easy
<p>You are given an integer array <code>nums</code>, and an integer <code>k</code>. Let&#39;s introduce&nbsp;<strong>K-or</strong> operation by extending the standard bitwise OR. In K-or, a bit position in the result is set to <code>1</code>&nbsp;if at least <code>k</code> numbers in <code>nums</code> have a <code>1</code> in that position.</p> <p>Return <em>the K-or of</em> <code>nums</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> nums = [7,12,9,8,9,15], k = 4 </span></p> <p><strong>Output:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 9 </span></p> <p><strong>Explanation: </strong></p> <p>Represent numbers in binary:</p> <table style="text-indent:10px; margin-bottom=20px;"> <tbody> <tr> <th><b>Number</b></th> <th>Bit 3</th> <th>Bit 2</th> <th>Bit 1</th> <th>Bit 0</th> </tr> <tr> <td><b>7</b></td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> </tr> <tr> <td><b>12</b></td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> </tr> <tr> <td><b>9</b></td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> </tr> <tr> <td><b>8</b></td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <td><b>9</b></td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> </tr> <tr> <td><b>15</b></td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> </tr> <tr> <td><b>Result = 9</b></td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> </tr> </tbody> </table> <p>Bit 0 is set in 7, 9, 9, and 15. Bit 3 is set in 12, 9, 8, 9, and 15.<br /> Only bits 0 and 3 qualify. The result is <code>(1001)<sub>2</sub> = 9</code>.</p> </div> <p><strong class="example">Example 2: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> nums = [2,12,1,11,4,5], k = 6 </span></p> <p><strong>Output:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 0 </span></p> <p><strong>Explanation:&nbsp;</strong>No bit appears as 1 in all six array numbers, as required for K-or with <code>k = 6</code>. Thus, the result is 0.</p> </div> <p><strong class="example">Example 3: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> nums = [10,8,5,9,11,6,8], k = 1 </span></p> <p><strong>Output:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 15 </span></p> <p><strong>Explanation: </strong> Since <code>k == 1</code>, the 1-or of the array is equal to the bitwise OR of all its elements. Hence, the answer is <code>10 OR 8 OR 5 OR 9 OR 11 OR 6 OR 8 = 15</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 50</code></li> <li><code>0 &lt;= nums[i] &lt; 2<sup>31</sup></code></li> <li><code>1 &lt;= k &lt;= nums.length</code></li> </ul>
Bit Manipulation; Array
Python
class Solution: def findKOr(self, nums: List[int], k: int) -> int: ans = 0 for i in range(32): cnt = sum(x >> i & 1 for x in nums) if cnt >= k: ans |= 1 << i return ans
2,917
Find the K-or of an Array
Easy
<p>You are given an integer array <code>nums</code>, and an integer <code>k</code>. Let&#39;s introduce&nbsp;<strong>K-or</strong> operation by extending the standard bitwise OR. In K-or, a bit position in the result is set to <code>1</code>&nbsp;if at least <code>k</code> numbers in <code>nums</code> have a <code>1</code> in that position.</p> <p>Return <em>the K-or of</em> <code>nums</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> nums = [7,12,9,8,9,15], k = 4 </span></p> <p><strong>Output:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 9 </span></p> <p><strong>Explanation: </strong></p> <p>Represent numbers in binary:</p> <table style="text-indent:10px; margin-bottom=20px;"> <tbody> <tr> <th><b>Number</b></th> <th>Bit 3</th> <th>Bit 2</th> <th>Bit 1</th> <th>Bit 0</th> </tr> <tr> <td><b>7</b></td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> </tr> <tr> <td><b>12</b></td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> </tr> <tr> <td><b>9</b></td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> </tr> <tr> <td><b>8</b></td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <td><b>9</b></td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> </tr> <tr> <td><b>15</b></td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> </tr> <tr> <td><b>Result = 9</b></td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> </tr> </tbody> </table> <p>Bit 0 is set in 7, 9, 9, and 15. Bit 3 is set in 12, 9, 8, 9, and 15.<br /> Only bits 0 and 3 qualify. The result is <code>(1001)<sub>2</sub> = 9</code>.</p> </div> <p><strong class="example">Example 2: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> nums = [2,12,1,11,4,5], k = 6 </span></p> <p><strong>Output:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 0 </span></p> <p><strong>Explanation:&nbsp;</strong>No bit appears as 1 in all six array numbers, as required for K-or with <code>k = 6</code>. Thus, the result is 0.</p> </div> <p><strong class="example">Example 3: </strong></p> <div class="example-block" style="border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem;"> <p><strong>Input:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> nums = [10,8,5,9,11,6,8], k = 1 </span></p> <p><strong>Output:</strong><span class="example-io" style="font-family: Menlo,sans-serif; font-size: 0.85rem;"> 15 </span></p> <p><strong>Explanation: </strong> Since <code>k == 1</code>, the 1-or of the array is equal to the bitwise OR of all its elements. Hence, the answer is <code>10 OR 8 OR 5 OR 9 OR 11 OR 6 OR 8 = 15</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 50</code></li> <li><code>0 &lt;= nums[i] &lt; 2<sup>31</sup></code></li> <li><code>1 &lt;= k &lt;= nums.length</code></li> </ul>
Bit Manipulation; Array
TypeScript
function findKOr(nums: number[], k: number): number { let ans = 0; for (let i = 0; i < 32; ++i) { let cnt = 0; for (const x of nums) { cnt += (x >> i) & 1; } if (cnt >= k) { ans |= 1 << i; } } return ans; }
2,918
Minimum Equal Sum of Two Arrays After Replacing Zeros
Medium
<p>You are given two arrays <code>nums1</code> and <code>nums2</code> consisting of positive integers.</p> <p>You have to replace <strong>all</strong> the <code>0</code>&#39;s in both arrays with <strong>strictly</strong> positive integers such that the sum of elements of both arrays becomes <strong>equal</strong>.</p> <p>Return <em>the <strong>minimum</strong> equal sum you can obtain, or </em><code>-1</code><em> if it is impossible</em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums1 = [3,2,0,1,0], nums2 = [6,5,0] <strong>Output:</strong> 12 <strong>Explanation:</strong> We can replace 0&#39;s in the following way: - Replace the two 0&#39;s in nums1 with the values 2 and 4. The resulting array is nums1 = [3,2,2,1,4]. - Replace the 0 in nums2 with the value 1. The resulting array is nums2 = [6,5,1]. Both arrays have an equal sum of 12. It can be shown that it is the minimum sum we can obtain. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums1 = [2,0,2,0], nums2 = [1,4] <strong>Output:</strong> -1 <strong>Explanation:</strong> It is impossible to make the sum of both arrays equal. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums1.length, nums2.length &lt;= 10<sup>5</sup></code></li> <li><code>0 &lt;= nums1[i], nums2[i] &lt;= 10<sup>6</sup></code></li> </ul>
Greedy; Array
C++
class Solution { public: long long minSum(vector<int>& nums1, vector<int>& nums2) { long long s1 = 0, s2 = 0; bool hasZero = false; for (int x : nums1) { hasZero |= x == 0; s1 += max(x, 1); } for (int x : nums2) { s2 += max(x, 1); } if (s1 > s2) { return minSum(nums2, nums1); } if (s1 == s2) { return s1; } return hasZero ? s2 : -1; } };
2,918
Minimum Equal Sum of Two Arrays After Replacing Zeros
Medium
<p>You are given two arrays <code>nums1</code> and <code>nums2</code> consisting of positive integers.</p> <p>You have to replace <strong>all</strong> the <code>0</code>&#39;s in both arrays with <strong>strictly</strong> positive integers such that the sum of elements of both arrays becomes <strong>equal</strong>.</p> <p>Return <em>the <strong>minimum</strong> equal sum you can obtain, or </em><code>-1</code><em> if it is impossible</em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums1 = [3,2,0,1,0], nums2 = [6,5,0] <strong>Output:</strong> 12 <strong>Explanation:</strong> We can replace 0&#39;s in the following way: - Replace the two 0&#39;s in nums1 with the values 2 and 4. The resulting array is nums1 = [3,2,2,1,4]. - Replace the 0 in nums2 with the value 1. The resulting array is nums2 = [6,5,1]. Both arrays have an equal sum of 12. It can be shown that it is the minimum sum we can obtain. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums1 = [2,0,2,0], nums2 = [1,4] <strong>Output:</strong> -1 <strong>Explanation:</strong> It is impossible to make the sum of both arrays equal. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums1.length, nums2.length &lt;= 10<sup>5</sup></code></li> <li><code>0 &lt;= nums1[i], nums2[i] &lt;= 10<sup>6</sup></code></li> </ul>
Greedy; Array
C#
public class Solution { public long MinSum(int[] nums1, int[] nums2) { long s1 = 0, s2 = 0; bool hasZero = false; foreach (int x in nums1) { hasZero |= x == 0; s1 += Math.Max(x, 1); } foreach (int x in nums2) { s2 += Math.Max(x, 1); } if (s1 > s2) { return MinSum(nums2, nums1); } if (s1 == s2) { return s1; } return hasZero ? s2 : -1; } }
2,918
Minimum Equal Sum of Two Arrays After Replacing Zeros
Medium
<p>You are given two arrays <code>nums1</code> and <code>nums2</code> consisting of positive integers.</p> <p>You have to replace <strong>all</strong> the <code>0</code>&#39;s in both arrays with <strong>strictly</strong> positive integers such that the sum of elements of both arrays becomes <strong>equal</strong>.</p> <p>Return <em>the <strong>minimum</strong> equal sum you can obtain, or </em><code>-1</code><em> if it is impossible</em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums1 = [3,2,0,1,0], nums2 = [6,5,0] <strong>Output:</strong> 12 <strong>Explanation:</strong> We can replace 0&#39;s in the following way: - Replace the two 0&#39;s in nums1 with the values 2 and 4. The resulting array is nums1 = [3,2,2,1,4]. - Replace the 0 in nums2 with the value 1. The resulting array is nums2 = [6,5,1]. Both arrays have an equal sum of 12. It can be shown that it is the minimum sum we can obtain. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums1 = [2,0,2,0], nums2 = [1,4] <strong>Output:</strong> -1 <strong>Explanation:</strong> It is impossible to make the sum of both arrays equal. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums1.length, nums2.length &lt;= 10<sup>5</sup></code></li> <li><code>0 &lt;= nums1[i], nums2[i] &lt;= 10<sup>6</sup></code></li> </ul>
Greedy; Array
Go
func minSum(nums1 []int, nums2 []int) int64 { s1, s2 := 0, 0 hasZero := false for _, x := range nums1 { if x == 0 { hasZero = true } s1 += max(x, 1) } for _, x := range nums2 { s2 += max(x, 1) } if s1 > s2 { return minSum(nums2, nums1) } if s1 == s2 { return int64(s1) } if hasZero { return int64(s2) } return -1 }
2,918
Minimum Equal Sum of Two Arrays After Replacing Zeros
Medium
<p>You are given two arrays <code>nums1</code> and <code>nums2</code> consisting of positive integers.</p> <p>You have to replace <strong>all</strong> the <code>0</code>&#39;s in both arrays with <strong>strictly</strong> positive integers such that the sum of elements of both arrays becomes <strong>equal</strong>.</p> <p>Return <em>the <strong>minimum</strong> equal sum you can obtain, or </em><code>-1</code><em> if it is impossible</em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums1 = [3,2,0,1,0], nums2 = [6,5,0] <strong>Output:</strong> 12 <strong>Explanation:</strong> We can replace 0&#39;s in the following way: - Replace the two 0&#39;s in nums1 with the values 2 and 4. The resulting array is nums1 = [3,2,2,1,4]. - Replace the 0 in nums2 with the value 1. The resulting array is nums2 = [6,5,1]. Both arrays have an equal sum of 12. It can be shown that it is the minimum sum we can obtain. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums1 = [2,0,2,0], nums2 = [1,4] <strong>Output:</strong> -1 <strong>Explanation:</strong> It is impossible to make the sum of both arrays equal. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums1.length, nums2.length &lt;= 10<sup>5</sup></code></li> <li><code>0 &lt;= nums1[i], nums2[i] &lt;= 10<sup>6</sup></code></li> </ul>
Greedy; Array
Java
class Solution { public long minSum(int[] nums1, int[] nums2) { long s1 = 0, s2 = 0; boolean hasZero = false; for (int x : nums1) { hasZero |= x == 0; s1 += Math.max(x, 1); } for (int x : nums2) { s2 += Math.max(x, 1); } if (s1 > s2) { return minSum(nums2, nums1); } if (s1 == s2) { return s1; } return hasZero ? s2 : -1; } }
2,918
Minimum Equal Sum of Two Arrays After Replacing Zeros
Medium
<p>You are given two arrays <code>nums1</code> and <code>nums2</code> consisting of positive integers.</p> <p>You have to replace <strong>all</strong> the <code>0</code>&#39;s in both arrays with <strong>strictly</strong> positive integers such that the sum of elements of both arrays becomes <strong>equal</strong>.</p> <p>Return <em>the <strong>minimum</strong> equal sum you can obtain, or </em><code>-1</code><em> if it is impossible</em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums1 = [3,2,0,1,0], nums2 = [6,5,0] <strong>Output:</strong> 12 <strong>Explanation:</strong> We can replace 0&#39;s in the following way: - Replace the two 0&#39;s in nums1 with the values 2 and 4. The resulting array is nums1 = [3,2,2,1,4]. - Replace the 0 in nums2 with the value 1. The resulting array is nums2 = [6,5,1]. Both arrays have an equal sum of 12. It can be shown that it is the minimum sum we can obtain. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums1 = [2,0,2,0], nums2 = [1,4] <strong>Output:</strong> -1 <strong>Explanation:</strong> It is impossible to make the sum of both arrays equal. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums1.length, nums2.length &lt;= 10<sup>5</sup></code></li> <li><code>0 &lt;= nums1[i], nums2[i] &lt;= 10<sup>6</sup></code></li> </ul>
Greedy; Array
Python
class Solution: def minSum(self, nums1: List[int], nums2: List[int]) -> int: s1 = sum(nums1) + nums1.count(0) s2 = sum(nums2) + nums2.count(0) if s1 > s2: return self.minSum(nums2, nums1) if s1 == s2: return s1 return -1 if nums1.count(0) == 0 else s2
2,918
Minimum Equal Sum of Two Arrays After Replacing Zeros
Medium
<p>You are given two arrays <code>nums1</code> and <code>nums2</code> consisting of positive integers.</p> <p>You have to replace <strong>all</strong> the <code>0</code>&#39;s in both arrays with <strong>strictly</strong> positive integers such that the sum of elements of both arrays becomes <strong>equal</strong>.</p> <p>Return <em>the <strong>minimum</strong> equal sum you can obtain, or </em><code>-1</code><em> if it is impossible</em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums1 = [3,2,0,1,0], nums2 = [6,5,0] <strong>Output:</strong> 12 <strong>Explanation:</strong> We can replace 0&#39;s in the following way: - Replace the two 0&#39;s in nums1 with the values 2 and 4. The resulting array is nums1 = [3,2,2,1,4]. - Replace the 0 in nums2 with the value 1. The resulting array is nums2 = [6,5,1]. Both arrays have an equal sum of 12. It can be shown that it is the minimum sum we can obtain. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums1 = [2,0,2,0], nums2 = [1,4] <strong>Output:</strong> -1 <strong>Explanation:</strong> It is impossible to make the sum of both arrays equal. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums1.length, nums2.length &lt;= 10<sup>5</sup></code></li> <li><code>0 &lt;= nums1[i], nums2[i] &lt;= 10<sup>6</sup></code></li> </ul>
Greedy; Array
TypeScript
function minSum(nums1: number[], nums2: number[]): number { let [s1, s2] = [0, 0]; let hasZero = false; for (const x of nums1) { if (x === 0) { hasZero = true; } s1 += Math.max(x, 1); } for (const x of nums2) { s2 += Math.max(x, 1); } if (s1 > s2) { return minSum(nums2, nums1); } if (s1 === s2) { return s1; } return hasZero ? s2 : -1; }
2,919
Minimum Increment Operations to Make Array Beautiful
Medium
<p>You are given a <strong>0-indexed</strong> integer array <code>nums</code> having length <code>n</code>, and an integer <code>k</code>.</p> <p>You can perform the following <strong>increment</strong> operation <strong>any</strong> number of times (<strong>including zero</strong>):</p> <ul> <li>Choose an index <code>i</code> in the range <code>[0, n - 1]</code>, and increase <code>nums[i]</code> by <code>1</code>.</li> </ul> <p>An array is considered <strong>beautiful</strong> if, for any <strong>subarray</strong> with a size of <code>3</code> or <strong>more</strong>, its <strong>maximum</strong> element is <strong>greater than or equal</strong> to <code>k</code>.</p> <p>Return <em>an integer denoting the <strong>minimum</strong> number of increment operations needed to make </em><code>nums</code><em> <strong>beautiful</strong>.</em></p> <p>A subarray is a contiguous <strong>non-empty</strong> sequence of elements within an array.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [2,3,0,0,2], k = 4 <strong>Output:</strong> 3 <strong>Explanation:</strong> We can perform the following increment operations to make nums beautiful: Choose index i = 1 and increase nums[1] by 1 -&gt; [2,4,0,0,2]. Choose index i = 4 and increase nums[4] by 1 -&gt; [2,4,0,0,3]. Choose index i = 4 and increase nums[4] by 1 -&gt; [2,4,0,0,4]. The subarrays with a size of 3 or more are: [2,4,0], [4,0,0], [0,0,4], [2,4,0,0], [4,0,0,4], [2,4,0,0,4]. In all the subarrays, the maximum element is equal to k = 4, so nums is now beautiful. It can be shown that nums cannot be made beautiful with fewer than 3 increment operations. Hence, the answer is 3. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [0,1,3,3], k = 5 <strong>Output:</strong> 2 <strong>Explanation:</strong> We can perform the following increment operations to make nums beautiful: Choose index i = 2 and increase nums[2] by 1 -&gt; [0,1,4,3]. Choose index i = 2 and increase nums[2] by 1 -&gt; [0,1,5,3]. The subarrays with a size of 3 or more are: [0,1,5], [1,5,3], [0,1,5,3]. In all the subarrays, the maximum element is equal to k = 5, so nums is now beautiful. It can be shown that nums cannot be made beautiful with fewer than 2 increment operations. Hence, the answer is 2. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [1,1,2], k = 1 <strong>Output:</strong> 0 <strong>Explanation:</strong> The only subarray with a size of 3 or more in this example is [1,1,2]. The maximum element, 2, is already greater than k = 1, so we don&#39;t need any increment operation. Hence, the answer is 0. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= n == nums.length &lt;= 10<sup>5</sup></code></li> <li><code>0 &lt;= nums[i] &lt;= 10<sup>9</sup></code></li> <li><code>0 &lt;= k &lt;= 10<sup>9</sup></code></li> </ul>
Array; Dynamic Programming
C++
class Solution { public: long long minIncrementOperations(vector<int>& nums, int k) { long long f = 0, g = 0, h = 0; for (int x : nums) { long long hh = min({f, g, h}) + max(k - x, 0); f = g; g = h; h = hh; } return min({f, g, h}); } };
2,919
Minimum Increment Operations to Make Array Beautiful
Medium
<p>You are given a <strong>0-indexed</strong> integer array <code>nums</code> having length <code>n</code>, and an integer <code>k</code>.</p> <p>You can perform the following <strong>increment</strong> operation <strong>any</strong> number of times (<strong>including zero</strong>):</p> <ul> <li>Choose an index <code>i</code> in the range <code>[0, n - 1]</code>, and increase <code>nums[i]</code> by <code>1</code>.</li> </ul> <p>An array is considered <strong>beautiful</strong> if, for any <strong>subarray</strong> with a size of <code>3</code> or <strong>more</strong>, its <strong>maximum</strong> element is <strong>greater than or equal</strong> to <code>k</code>.</p> <p>Return <em>an integer denoting the <strong>minimum</strong> number of increment operations needed to make </em><code>nums</code><em> <strong>beautiful</strong>.</em></p> <p>A subarray is a contiguous <strong>non-empty</strong> sequence of elements within an array.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [2,3,0,0,2], k = 4 <strong>Output:</strong> 3 <strong>Explanation:</strong> We can perform the following increment operations to make nums beautiful: Choose index i = 1 and increase nums[1] by 1 -&gt; [2,4,0,0,2]. Choose index i = 4 and increase nums[4] by 1 -&gt; [2,4,0,0,3]. Choose index i = 4 and increase nums[4] by 1 -&gt; [2,4,0,0,4]. The subarrays with a size of 3 or more are: [2,4,0], [4,0,0], [0,0,4], [2,4,0,0], [4,0,0,4], [2,4,0,0,4]. In all the subarrays, the maximum element is equal to k = 4, so nums is now beautiful. It can be shown that nums cannot be made beautiful with fewer than 3 increment operations. Hence, the answer is 3. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [0,1,3,3], k = 5 <strong>Output:</strong> 2 <strong>Explanation:</strong> We can perform the following increment operations to make nums beautiful: Choose index i = 2 and increase nums[2] by 1 -&gt; [0,1,4,3]. Choose index i = 2 and increase nums[2] by 1 -&gt; [0,1,5,3]. The subarrays with a size of 3 or more are: [0,1,5], [1,5,3], [0,1,5,3]. In all the subarrays, the maximum element is equal to k = 5, so nums is now beautiful. It can be shown that nums cannot be made beautiful with fewer than 2 increment operations. Hence, the answer is 2. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [1,1,2], k = 1 <strong>Output:</strong> 0 <strong>Explanation:</strong> The only subarray with a size of 3 or more in this example is [1,1,2]. The maximum element, 2, is already greater than k = 1, so we don&#39;t need any increment operation. Hence, the answer is 0. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= n == nums.length &lt;= 10<sup>5</sup></code></li> <li><code>0 &lt;= nums[i] &lt;= 10<sup>9</sup></code></li> <li><code>0 &lt;= k &lt;= 10<sup>9</sup></code></li> </ul>
Array; Dynamic Programming
C#
public class Solution { public long MinIncrementOperations(int[] nums, int k) { long f = 0, g = 0, h = 0; foreach (int x in nums) { long hh = Math.Min(Math.Min(f, g), h) + Math.Max(k - x, 0); f = g; g = h; h = hh; } return Math.Min(Math.Min(f, g), h); } }
2,919
Minimum Increment Operations to Make Array Beautiful
Medium
<p>You are given a <strong>0-indexed</strong> integer array <code>nums</code> having length <code>n</code>, and an integer <code>k</code>.</p> <p>You can perform the following <strong>increment</strong> operation <strong>any</strong> number of times (<strong>including zero</strong>):</p> <ul> <li>Choose an index <code>i</code> in the range <code>[0, n - 1]</code>, and increase <code>nums[i]</code> by <code>1</code>.</li> </ul> <p>An array is considered <strong>beautiful</strong> if, for any <strong>subarray</strong> with a size of <code>3</code> or <strong>more</strong>, its <strong>maximum</strong> element is <strong>greater than or equal</strong> to <code>k</code>.</p> <p>Return <em>an integer denoting the <strong>minimum</strong> number of increment operations needed to make </em><code>nums</code><em> <strong>beautiful</strong>.</em></p> <p>A subarray is a contiguous <strong>non-empty</strong> sequence of elements within an array.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [2,3,0,0,2], k = 4 <strong>Output:</strong> 3 <strong>Explanation:</strong> We can perform the following increment operations to make nums beautiful: Choose index i = 1 and increase nums[1] by 1 -&gt; [2,4,0,0,2]. Choose index i = 4 and increase nums[4] by 1 -&gt; [2,4,0,0,3]. Choose index i = 4 and increase nums[4] by 1 -&gt; [2,4,0,0,4]. The subarrays with a size of 3 or more are: [2,4,0], [4,0,0], [0,0,4], [2,4,0,0], [4,0,0,4], [2,4,0,0,4]. In all the subarrays, the maximum element is equal to k = 4, so nums is now beautiful. It can be shown that nums cannot be made beautiful with fewer than 3 increment operations. Hence, the answer is 3. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [0,1,3,3], k = 5 <strong>Output:</strong> 2 <strong>Explanation:</strong> We can perform the following increment operations to make nums beautiful: Choose index i = 2 and increase nums[2] by 1 -&gt; [0,1,4,3]. Choose index i = 2 and increase nums[2] by 1 -&gt; [0,1,5,3]. The subarrays with a size of 3 or more are: [0,1,5], [1,5,3], [0,1,5,3]. In all the subarrays, the maximum element is equal to k = 5, so nums is now beautiful. It can be shown that nums cannot be made beautiful with fewer than 2 increment operations. Hence, the answer is 2. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [1,1,2], k = 1 <strong>Output:</strong> 0 <strong>Explanation:</strong> The only subarray with a size of 3 or more in this example is [1,1,2]. The maximum element, 2, is already greater than k = 1, so we don&#39;t need any increment operation. Hence, the answer is 0. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= n == nums.length &lt;= 10<sup>5</sup></code></li> <li><code>0 &lt;= nums[i] &lt;= 10<sup>9</sup></code></li> <li><code>0 &lt;= k &lt;= 10<sup>9</sup></code></li> </ul>
Array; Dynamic Programming
Go
func minIncrementOperations(nums []int, k int) int64 { var f, g, h int for _, x := range nums { f, g, h = g, h, min(f, g, h)+max(k-x, 0) } return int64(min(f, g, h)) }
2,919
Minimum Increment Operations to Make Array Beautiful
Medium
<p>You are given a <strong>0-indexed</strong> integer array <code>nums</code> having length <code>n</code>, and an integer <code>k</code>.</p> <p>You can perform the following <strong>increment</strong> operation <strong>any</strong> number of times (<strong>including zero</strong>):</p> <ul> <li>Choose an index <code>i</code> in the range <code>[0, n - 1]</code>, and increase <code>nums[i]</code> by <code>1</code>.</li> </ul> <p>An array is considered <strong>beautiful</strong> if, for any <strong>subarray</strong> with a size of <code>3</code> or <strong>more</strong>, its <strong>maximum</strong> element is <strong>greater than or equal</strong> to <code>k</code>.</p> <p>Return <em>an integer denoting the <strong>minimum</strong> number of increment operations needed to make </em><code>nums</code><em> <strong>beautiful</strong>.</em></p> <p>A subarray is a contiguous <strong>non-empty</strong> sequence of elements within an array.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [2,3,0,0,2], k = 4 <strong>Output:</strong> 3 <strong>Explanation:</strong> We can perform the following increment operations to make nums beautiful: Choose index i = 1 and increase nums[1] by 1 -&gt; [2,4,0,0,2]. Choose index i = 4 and increase nums[4] by 1 -&gt; [2,4,0,0,3]. Choose index i = 4 and increase nums[4] by 1 -&gt; [2,4,0,0,4]. The subarrays with a size of 3 or more are: [2,4,0], [4,0,0], [0,0,4], [2,4,0,0], [4,0,0,4], [2,4,0,0,4]. In all the subarrays, the maximum element is equal to k = 4, so nums is now beautiful. It can be shown that nums cannot be made beautiful with fewer than 3 increment operations. Hence, the answer is 3. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [0,1,3,3], k = 5 <strong>Output:</strong> 2 <strong>Explanation:</strong> We can perform the following increment operations to make nums beautiful: Choose index i = 2 and increase nums[2] by 1 -&gt; [0,1,4,3]. Choose index i = 2 and increase nums[2] by 1 -&gt; [0,1,5,3]. The subarrays with a size of 3 or more are: [0,1,5], [1,5,3], [0,1,5,3]. In all the subarrays, the maximum element is equal to k = 5, so nums is now beautiful. It can be shown that nums cannot be made beautiful with fewer than 2 increment operations. Hence, the answer is 2. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [1,1,2], k = 1 <strong>Output:</strong> 0 <strong>Explanation:</strong> The only subarray with a size of 3 or more in this example is [1,1,2]. The maximum element, 2, is already greater than k = 1, so we don&#39;t need any increment operation. Hence, the answer is 0. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= n == nums.length &lt;= 10<sup>5</sup></code></li> <li><code>0 &lt;= nums[i] &lt;= 10<sup>9</sup></code></li> <li><code>0 &lt;= k &lt;= 10<sup>9</sup></code></li> </ul>
Array; Dynamic Programming
Java
class Solution { public long minIncrementOperations(int[] nums, int k) { long f = 0, g = 0, h = 0; for (int x : nums) { long hh = Math.min(Math.min(f, g), h) + Math.max(k - x, 0); f = g; g = h; h = hh; } return Math.min(Math.min(f, g), h); } }
2,919
Minimum Increment Operations to Make Array Beautiful
Medium
<p>You are given a <strong>0-indexed</strong> integer array <code>nums</code> having length <code>n</code>, and an integer <code>k</code>.</p> <p>You can perform the following <strong>increment</strong> operation <strong>any</strong> number of times (<strong>including zero</strong>):</p> <ul> <li>Choose an index <code>i</code> in the range <code>[0, n - 1]</code>, and increase <code>nums[i]</code> by <code>1</code>.</li> </ul> <p>An array is considered <strong>beautiful</strong> if, for any <strong>subarray</strong> with a size of <code>3</code> or <strong>more</strong>, its <strong>maximum</strong> element is <strong>greater than or equal</strong> to <code>k</code>.</p> <p>Return <em>an integer denoting the <strong>minimum</strong> number of increment operations needed to make </em><code>nums</code><em> <strong>beautiful</strong>.</em></p> <p>A subarray is a contiguous <strong>non-empty</strong> sequence of elements within an array.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [2,3,0,0,2], k = 4 <strong>Output:</strong> 3 <strong>Explanation:</strong> We can perform the following increment operations to make nums beautiful: Choose index i = 1 and increase nums[1] by 1 -&gt; [2,4,0,0,2]. Choose index i = 4 and increase nums[4] by 1 -&gt; [2,4,0,0,3]. Choose index i = 4 and increase nums[4] by 1 -&gt; [2,4,0,0,4]. The subarrays with a size of 3 or more are: [2,4,0], [4,0,0], [0,0,4], [2,4,0,0], [4,0,0,4], [2,4,0,0,4]. In all the subarrays, the maximum element is equal to k = 4, so nums is now beautiful. It can be shown that nums cannot be made beautiful with fewer than 3 increment operations. Hence, the answer is 3. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [0,1,3,3], k = 5 <strong>Output:</strong> 2 <strong>Explanation:</strong> We can perform the following increment operations to make nums beautiful: Choose index i = 2 and increase nums[2] by 1 -&gt; [0,1,4,3]. Choose index i = 2 and increase nums[2] by 1 -&gt; [0,1,5,3]. The subarrays with a size of 3 or more are: [0,1,5], [1,5,3], [0,1,5,3]. In all the subarrays, the maximum element is equal to k = 5, so nums is now beautiful. It can be shown that nums cannot be made beautiful with fewer than 2 increment operations. Hence, the answer is 2. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [1,1,2], k = 1 <strong>Output:</strong> 0 <strong>Explanation:</strong> The only subarray with a size of 3 or more in this example is [1,1,2]. The maximum element, 2, is already greater than k = 1, so we don&#39;t need any increment operation. Hence, the answer is 0. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= n == nums.length &lt;= 10<sup>5</sup></code></li> <li><code>0 &lt;= nums[i] &lt;= 10<sup>9</sup></code></li> <li><code>0 &lt;= k &lt;= 10<sup>9</sup></code></li> </ul>
Array; Dynamic Programming
Python
class Solution: def minIncrementOperations(self, nums: List[int], k: int) -> int: f = g = h = 0 for x in nums: f, g, h = g, h, min(f, g, h) + max(k - x, 0) return min(f, g, h)
2,919
Minimum Increment Operations to Make Array Beautiful
Medium
<p>You are given a <strong>0-indexed</strong> integer array <code>nums</code> having length <code>n</code>, and an integer <code>k</code>.</p> <p>You can perform the following <strong>increment</strong> operation <strong>any</strong> number of times (<strong>including zero</strong>):</p> <ul> <li>Choose an index <code>i</code> in the range <code>[0, n - 1]</code>, and increase <code>nums[i]</code> by <code>1</code>.</li> </ul> <p>An array is considered <strong>beautiful</strong> if, for any <strong>subarray</strong> with a size of <code>3</code> or <strong>more</strong>, its <strong>maximum</strong> element is <strong>greater than or equal</strong> to <code>k</code>.</p> <p>Return <em>an integer denoting the <strong>minimum</strong> number of increment operations needed to make </em><code>nums</code><em> <strong>beautiful</strong>.</em></p> <p>A subarray is a contiguous <strong>non-empty</strong> sequence of elements within an array.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> nums = [2,3,0,0,2], k = 4 <strong>Output:</strong> 3 <strong>Explanation:</strong> We can perform the following increment operations to make nums beautiful: Choose index i = 1 and increase nums[1] by 1 -&gt; [2,4,0,0,2]. Choose index i = 4 and increase nums[4] by 1 -&gt; [2,4,0,0,3]. Choose index i = 4 and increase nums[4] by 1 -&gt; [2,4,0,0,4]. The subarrays with a size of 3 or more are: [2,4,0], [4,0,0], [0,0,4], [2,4,0,0], [4,0,0,4], [2,4,0,0,4]. In all the subarrays, the maximum element is equal to k = 4, so nums is now beautiful. It can be shown that nums cannot be made beautiful with fewer than 3 increment operations. Hence, the answer is 3. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> nums = [0,1,3,3], k = 5 <strong>Output:</strong> 2 <strong>Explanation:</strong> We can perform the following increment operations to make nums beautiful: Choose index i = 2 and increase nums[2] by 1 -&gt; [0,1,4,3]. Choose index i = 2 and increase nums[2] by 1 -&gt; [0,1,5,3]. The subarrays with a size of 3 or more are: [0,1,5], [1,5,3], [0,1,5,3]. In all the subarrays, the maximum element is equal to k = 5, so nums is now beautiful. It can be shown that nums cannot be made beautiful with fewer than 2 increment operations. Hence, the answer is 2. </pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> nums = [1,1,2], k = 1 <strong>Output:</strong> 0 <strong>Explanation:</strong> The only subarray with a size of 3 or more in this example is [1,1,2]. The maximum element, 2, is already greater than k = 1, so we don&#39;t need any increment operation. Hence, the answer is 0. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= n == nums.length &lt;= 10<sup>5</sup></code></li> <li><code>0 &lt;= nums[i] &lt;= 10<sup>9</sup></code></li> <li><code>0 &lt;= k &lt;= 10<sup>9</sup></code></li> </ul>
Array; Dynamic Programming
TypeScript
function minIncrementOperations(nums: number[], k: number): number { let [f, g, h] = [0, 0, 0]; for (const x of nums) { [f, g, h] = [g, h, Math.min(f, g, h) + Math.max(k - x, 0)]; } return Math.min(f, g, h); }
2,920
Maximum Points After Collecting Coins From All Nodes
Hard
<p>There exists an undirected tree rooted at node <code>0</code> with <code>n</code> nodes labeled from <code>0</code> to <code>n - 1</code>. You are given a 2D <strong>integer</strong> array <code>edges</code> of length <code>n - 1</code>, where <code>edges[i] = [a<sub>i</sub>, b<sub>i</sub>]</code> indicates that there is an edge between nodes <code>a<sub>i</sub></code> and <code>b<sub>i</sub></code> in the tree. You are also given a <strong>0-indexed</strong> array <code>coins</code> of size <code>n</code> where <code>coins[i]</code> indicates the number of coins in the vertex <code>i</code>, and an integer <code>k</code>.</p> <p>Starting from the root, you have to collect all the coins such that the coins at a node can only be collected if the coins of its ancestors have been already collected.</p> <p>Coins at <code>node<sub>i</sub></code> can be collected in one of the following ways:</p> <ul> <li>Collect all the coins, but you will get <code>coins[i] - k</code> points. If <code>coins[i] - k</code> is negative then you will lose <code>abs(coins[i] - k)</code> points.</li> <li>Collect all the coins, but you will get <code>floor(coins[i] / 2)</code> points. If this way is used, then for all the <code>node<sub>j</sub></code> present in the subtree of <code>node<sub>i</sub></code>, <code>coins[j]</code> will get reduced to <code>floor(coins[j] / 2)</code>.</li> </ul> <p>Return <em>the <strong>maximum points</strong> you can get after collecting the coins from <strong>all</strong> the tree nodes.</em></p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/2900-2999/2920.Maximum%20Points%20After%20Collecting%20Coins%20From%20All%20Nodes/images/ex1-copy.png" style="width: 60px; height: 316px; padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem;" /> <pre> <strong>Input:</strong> edges = [[0,1],[1,2],[2,3]], coins = [10,10,3,3], k = 5 <strong>Output:</strong> 11 <strong>Explanation:</strong> Collect all the coins from node 0 using the first way. Total points = 10 - 5 = 5. Collect all the coins from node 1 using the first way. Total points = 5 + (10 - 5) = 10. Collect all the coins from node 2 using the second way so coins left at node 3 will be floor(3 / 2) = 1. Total points = 10 + floor(3 / 2) = 11. Collect all the coins from node 3 using the second way. Total points = 11 + floor(1 / 2) = 11. It can be shown that the maximum points we can get after collecting coins from all the nodes is 11. </pre> <p><strong class="example">Example 2:</strong></p> <strong class="example"> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/2900-2999/2920.Maximum%20Points%20After%20Collecting%20Coins%20From%20All%20Nodes/images/ex2.png" style="width: 140px; height: 147px; padding: 10px; background: #fff; border-radius: .5rem;" /></strong> <pre> <strong>Input:</strong> edges = [[0,1],[0,2]], coins = [8,4,4], k = 0 <strong>Output:</strong> 16 <strong>Explanation:</strong> Coins will be collected from all the nodes using the first way. Therefore, total points = (8 - 0) + (4 - 0) + (4 - 0) = 16. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>n == coins.length</code></li> <li><code>2 &lt;= n &lt;= 10<sup>5</sup></code></li> <li><code><font face="monospace">0 &lt;= coins[i] &lt;= 10<sup>4</sup></font></code></li> <li><code>edges.length == n - 1</code></li> <li><code><font face="monospace">0 &lt;= edges[i][0], edges[i][1] &lt; n</font></code></li> <li><code><font face="monospace">0 &lt;= k &lt;= 10<sup>4</sup></font></code></li> </ul>
Bit Manipulation; Tree; Depth-First Search; Memoization; Array; Dynamic Programming
C++
class Solution { public: int maximumPoints(vector<vector<int>>& edges, vector<int>& coins, int k) { int n = coins.size(); int f[n][15]; memset(f, -1, sizeof(f)); vector<int> g[n]; for (auto& e : edges) { int a = e[0], b = e[1]; g[a].emplace_back(b); g[b].emplace_back(a); } auto dfs = [&](this auto&& dfs, int i, int fa, int j) -> int { if (f[i][j] != -1) { return f[i][j]; } int a = (coins[i] >> j) - k; int b = coins[i] >> (j + 1); for (int c : g[i]) { if (c != fa) { a += dfs(c, i, j); if (j < 14) { b += dfs(c, i, j + 1); } } } return f[i][j] = max(a, b); }; return dfs(0, -1, 0); } };
2,920
Maximum Points After Collecting Coins From All Nodes
Hard
<p>There exists an undirected tree rooted at node <code>0</code> with <code>n</code> nodes labeled from <code>0</code> to <code>n - 1</code>. You are given a 2D <strong>integer</strong> array <code>edges</code> of length <code>n - 1</code>, where <code>edges[i] = [a<sub>i</sub>, b<sub>i</sub>]</code> indicates that there is an edge between nodes <code>a<sub>i</sub></code> and <code>b<sub>i</sub></code> in the tree. You are also given a <strong>0-indexed</strong> array <code>coins</code> of size <code>n</code> where <code>coins[i]</code> indicates the number of coins in the vertex <code>i</code>, and an integer <code>k</code>.</p> <p>Starting from the root, you have to collect all the coins such that the coins at a node can only be collected if the coins of its ancestors have been already collected.</p> <p>Coins at <code>node<sub>i</sub></code> can be collected in one of the following ways:</p> <ul> <li>Collect all the coins, but you will get <code>coins[i] - k</code> points. If <code>coins[i] - k</code> is negative then you will lose <code>abs(coins[i] - k)</code> points.</li> <li>Collect all the coins, but you will get <code>floor(coins[i] / 2)</code> points. If this way is used, then for all the <code>node<sub>j</sub></code> present in the subtree of <code>node<sub>i</sub></code>, <code>coins[j]</code> will get reduced to <code>floor(coins[j] / 2)</code>.</li> </ul> <p>Return <em>the <strong>maximum points</strong> you can get after collecting the coins from <strong>all</strong> the tree nodes.</em></p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/2900-2999/2920.Maximum%20Points%20After%20Collecting%20Coins%20From%20All%20Nodes/images/ex1-copy.png" style="width: 60px; height: 316px; padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem;" /> <pre> <strong>Input:</strong> edges = [[0,1],[1,2],[2,3]], coins = [10,10,3,3], k = 5 <strong>Output:</strong> 11 <strong>Explanation:</strong> Collect all the coins from node 0 using the first way. Total points = 10 - 5 = 5. Collect all the coins from node 1 using the first way. Total points = 5 + (10 - 5) = 10. Collect all the coins from node 2 using the second way so coins left at node 3 will be floor(3 / 2) = 1. Total points = 10 + floor(3 / 2) = 11. Collect all the coins from node 3 using the second way. Total points = 11 + floor(1 / 2) = 11. It can be shown that the maximum points we can get after collecting coins from all the nodes is 11. </pre> <p><strong class="example">Example 2:</strong></p> <strong class="example"> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/2900-2999/2920.Maximum%20Points%20After%20Collecting%20Coins%20From%20All%20Nodes/images/ex2.png" style="width: 140px; height: 147px; padding: 10px; background: #fff; border-radius: .5rem;" /></strong> <pre> <strong>Input:</strong> edges = [[0,1],[0,2]], coins = [8,4,4], k = 0 <strong>Output:</strong> 16 <strong>Explanation:</strong> Coins will be collected from all the nodes using the first way. Therefore, total points = (8 - 0) + (4 - 0) + (4 - 0) = 16. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>n == coins.length</code></li> <li><code>2 &lt;= n &lt;= 10<sup>5</sup></code></li> <li><code><font face="monospace">0 &lt;= coins[i] &lt;= 10<sup>4</sup></font></code></li> <li><code>edges.length == n - 1</code></li> <li><code><font face="monospace">0 &lt;= edges[i][0], edges[i][1] &lt; n</font></code></li> <li><code><font face="monospace">0 &lt;= k &lt;= 10<sup>4</sup></font></code></li> </ul>
Bit Manipulation; Tree; Depth-First Search; Memoization; Array; Dynamic Programming
Go
func maximumPoints(edges [][]int, coins []int, k int) int { n := len(coins) f := make([][]int, n) for i := range f { f[i] = make([]int, 15) for j := range f[i] { f[i][j] = -1 } } g := make([][]int, n) for _, e := range edges { a, b := e[0], e[1] g[a] = append(g[a], b) g[b] = append(g[b], a) } var dfs func(int, int, int) int dfs = func(i, fa, j int) int { if f[i][j] != -1 { return f[i][j] } a := (coins[i] >> j) - k b := coins[i] >> (j + 1) for _, c := range g[i] { if c != fa { a += dfs(c, i, j) if j < 14 { b += dfs(c, i, j+1) } } } f[i][j] = max(a, b) return f[i][j] } return dfs(0, -1, 0) }
2,920
Maximum Points After Collecting Coins From All Nodes
Hard
<p>There exists an undirected tree rooted at node <code>0</code> with <code>n</code> nodes labeled from <code>0</code> to <code>n - 1</code>. You are given a 2D <strong>integer</strong> array <code>edges</code> of length <code>n - 1</code>, where <code>edges[i] = [a<sub>i</sub>, b<sub>i</sub>]</code> indicates that there is an edge between nodes <code>a<sub>i</sub></code> and <code>b<sub>i</sub></code> in the tree. You are also given a <strong>0-indexed</strong> array <code>coins</code> of size <code>n</code> where <code>coins[i]</code> indicates the number of coins in the vertex <code>i</code>, and an integer <code>k</code>.</p> <p>Starting from the root, you have to collect all the coins such that the coins at a node can only be collected if the coins of its ancestors have been already collected.</p> <p>Coins at <code>node<sub>i</sub></code> can be collected in one of the following ways:</p> <ul> <li>Collect all the coins, but you will get <code>coins[i] - k</code> points. If <code>coins[i] - k</code> is negative then you will lose <code>abs(coins[i] - k)</code> points.</li> <li>Collect all the coins, but you will get <code>floor(coins[i] / 2)</code> points. If this way is used, then for all the <code>node<sub>j</sub></code> present in the subtree of <code>node<sub>i</sub></code>, <code>coins[j]</code> will get reduced to <code>floor(coins[j] / 2)</code>.</li> </ul> <p>Return <em>the <strong>maximum points</strong> you can get after collecting the coins from <strong>all</strong> the tree nodes.</em></p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/2900-2999/2920.Maximum%20Points%20After%20Collecting%20Coins%20From%20All%20Nodes/images/ex1-copy.png" style="width: 60px; height: 316px; padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem;" /> <pre> <strong>Input:</strong> edges = [[0,1],[1,2],[2,3]], coins = [10,10,3,3], k = 5 <strong>Output:</strong> 11 <strong>Explanation:</strong> Collect all the coins from node 0 using the first way. Total points = 10 - 5 = 5. Collect all the coins from node 1 using the first way. Total points = 5 + (10 - 5) = 10. Collect all the coins from node 2 using the second way so coins left at node 3 will be floor(3 / 2) = 1. Total points = 10 + floor(3 / 2) = 11. Collect all the coins from node 3 using the second way. Total points = 11 + floor(1 / 2) = 11. It can be shown that the maximum points we can get after collecting coins from all the nodes is 11. </pre> <p><strong class="example">Example 2:</strong></p> <strong class="example"> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/2900-2999/2920.Maximum%20Points%20After%20Collecting%20Coins%20From%20All%20Nodes/images/ex2.png" style="width: 140px; height: 147px; padding: 10px; background: #fff; border-radius: .5rem;" /></strong> <pre> <strong>Input:</strong> edges = [[0,1],[0,2]], coins = [8,4,4], k = 0 <strong>Output:</strong> 16 <strong>Explanation:</strong> Coins will be collected from all the nodes using the first way. Therefore, total points = (8 - 0) + (4 - 0) + (4 - 0) = 16. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>n == coins.length</code></li> <li><code>2 &lt;= n &lt;= 10<sup>5</sup></code></li> <li><code><font face="monospace">0 &lt;= coins[i] &lt;= 10<sup>4</sup></font></code></li> <li><code>edges.length == n - 1</code></li> <li><code><font face="monospace">0 &lt;= edges[i][0], edges[i][1] &lt; n</font></code></li> <li><code><font face="monospace">0 &lt;= k &lt;= 10<sup>4</sup></font></code></li> </ul>
Bit Manipulation; Tree; Depth-First Search; Memoization; Array; Dynamic Programming
Java
class Solution { private int k; private int[] coins; private Integer[][] f; private List<Integer>[] g; public int maximumPoints(int[][] edges, int[] coins, int k) { this.k = k; this.coins = coins; int n = coins.length; f = new Integer[n][15]; g = new List[n]; Arrays.setAll(g, i -> new ArrayList<>()); for (var e : edges) { int a = e[0], b = e[1]; g[a].add(b); g[b].add(a); } return dfs(0, -1, 0); } private int dfs(int i, int fa, int j) { if (f[i][j] != null) { return f[i][j]; } int a = (coins[i] >> j) - k; int b = coins[i] >> (j + 1); for (int c : g[i]) { if (c != fa) { a += dfs(c, i, j); if (j < 14) { b += dfs(c, i, j + 1); } } } return f[i][j] = Math.max(a, b); } }
2,920
Maximum Points After Collecting Coins From All Nodes
Hard
<p>There exists an undirected tree rooted at node <code>0</code> with <code>n</code> nodes labeled from <code>0</code> to <code>n - 1</code>. You are given a 2D <strong>integer</strong> array <code>edges</code> of length <code>n - 1</code>, where <code>edges[i] = [a<sub>i</sub>, b<sub>i</sub>]</code> indicates that there is an edge between nodes <code>a<sub>i</sub></code> and <code>b<sub>i</sub></code> in the tree. You are also given a <strong>0-indexed</strong> array <code>coins</code> of size <code>n</code> where <code>coins[i]</code> indicates the number of coins in the vertex <code>i</code>, and an integer <code>k</code>.</p> <p>Starting from the root, you have to collect all the coins such that the coins at a node can only be collected if the coins of its ancestors have been already collected.</p> <p>Coins at <code>node<sub>i</sub></code> can be collected in one of the following ways:</p> <ul> <li>Collect all the coins, but you will get <code>coins[i] - k</code> points. If <code>coins[i] - k</code> is negative then you will lose <code>abs(coins[i] - k)</code> points.</li> <li>Collect all the coins, but you will get <code>floor(coins[i] / 2)</code> points. If this way is used, then for all the <code>node<sub>j</sub></code> present in the subtree of <code>node<sub>i</sub></code>, <code>coins[j]</code> will get reduced to <code>floor(coins[j] / 2)</code>.</li> </ul> <p>Return <em>the <strong>maximum points</strong> you can get after collecting the coins from <strong>all</strong> the tree nodes.</em></p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/2900-2999/2920.Maximum%20Points%20After%20Collecting%20Coins%20From%20All%20Nodes/images/ex1-copy.png" style="width: 60px; height: 316px; padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem;" /> <pre> <strong>Input:</strong> edges = [[0,1],[1,2],[2,3]], coins = [10,10,3,3], k = 5 <strong>Output:</strong> 11 <strong>Explanation:</strong> Collect all the coins from node 0 using the first way. Total points = 10 - 5 = 5. Collect all the coins from node 1 using the first way. Total points = 5 + (10 - 5) = 10. Collect all the coins from node 2 using the second way so coins left at node 3 will be floor(3 / 2) = 1. Total points = 10 + floor(3 / 2) = 11. Collect all the coins from node 3 using the second way. Total points = 11 + floor(1 / 2) = 11. It can be shown that the maximum points we can get after collecting coins from all the nodes is 11. </pre> <p><strong class="example">Example 2:</strong></p> <strong class="example"> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/2900-2999/2920.Maximum%20Points%20After%20Collecting%20Coins%20From%20All%20Nodes/images/ex2.png" style="width: 140px; height: 147px; padding: 10px; background: #fff; border-radius: .5rem;" /></strong> <pre> <strong>Input:</strong> edges = [[0,1],[0,2]], coins = [8,4,4], k = 0 <strong>Output:</strong> 16 <strong>Explanation:</strong> Coins will be collected from all the nodes using the first way. Therefore, total points = (8 - 0) + (4 - 0) + (4 - 0) = 16. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>n == coins.length</code></li> <li><code>2 &lt;= n &lt;= 10<sup>5</sup></code></li> <li><code><font face="monospace">0 &lt;= coins[i] &lt;= 10<sup>4</sup></font></code></li> <li><code>edges.length == n - 1</code></li> <li><code><font face="monospace">0 &lt;= edges[i][0], edges[i][1] &lt; n</font></code></li> <li><code><font face="monospace">0 &lt;= k &lt;= 10<sup>4</sup></font></code></li> </ul>
Bit Manipulation; Tree; Depth-First Search; Memoization; Array; Dynamic Programming
Python
class Solution: def maximumPoints(self, edges: List[List[int]], coins: List[int], k: int) -> int: @cache def dfs(i: int, fa: int, j: int) -> int: a = (coins[i] >> j) - k b = coins[i] >> (j + 1) for c in g[i]: if c != fa: a += dfs(c, i, j) if j < 14: b += dfs(c, i, j + 1) return max(a, b) n = len(coins) g = [[] for _ in range(n)] for a, b in edges: g[a].append(b) g[b].append(a) ans = dfs(0, -1, 0) dfs.cache_clear() return ans
2,920
Maximum Points After Collecting Coins From All Nodes
Hard
<p>There exists an undirected tree rooted at node <code>0</code> with <code>n</code> nodes labeled from <code>0</code> to <code>n - 1</code>. You are given a 2D <strong>integer</strong> array <code>edges</code> of length <code>n - 1</code>, where <code>edges[i] = [a<sub>i</sub>, b<sub>i</sub>]</code> indicates that there is an edge between nodes <code>a<sub>i</sub></code> and <code>b<sub>i</sub></code> in the tree. You are also given a <strong>0-indexed</strong> array <code>coins</code> of size <code>n</code> where <code>coins[i]</code> indicates the number of coins in the vertex <code>i</code>, and an integer <code>k</code>.</p> <p>Starting from the root, you have to collect all the coins such that the coins at a node can only be collected if the coins of its ancestors have been already collected.</p> <p>Coins at <code>node<sub>i</sub></code> can be collected in one of the following ways:</p> <ul> <li>Collect all the coins, but you will get <code>coins[i] - k</code> points. If <code>coins[i] - k</code> is negative then you will lose <code>abs(coins[i] - k)</code> points.</li> <li>Collect all the coins, but you will get <code>floor(coins[i] / 2)</code> points. If this way is used, then for all the <code>node<sub>j</sub></code> present in the subtree of <code>node<sub>i</sub></code>, <code>coins[j]</code> will get reduced to <code>floor(coins[j] / 2)</code>.</li> </ul> <p>Return <em>the <strong>maximum points</strong> you can get after collecting the coins from <strong>all</strong> the tree nodes.</em></p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/2900-2999/2920.Maximum%20Points%20After%20Collecting%20Coins%20From%20All%20Nodes/images/ex1-copy.png" style="width: 60px; height: 316px; padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem;" /> <pre> <strong>Input:</strong> edges = [[0,1],[1,2],[2,3]], coins = [10,10,3,3], k = 5 <strong>Output:</strong> 11 <strong>Explanation:</strong> Collect all the coins from node 0 using the first way. Total points = 10 - 5 = 5. Collect all the coins from node 1 using the first way. Total points = 5 + (10 - 5) = 10. Collect all the coins from node 2 using the second way so coins left at node 3 will be floor(3 / 2) = 1. Total points = 10 + floor(3 / 2) = 11. Collect all the coins from node 3 using the second way. Total points = 11 + floor(1 / 2) = 11. It can be shown that the maximum points we can get after collecting coins from all the nodes is 11. </pre> <p><strong class="example">Example 2:</strong></p> <strong class="example"> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/2900-2999/2920.Maximum%20Points%20After%20Collecting%20Coins%20From%20All%20Nodes/images/ex2.png" style="width: 140px; height: 147px; padding: 10px; background: #fff; border-radius: .5rem;" /></strong> <pre> <strong>Input:</strong> edges = [[0,1],[0,2]], coins = [8,4,4], k = 0 <strong>Output:</strong> 16 <strong>Explanation:</strong> Coins will be collected from all the nodes using the first way. Therefore, total points = (8 - 0) + (4 - 0) + (4 - 0) = 16. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>n == coins.length</code></li> <li><code>2 &lt;= n &lt;= 10<sup>5</sup></code></li> <li><code><font face="monospace">0 &lt;= coins[i] &lt;= 10<sup>4</sup></font></code></li> <li><code>edges.length == n - 1</code></li> <li><code><font face="monospace">0 &lt;= edges[i][0], edges[i][1] &lt; n</font></code></li> <li><code><font face="monospace">0 &lt;= k &lt;= 10<sup>4</sup></font></code></li> </ul>
Bit Manipulation; Tree; Depth-First Search; Memoization; Array; Dynamic Programming
TypeScript
function maximumPoints(edges: number[][], coins: number[], k: number): number { const n = coins.length; const f: number[][] = Array.from({ length: n }, () => Array(15).fill(-1)); const g: number[][] = Array.from({ length: n }, () => []); for (const [a, b] of edges) { g[a].push(b); g[b].push(a); } const dfs = (i: number, fa: number, j: number): number => { if (f[i][j] !== -1) { return f[i][j]; } let a = (coins[i] >> j) - k; let b = coins[i] >> (j + 1); for (const c of g[i]) { if (c !== fa) { a += dfs(c, i, j); if (j < 14) { b += dfs(c, i, j + 1); } } } return (f[i][j] = Math.max(a, b)); }; return dfs(0, -1, 0); }
2,921
Maximum Profitable Triplets With Increasing Prices II
Hard
<p>Given the <strong>0-indexed</strong> arrays <code>prices</code> and <code>profits</code> of length <code>n</code>. There are <code>n</code> items in an store where the <code>i<sup>th</sup></code> item has a price of <code>prices[i]</code> and a profit of <code>profits[i]</code>.</p> <p>We have to pick three items with the following condition:</p> <ul> <li><code>prices[i] &lt; prices[j] &lt; prices[k]</code> where <code>i &lt; j &lt; k</code>.</li> </ul> <p>If we pick items with indices <code>i</code>, <code>j</code> and <code>k</code> satisfying the above condition, the profit would be <code>profits[i] + profits[j] + profits[k]</code>.</p> <p>Return<em> the <strong>maximum profit</strong> we can get, and </em><code>-1</code><em> if it&#39;s not possible to pick three items with the given condition.</em></p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> prices = [10,2,3,4], profits = [100,2,7,10] <strong>Output:</strong> 19 <strong>Explanation:</strong> We can&#39;t pick the item with index i=0 since there are no indices j and k such that the condition holds. So the only triplet we can pick, are the items with indices 1, 2 and 3 and it&#39;s a valid pick since prices[1] &lt; prices[2] &lt; prices[3]. The answer would be sum of their profits which is 2 + 7 + 10 = 19.</pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> prices = [1,2,3,4,5], profits = [1,5,3,4,6] <strong>Output:</strong> 15 <strong>Explanation:</strong> We can select any triplet of items since for each triplet of indices i, j and k such that i &lt; j &lt; k, the condition holds. Therefore the maximum profit we can get would be the 3 most profitable items which are indices 1, 3 and 4. The answer would be sum of their profits which is 5 + 4 + 6 = 15.</pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> prices = [4,3,2,1], profits = [33,20,19,87] <strong>Output:</strong> -1 <strong>Explanation:</strong> We can&#39;t select any triplet of indices such that the condition holds, so we return -1. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= prices.length == profits.length &lt;= 50000</code></li> <li><code>1 &lt;= prices[i] &lt;= 5000</code></li> <li><code>1 &lt;= profits[i] &lt;= 10<sup>6</sup></code></li> </ul>
Binary Indexed Tree; Segment Tree; Array
C++
class BinaryIndexedTree { private: int n; vector<int> c; public: BinaryIndexedTree(int n) { this->n = n; c.resize(n + 1, 0); } void update(int x, int v) { while (x <= n) { c[x] = max(c[x], v); x += x & -x; } } int query(int x) { int mx = 0; while (x > 0) { mx = max(mx, c[x]); x -= x & -x; } return mx; } }; class Solution { public: int maxProfit(vector<int>& prices, vector<int>& profits) { int n = prices.size(); vector<int> left(n, 0); vector<int> right(n, 0); int m = *max_element(prices.begin(), prices.end()); BinaryIndexedTree tree1(m + 1); BinaryIndexedTree tree2(m + 1); for (int i = 0; i < n; ++i) { int x = prices[i]; left[i] = tree1.query(x - 1); tree1.update(x, profits[i]); } for (int i = n - 1; i >= 0; --i) { int x = m + 1 - prices[i]; right[i] = tree2.query(x - 1); tree2.update(x, profits[i]); } int ans = -1; for (int i = 0; i < n; ++i) { if (left[i] > 0 && right[i] > 0) { ans = max(ans, left[i] + profits[i] + right[i]); } } return ans; } };
2,921
Maximum Profitable Triplets With Increasing Prices II
Hard
<p>Given the <strong>0-indexed</strong> arrays <code>prices</code> and <code>profits</code> of length <code>n</code>. There are <code>n</code> items in an store where the <code>i<sup>th</sup></code> item has a price of <code>prices[i]</code> and a profit of <code>profits[i]</code>.</p> <p>We have to pick three items with the following condition:</p> <ul> <li><code>prices[i] &lt; prices[j] &lt; prices[k]</code> where <code>i &lt; j &lt; k</code>.</li> </ul> <p>If we pick items with indices <code>i</code>, <code>j</code> and <code>k</code> satisfying the above condition, the profit would be <code>profits[i] + profits[j] + profits[k]</code>.</p> <p>Return<em> the <strong>maximum profit</strong> we can get, and </em><code>-1</code><em> if it&#39;s not possible to pick three items with the given condition.</em></p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> prices = [10,2,3,4], profits = [100,2,7,10] <strong>Output:</strong> 19 <strong>Explanation:</strong> We can&#39;t pick the item with index i=0 since there are no indices j and k such that the condition holds. So the only triplet we can pick, are the items with indices 1, 2 and 3 and it&#39;s a valid pick since prices[1] &lt; prices[2] &lt; prices[3]. The answer would be sum of their profits which is 2 + 7 + 10 = 19.</pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> prices = [1,2,3,4,5], profits = [1,5,3,4,6] <strong>Output:</strong> 15 <strong>Explanation:</strong> We can select any triplet of items since for each triplet of indices i, j and k such that i &lt; j &lt; k, the condition holds. Therefore the maximum profit we can get would be the 3 most profitable items which are indices 1, 3 and 4. The answer would be sum of their profits which is 5 + 4 + 6 = 15.</pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> prices = [4,3,2,1], profits = [33,20,19,87] <strong>Output:</strong> -1 <strong>Explanation:</strong> We can&#39;t select any triplet of indices such that the condition holds, so we return -1. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= prices.length == profits.length &lt;= 50000</code></li> <li><code>1 &lt;= prices[i] &lt;= 5000</code></li> <li><code>1 &lt;= profits[i] &lt;= 10<sup>6</sup></code></li> </ul>
Binary Indexed Tree; Segment Tree; Array
Go
type BinaryIndexedTree struct { n int c []int } func NewBinaryIndexedTree(n int) BinaryIndexedTree { c := make([]int, n+1) return BinaryIndexedTree{n: n, c: c} } func (bit *BinaryIndexedTree) update(x, v int) { for x <= bit.n { bit.c[x] = max(bit.c[x], v) x += x & -x } } func (bit *BinaryIndexedTree) query(x int) int { mx := 0 for x > 0 { mx = max(mx, bit.c[x]) x -= x & -x } return mx } func maxProfit(prices []int, profits []int) int { n := len(prices) left := make([]int, n) right := make([]int, n) m := slices.Max(prices) tree1 := NewBinaryIndexedTree(m + 1) tree2 := NewBinaryIndexedTree(m + 1) for i, x := range prices { left[i] = tree1.query(x - 1) tree1.update(x, profits[i]) } for i := n - 1; i >= 0; i-- { x := m + 1 - prices[i] right[i] = tree2.query(x - 1) tree2.update(x, profits[i]) } ans := -1 for i := 0; i < n; i++ { if left[i] > 0 && right[i] > 0 { ans = max(ans, left[i]+profits[i]+right[i]) } } return ans }
2,921
Maximum Profitable Triplets With Increasing Prices II
Hard
<p>Given the <strong>0-indexed</strong> arrays <code>prices</code> and <code>profits</code> of length <code>n</code>. There are <code>n</code> items in an store where the <code>i<sup>th</sup></code> item has a price of <code>prices[i]</code> and a profit of <code>profits[i]</code>.</p> <p>We have to pick three items with the following condition:</p> <ul> <li><code>prices[i] &lt; prices[j] &lt; prices[k]</code> where <code>i &lt; j &lt; k</code>.</li> </ul> <p>If we pick items with indices <code>i</code>, <code>j</code> and <code>k</code> satisfying the above condition, the profit would be <code>profits[i] + profits[j] + profits[k]</code>.</p> <p>Return<em> the <strong>maximum profit</strong> we can get, and </em><code>-1</code><em> if it&#39;s not possible to pick three items with the given condition.</em></p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> prices = [10,2,3,4], profits = [100,2,7,10] <strong>Output:</strong> 19 <strong>Explanation:</strong> We can&#39;t pick the item with index i=0 since there are no indices j and k such that the condition holds. So the only triplet we can pick, are the items with indices 1, 2 and 3 and it&#39;s a valid pick since prices[1] &lt; prices[2] &lt; prices[3]. The answer would be sum of their profits which is 2 + 7 + 10 = 19.</pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> prices = [1,2,3,4,5], profits = [1,5,3,4,6] <strong>Output:</strong> 15 <strong>Explanation:</strong> We can select any triplet of items since for each triplet of indices i, j and k such that i &lt; j &lt; k, the condition holds. Therefore the maximum profit we can get would be the 3 most profitable items which are indices 1, 3 and 4. The answer would be sum of their profits which is 5 + 4 + 6 = 15.</pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> prices = [4,3,2,1], profits = [33,20,19,87] <strong>Output:</strong> -1 <strong>Explanation:</strong> We can&#39;t select any triplet of indices such that the condition holds, so we return -1. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= prices.length == profits.length &lt;= 50000</code></li> <li><code>1 &lt;= prices[i] &lt;= 5000</code></li> <li><code>1 &lt;= profits[i] &lt;= 10<sup>6</sup></code></li> </ul>
Binary Indexed Tree; Segment Tree; Array
Java
class BinaryIndexedTree { private int n; private int[] c; public BinaryIndexedTree(int n) { this.n = n; c = new int[n + 1]; } public void update(int x, int v) { while (x <= n) { c[x] = Math.max(c[x], v); x += x & -x; } } public int query(int x) { int mx = 0; while (x > 0) { mx = Math.max(mx, c[x]); x -= x & -x; } return mx; } } class Solution { public int maxProfit(int[] prices, int[] profits) { int n = prices.length; int[] left = new int[n]; int[] right = new int[n]; int m = 0; for (int x : prices) { m = Math.max(m, x); } BinaryIndexedTree tree1 = new BinaryIndexedTree(m + 1); BinaryIndexedTree tree2 = new BinaryIndexedTree(m + 1); for (int i = 0; i < n; ++i) { int x = prices[i]; left[i] = tree1.query(x - 1); tree1.update(x, profits[i]); } for (int i = n - 1; i >= 0; --i) { int x = m + 1 - prices[i]; right[i] = tree2.query(x - 1); tree2.update(x, profits[i]); } int ans = -1; for (int i = 0; i < n; ++i) { if (left[i] > 0 && right[i] > 0) { ans = Math.max(ans, left[i] + profits[i] + right[i]); } } return ans; } }
2,921
Maximum Profitable Triplets With Increasing Prices II
Hard
<p>Given the <strong>0-indexed</strong> arrays <code>prices</code> and <code>profits</code> of length <code>n</code>. There are <code>n</code> items in an store where the <code>i<sup>th</sup></code> item has a price of <code>prices[i]</code> and a profit of <code>profits[i]</code>.</p> <p>We have to pick three items with the following condition:</p> <ul> <li><code>prices[i] &lt; prices[j] &lt; prices[k]</code> where <code>i &lt; j &lt; k</code>.</li> </ul> <p>If we pick items with indices <code>i</code>, <code>j</code> and <code>k</code> satisfying the above condition, the profit would be <code>profits[i] + profits[j] + profits[k]</code>.</p> <p>Return<em> the <strong>maximum profit</strong> we can get, and </em><code>-1</code><em> if it&#39;s not possible to pick three items with the given condition.</em></p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> prices = [10,2,3,4], profits = [100,2,7,10] <strong>Output:</strong> 19 <strong>Explanation:</strong> We can&#39;t pick the item with index i=0 since there are no indices j and k such that the condition holds. So the only triplet we can pick, are the items with indices 1, 2 and 3 and it&#39;s a valid pick since prices[1] &lt; prices[2] &lt; prices[3]. The answer would be sum of their profits which is 2 + 7 + 10 = 19.</pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> prices = [1,2,3,4,5], profits = [1,5,3,4,6] <strong>Output:</strong> 15 <strong>Explanation:</strong> We can select any triplet of items since for each triplet of indices i, j and k such that i &lt; j &lt; k, the condition holds. Therefore the maximum profit we can get would be the 3 most profitable items which are indices 1, 3 and 4. The answer would be sum of their profits which is 5 + 4 + 6 = 15.</pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> prices = [4,3,2,1], profits = [33,20,19,87] <strong>Output:</strong> -1 <strong>Explanation:</strong> We can&#39;t select any triplet of indices such that the condition holds, so we return -1. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= prices.length == profits.length &lt;= 50000</code></li> <li><code>1 &lt;= prices[i] &lt;= 5000</code></li> <li><code>1 &lt;= profits[i] &lt;= 10<sup>6</sup></code></li> </ul>
Binary Indexed Tree; Segment Tree; Array
Python
class BinaryIndexedTree: def __init__(self, n: int): self.n = n self.c = [0] * (n + 1) def update(self, x: int, v: int): while x <= self.n: self.c[x] = max(self.c[x], v) x += x & -x def query(self, x: int) -> int: mx = 0 while x: mx = max(mx, self.c[x]) x -= x & -x return mx class Solution: def maxProfit(self, prices: List[int], profits: List[int]) -> int: n = len(prices) left = [0] * n right = [0] * n m = max(prices) tree1 = BinaryIndexedTree(m + 1) tree2 = BinaryIndexedTree(m + 1) for i, x in enumerate(prices): left[i] = tree1.query(x - 1) tree1.update(x, profits[i]) for i in range(n - 1, -1, -1): x = m + 1 - prices[i] right[i] = tree2.query(x - 1) tree2.update(x, profits[i]) return max( (l + x + r for l, x, r in zip(left, profits, right) if l and r), default=-1 )
2,921
Maximum Profitable Triplets With Increasing Prices II
Hard
<p>Given the <strong>0-indexed</strong> arrays <code>prices</code> and <code>profits</code> of length <code>n</code>. There are <code>n</code> items in an store where the <code>i<sup>th</sup></code> item has a price of <code>prices[i]</code> and a profit of <code>profits[i]</code>.</p> <p>We have to pick three items with the following condition:</p> <ul> <li><code>prices[i] &lt; prices[j] &lt; prices[k]</code> where <code>i &lt; j &lt; k</code>.</li> </ul> <p>If we pick items with indices <code>i</code>, <code>j</code> and <code>k</code> satisfying the above condition, the profit would be <code>profits[i] + profits[j] + profits[k]</code>.</p> <p>Return<em> the <strong>maximum profit</strong> we can get, and </em><code>-1</code><em> if it&#39;s not possible to pick three items with the given condition.</em></p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> prices = [10,2,3,4], profits = [100,2,7,10] <strong>Output:</strong> 19 <strong>Explanation:</strong> We can&#39;t pick the item with index i=0 since there are no indices j and k such that the condition holds. So the only triplet we can pick, are the items with indices 1, 2 and 3 and it&#39;s a valid pick since prices[1] &lt; prices[2] &lt; prices[3]. The answer would be sum of their profits which is 2 + 7 + 10 = 19.</pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> prices = [1,2,3,4,5], profits = [1,5,3,4,6] <strong>Output:</strong> 15 <strong>Explanation:</strong> We can select any triplet of items since for each triplet of indices i, j and k such that i &lt; j &lt; k, the condition holds. Therefore the maximum profit we can get would be the 3 most profitable items which are indices 1, 3 and 4. The answer would be sum of their profits which is 5 + 4 + 6 = 15.</pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> prices = [4,3,2,1], profits = [33,20,19,87] <strong>Output:</strong> -1 <strong>Explanation:</strong> We can&#39;t select any triplet of indices such that the condition holds, so we return -1. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= prices.length == profits.length &lt;= 50000</code></li> <li><code>1 &lt;= prices[i] &lt;= 5000</code></li> <li><code>1 &lt;= profits[i] &lt;= 10<sup>6</sup></code></li> </ul>
Binary Indexed Tree; Segment Tree; Array
Rust
struct BinaryIndexedTree { n: usize, c: Vec<i32>, } impl BinaryIndexedTree { fn new(n: usize) -> BinaryIndexedTree { BinaryIndexedTree { n, c: vec![0; n + 1], } } fn update(&mut self, x: usize, v: i32) { let mut x = x; while x <= self.n { self.c[x] = self.c[x].max(v); x += x & x.wrapping_neg(); } } fn query(&self, x: usize) -> i32 { let mut x = x; let mut mx = 0; while x > 0 { mx = mx.max(self.c[x]); x -= x & x.wrapping_neg(); } mx } } impl Solution { pub fn max_profit(prices: Vec<i32>, profits: Vec<i32>) -> i32 { let n = prices.len(); let mut left = vec![0; n]; let mut right = vec![0; n]; let m = prices.iter().cloned().max().unwrap_or(0); let mut tree1 = BinaryIndexedTree::new((m as usize) + 1); let mut tree2 = BinaryIndexedTree::new((m as usize) + 1); for i in 0..n { let x = prices[i] as usize; left[i] = tree1.query(x - 1); tree1.update(x, profits[i]); } for i in (0..n).rev() { let x = (m + 1 - prices[i]) as usize; right[i] = tree2.query(x - 1); tree2.update(x, profits[i]); } let mut ans = -1; for i in 0..n { if left[i] > 0 && right[i] > 0 { ans = ans.max(left[i] + profits[i] + right[i]); } } ans } }
2,921
Maximum Profitable Triplets With Increasing Prices II
Hard
<p>Given the <strong>0-indexed</strong> arrays <code>prices</code> and <code>profits</code> of length <code>n</code>. There are <code>n</code> items in an store where the <code>i<sup>th</sup></code> item has a price of <code>prices[i]</code> and a profit of <code>profits[i]</code>.</p> <p>We have to pick three items with the following condition:</p> <ul> <li><code>prices[i] &lt; prices[j] &lt; prices[k]</code> where <code>i &lt; j &lt; k</code>.</li> </ul> <p>If we pick items with indices <code>i</code>, <code>j</code> and <code>k</code> satisfying the above condition, the profit would be <code>profits[i] + profits[j] + profits[k]</code>.</p> <p>Return<em> the <strong>maximum profit</strong> we can get, and </em><code>-1</code><em> if it&#39;s not possible to pick three items with the given condition.</em></p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> prices = [10,2,3,4], profits = [100,2,7,10] <strong>Output:</strong> 19 <strong>Explanation:</strong> We can&#39;t pick the item with index i=0 since there are no indices j and k such that the condition holds. So the only triplet we can pick, are the items with indices 1, 2 and 3 and it&#39;s a valid pick since prices[1] &lt; prices[2] &lt; prices[3]. The answer would be sum of their profits which is 2 + 7 + 10 = 19.</pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> prices = [1,2,3,4,5], profits = [1,5,3,4,6] <strong>Output:</strong> 15 <strong>Explanation:</strong> We can select any triplet of items since for each triplet of indices i, j and k such that i &lt; j &lt; k, the condition holds. Therefore the maximum profit we can get would be the 3 most profitable items which are indices 1, 3 and 4. The answer would be sum of their profits which is 5 + 4 + 6 = 15.</pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> prices = [4,3,2,1], profits = [33,20,19,87] <strong>Output:</strong> -1 <strong>Explanation:</strong> We can&#39;t select any triplet of indices such that the condition holds, so we return -1. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= prices.length == profits.length &lt;= 50000</code></li> <li><code>1 &lt;= prices[i] &lt;= 5000</code></li> <li><code>1 &lt;= profits[i] &lt;= 10<sup>6</sup></code></li> </ul>
Binary Indexed Tree; Segment Tree; Array
TypeScript
class BinaryIndexedTree { private n: number; private c: number[]; constructor(n: number) { this.n = n; this.c = Array(n + 1).fill(0); } update(x: number, v: number): void { while (x <= this.n) { this.c[x] = Math.max(this.c[x], v); x += x & -x; } } query(x: number): number { let mx = 0; while (x > 0) { mx = Math.max(mx, this.c[x]); x -= x & -x; } return mx; } } function maxProfit(prices: number[], profits: number[]): number { const n: number = prices.length; const left: number[] = Array(n).fill(0); const right: number[] = Array(n).fill(0); const m = Math.max(...prices); const tree1: BinaryIndexedTree = new BinaryIndexedTree(m + 1); const tree2: BinaryIndexedTree = new BinaryIndexedTree(m + 1); for (let i = 0; i < n; i++) { const x: number = prices[i]; left[i] = tree1.query(x - 1); tree1.update(x, profits[i]); } for (let i = n - 1; i >= 0; i--) { const x: number = m + 1 - prices[i]; right[i] = tree2.query(x - 1); tree2.update(x, profits[i]); } let ans: number = -1; for (let i = 0; i < n; i++) { if (left[i] > 0 && right[i] > 0) { ans = Math.max(ans, left[i] + profits[i] + right[i]); } } return ans; }
2,922
Market Analysis III
Medium
<p>Table: <code>Users</code></p> <pre> +----------------+---------+ | Column Name | Type | +----------------+---------+ | seller_id | int | | join_date | date | | favorite_brand | varchar | +----------------+---------+ seller_id is column of unique values for this table. This table contains seller id, join date, and favorite brand of sellers. </pre> <p>Table: <code>Items</code></p> <pre> +---------------+---------+ | Column Name | Type | +---------------+---------+ | item_id | int | | item_brand | varchar | +---------------+---------+ item_id is the column of unique values for this table. This table contains item id and item brand.</pre> <p>Table: <code>Orders</code></p> <pre> +---------------+---------+ | Column Name | Type | +---------------+---------+ | order_id | int | | order_date | date | | item_id | int | | seller_id | int | +---------------+---------+ order_id is the column of unique values for this table. item_id is a foreign key to the Items table. seller_id is a foreign key to the Users table. This table contains order id, order date, item id and seller id.</pre> <p>Write a solution to find the <strong>top seller</strong> who has sold the highest number of<strong> unique</strong> items with a <strong>different</strong> brand than their favorite brand. If there are multiple sellers with the same highest count, return all of them.</p> <p>Return <em>the result table ordered by</em> <code>seller_id</code> <em>in <strong>ascending</strong> order.</em></p> <p>The result format is in the following example.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> Users table: +-----------+------------+----------------+ | seller_id | join_date | favorite_brand | +-----------+------------+----------------+ | 1 | 2019-01-01 | Lenovo | | 2 | 2019-02-09 | Samsung | | 3 | 2019-01-19 | LG | +-----------+------------+----------------+ Orders table: +----------+------------+---------+-----------+ | order_id | order_date | item_id | seller_id | +----------+------------+---------+-----------+ | 1 | 2019-08-01 | 4 | 2 | | 2 | 2019-08-02 | 2 | 3 | | 3 | 2019-08-03 | 3 | 3 | | 4 | 2019-08-04 | 1 | 2 | | 5 | 2019-08-04 | 4 | 2 | +----------+------------+---------+-----------+ Items table: +---------+------------+ | item_id | item_brand | +---------+------------+ | 1 | Samsung | | 2 | Lenovo | | 3 | LG | | 4 | HP | +---------+------------+ <strong>Output:</strong> +-----------+-----------+ | seller_id | num_items | +-----------+-----------+ | 2 | 1 | | 3 | 1 | +-----------+-----------+ <strong>Explanation:</strong> - The user with seller_id 2 has sold three items, but only two of them are not marked as a favorite. We will include a unique count of 1 because both of these items are identical. - The user with seller_id 3 has sold two items, but only one of them is not marked as a favorite. We will include just that non-favorite item in our count. Since seller_ids 2 and 3 have the same count of one item each, they both will be displayed in the output.</pre>
Database
SQL
# Write your MySQL query statement below WITH T AS ( SELECT seller_id, COUNT(DISTINCT item_id) AS num_items FROM Orders JOIN Users USING (seller_id) JOIN Items USING (item_id) WHERE item_brand != favorite_brand GROUP BY 1 ) SELECT seller_id, num_items FROM T WHERE num_items = (SELECT MAX(num_items) FROM T) ORDER BY 1;
2,923
Find Champion I
Easy
<p>There are <code>n</code> teams numbered from <code>0</code> to <code>n - 1</code> in a tournament.</p> <p>Given a <strong>0-indexed</strong> 2D boolean matrix <code>grid</code> of size <code>n * n</code>. For all <code>i, j</code> that <code>0 &lt;= i, j &lt;= n - 1</code> and <code>i != j</code> team <code>i</code> is <strong>stronger</strong> than team <code>j</code> if <code>grid[i][j] == 1</code>, otherwise, team <code>j</code> is <strong>stronger</strong> than team <code>i</code>.</p> <p>Team <code>a</code> will be the <strong>champion</strong> of the tournament if there is no team <code>b</code> that is stronger than team <code>a</code>.</p> <p>Return <em>the team that will be the champion of the tournament.</em></p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> grid = [[0,1],[0,0]] <strong>Output:</strong> 0 <strong>Explanation:</strong> There are two teams in this tournament. grid[0][1] == 1 means that team 0 is stronger than team 1. So team 0 will be the champion. </pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> grid = [[0,0,1],[1,0,1],[0,0,0]] <strong>Output:</strong> 1 <strong>Explanation:</strong> There are three teams in this tournament. grid[1][0] == 1 means that team 1 is stronger than team 0. grid[1][2] == 1 means that team 1 is stronger than team 2. So team 1 will be the champion. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>n == grid.length</code></li> <li><code>n == grid[i].length</code></li> <li><code>2 &lt;= n &lt;= 100</code></li> <li><code>grid[i][j]</code> is either <code>0</code> or <code>1</code>.</li> <li>For all <code>i grid[i][i]</code> is <code>0.</code></li> <li>For all <code>i, j</code> that <code>i != j</code>, <code>grid[i][j] != grid[j][i]</code>.</li> <li>The input is generated such that if team <code>a</code> is stronger than team <code>b</code> and team <code>b</code> is stronger than team <code>c</code>, then team <code>a</code> is stronger than team <code>c</code>.</li> </ul>
Array; Matrix
C++
class Solution { public: int findChampion(vector<vector<int>>& grid) { int n = grid.size(); for (int i = 0;; ++i) { int cnt = 0; for (int j = 0; j < n; ++j) { if (i != j && grid[i][j] == 1) { ++cnt; } } if (cnt == n - 1) { return i; } } } };