id
int64
1
3.71k
title
stringlengths
3
79
difficulty
stringclasses
3 values
description
stringlengths
430
25.4k
tags
stringlengths
0
131
language
stringclasses
19 values
solution
stringlengths
47
20.6k
3,099
Harshad Number
Easy
<p>An integer divisible by the <strong>sum</strong> of its digits is said to be a <strong>Harshad</strong> number. You are given an integer <code>x</code>. Return<em> the sum of the digits </em>of<em> </em><code>x</code><em> </em>if<em> </em><code>x</code><em> </em>is a <strong>Harshad</strong> number, otherwise, return<em> </em><code>-1</code><em>.</em></p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">x = 18</span></p> <p><strong>Output:</strong> <span class="example-io">9</span></p> <p><strong>Explanation:</strong></p> <p>The sum of digits of <code>x</code> is <code>9</code>. <code>18</code> is divisible by <code>9</code>. So <code>18</code> is a Harshad number and the answer is <code>9</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">x = 23</span></p> <p><strong>Output:</strong> <span class="example-io">-1</span></p> <p><strong>Explanation:</strong></p> <p>The sum of digits of <code>x</code> is <code>5</code>. <code>23</code> is not divisible by <code>5</code>. So <code>23</code> is not a Harshad number and the answer is <code>-1</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= x &lt;= 100</code></li> </ul>
Math
Java
class Solution { public int sumOfTheDigitsOfHarshadNumber(int x) { int s = 0; for (int y = x; y > 0; y /= 10) { s += y % 10; } return x % s == 0 ? s : -1; } }
3,099
Harshad Number
Easy
<p>An integer divisible by the <strong>sum</strong> of its digits is said to be a <strong>Harshad</strong> number. You are given an integer <code>x</code>. Return<em> the sum of the digits </em>of<em> </em><code>x</code><em> </em>if<em> </em><code>x</code><em> </em>is a <strong>Harshad</strong> number, otherwise, return<em> </em><code>-1</code><em>.</em></p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">x = 18</span></p> <p><strong>Output:</strong> <span class="example-io">9</span></p> <p><strong>Explanation:</strong></p> <p>The sum of digits of <code>x</code> is <code>9</code>. <code>18</code> is divisible by <code>9</code>. So <code>18</code> is a Harshad number and the answer is <code>9</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">x = 23</span></p> <p><strong>Output:</strong> <span class="example-io">-1</span></p> <p><strong>Explanation:</strong></p> <p>The sum of digits of <code>x</code> is <code>5</code>. <code>23</code> is not divisible by <code>5</code>. So <code>23</code> is not a Harshad number and the answer is <code>-1</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= x &lt;= 100</code></li> </ul>
Math
Python
class Solution: def sumOfTheDigitsOfHarshadNumber(self, x: int) -> int: s, y = 0, x while y: s += y % 10 y //= 10 return s if x % s == 0 else -1
3,099
Harshad Number
Easy
<p>An integer divisible by the <strong>sum</strong> of its digits is said to be a <strong>Harshad</strong> number. You are given an integer <code>x</code>. Return<em> the sum of the digits </em>of<em> </em><code>x</code><em> </em>if<em> </em><code>x</code><em> </em>is a <strong>Harshad</strong> number, otherwise, return<em> </em><code>-1</code><em>.</em></p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">x = 18</span></p> <p><strong>Output:</strong> <span class="example-io">9</span></p> <p><strong>Explanation:</strong></p> <p>The sum of digits of <code>x</code> is <code>9</code>. <code>18</code> is divisible by <code>9</code>. So <code>18</code> is a Harshad number and the answer is <code>9</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">x = 23</span></p> <p><strong>Output:</strong> <span class="example-io">-1</span></p> <p><strong>Explanation:</strong></p> <p>The sum of digits of <code>x</code> is <code>5</code>. <code>23</code> is not divisible by <code>5</code>. So <code>23</code> is not a Harshad number and the answer is <code>-1</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= x &lt;= 100</code></li> </ul>
Math
TypeScript
function sumOfTheDigitsOfHarshadNumber(x: number): number { let s = 0; for (let y = x; y; y = Math.floor(y / 10)) { s += y % 10; } return x % s === 0 ? s : -1; }
3,100
Water Bottles II
Medium
<p>You are given two integers <code>numBottles</code> and <code>numExchange</code>.</p> <p><code>numBottles</code> represents the number of full water bottles that you initially have. In one operation, you can perform one of the following operations:</p> <ul> <li>Drink any number of full water bottles turning them into empty bottles.</li> <li>Exchange <code>numExchange</code> empty bottles with one full water bottle. Then, increase <code>numExchange</code> by one.</li> </ul> <p>Note that you cannot exchange multiple batches of empty bottles for the same value of <code>numExchange</code>. For example, if <code>numBottles == 3</code> and <code>numExchange == 1</code>, you cannot exchange <code>3</code> empty water bottles for <code>3</code> full bottles.</p> <p>Return <em>the <strong>maximum</strong> number of water bottles you can drink</em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3100.Water%20Bottles%20II/images/exampleone1.png" style="width: 948px; height: 482px; padding: 10px; background: #fff; border-radius: .5rem;" /> <pre> <strong>Input:</strong> numBottles = 13, numExchange = 6 <strong>Output:</strong> 15 <strong>Explanation:</strong> The table above shows the number of full water bottles, empty water bottles, the value of numExchange, and the number of bottles drunk. </pre> <p><strong class="example">Example 2:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3100.Water%20Bottles%20II/images/example231.png" style="width: 990px; height: 642px; padding: 10px; background: #fff; border-radius: .5rem;" /> <pre> <strong>Input:</strong> numBottles = 10, numExchange = 3 <strong>Output:</strong> 13 <strong>Explanation:</strong> The table above shows the number of full water bottles, empty water bottles, the value of numExchange, and the number of bottles drunk. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= numBottles &lt;= 100 </code></li> <li><code>1 &lt;= numExchange &lt;= 100</code></li> </ul>
Math; Simulation
C++
class Solution { public: int maxBottlesDrunk(int numBottles, int numExchange) { int ans = numBottles; while (numBottles >= numExchange) { numBottles -= numExchange; ++numExchange; ++ans; ++numBottles; } return ans; } };
3,100
Water Bottles II
Medium
<p>You are given two integers <code>numBottles</code> and <code>numExchange</code>.</p> <p><code>numBottles</code> represents the number of full water bottles that you initially have. In one operation, you can perform one of the following operations:</p> <ul> <li>Drink any number of full water bottles turning them into empty bottles.</li> <li>Exchange <code>numExchange</code> empty bottles with one full water bottle. Then, increase <code>numExchange</code> by one.</li> </ul> <p>Note that you cannot exchange multiple batches of empty bottles for the same value of <code>numExchange</code>. For example, if <code>numBottles == 3</code> and <code>numExchange == 1</code>, you cannot exchange <code>3</code> empty water bottles for <code>3</code> full bottles.</p> <p>Return <em>the <strong>maximum</strong> number of water bottles you can drink</em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3100.Water%20Bottles%20II/images/exampleone1.png" style="width: 948px; height: 482px; padding: 10px; background: #fff; border-radius: .5rem;" /> <pre> <strong>Input:</strong> numBottles = 13, numExchange = 6 <strong>Output:</strong> 15 <strong>Explanation:</strong> The table above shows the number of full water bottles, empty water bottles, the value of numExchange, and the number of bottles drunk. </pre> <p><strong class="example">Example 2:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3100.Water%20Bottles%20II/images/example231.png" style="width: 990px; height: 642px; padding: 10px; background: #fff; border-radius: .5rem;" /> <pre> <strong>Input:</strong> numBottles = 10, numExchange = 3 <strong>Output:</strong> 13 <strong>Explanation:</strong> The table above shows the number of full water bottles, empty water bottles, the value of numExchange, and the number of bottles drunk. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= numBottles &lt;= 100 </code></li> <li><code>1 &lt;= numExchange &lt;= 100</code></li> </ul>
Math; Simulation
C#
public class Solution { public int MaxBottlesDrunk(int numBottles, int numExchange) { int ans = numBottles; while (numBottles >= numExchange) { numBottles -= numExchange; ++numExchange; ++ans; ++numBottles; } return ans; } }
3,100
Water Bottles II
Medium
<p>You are given two integers <code>numBottles</code> and <code>numExchange</code>.</p> <p><code>numBottles</code> represents the number of full water bottles that you initially have. In one operation, you can perform one of the following operations:</p> <ul> <li>Drink any number of full water bottles turning them into empty bottles.</li> <li>Exchange <code>numExchange</code> empty bottles with one full water bottle. Then, increase <code>numExchange</code> by one.</li> </ul> <p>Note that you cannot exchange multiple batches of empty bottles for the same value of <code>numExchange</code>. For example, if <code>numBottles == 3</code> and <code>numExchange == 1</code>, you cannot exchange <code>3</code> empty water bottles for <code>3</code> full bottles.</p> <p>Return <em>the <strong>maximum</strong> number of water bottles you can drink</em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3100.Water%20Bottles%20II/images/exampleone1.png" style="width: 948px; height: 482px; padding: 10px; background: #fff; border-radius: .5rem;" /> <pre> <strong>Input:</strong> numBottles = 13, numExchange = 6 <strong>Output:</strong> 15 <strong>Explanation:</strong> The table above shows the number of full water bottles, empty water bottles, the value of numExchange, and the number of bottles drunk. </pre> <p><strong class="example">Example 2:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3100.Water%20Bottles%20II/images/example231.png" style="width: 990px; height: 642px; padding: 10px; background: #fff; border-radius: .5rem;" /> <pre> <strong>Input:</strong> numBottles = 10, numExchange = 3 <strong>Output:</strong> 13 <strong>Explanation:</strong> The table above shows the number of full water bottles, empty water bottles, the value of numExchange, and the number of bottles drunk. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= numBottles &lt;= 100 </code></li> <li><code>1 &lt;= numExchange &lt;= 100</code></li> </ul>
Math; Simulation
Go
func maxBottlesDrunk(numBottles int, numExchange int) int { ans := numBottles for numBottles >= numExchange { numBottles -= numExchange numExchange++ ans++ numBottles++ } return ans }
3,100
Water Bottles II
Medium
<p>You are given two integers <code>numBottles</code> and <code>numExchange</code>.</p> <p><code>numBottles</code> represents the number of full water bottles that you initially have. In one operation, you can perform one of the following operations:</p> <ul> <li>Drink any number of full water bottles turning them into empty bottles.</li> <li>Exchange <code>numExchange</code> empty bottles with one full water bottle. Then, increase <code>numExchange</code> by one.</li> </ul> <p>Note that you cannot exchange multiple batches of empty bottles for the same value of <code>numExchange</code>. For example, if <code>numBottles == 3</code> and <code>numExchange == 1</code>, you cannot exchange <code>3</code> empty water bottles for <code>3</code> full bottles.</p> <p>Return <em>the <strong>maximum</strong> number of water bottles you can drink</em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3100.Water%20Bottles%20II/images/exampleone1.png" style="width: 948px; height: 482px; padding: 10px; background: #fff; border-radius: .5rem;" /> <pre> <strong>Input:</strong> numBottles = 13, numExchange = 6 <strong>Output:</strong> 15 <strong>Explanation:</strong> The table above shows the number of full water bottles, empty water bottles, the value of numExchange, and the number of bottles drunk. </pre> <p><strong class="example">Example 2:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3100.Water%20Bottles%20II/images/example231.png" style="width: 990px; height: 642px; padding: 10px; background: #fff; border-radius: .5rem;" /> <pre> <strong>Input:</strong> numBottles = 10, numExchange = 3 <strong>Output:</strong> 13 <strong>Explanation:</strong> The table above shows the number of full water bottles, empty water bottles, the value of numExchange, and the number of bottles drunk. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= numBottles &lt;= 100 </code></li> <li><code>1 &lt;= numExchange &lt;= 100</code></li> </ul>
Math; Simulation
Java
class Solution { public int maxBottlesDrunk(int numBottles, int numExchange) { int ans = numBottles; while (numBottles >= numExchange) { numBottles -= numExchange; ++numExchange; ++ans; ++numBottles; } return ans; } }
3,100
Water Bottles II
Medium
<p>You are given two integers <code>numBottles</code> and <code>numExchange</code>.</p> <p><code>numBottles</code> represents the number of full water bottles that you initially have. In one operation, you can perform one of the following operations:</p> <ul> <li>Drink any number of full water bottles turning them into empty bottles.</li> <li>Exchange <code>numExchange</code> empty bottles with one full water bottle. Then, increase <code>numExchange</code> by one.</li> </ul> <p>Note that you cannot exchange multiple batches of empty bottles for the same value of <code>numExchange</code>. For example, if <code>numBottles == 3</code> and <code>numExchange == 1</code>, you cannot exchange <code>3</code> empty water bottles for <code>3</code> full bottles.</p> <p>Return <em>the <strong>maximum</strong> number of water bottles you can drink</em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3100.Water%20Bottles%20II/images/exampleone1.png" style="width: 948px; height: 482px; padding: 10px; background: #fff; border-radius: .5rem;" /> <pre> <strong>Input:</strong> numBottles = 13, numExchange = 6 <strong>Output:</strong> 15 <strong>Explanation:</strong> The table above shows the number of full water bottles, empty water bottles, the value of numExchange, and the number of bottles drunk. </pre> <p><strong class="example">Example 2:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3100.Water%20Bottles%20II/images/example231.png" style="width: 990px; height: 642px; padding: 10px; background: #fff; border-radius: .5rem;" /> <pre> <strong>Input:</strong> numBottles = 10, numExchange = 3 <strong>Output:</strong> 13 <strong>Explanation:</strong> The table above shows the number of full water bottles, empty water bottles, the value of numExchange, and the number of bottles drunk. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= numBottles &lt;= 100 </code></li> <li><code>1 &lt;= numExchange &lt;= 100</code></li> </ul>
Math; Simulation
PHP
class Solution { /** * @param Integer $numBottles * @param Integer $numExchange * @return Integer */ function maxBottlesDrunk($numBottles, $numExchange) { $ans = $numBottles; while ($numBottles >= $numExchange) { $numBottles -= $numExchange; $numExchange++; $ans++; $numBottles++; } return $ans; } }
3,100
Water Bottles II
Medium
<p>You are given two integers <code>numBottles</code> and <code>numExchange</code>.</p> <p><code>numBottles</code> represents the number of full water bottles that you initially have. In one operation, you can perform one of the following operations:</p> <ul> <li>Drink any number of full water bottles turning them into empty bottles.</li> <li>Exchange <code>numExchange</code> empty bottles with one full water bottle. Then, increase <code>numExchange</code> by one.</li> </ul> <p>Note that you cannot exchange multiple batches of empty bottles for the same value of <code>numExchange</code>. For example, if <code>numBottles == 3</code> and <code>numExchange == 1</code>, you cannot exchange <code>3</code> empty water bottles for <code>3</code> full bottles.</p> <p>Return <em>the <strong>maximum</strong> number of water bottles you can drink</em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3100.Water%20Bottles%20II/images/exampleone1.png" style="width: 948px; height: 482px; padding: 10px; background: #fff; border-radius: .5rem;" /> <pre> <strong>Input:</strong> numBottles = 13, numExchange = 6 <strong>Output:</strong> 15 <strong>Explanation:</strong> The table above shows the number of full water bottles, empty water bottles, the value of numExchange, and the number of bottles drunk. </pre> <p><strong class="example">Example 2:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3100.Water%20Bottles%20II/images/example231.png" style="width: 990px; height: 642px; padding: 10px; background: #fff; border-radius: .5rem;" /> <pre> <strong>Input:</strong> numBottles = 10, numExchange = 3 <strong>Output:</strong> 13 <strong>Explanation:</strong> The table above shows the number of full water bottles, empty water bottles, the value of numExchange, and the number of bottles drunk. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= numBottles &lt;= 100 </code></li> <li><code>1 &lt;= numExchange &lt;= 100</code></li> </ul>
Math; Simulation
Python
class Solution: def maxBottlesDrunk(self, numBottles: int, numExchange: int) -> int: ans = numBottles while numBottles >= numExchange: numBottles -= numExchange numExchange += 1 ans += 1 numBottles += 1 return ans
3,100
Water Bottles II
Medium
<p>You are given two integers <code>numBottles</code> and <code>numExchange</code>.</p> <p><code>numBottles</code> represents the number of full water bottles that you initially have. In one operation, you can perform one of the following operations:</p> <ul> <li>Drink any number of full water bottles turning them into empty bottles.</li> <li>Exchange <code>numExchange</code> empty bottles with one full water bottle. Then, increase <code>numExchange</code> by one.</li> </ul> <p>Note that you cannot exchange multiple batches of empty bottles for the same value of <code>numExchange</code>. For example, if <code>numBottles == 3</code> and <code>numExchange == 1</code>, you cannot exchange <code>3</code> empty water bottles for <code>3</code> full bottles.</p> <p>Return <em>the <strong>maximum</strong> number of water bottles you can drink</em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3100.Water%20Bottles%20II/images/exampleone1.png" style="width: 948px; height: 482px; padding: 10px; background: #fff; border-radius: .5rem;" /> <pre> <strong>Input:</strong> numBottles = 13, numExchange = 6 <strong>Output:</strong> 15 <strong>Explanation:</strong> The table above shows the number of full water bottles, empty water bottles, the value of numExchange, and the number of bottles drunk. </pre> <p><strong class="example">Example 2:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3100.Water%20Bottles%20II/images/example231.png" style="width: 990px; height: 642px; padding: 10px; background: #fff; border-radius: .5rem;" /> <pre> <strong>Input:</strong> numBottles = 10, numExchange = 3 <strong>Output:</strong> 13 <strong>Explanation:</strong> The table above shows the number of full water bottles, empty water bottles, the value of numExchange, and the number of bottles drunk. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= numBottles &lt;= 100 </code></li> <li><code>1 &lt;= numExchange &lt;= 100</code></li> </ul>
Math; Simulation
Rust
impl Solution { pub fn max_bottles_drunk(mut num_bottles: i32, mut num_exchange: i32) -> i32 { let mut ans = num_bottles; while num_bottles >= num_exchange { num_bottles -= num_exchange; num_exchange += 1; ans += 1; num_bottles += 1; } ans } }
3,100
Water Bottles II
Medium
<p>You are given two integers <code>numBottles</code> and <code>numExchange</code>.</p> <p><code>numBottles</code> represents the number of full water bottles that you initially have. In one operation, you can perform one of the following operations:</p> <ul> <li>Drink any number of full water bottles turning them into empty bottles.</li> <li>Exchange <code>numExchange</code> empty bottles with one full water bottle. Then, increase <code>numExchange</code> by one.</li> </ul> <p>Note that you cannot exchange multiple batches of empty bottles for the same value of <code>numExchange</code>. For example, if <code>numBottles == 3</code> and <code>numExchange == 1</code>, you cannot exchange <code>3</code> empty water bottles for <code>3</code> full bottles.</p> <p>Return <em>the <strong>maximum</strong> number of water bottles you can drink</em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3100.Water%20Bottles%20II/images/exampleone1.png" style="width: 948px; height: 482px; padding: 10px; background: #fff; border-radius: .5rem;" /> <pre> <strong>Input:</strong> numBottles = 13, numExchange = 6 <strong>Output:</strong> 15 <strong>Explanation:</strong> The table above shows the number of full water bottles, empty water bottles, the value of numExchange, and the number of bottles drunk. </pre> <p><strong class="example">Example 2:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3100.Water%20Bottles%20II/images/example231.png" style="width: 990px; height: 642px; padding: 10px; background: #fff; border-radius: .5rem;" /> <pre> <strong>Input:</strong> numBottles = 10, numExchange = 3 <strong>Output:</strong> 13 <strong>Explanation:</strong> The table above shows the number of full water bottles, empty water bottles, the value of numExchange, and the number of bottles drunk. </pre> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= numBottles &lt;= 100 </code></li> <li><code>1 &lt;= numExchange &lt;= 100</code></li> </ul>
Math; Simulation
TypeScript
function maxBottlesDrunk(numBottles: number, numExchange: number): number { let ans = numBottles; while (numBottles >= numExchange) { numBottles -= numExchange; ++numExchange; ++ans; ++numBottles; } return ans; }
3,101
Count Alternating Subarrays
Medium
<p>You are given a <span data-keyword="binary-array">binary array</span> <code>nums</code>.</p> <p>We call a <span data-keyword="subarray-nonempty">subarray</span> <strong>alternating</strong> if <strong>no</strong> two <strong>adjacent</strong> elements in the subarray have the <strong>same</strong> value.</p> <p>Return <em>the number of alternating subarrays in </em><code>nums</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [0,1,1,1]</span></p> <p><strong>Output:</strong> <span class="example-io">5</span></p> <p><strong>Explanation:</strong></p> <p>The following subarrays are alternating: <code>[0]</code>, <code>[1]</code>, <code>[1]</code>, <code>[1]</code>, and <code>[0,1]</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1,0,1,0]</span></p> <p><strong>Output:</strong> <span class="example-io">10</span></p> <p><strong>Explanation:</strong></p> <p>Every subarray of the array is alternating. There are 10 possible subarrays that we can choose.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 10<sup>5</sup></code></li> <li><code>nums[i]</code> is either <code>0</code> or <code>1</code>.</li> </ul>
Array; Math
C++
class Solution { public: long long countAlternatingSubarrays(vector<int>& nums) { long long ans = 1, s = 1; for (int i = 1; i < nums.size(); ++i) { s = nums[i] != nums[i - 1] ? s + 1 : 1; ans += s; } return ans; } };
3,101
Count Alternating Subarrays
Medium
<p>You are given a <span data-keyword="binary-array">binary array</span> <code>nums</code>.</p> <p>We call a <span data-keyword="subarray-nonempty">subarray</span> <strong>alternating</strong> if <strong>no</strong> two <strong>adjacent</strong> elements in the subarray have the <strong>same</strong> value.</p> <p>Return <em>the number of alternating subarrays in </em><code>nums</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [0,1,1,1]</span></p> <p><strong>Output:</strong> <span class="example-io">5</span></p> <p><strong>Explanation:</strong></p> <p>The following subarrays are alternating: <code>[0]</code>, <code>[1]</code>, <code>[1]</code>, <code>[1]</code>, and <code>[0,1]</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1,0,1,0]</span></p> <p><strong>Output:</strong> <span class="example-io">10</span></p> <p><strong>Explanation:</strong></p> <p>Every subarray of the array is alternating. There are 10 possible subarrays that we can choose.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 10<sup>5</sup></code></li> <li><code>nums[i]</code> is either <code>0</code> or <code>1</code>.</li> </ul>
Array; Math
Go
func countAlternatingSubarrays(nums []int) int64 { ans, s := int64(1), int64(1) for i, x := range nums[1:] { if x != nums[i] { s++ } else { s = 1 } ans += s } return ans }
3,101
Count Alternating Subarrays
Medium
<p>You are given a <span data-keyword="binary-array">binary array</span> <code>nums</code>.</p> <p>We call a <span data-keyword="subarray-nonempty">subarray</span> <strong>alternating</strong> if <strong>no</strong> two <strong>adjacent</strong> elements in the subarray have the <strong>same</strong> value.</p> <p>Return <em>the number of alternating subarrays in </em><code>nums</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [0,1,1,1]</span></p> <p><strong>Output:</strong> <span class="example-io">5</span></p> <p><strong>Explanation:</strong></p> <p>The following subarrays are alternating: <code>[0]</code>, <code>[1]</code>, <code>[1]</code>, <code>[1]</code>, and <code>[0,1]</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1,0,1,0]</span></p> <p><strong>Output:</strong> <span class="example-io">10</span></p> <p><strong>Explanation:</strong></p> <p>Every subarray of the array is alternating. There are 10 possible subarrays that we can choose.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 10<sup>5</sup></code></li> <li><code>nums[i]</code> is either <code>0</code> or <code>1</code>.</li> </ul>
Array; Math
Java
class Solution { public long countAlternatingSubarrays(int[] nums) { long ans = 1, s = 1; for (int i = 1; i < nums.length; ++i) { s = nums[i] != nums[i - 1] ? s + 1 : 1; ans += s; } return ans; } }
3,101
Count Alternating Subarrays
Medium
<p>You are given a <span data-keyword="binary-array">binary array</span> <code>nums</code>.</p> <p>We call a <span data-keyword="subarray-nonempty">subarray</span> <strong>alternating</strong> if <strong>no</strong> two <strong>adjacent</strong> elements in the subarray have the <strong>same</strong> value.</p> <p>Return <em>the number of alternating subarrays in </em><code>nums</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [0,1,1,1]</span></p> <p><strong>Output:</strong> <span class="example-io">5</span></p> <p><strong>Explanation:</strong></p> <p>The following subarrays are alternating: <code>[0]</code>, <code>[1]</code>, <code>[1]</code>, <code>[1]</code>, and <code>[0,1]</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1,0,1,0]</span></p> <p><strong>Output:</strong> <span class="example-io">10</span></p> <p><strong>Explanation:</strong></p> <p>Every subarray of the array is alternating. There are 10 possible subarrays that we can choose.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 10<sup>5</sup></code></li> <li><code>nums[i]</code> is either <code>0</code> or <code>1</code>.</li> </ul>
Array; Math
Python
class Solution: def countAlternatingSubarrays(self, nums: List[int]) -> int: ans = s = 1 for a, b in pairwise(nums): s = s + 1 if a != b else 1 ans += s return ans
3,101
Count Alternating Subarrays
Medium
<p>You are given a <span data-keyword="binary-array">binary array</span> <code>nums</code>.</p> <p>We call a <span data-keyword="subarray-nonempty">subarray</span> <strong>alternating</strong> if <strong>no</strong> two <strong>adjacent</strong> elements in the subarray have the <strong>same</strong> value.</p> <p>Return <em>the number of alternating subarrays in </em><code>nums</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [0,1,1,1]</span></p> <p><strong>Output:</strong> <span class="example-io">5</span></p> <p><strong>Explanation:</strong></p> <p>The following subarrays are alternating: <code>[0]</code>, <code>[1]</code>, <code>[1]</code>, <code>[1]</code>, and <code>[0,1]</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1,0,1,0]</span></p> <p><strong>Output:</strong> <span class="example-io">10</span></p> <p><strong>Explanation:</strong></p> <p>Every subarray of the array is alternating. There are 10 possible subarrays that we can choose.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 10<sup>5</sup></code></li> <li><code>nums[i]</code> is either <code>0</code> or <code>1</code>.</li> </ul>
Array; Math
TypeScript
function countAlternatingSubarrays(nums: number[]): number { let [ans, s] = [1, 1]; for (let i = 1; i < nums.length; ++i) { s = nums[i] !== nums[i - 1] ? s + 1 : 1; ans += s; } return ans; }
3,102
Minimize Manhattan Distances
Hard
<p>You are given an array <code>points</code> representing integer coordinates of some points on a 2D plane, where <code>points[i] = [x<sub>i</sub>, y<sub>i</sub>]</code>.</p> <p>The distance between two points is defined as their <span data-keyword="manhattan-distance">Manhattan distance</span>.</p> <p>Return <em>the <strong>minimum</strong> possible value for <strong>maximum</strong> distance between any two points by removing exactly one point</em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">points = [[3,10],[5,15],[10,2],[4,4]]</span></p> <p><strong>Output:</strong> <span class="example-io">12</span></p> <p><strong>Explanation:</strong></p> <p>The maximum distance after removing each point is the following:</p> <ul> <li>After removing the 0<sup>th</sup> point the maximum distance is between points (5, 15) and (10, 2), which is <code>|5 - 10| + |15 - 2| = 18</code>.</li> <li>After removing the 1<sup>st</sup> point the maximum distance is between points (3, 10) and (10, 2), which is <code>|3 - 10| + |10 - 2| = 15</code>.</li> <li>After removing the 2<sup>nd</sup> point the maximum distance is between points (5, 15) and (4, 4), which is <code>|5 - 4| + |15 - 4| = 12</code>.</li> <li>After removing the 3<sup>rd</sup> point the maximum distance is between points (5, 15) and (10, 2), which is <code>|5 - 10| + |15 - 2| = 18</code>.</li> </ul> <p>12 is the minimum possible maximum distance between any two points after removing exactly one point.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">points = [[1,1],[1,1],[1,1]]</span></p> <p><strong>Output:</strong> <span class="example-io">0</span></p> <p><strong>Explanation:</strong></p> <p>Removing any of the points results in the maximum distance between any two points of 0.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= points.length &lt;= 10<sup>5</sup></code></li> <li><code>points[i].length == 2</code></li> <li><code>1 &lt;= points[i][0], points[i][1] &lt;= 10<sup>8</sup></code></li> </ul>
Geometry; Array; Math; Ordered Set; Sorting
C++
class Solution { public: int minimumDistance(vector<vector<int>>& points) { multiset<int> st1; multiset<int> st2; for (auto& p : points) { int x = p[0], y = p[1]; st1.insert(x + y); st2.insert(x - y); } int ans = INT_MAX; for (auto& p : points) { int x = p[0], y = p[1]; st1.erase(st1.find(x + y)); st2.erase(st2.find(x - y)); ans = min(ans, max(*st1.rbegin() - *st1.begin(), *st2.rbegin() - *st2.begin())); st1.insert(x + y); st2.insert(x - y); } return ans; } };
3,102
Minimize Manhattan Distances
Hard
<p>You are given an array <code>points</code> representing integer coordinates of some points on a 2D plane, where <code>points[i] = [x<sub>i</sub>, y<sub>i</sub>]</code>.</p> <p>The distance between two points is defined as their <span data-keyword="manhattan-distance">Manhattan distance</span>.</p> <p>Return <em>the <strong>minimum</strong> possible value for <strong>maximum</strong> distance between any two points by removing exactly one point</em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">points = [[3,10],[5,15],[10,2],[4,4]]</span></p> <p><strong>Output:</strong> <span class="example-io">12</span></p> <p><strong>Explanation:</strong></p> <p>The maximum distance after removing each point is the following:</p> <ul> <li>After removing the 0<sup>th</sup> point the maximum distance is between points (5, 15) and (10, 2), which is <code>|5 - 10| + |15 - 2| = 18</code>.</li> <li>After removing the 1<sup>st</sup> point the maximum distance is between points (3, 10) and (10, 2), which is <code>|3 - 10| + |10 - 2| = 15</code>.</li> <li>After removing the 2<sup>nd</sup> point the maximum distance is between points (5, 15) and (4, 4), which is <code>|5 - 4| + |15 - 4| = 12</code>.</li> <li>After removing the 3<sup>rd</sup> point the maximum distance is between points (5, 15) and (10, 2), which is <code>|5 - 10| + |15 - 2| = 18</code>.</li> </ul> <p>12 is the minimum possible maximum distance between any two points after removing exactly one point.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">points = [[1,1],[1,1],[1,1]]</span></p> <p><strong>Output:</strong> <span class="example-io">0</span></p> <p><strong>Explanation:</strong></p> <p>Removing any of the points results in the maximum distance between any two points of 0.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= points.length &lt;= 10<sup>5</sup></code></li> <li><code>points[i].length == 2</code></li> <li><code>1 &lt;= points[i][0], points[i][1] &lt;= 10<sup>8</sup></code></li> </ul>
Geometry; Array; Math; Ordered Set; Sorting
Go
func minimumDistance(points [][]int) int { st1 := redblacktree.New[int, int]() st2 := redblacktree.New[int, int]() merge := func(st *redblacktree.Tree[int, int], x, v int) { c, _ := st.Get(x) if c+v == 0 { st.Remove(x) } else { st.Put(x, c+v) } } for _, p := range points { x, y := p[0], p[1] merge(st1, x+y, 1) merge(st2, x-y, 1) } ans := math.MaxInt for _, p := range points { x, y := p[0], p[1] merge(st1, x+y, -1) merge(st2, x-y, -1) ans = min(ans, max(st1.Right().Key-st1.Left().Key, st2.Right().Key-st2.Left().Key)) merge(st1, x+y, 1) merge(st2, x-y, 1) } return ans }
3,102
Minimize Manhattan Distances
Hard
<p>You are given an array <code>points</code> representing integer coordinates of some points on a 2D plane, where <code>points[i] = [x<sub>i</sub>, y<sub>i</sub>]</code>.</p> <p>The distance between two points is defined as their <span data-keyword="manhattan-distance">Manhattan distance</span>.</p> <p>Return <em>the <strong>minimum</strong> possible value for <strong>maximum</strong> distance between any two points by removing exactly one point</em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">points = [[3,10],[5,15],[10,2],[4,4]]</span></p> <p><strong>Output:</strong> <span class="example-io">12</span></p> <p><strong>Explanation:</strong></p> <p>The maximum distance after removing each point is the following:</p> <ul> <li>After removing the 0<sup>th</sup> point the maximum distance is between points (5, 15) and (10, 2), which is <code>|5 - 10| + |15 - 2| = 18</code>.</li> <li>After removing the 1<sup>st</sup> point the maximum distance is between points (3, 10) and (10, 2), which is <code>|3 - 10| + |10 - 2| = 15</code>.</li> <li>After removing the 2<sup>nd</sup> point the maximum distance is between points (5, 15) and (4, 4), which is <code>|5 - 4| + |15 - 4| = 12</code>.</li> <li>After removing the 3<sup>rd</sup> point the maximum distance is between points (5, 15) and (10, 2), which is <code>|5 - 10| + |15 - 2| = 18</code>.</li> </ul> <p>12 is the minimum possible maximum distance between any two points after removing exactly one point.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">points = [[1,1],[1,1],[1,1]]</span></p> <p><strong>Output:</strong> <span class="example-io">0</span></p> <p><strong>Explanation:</strong></p> <p>Removing any of the points results in the maximum distance between any two points of 0.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= points.length &lt;= 10<sup>5</sup></code></li> <li><code>points[i].length == 2</code></li> <li><code>1 &lt;= points[i][0], points[i][1] &lt;= 10<sup>8</sup></code></li> </ul>
Geometry; Array; Math; Ordered Set; Sorting
Java
class Solution { public int minimumDistance(int[][] points) { TreeMap<Integer, Integer> tm1 = new TreeMap<>(); TreeMap<Integer, Integer> tm2 = new TreeMap<>(); for (int[] p : points) { int x = p[0], y = p[1]; tm1.merge(x + y, 1, Integer::sum); tm2.merge(x - y, 1, Integer::sum); } int ans = Integer.MAX_VALUE; for (int[] p : points) { int x = p[0], y = p[1]; if (tm1.merge(x + y, -1, Integer::sum) == 0) { tm1.remove(x + y); } if (tm2.merge(x - y, -1, Integer::sum) == 0) { tm2.remove(x - y); } ans = Math.min( ans, Math.max(tm1.lastKey() - tm1.firstKey(), tm2.lastKey() - tm2.firstKey())); tm1.merge(x + y, 1, Integer::sum); tm2.merge(x - y, 1, Integer::sum); } return ans; } }
3,102
Minimize Manhattan Distances
Hard
<p>You are given an array <code>points</code> representing integer coordinates of some points on a 2D plane, where <code>points[i] = [x<sub>i</sub>, y<sub>i</sub>]</code>.</p> <p>The distance between two points is defined as their <span data-keyword="manhattan-distance">Manhattan distance</span>.</p> <p>Return <em>the <strong>minimum</strong> possible value for <strong>maximum</strong> distance between any two points by removing exactly one point</em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">points = [[3,10],[5,15],[10,2],[4,4]]</span></p> <p><strong>Output:</strong> <span class="example-io">12</span></p> <p><strong>Explanation:</strong></p> <p>The maximum distance after removing each point is the following:</p> <ul> <li>After removing the 0<sup>th</sup> point the maximum distance is between points (5, 15) and (10, 2), which is <code>|5 - 10| + |15 - 2| = 18</code>.</li> <li>After removing the 1<sup>st</sup> point the maximum distance is between points (3, 10) and (10, 2), which is <code>|3 - 10| + |10 - 2| = 15</code>.</li> <li>After removing the 2<sup>nd</sup> point the maximum distance is between points (5, 15) and (4, 4), which is <code>|5 - 4| + |15 - 4| = 12</code>.</li> <li>After removing the 3<sup>rd</sup> point the maximum distance is between points (5, 15) and (10, 2), which is <code>|5 - 10| + |15 - 2| = 18</code>.</li> </ul> <p>12 is the minimum possible maximum distance between any two points after removing exactly one point.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">points = [[1,1],[1,1],[1,1]]</span></p> <p><strong>Output:</strong> <span class="example-io">0</span></p> <p><strong>Explanation:</strong></p> <p>Removing any of the points results in the maximum distance between any two points of 0.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= points.length &lt;= 10<sup>5</sup></code></li> <li><code>points[i].length == 2</code></li> <li><code>1 &lt;= points[i][0], points[i][1] &lt;= 10<sup>8</sup></code></li> </ul>
Geometry; Array; Math; Ordered Set; Sorting
Python
class Solution: def minimumDistance(self, points: List[List[int]]) -> int: sl1 = SortedList() sl2 = SortedList() for x, y in points: sl1.add(x + y) sl2.add(x - y) ans = inf for x, y in points: sl1.remove(x + y) sl2.remove(x - y) ans = min(ans, max(sl1[-1] - sl1[0], sl2[-1] - sl2[0])) sl1.add(x + y) sl2.add(x - y) return ans
3,102
Minimize Manhattan Distances
Hard
<p>You are given an array <code>points</code> representing integer coordinates of some points on a 2D plane, where <code>points[i] = [x<sub>i</sub>, y<sub>i</sub>]</code>.</p> <p>The distance between two points is defined as their <span data-keyword="manhattan-distance">Manhattan distance</span>.</p> <p>Return <em>the <strong>minimum</strong> possible value for <strong>maximum</strong> distance between any two points by removing exactly one point</em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">points = [[3,10],[5,15],[10,2],[4,4]]</span></p> <p><strong>Output:</strong> <span class="example-io">12</span></p> <p><strong>Explanation:</strong></p> <p>The maximum distance after removing each point is the following:</p> <ul> <li>After removing the 0<sup>th</sup> point the maximum distance is between points (5, 15) and (10, 2), which is <code>|5 - 10| + |15 - 2| = 18</code>.</li> <li>After removing the 1<sup>st</sup> point the maximum distance is between points (3, 10) and (10, 2), which is <code>|3 - 10| + |10 - 2| = 15</code>.</li> <li>After removing the 2<sup>nd</sup> point the maximum distance is between points (5, 15) and (4, 4), which is <code>|5 - 4| + |15 - 4| = 12</code>.</li> <li>After removing the 3<sup>rd</sup> point the maximum distance is between points (5, 15) and (10, 2), which is <code>|5 - 10| + |15 - 2| = 18</code>.</li> </ul> <p>12 is the minimum possible maximum distance between any two points after removing exactly one point.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">points = [[1,1],[1,1],[1,1]]</span></p> <p><strong>Output:</strong> <span class="example-io">0</span></p> <p><strong>Explanation:</strong></p> <p>Removing any of the points results in the maximum distance between any two points of 0.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 &lt;= points.length &lt;= 10<sup>5</sup></code></li> <li><code>points[i].length == 2</code></li> <li><code>1 &lt;= points[i][0], points[i][1] &lt;= 10<sup>8</sup></code></li> </ul>
Geometry; Array; Math; Ordered Set; Sorting
TypeScript
function minimumDistance(points: number[][]): number { const st1 = new TreapMultiSet<number>(); const st2 = new TreapMultiSet<number>(); for (const [x, y] of points) { st1.add(x + y); st2.add(x - y); } let ans = Infinity; for (const [x, y] of points) { st1.delete(x + y); st2.delete(x - y); ans = Math.min(ans, Math.max(st1.last() - st1.first(), st2.last() - st2.first())); st1.add(x + y); st2.add(x - y); } return ans; } type CompareFunction<T, R extends 'number' | 'boolean'> = ( a: T, b: T, ) => R extends 'number' ? number : boolean; interface ITreapMultiSet<T> extends Iterable<T> { add: (...value: T[]) => this; has: (value: T) => boolean; delete: (value: T) => void; bisectLeft: (value: T) => number; bisectRight: (value: T) => number; indexOf: (value: T) => number; lastIndexOf: (value: T) => number; at: (index: number) => T | undefined; first: () => T | undefined; last: () => T | undefined; lower: (value: T) => T | undefined; higher: (value: T) => T | undefined; floor: (value: T) => T | undefined; ceil: (value: T) => T | undefined; shift: () => T | undefined; pop: (index?: number) => T | undefined; count: (value: T) => number; keys: () => IterableIterator<T>; values: () => IterableIterator<T>; rvalues: () => IterableIterator<T>; entries: () => IterableIterator<[number, T]>; readonly size: number; } class TreapNode<T = number> { value: T; count: number; size: number; priority: number; left: TreapNode<T> | null; right: TreapNode<T> | null; constructor(value: T) { this.value = value; this.count = 1; this.size = 1; this.priority = Math.random(); this.left = null; this.right = null; } static getSize(node: TreapNode<any> | null): number { return node?.size ?? 0; } static getFac(node: TreapNode<any> | null): number { return node?.priority ?? 0; } pushUp(): void { let tmp = this.count; tmp += TreapNode.getSize(this.left); tmp += TreapNode.getSize(this.right); this.size = tmp; } rotateRight(): TreapNode<T> { // eslint-disable-next-line @typescript-eslint/no-this-alias let node: TreapNode<T> = this; const left = node.left; node.left = left?.right ?? null; left && (left.right = node); left && (node = left); node.right?.pushUp(); node.pushUp(); return node; } rotateLeft(): TreapNode<T> { // eslint-disable-next-line @typescript-eslint/no-this-alias let node: TreapNode<T> = this; const right = node.right; node.right = right?.left ?? null; right && (right.left = node); right && (node = right); node.left?.pushUp(); node.pushUp(); return node; } } class TreapMultiSet<T = number> implements ITreapMultiSet<T> { private readonly root: TreapNode<T>; private readonly compareFn: CompareFunction<T, 'number'>; private readonly leftBound: T; private readonly rightBound: T; constructor(compareFn?: CompareFunction<T, 'number'>); constructor(compareFn: CompareFunction<T, 'number'>, leftBound: T, rightBound: T); constructor( compareFn: CompareFunction<T, any> = (a: any, b: any) => a - b, leftBound: any = -Infinity, rightBound: any = Infinity, ) { this.root = new TreapNode<T>(rightBound); this.root.priority = Infinity; this.root.left = new TreapNode<T>(leftBound); this.root.left.priority = -Infinity; this.root.pushUp(); this.leftBound = leftBound; this.rightBound = rightBound; this.compareFn = compareFn; } get size(): number { return this.root.size - 2; } get height(): number { const getHeight = (node: TreapNode<T> | null): number => { if (node == null) return 0; return 1 + Math.max(getHeight(node.left), getHeight(node.right)); }; return getHeight(this.root); } /** * * @complexity `O(logn)` * @description Returns true if value is a member. */ has(value: T): boolean { const compare = this.compareFn; const dfs = (node: TreapNode<T> | null, value: T): boolean => { if (node == null) return false; if (compare(node.value, value) === 0) return true; if (compare(node.value, value) < 0) return dfs(node.right, value); return dfs(node.left, value); }; return dfs(this.root, value); } /** * * @complexity `O(logn)` * @description Add value to sorted set. */ add(...values: T[]): this { const compare = this.compareFn; const dfs = ( node: TreapNode<T> | null, value: T, parent: TreapNode<T>, direction: 'left' | 'right', ): void => { if (node == null) return; if (compare(node.value, value) === 0) { node.count++; node.pushUp(); } else if (compare(node.value, value) > 0) { if (node.left) { dfs(node.left, value, node, 'left'); } else { node.left = new TreapNode(value); node.pushUp(); } if (TreapNode.getFac(node.left) > node.priority) { parent[direction] = node.rotateRight(); } } else if (compare(node.value, value) < 0) { if (node.right) { dfs(node.right, value, node, 'right'); } else { node.right = new TreapNode(value); node.pushUp(); } if (TreapNode.getFac(node.right) > node.priority) { parent[direction] = node.rotateLeft(); } } parent.pushUp(); }; values.forEach(value => dfs(this.root.left, value, this.root, 'left')); return this; } /** * * @complexity `O(logn)` * @description Remove value from sorted set if it is a member. * If value is not a member, do nothing. */ delete(value: T): void { const compare = this.compareFn; const dfs = ( node: TreapNode<T> | null, value: T, parent: TreapNode<T>, direction: 'left' | 'right', ): void => { if (node == null) return; if (compare(node.value, value) === 0) { if (node.count > 1) { node.count--; node?.pushUp(); } else if (node.left == null && node.right == null) { parent[direction] = null; } else { // 旋到根节点 if ( node.right == null || TreapNode.getFac(node.left) > TreapNode.getFac(node.right) ) { parent[direction] = node.rotateRight(); dfs(parent[direction]?.right ?? null, value, parent[direction]!, 'right'); } else { parent[direction] = node.rotateLeft(); dfs(parent[direction]?.left ?? null, value, parent[direction]!, 'left'); } } } else if (compare(node.value, value) > 0) { dfs(node.left, value, node, 'left'); } else if (compare(node.value, value) < 0) { dfs(node.right, value, node, 'right'); } parent?.pushUp(); }; dfs(this.root.left, value, this.root, 'left'); } /** * * @complexity `O(logn)` * @description Returns an index to insert value in the sorted set. * If the value is already present, the insertion point will be before (to the left of) any existing values. */ bisectLeft(value: T): number { const compare = this.compareFn; const dfs = (node: TreapNode<T> | null, value: T): number => { if (node == null) return 0; if (compare(node.value, value) === 0) { return TreapNode.getSize(node.left); } else if (compare(node.value, value) > 0) { return dfs(node.left, value); } else if (compare(node.value, value) < 0) { return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count; } return 0; }; return dfs(this.root, value) - 1; } /** * * @complexity `O(logn)` * @description Returns an index to insert value in the sorted set. * If the value is already present, the insertion point will be before (to the right of) any existing values. */ bisectRight(value: T): number { const compare = this.compareFn; const dfs = (node: TreapNode<T> | null, value: T): number => { if (node == null) return 0; if (compare(node.value, value) === 0) { return TreapNode.getSize(node.left) + node.count; } else if (compare(node.value, value) > 0) { return dfs(node.left, value); } else if (compare(node.value, value) < 0) { return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count; } return 0; }; return dfs(this.root, value) - 1; } /** * * @complexity `O(logn)` * @description Returns the index of the first occurrence of a value in the set, or -1 if it is not present. */ indexOf(value: T): number { const compare = this.compareFn; let isExist = false; const dfs = (node: TreapNode<T> | null, value: T): number => { if (node == null) return 0; if (compare(node.value, value) === 0) { isExist = true; return TreapNode.getSize(node.left); } else if (compare(node.value, value) > 0) { return dfs(node.left, value); } else if (compare(node.value, value) < 0) { return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count; } return 0; }; const res = dfs(this.root, value) - 1; return isExist ? res : -1; } /** * * @complexity `O(logn)` * @description Returns the index of the last occurrence of a value in the set, or -1 if it is not present. */ lastIndexOf(value: T): number { const compare = this.compareFn; let isExist = false; const dfs = (node: TreapNode<T> | null, value: T): number => { if (node == null) return 0; if (compare(node.value, value) === 0) { isExist = true; return TreapNode.getSize(node.left) + node.count - 1; } else if (compare(node.value, value) > 0) { return dfs(node.left, value); } else if (compare(node.value, value) < 0) { return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count; } return 0; }; const res = dfs(this.root, value) - 1; return isExist ? res : -1; } /** * * @complexity `O(logn)` * @description Returns the item located at the specified index. * @param index The zero-based index of the desired code unit. A negative index will count back from the last item. */ at(index: number): T | undefined { if (index < 0) index += this.size; if (index < 0 || index >= this.size) return undefined; const dfs = (node: TreapNode<T> | null, rank: number): T | undefined => { if (node == null) return undefined; if (TreapNode.getSize(node.left) >= rank) { return dfs(node.left, rank); } else if (TreapNode.getSize(node.left) + node.count >= rank) { return node.value; } else { return dfs(node.right, rank - TreapNode.getSize(node.left) - node.count); } }; const res = dfs(this.root, index + 2); return ([this.leftBound, this.rightBound] as any[]).includes(res) ? undefined : res; } /** * * @complexity `O(logn)` * @description Find and return the element less than `val`, return `undefined` if no such element found. */ lower(value: T): T | undefined { const compare = this.compareFn; const dfs = (node: TreapNode<T> | null, value: T): T | undefined => { if (node == null) return undefined; if (compare(node.value, value) >= 0) return dfs(node.left, value); const tmp = dfs(node.right, value); if (tmp == null || compare(node.value, tmp) > 0) { return node.value; } else { return tmp; } }; const res = dfs(this.root, value) as any; return res === this.leftBound ? undefined : res; } /** * * @complexity `O(logn)` * @description Find and return the element greater than `val`, return `undefined` if no such element found. */ higher(value: T): T | undefined { const compare = this.compareFn; const dfs = (node: TreapNode<T> | null, value: T): T | undefined => { if (node == null) return undefined; if (compare(node.value, value) <= 0) return dfs(node.right, value); const tmp = dfs(node.left, value); if (tmp == null || compare(node.value, tmp) < 0) { return node.value; } else { return tmp; } }; const res = dfs(this.root, value) as any; return res === this.rightBound ? undefined : res; } /** * * @complexity `O(logn)` * @description Find and return the element less than or equal to `val`, return `undefined` if no such element found. */ floor(value: T): T | undefined { const compare = this.compareFn; const dfs = (node: TreapNode<T> | null, value: T): T | undefined => { if (node == null) return undefined; if (compare(node.value, value) === 0) return node.value; if (compare(node.value, value) >= 0) return dfs(node.left, value); const tmp = dfs(node.right, value); if (tmp == null || compare(node.value, tmp) > 0) { return node.value; } else { return tmp; } }; const res = dfs(this.root, value) as any; return res === this.leftBound ? undefined : res; } /** * * @complexity `O(logn)` * @description Find and return the element greater than or equal to `val`, return `undefined` if no such element found. */ ceil(value: T): T | undefined { const compare = this.compareFn; const dfs = (node: TreapNode<T> | null, value: T): T | undefined => { if (node == null) return undefined; if (compare(node.value, value) === 0) return node.value; if (compare(node.value, value) <= 0) return dfs(node.right, value); const tmp = dfs(node.left, value); if (tmp == null || compare(node.value, tmp) < 0) { return node.value; } else { return tmp; } }; const res = dfs(this.root, value) as any; return res === this.rightBound ? undefined : res; } /** * @complexity `O(logn)` * @description * Returns the last element from set. * If the set is empty, undefined is returned. */ first(): T | undefined { const iter = this.inOrder(); iter.next(); const res = iter.next().value; return res === this.rightBound ? undefined : res; } /** * @complexity `O(logn)` * @description * Returns the last element from set. * If the set is empty, undefined is returned . */ last(): T | undefined { const iter = this.reverseInOrder(); iter.next(); const res = iter.next().value; return res === this.leftBound ? undefined : res; } /** * @complexity `O(logn)` * @description * Removes the first element from an set and returns it. * If the set is empty, undefined is returned and the set is not modified. */ shift(): T | undefined { const first = this.first(); if (first === undefined) return undefined; this.delete(first); return first; } /** * @complexity `O(logn)` * @description * Removes the last element from an set and returns it. * If the set is empty, undefined is returned and the set is not modified. */ pop(index?: number): T | undefined { if (index == null) { const last = this.last(); if (last === undefined) return undefined; this.delete(last); return last; } const toDelete = this.at(index); if (toDelete == null) return; this.delete(toDelete); return toDelete; } /** * * @complexity `O(logn)` * @description * Returns number of occurrences of value in the sorted set. */ count(value: T): number { const compare = this.compareFn; const dfs = (node: TreapNode<T> | null, value: T): number => { if (node == null) return 0; if (compare(node.value, value) === 0) return node.count; if (compare(node.value, value) < 0) return dfs(node.right, value); return dfs(node.left, value); }; return dfs(this.root, value); } *[Symbol.iterator](): Generator<T, any, any> { yield* this.values(); } /** * @description * Returns an iterable of keys in the set. */ *keys(): Generator<T, any, any> { yield* this.values(); } /** * @description * Returns an iterable of values in the set. */ *values(): Generator<T, any, any> { const iter = this.inOrder(); iter.next(); const steps = this.size; for (let _ = 0; _ < steps; _++) { yield iter.next().value; } } /** * @description * Returns a generator for reversed order traversing the set. */ *rvalues(): Generator<T, any, any> { const iter = this.reverseInOrder(); iter.next(); const steps = this.size; for (let _ = 0; _ < steps; _++) { yield iter.next().value; } } /** * @description * Returns an iterable of key, value pairs for every entry in the set. */ *entries(): IterableIterator<[number, T]> { const iter = this.inOrder(); iter.next(); const steps = this.size; for (let i = 0; i < steps; i++) { yield [i, iter.next().value]; } } private *inOrder(root: TreapNode<T> | null = this.root): Generator<T, any, any> { if (root == null) return; yield* this.inOrder(root.left); const count = root.count; for (let _ = 0; _ < count; _++) { yield root.value; } yield* this.inOrder(root.right); } private *reverseInOrder(root: TreapNode<T> | null = this.root): Generator<T, any, any> { if (root == null) return; yield* this.reverseInOrder(root.right); const count = root.count; for (let _ = 0; _ < count; _++) { yield root.value; } yield* this.reverseInOrder(root.left); } }
3,103
Find Trending Hashtags II
Hard
<p>Table: <code>Tweets</code></p> <pre> +-------------+---------+ | Column Name | Type | +-------------+---------+ | user_id | int | | tweet_id | int | | tweet_date | date | | tweet | varchar | +-------------+---------+ tweet_id is the primary key (column with unique values) for this table. Each row of this table contains user_id, tweet_id, tweet_date and tweet. It is guaranteed that all tweet_date are valid dates in February 2024. </pre> <p>Write a solution to find the <strong>top</strong> <code>3</code> trending <strong>hashtags</strong> in <strong>February</strong> <code>2024</code>. Every tweet may contain <strong>several</strong> <strong>hashtags</strong>.</p> <p>Return <em>the result table ordered by count of hashtag, hashtag in </em><strong>descending</strong><em> order.</em></p> <p>The result format is in the following example.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong></p> <p>Tweets table:</p> <pre class="example-io"> +---------+----------+------------------------------------------------------------+------------+ | user_id | tweet_id | tweet | tweet_date | +---------+----------+------------------------------------------------------------+------------+ | 135 | 13 | Enjoying a great start to the day. #HappyDay #MorningVibes | 2024-02-01 | | 136 | 14 | Another #HappyDay with good vibes! #FeelGood | 2024-02-03 | | 137 | 15 | Productivity peaks! #WorkLife #ProductiveDay | 2024-02-04 | | 138 | 16 | Exploring new tech frontiers. #TechLife #Innovation | 2024-02-04 | | 139 | 17 | Gratitude for today&#39;s moments. #HappyDay #Thankful | 2024-02-05 | | 140 | 18 | Innovation drives us. #TechLife #FutureTech | 2024-02-07 | | 141 | 19 | Connecting with nature&#39;s serenity. #Nature #Peaceful | 2024-02-09 | +---------+----------+------------------------------------------------------------+------------+ </pre> <p><strong>Output:</strong></p> <pre class="example-io"> +-----------+-------+ | hashtag | count | +-----------+-------+ | #HappyDay | 3 | | #TechLife | 2 | | #WorkLife | 1 | +-----------+-------+ </pre> <p><strong>Explanation:</strong></p> <ul> <li><strong>#HappyDay:</strong> Appeared in tweet IDs 13, 14, and 17, with a total count of 3 mentions.</li> <li><strong>#TechLife:</strong> Appeared in tweet IDs 16 and 18, with a total count of 2 mentions.</li> <li><strong>#WorkLife:</strong> Appeared in tweet ID 15, with a total count of 1 mention.</li> </ul> <p><b>Note:</b> Output table is sorted in descending order by count and hashtag respectively.</p> </div>
Database
Python
import pandas as pd def find_trending_hashtags(tweets: pd.DataFrame) -> pd.DataFrame: # Filter tweets for February 2024 tweets_feb_2024 = tweets[tweets["tweet_date"].between("2024-02-01", "2024-02-29")] # Extract hashtags from tweets hashtags = tweets_feb_2024["tweet"].str.findall(r"#\w+") # Flatten list of hashtags all_hashtags = [tag for sublist in hashtags for tag in sublist] # Count occurrences of each hashtag hashtag_counts = pd.Series(all_hashtags).value_counts().reset_index() hashtag_counts.columns = ["hashtag", "count"] # Sort by count of hashtag in descending order hashtag_counts = hashtag_counts.sort_values( by=["count", "hashtag"], ascending=[False, False] ) # Get top 3 trending hashtags top_3_hashtags = hashtag_counts.head(3) return top_3_hashtags
3,104
Find Longest Self-Contained Substring
Hard
<p>Given a string <code>s</code>, your task is to find the length of the <strong>longest self-contained</strong> <span data-keyword="substring-nonempty">substring</span> of <code>s</code>.</p> <p>A substring <code>t</code> of a string <code>s</code> is called <strong>self-contained </strong>if <code>t != s</code> and for every character in <code>t</code>, it doesn&#39;t exist in the <em>rest</em> of <code>s</code>.</p> <p>Return the length of the <em>longest<strong> </strong>self-contained </em>substring of <code>s</code> if it exists, otherwise, return -1.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;abba&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">2</span></p> <p><strong>Explanation:</strong><br /> Let&#39;s check the substring <code>&quot;bb&quot;</code>. You can see that no other <code>&quot;b&quot;</code> is outside of this substring. Hence the answer is 2.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;abab&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">-1</span></p> <p><strong>Explanation:</strong><br /> Every substring we choose does not satisfy the described property (there is some character which is inside and outside of that substring). So the answer would be -1.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;abacd&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">4</span></p> <p><strong>Explanation:</strong><br /> Let&#39;s check the substring <code>&quot;<span class="example-io">abac</span>&quot;</code>. There is only one character outside of this substring and that is <code>&quot;d&quot;</code>. There is no <code>&quot;d&quot;</code> inside the chosen substring, so it satisfies the condition and the answer is 4.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= s.length &lt;= 5 * 10<sup>4</sup></code></li> <li><code>s</code> consists only of lowercase English letters.</li> </ul>
Hash Table; String; Binary Search; Prefix Sum
C++
class Solution { public: int maxSubstringLength(string s) { vector<int> first(26, -1); vector<int> last(26); int n = s.length(); for (int i = 0; i < n; ++i) { int j = s[i] - 'a'; if (first[j] == -1) { first[j] = i; } last[j] = i; } int ans = -1; for (int k = 0; k < 26; ++k) { int i = first[k]; if (i == -1) { continue; } int mx = last[k]; for (int j = i; j < n; ++j) { int a = first[s[j] - 'a']; int b = last[s[j] - 'a']; if (a < i) { break; } mx = max(mx, b); if (mx == j && j - i + 1 < n) { ans = max(ans, j - i + 1); } } } return ans; } };
3,104
Find Longest Self-Contained Substring
Hard
<p>Given a string <code>s</code>, your task is to find the length of the <strong>longest self-contained</strong> <span data-keyword="substring-nonempty">substring</span> of <code>s</code>.</p> <p>A substring <code>t</code> of a string <code>s</code> is called <strong>self-contained </strong>if <code>t != s</code> and for every character in <code>t</code>, it doesn&#39;t exist in the <em>rest</em> of <code>s</code>.</p> <p>Return the length of the <em>longest<strong> </strong>self-contained </em>substring of <code>s</code> if it exists, otherwise, return -1.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;abba&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">2</span></p> <p><strong>Explanation:</strong><br /> Let&#39;s check the substring <code>&quot;bb&quot;</code>. You can see that no other <code>&quot;b&quot;</code> is outside of this substring. Hence the answer is 2.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;abab&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">-1</span></p> <p><strong>Explanation:</strong><br /> Every substring we choose does not satisfy the described property (there is some character which is inside and outside of that substring). So the answer would be -1.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;abacd&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">4</span></p> <p><strong>Explanation:</strong><br /> Let&#39;s check the substring <code>&quot;<span class="example-io">abac</span>&quot;</code>. There is only one character outside of this substring and that is <code>&quot;d&quot;</code>. There is no <code>&quot;d&quot;</code> inside the chosen substring, so it satisfies the condition and the answer is 4.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= s.length &lt;= 5 * 10<sup>4</sup></code></li> <li><code>s</code> consists only of lowercase English letters.</li> </ul>
Hash Table; String; Binary Search; Prefix Sum
Go
func maxSubstringLength(s string) int { first := [26]int{} last := [26]int{} for i := range first { first[i] = -1 } n := len(s) for i, c := range s { j := int(c - 'a') if first[j] == -1 { first[j] = i } last[j] = i } ans := -1 for k := 0; k < 26; k++ { i := first[k] if i == -1 { continue } mx := last[k] for j := i; j < n; j++ { a, b := first[s[j]-'a'], last[s[j]-'a'] if a < i { break } mx = max(mx, b) if mx == j && j-i+1 < n { ans = max(ans, j-i+1) } } } return ans }
3,104
Find Longest Self-Contained Substring
Hard
<p>Given a string <code>s</code>, your task is to find the length of the <strong>longest self-contained</strong> <span data-keyword="substring-nonempty">substring</span> of <code>s</code>.</p> <p>A substring <code>t</code> of a string <code>s</code> is called <strong>self-contained </strong>if <code>t != s</code> and for every character in <code>t</code>, it doesn&#39;t exist in the <em>rest</em> of <code>s</code>.</p> <p>Return the length of the <em>longest<strong> </strong>self-contained </em>substring of <code>s</code> if it exists, otherwise, return -1.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;abba&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">2</span></p> <p><strong>Explanation:</strong><br /> Let&#39;s check the substring <code>&quot;bb&quot;</code>. You can see that no other <code>&quot;b&quot;</code> is outside of this substring. Hence the answer is 2.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;abab&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">-1</span></p> <p><strong>Explanation:</strong><br /> Every substring we choose does not satisfy the described property (there is some character which is inside and outside of that substring). So the answer would be -1.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;abacd&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">4</span></p> <p><strong>Explanation:</strong><br /> Let&#39;s check the substring <code>&quot;<span class="example-io">abac</span>&quot;</code>. There is only one character outside of this substring and that is <code>&quot;d&quot;</code>. There is no <code>&quot;d&quot;</code> inside the chosen substring, so it satisfies the condition and the answer is 4.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= s.length &lt;= 5 * 10<sup>4</sup></code></li> <li><code>s</code> consists only of lowercase English letters.</li> </ul>
Hash Table; String; Binary Search; Prefix Sum
Java
class Solution { public int maxSubstringLength(String s) { int[] first = new int[26]; int[] last = new int[26]; Arrays.fill(first, -1); int n = s.length(); for (int i = 0; i < n; ++i) { int j = s.charAt(i) - 'a'; if (first[j] == -1) { first[j] = i; } last[j] = i; } int ans = -1; for (int k = 0; k < 26; ++k) { int i = first[k]; if (i == -1) { continue; } int mx = last[k]; for (int j = i; j < n; ++j) { int a = first[s.charAt(j) - 'a']; int b = last[s.charAt(j) - 'a']; if (a < i) { break; } mx = Math.max(mx, b); if (mx == j && j - i + 1 < n) { ans = Math.max(ans, j - i + 1); } } } return ans; } }
3,104
Find Longest Self-Contained Substring
Hard
<p>Given a string <code>s</code>, your task is to find the length of the <strong>longest self-contained</strong> <span data-keyword="substring-nonempty">substring</span> of <code>s</code>.</p> <p>A substring <code>t</code> of a string <code>s</code> is called <strong>self-contained </strong>if <code>t != s</code> and for every character in <code>t</code>, it doesn&#39;t exist in the <em>rest</em> of <code>s</code>.</p> <p>Return the length of the <em>longest<strong> </strong>self-contained </em>substring of <code>s</code> if it exists, otherwise, return -1.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;abba&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">2</span></p> <p><strong>Explanation:</strong><br /> Let&#39;s check the substring <code>&quot;bb&quot;</code>. You can see that no other <code>&quot;b&quot;</code> is outside of this substring. Hence the answer is 2.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;abab&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">-1</span></p> <p><strong>Explanation:</strong><br /> Every substring we choose does not satisfy the described property (there is some character which is inside and outside of that substring). So the answer would be -1.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;abacd&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">4</span></p> <p><strong>Explanation:</strong><br /> Let&#39;s check the substring <code>&quot;<span class="example-io">abac</span>&quot;</code>. There is only one character outside of this substring and that is <code>&quot;d&quot;</code>. There is no <code>&quot;d&quot;</code> inside the chosen substring, so it satisfies the condition and the answer is 4.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= s.length &lt;= 5 * 10<sup>4</sup></code></li> <li><code>s</code> consists only of lowercase English letters.</li> </ul>
Hash Table; String; Binary Search; Prefix Sum
Python
class Solution: def maxSubstringLength(self, s: str) -> int: first, last = {}, {} for i, c in enumerate(s): if c not in first: first[c] = i last[c] = i ans, n = -1, len(s) for c, i in first.items(): mx = last[c] for j in range(i, n): a, b = first[s[j]], last[s[j]] if a < i: break mx = max(mx, b) if mx == j and j - i + 1 < n: ans = max(ans, j - i + 1) return ans
3,104
Find Longest Self-Contained Substring
Hard
<p>Given a string <code>s</code>, your task is to find the length of the <strong>longest self-contained</strong> <span data-keyword="substring-nonempty">substring</span> of <code>s</code>.</p> <p>A substring <code>t</code> of a string <code>s</code> is called <strong>self-contained </strong>if <code>t != s</code> and for every character in <code>t</code>, it doesn&#39;t exist in the <em>rest</em> of <code>s</code>.</p> <p>Return the length of the <em>longest<strong> </strong>self-contained </em>substring of <code>s</code> if it exists, otherwise, return -1.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;abba&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">2</span></p> <p><strong>Explanation:</strong><br /> Let&#39;s check the substring <code>&quot;bb&quot;</code>. You can see that no other <code>&quot;b&quot;</code> is outside of this substring. Hence the answer is 2.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;abab&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">-1</span></p> <p><strong>Explanation:</strong><br /> Every substring we choose does not satisfy the described property (there is some character which is inside and outside of that substring). So the answer would be -1.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;abacd&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">4</span></p> <p><strong>Explanation:</strong><br /> Let&#39;s check the substring <code>&quot;<span class="example-io">abac</span>&quot;</code>. There is only one character outside of this substring and that is <code>&quot;d&quot;</code>. There is no <code>&quot;d&quot;</code> inside the chosen substring, so it satisfies the condition and the answer is 4.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= s.length &lt;= 5 * 10<sup>4</sup></code></li> <li><code>s</code> consists only of lowercase English letters.</li> </ul>
Hash Table; String; Binary Search; Prefix Sum
TypeScript
function maxSubstringLength(s: string): number { const first: number[] = Array(26).fill(-1); const last: number[] = Array(26).fill(0); const n = s.length; for (let i = 0; i < n; ++i) { const j = s.charCodeAt(i) - 97; if (first[j] === -1) { first[j] = i; } last[j] = i; } let ans = -1; for (let k = 0; k < 26; ++k) { const i = first[k]; if (i === -1) { continue; } let mx = last[k]; for (let j = i; j < n; ++j) { const a = first[s.charCodeAt(j) - 97]; if (a < i) { break; } const b = last[s.charCodeAt(j) - 97]; mx = Math.max(mx, b); if (mx === j && j - i + 1 < n) { ans = Math.max(ans, j - i + 1); } } } return ans; }
3,105
Longest Strictly Increasing or Strictly Decreasing Subarray
Easy
<p>You are given an array of integers <code>nums</code>. Return <em>the length of the <strong>longest</strong> <span data-keyword="subarray-nonempty">subarray</span> of </em><code>nums</code><em> which is either <strong><span data-keyword="strictly-increasing-array">strictly increasing</span></strong> or <strong><span data-keyword="strictly-decreasing-array">strictly decreasing</span></strong></em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1,4,3,3,2]</span></p> <p><strong>Output:</strong> <span class="example-io">2</span></p> <p><strong>Explanation:</strong></p> <p>The strictly increasing subarrays of <code>nums</code> are <code>[1]</code>, <code>[2]</code>, <code>[3]</code>, <code>[3]</code>, <code>[4]</code>, and <code>[1,4]</code>.</p> <p>The strictly decreasing subarrays of <code>nums</code> are <code>[1]</code>, <code>[2]</code>, <code>[3]</code>, <code>[3]</code>, <code>[4]</code>, <code>[3,2]</code>, and <code>[4,3]</code>.</p> <p>Hence, we return <code>2</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [3,3,3,3]</span></p> <p><strong>Output:</strong> <span class="example-io">1</span></p> <p><strong>Explanation:</strong></p> <p>The strictly increasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[3]</code>, <code>[3]</code>, and <code>[3]</code>.</p> <p>The strictly decreasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[3]</code>, <code>[3]</code>, and <code>[3]</code>.</p> <p>Hence, we return <code>1</code>.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [3,2,1]</span></p> <p><strong>Output:</strong> <span class="example-io">3</span></p> <p><strong>Explanation:</strong></p> <p>The strictly increasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[2]</code>, and <code>[1]</code>.</p> <p>The strictly decreasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[2]</code>, <code>[1]</code>, <code>[3,2]</code>, <code>[2,1]</code>, and <code>[3,2,1]</code>.</p> <p>Hence, we return <code>3</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 50</code></li> <li><code>1 &lt;= nums[i] &lt;= 50</code></li> </ul>
Array
C++
class Solution { public: int longestMonotonicSubarray(vector<int>& nums) { int ans = 1; for (int i = 1, t = 1; i < nums.size(); ++i) { if (nums[i - 1] < nums[i]) { ans = max(ans, ++t); } else { t = 1; } } for (int i = 1, t = 1; i < nums.size(); ++i) { if (nums[i - 1] > nums[i]) { ans = max(ans, ++t); } else { t = 1; } } return ans; } };
3,105
Longest Strictly Increasing or Strictly Decreasing Subarray
Easy
<p>You are given an array of integers <code>nums</code>. Return <em>the length of the <strong>longest</strong> <span data-keyword="subarray-nonempty">subarray</span> of </em><code>nums</code><em> which is either <strong><span data-keyword="strictly-increasing-array">strictly increasing</span></strong> or <strong><span data-keyword="strictly-decreasing-array">strictly decreasing</span></strong></em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1,4,3,3,2]</span></p> <p><strong>Output:</strong> <span class="example-io">2</span></p> <p><strong>Explanation:</strong></p> <p>The strictly increasing subarrays of <code>nums</code> are <code>[1]</code>, <code>[2]</code>, <code>[3]</code>, <code>[3]</code>, <code>[4]</code>, and <code>[1,4]</code>.</p> <p>The strictly decreasing subarrays of <code>nums</code> are <code>[1]</code>, <code>[2]</code>, <code>[3]</code>, <code>[3]</code>, <code>[4]</code>, <code>[3,2]</code>, and <code>[4,3]</code>.</p> <p>Hence, we return <code>2</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [3,3,3,3]</span></p> <p><strong>Output:</strong> <span class="example-io">1</span></p> <p><strong>Explanation:</strong></p> <p>The strictly increasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[3]</code>, <code>[3]</code>, and <code>[3]</code>.</p> <p>The strictly decreasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[3]</code>, <code>[3]</code>, and <code>[3]</code>.</p> <p>Hence, we return <code>1</code>.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [3,2,1]</span></p> <p><strong>Output:</strong> <span class="example-io">3</span></p> <p><strong>Explanation:</strong></p> <p>The strictly increasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[2]</code>, and <code>[1]</code>.</p> <p>The strictly decreasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[2]</code>, <code>[1]</code>, <code>[3,2]</code>, <code>[2,1]</code>, and <code>[3,2,1]</code>.</p> <p>Hence, we return <code>3</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 50</code></li> <li><code>1 &lt;= nums[i] &lt;= 50</code></li> </ul>
Array
Go
func longestMonotonicSubarray(nums []int) int { ans := 1 t := 1 for i, x := range nums[1:] { if nums[i] < x { t++ ans = max(ans, t) } else { t = 1 } } t = 1 for i, x := range nums[1:] { if nums[i] > x { t++ ans = max(ans, t) } else { t = 1 } } return ans }
3,105
Longest Strictly Increasing or Strictly Decreasing Subarray
Easy
<p>You are given an array of integers <code>nums</code>. Return <em>the length of the <strong>longest</strong> <span data-keyword="subarray-nonempty">subarray</span> of </em><code>nums</code><em> which is either <strong><span data-keyword="strictly-increasing-array">strictly increasing</span></strong> or <strong><span data-keyword="strictly-decreasing-array">strictly decreasing</span></strong></em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1,4,3,3,2]</span></p> <p><strong>Output:</strong> <span class="example-io">2</span></p> <p><strong>Explanation:</strong></p> <p>The strictly increasing subarrays of <code>nums</code> are <code>[1]</code>, <code>[2]</code>, <code>[3]</code>, <code>[3]</code>, <code>[4]</code>, and <code>[1,4]</code>.</p> <p>The strictly decreasing subarrays of <code>nums</code> are <code>[1]</code>, <code>[2]</code>, <code>[3]</code>, <code>[3]</code>, <code>[4]</code>, <code>[3,2]</code>, and <code>[4,3]</code>.</p> <p>Hence, we return <code>2</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [3,3,3,3]</span></p> <p><strong>Output:</strong> <span class="example-io">1</span></p> <p><strong>Explanation:</strong></p> <p>The strictly increasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[3]</code>, <code>[3]</code>, and <code>[3]</code>.</p> <p>The strictly decreasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[3]</code>, <code>[3]</code>, and <code>[3]</code>.</p> <p>Hence, we return <code>1</code>.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [3,2,1]</span></p> <p><strong>Output:</strong> <span class="example-io">3</span></p> <p><strong>Explanation:</strong></p> <p>The strictly increasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[2]</code>, and <code>[1]</code>.</p> <p>The strictly decreasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[2]</code>, <code>[1]</code>, <code>[3,2]</code>, <code>[2,1]</code>, and <code>[3,2,1]</code>.</p> <p>Hence, we return <code>3</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 50</code></li> <li><code>1 &lt;= nums[i] &lt;= 50</code></li> </ul>
Array
Java
class Solution { public int longestMonotonicSubarray(int[] nums) { int ans = 1; for (int i = 1, t = 1; i < nums.length; ++i) { if (nums[i - 1] < nums[i]) { ans = Math.max(ans, ++t); } else { t = 1; } } for (int i = 1, t = 1; i < nums.length; ++i) { if (nums[i - 1] > nums[i]) { ans = Math.max(ans, ++t); } else { t = 1; } } return ans; } }
3,105
Longest Strictly Increasing or Strictly Decreasing Subarray
Easy
<p>You are given an array of integers <code>nums</code>. Return <em>the length of the <strong>longest</strong> <span data-keyword="subarray-nonempty">subarray</span> of </em><code>nums</code><em> which is either <strong><span data-keyword="strictly-increasing-array">strictly increasing</span></strong> or <strong><span data-keyword="strictly-decreasing-array">strictly decreasing</span></strong></em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1,4,3,3,2]</span></p> <p><strong>Output:</strong> <span class="example-io">2</span></p> <p><strong>Explanation:</strong></p> <p>The strictly increasing subarrays of <code>nums</code> are <code>[1]</code>, <code>[2]</code>, <code>[3]</code>, <code>[3]</code>, <code>[4]</code>, and <code>[1,4]</code>.</p> <p>The strictly decreasing subarrays of <code>nums</code> are <code>[1]</code>, <code>[2]</code>, <code>[3]</code>, <code>[3]</code>, <code>[4]</code>, <code>[3,2]</code>, and <code>[4,3]</code>.</p> <p>Hence, we return <code>2</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [3,3,3,3]</span></p> <p><strong>Output:</strong> <span class="example-io">1</span></p> <p><strong>Explanation:</strong></p> <p>The strictly increasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[3]</code>, <code>[3]</code>, and <code>[3]</code>.</p> <p>The strictly decreasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[3]</code>, <code>[3]</code>, and <code>[3]</code>.</p> <p>Hence, we return <code>1</code>.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [3,2,1]</span></p> <p><strong>Output:</strong> <span class="example-io">3</span></p> <p><strong>Explanation:</strong></p> <p>The strictly increasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[2]</code>, and <code>[1]</code>.</p> <p>The strictly decreasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[2]</code>, <code>[1]</code>, <code>[3,2]</code>, <code>[2,1]</code>, and <code>[3,2,1]</code>.</p> <p>Hence, we return <code>3</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 50</code></li> <li><code>1 &lt;= nums[i] &lt;= 50</code></li> </ul>
Array
JavaScript
function longestMonotonicSubarray(nums) { const n = nums.length; let ans = 1; for (let i = 1, t1 = 1, t2 = 1; i < n; i++) { t1 = nums[i] > nums[i - 1] ? t1 + 1 : 1; t2 = nums[i] < nums[i - 1] ? t2 + 1 : 1; ans = Math.max(ans, t1, t2); } return ans; }
3,105
Longest Strictly Increasing or Strictly Decreasing Subarray
Easy
<p>You are given an array of integers <code>nums</code>. Return <em>the length of the <strong>longest</strong> <span data-keyword="subarray-nonempty">subarray</span> of </em><code>nums</code><em> which is either <strong><span data-keyword="strictly-increasing-array">strictly increasing</span></strong> or <strong><span data-keyword="strictly-decreasing-array">strictly decreasing</span></strong></em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1,4,3,3,2]</span></p> <p><strong>Output:</strong> <span class="example-io">2</span></p> <p><strong>Explanation:</strong></p> <p>The strictly increasing subarrays of <code>nums</code> are <code>[1]</code>, <code>[2]</code>, <code>[3]</code>, <code>[3]</code>, <code>[4]</code>, and <code>[1,4]</code>.</p> <p>The strictly decreasing subarrays of <code>nums</code> are <code>[1]</code>, <code>[2]</code>, <code>[3]</code>, <code>[3]</code>, <code>[4]</code>, <code>[3,2]</code>, and <code>[4,3]</code>.</p> <p>Hence, we return <code>2</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [3,3,3,3]</span></p> <p><strong>Output:</strong> <span class="example-io">1</span></p> <p><strong>Explanation:</strong></p> <p>The strictly increasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[3]</code>, <code>[3]</code>, and <code>[3]</code>.</p> <p>The strictly decreasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[3]</code>, <code>[3]</code>, and <code>[3]</code>.</p> <p>Hence, we return <code>1</code>.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [3,2,1]</span></p> <p><strong>Output:</strong> <span class="example-io">3</span></p> <p><strong>Explanation:</strong></p> <p>The strictly increasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[2]</code>, and <code>[1]</code>.</p> <p>The strictly decreasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[2]</code>, <code>[1]</code>, <code>[3,2]</code>, <code>[2,1]</code>, and <code>[3,2,1]</code>.</p> <p>Hence, we return <code>3</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 50</code></li> <li><code>1 &lt;= nums[i] &lt;= 50</code></li> </ul>
Array
Python
class Solution: def longestMonotonicSubarray(self, nums: List[int]) -> int: ans = t = 1 for i, x in enumerate(nums[1:]): if nums[i] < x: t += 1 ans = max(ans, t) else: t = 1 t = 1 for i, x in enumerate(nums[1:]): if nums[i] > x: t += 1 ans = max(ans, t) else: t = 1 return ans
3,105
Longest Strictly Increasing or Strictly Decreasing Subarray
Easy
<p>You are given an array of integers <code>nums</code>. Return <em>the length of the <strong>longest</strong> <span data-keyword="subarray-nonempty">subarray</span> of </em><code>nums</code><em> which is either <strong><span data-keyword="strictly-increasing-array">strictly increasing</span></strong> or <strong><span data-keyword="strictly-decreasing-array">strictly decreasing</span></strong></em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1,4,3,3,2]</span></p> <p><strong>Output:</strong> <span class="example-io">2</span></p> <p><strong>Explanation:</strong></p> <p>The strictly increasing subarrays of <code>nums</code> are <code>[1]</code>, <code>[2]</code>, <code>[3]</code>, <code>[3]</code>, <code>[4]</code>, and <code>[1,4]</code>.</p> <p>The strictly decreasing subarrays of <code>nums</code> are <code>[1]</code>, <code>[2]</code>, <code>[3]</code>, <code>[3]</code>, <code>[4]</code>, <code>[3,2]</code>, and <code>[4,3]</code>.</p> <p>Hence, we return <code>2</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [3,3,3,3]</span></p> <p><strong>Output:</strong> <span class="example-io">1</span></p> <p><strong>Explanation:</strong></p> <p>The strictly increasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[3]</code>, <code>[3]</code>, and <code>[3]</code>.</p> <p>The strictly decreasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[3]</code>, <code>[3]</code>, and <code>[3]</code>.</p> <p>Hence, we return <code>1</code>.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [3,2,1]</span></p> <p><strong>Output:</strong> <span class="example-io">3</span></p> <p><strong>Explanation:</strong></p> <p>The strictly increasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[2]</code>, and <code>[1]</code>.</p> <p>The strictly decreasing subarrays of <code>nums</code> are <code>[3]</code>, <code>[2]</code>, <code>[1]</code>, <code>[3,2]</code>, <code>[2,1]</code>, and <code>[3,2,1]</code>.</p> <p>Hence, we return <code>3</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 50</code></li> <li><code>1 &lt;= nums[i] &lt;= 50</code></li> </ul>
Array
TypeScript
function longestMonotonicSubarray(nums: number[]): number { const n = nums.length; let ans = 1; for (let i = 1, t1 = 1, t2 = 1; i < n; i++) { t1 = nums[i] > nums[i - 1] ? t1 + 1 : 1; t2 = nums[i] < nums[i - 1] ? t2 + 1 : 1; ans = Math.max(ans, t1, t2); } return ans; }
3,106
Lexicographically Smallest String After Operations With Constraint
Medium
<p>You are given a string <code>s</code> and an integer <code>k</code>.</p> <p>Define a function <code>distance(s<sub>1</sub>, s<sub>2</sub>)</code> between two strings <code>s<sub>1</sub></code> and <code>s<sub>2</sub></code> of the same length <code>n</code> as:</p> <ul> <li>The<strong> sum</strong> of the <strong>minimum distance</strong> between <code>s<sub>1</sub>[i]</code> and <code>s<sub>2</sub>[i]</code> when the characters from <code>&#39;a&#39;</code> to <code>&#39;z&#39;</code> are placed in a <strong>cyclic</strong> order, for all <code>i</code> in the range <code>[0, n - 1]</code>.</li> </ul> <p>For example, <code>distance(&quot;ab&quot;, &quot;cd&quot;) == 4</code>, and <code>distance(&quot;a&quot;, &quot;z&quot;) == 1</code>.</p> <p>You can <strong>change</strong> any letter of <code>s</code> to <strong>any</strong> other lowercase English letter, <strong>any</strong> number of times.</p> <p>Return a string denoting the <strong><span data-keyword="lexicographically-smaller-string">lexicographically smallest</span></strong> string <code>t</code> you can get after some changes, such that <code>distance(s, t) &lt;= k</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;zbbz&quot;, k = 3</span></p> <p><strong>Output:</strong> <span class="example-io">&quot;aaaz&quot;</span></p> <p><strong>Explanation:</strong></p> <p>Change <code>s</code> to <code>&quot;aaaz&quot;</code>. The distance between <code>&quot;zbbz&quot;</code> and <code>&quot;aaaz&quot;</code> is equal to <code>k = 3</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;xaxcd&quot;, k = 4</span></p> <p><strong>Output:</strong> <span class="example-io">&quot;aawcd&quot;</span></p> <p><strong>Explanation:</strong></p> <p>The distance between &quot;xaxcd&quot; and &quot;aawcd&quot; is equal to k = 4.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;lol&quot;, k = 0</span></p> <p><strong>Output:</strong> <span class="example-io">&quot;lol&quot;</span></p> <p><strong>Explanation:</strong></p> <p>It&#39;s impossible to change any character as <code>k = 0</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= s.length &lt;= 100</code></li> <li><code>0 &lt;= k &lt;= 2000</code></li> <li><code>s</code> consists only of lowercase English letters.</li> </ul>
Greedy; String
C++
class Solution { public: string getSmallestString(string s, int k) { for (int i = 0; i < s.size(); ++i) { char c1 = s[i]; for (char c2 = 'a'; c2 < c1; ++c2) { int d = min(c1 - c2, 26 - c1 + c2); if (d <= k) { s[i] = c2; k -= d; break; } } } return s; } };
3,106
Lexicographically Smallest String After Operations With Constraint
Medium
<p>You are given a string <code>s</code> and an integer <code>k</code>.</p> <p>Define a function <code>distance(s<sub>1</sub>, s<sub>2</sub>)</code> between two strings <code>s<sub>1</sub></code> and <code>s<sub>2</sub></code> of the same length <code>n</code> as:</p> <ul> <li>The<strong> sum</strong> of the <strong>minimum distance</strong> between <code>s<sub>1</sub>[i]</code> and <code>s<sub>2</sub>[i]</code> when the characters from <code>&#39;a&#39;</code> to <code>&#39;z&#39;</code> are placed in a <strong>cyclic</strong> order, for all <code>i</code> in the range <code>[0, n - 1]</code>.</li> </ul> <p>For example, <code>distance(&quot;ab&quot;, &quot;cd&quot;) == 4</code>, and <code>distance(&quot;a&quot;, &quot;z&quot;) == 1</code>.</p> <p>You can <strong>change</strong> any letter of <code>s</code> to <strong>any</strong> other lowercase English letter, <strong>any</strong> number of times.</p> <p>Return a string denoting the <strong><span data-keyword="lexicographically-smaller-string">lexicographically smallest</span></strong> string <code>t</code> you can get after some changes, such that <code>distance(s, t) &lt;= k</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;zbbz&quot;, k = 3</span></p> <p><strong>Output:</strong> <span class="example-io">&quot;aaaz&quot;</span></p> <p><strong>Explanation:</strong></p> <p>Change <code>s</code> to <code>&quot;aaaz&quot;</code>. The distance between <code>&quot;zbbz&quot;</code> and <code>&quot;aaaz&quot;</code> is equal to <code>k = 3</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;xaxcd&quot;, k = 4</span></p> <p><strong>Output:</strong> <span class="example-io">&quot;aawcd&quot;</span></p> <p><strong>Explanation:</strong></p> <p>The distance between &quot;xaxcd&quot; and &quot;aawcd&quot; is equal to k = 4.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;lol&quot;, k = 0</span></p> <p><strong>Output:</strong> <span class="example-io">&quot;lol&quot;</span></p> <p><strong>Explanation:</strong></p> <p>It&#39;s impossible to change any character as <code>k = 0</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= s.length &lt;= 100</code></li> <li><code>0 &lt;= k &lt;= 2000</code></li> <li><code>s</code> consists only of lowercase English letters.</li> </ul>
Greedy; String
Go
func getSmallestString(s string, k int) string { cs := []byte(s) for i, c1 := range cs { for c2 := byte('a'); c2 < c1; c2++ { d := int(min(c1-c2, 26-c1+c2)) if d <= k { cs[i] = c2 k -= d break } } } return string(cs) }
3,106
Lexicographically Smallest String After Operations With Constraint
Medium
<p>You are given a string <code>s</code> and an integer <code>k</code>.</p> <p>Define a function <code>distance(s<sub>1</sub>, s<sub>2</sub>)</code> between two strings <code>s<sub>1</sub></code> and <code>s<sub>2</sub></code> of the same length <code>n</code> as:</p> <ul> <li>The<strong> sum</strong> of the <strong>minimum distance</strong> between <code>s<sub>1</sub>[i]</code> and <code>s<sub>2</sub>[i]</code> when the characters from <code>&#39;a&#39;</code> to <code>&#39;z&#39;</code> are placed in a <strong>cyclic</strong> order, for all <code>i</code> in the range <code>[0, n - 1]</code>.</li> </ul> <p>For example, <code>distance(&quot;ab&quot;, &quot;cd&quot;) == 4</code>, and <code>distance(&quot;a&quot;, &quot;z&quot;) == 1</code>.</p> <p>You can <strong>change</strong> any letter of <code>s</code> to <strong>any</strong> other lowercase English letter, <strong>any</strong> number of times.</p> <p>Return a string denoting the <strong><span data-keyword="lexicographically-smaller-string">lexicographically smallest</span></strong> string <code>t</code> you can get after some changes, such that <code>distance(s, t) &lt;= k</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;zbbz&quot;, k = 3</span></p> <p><strong>Output:</strong> <span class="example-io">&quot;aaaz&quot;</span></p> <p><strong>Explanation:</strong></p> <p>Change <code>s</code> to <code>&quot;aaaz&quot;</code>. The distance between <code>&quot;zbbz&quot;</code> and <code>&quot;aaaz&quot;</code> is equal to <code>k = 3</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;xaxcd&quot;, k = 4</span></p> <p><strong>Output:</strong> <span class="example-io">&quot;aawcd&quot;</span></p> <p><strong>Explanation:</strong></p> <p>The distance between &quot;xaxcd&quot; and &quot;aawcd&quot; is equal to k = 4.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;lol&quot;, k = 0</span></p> <p><strong>Output:</strong> <span class="example-io">&quot;lol&quot;</span></p> <p><strong>Explanation:</strong></p> <p>It&#39;s impossible to change any character as <code>k = 0</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= s.length &lt;= 100</code></li> <li><code>0 &lt;= k &lt;= 2000</code></li> <li><code>s</code> consists only of lowercase English letters.</li> </ul>
Greedy; String
Java
class Solution { public String getSmallestString(String s, int k) { char[] cs = s.toCharArray(); for (int i = 0; i < cs.length; ++i) { char c1 = cs[i]; for (char c2 = 'a'; c2 < c1; ++c2) { int d = Math.min(c1 - c2, 26 - c1 + c2); if (d <= k) { cs[i] = c2; k -= d; break; } } } return new String(cs); } }
3,106
Lexicographically Smallest String After Operations With Constraint
Medium
<p>You are given a string <code>s</code> and an integer <code>k</code>.</p> <p>Define a function <code>distance(s<sub>1</sub>, s<sub>2</sub>)</code> between two strings <code>s<sub>1</sub></code> and <code>s<sub>2</sub></code> of the same length <code>n</code> as:</p> <ul> <li>The<strong> sum</strong> of the <strong>minimum distance</strong> between <code>s<sub>1</sub>[i]</code> and <code>s<sub>2</sub>[i]</code> when the characters from <code>&#39;a&#39;</code> to <code>&#39;z&#39;</code> are placed in a <strong>cyclic</strong> order, for all <code>i</code> in the range <code>[0, n - 1]</code>.</li> </ul> <p>For example, <code>distance(&quot;ab&quot;, &quot;cd&quot;) == 4</code>, and <code>distance(&quot;a&quot;, &quot;z&quot;) == 1</code>.</p> <p>You can <strong>change</strong> any letter of <code>s</code> to <strong>any</strong> other lowercase English letter, <strong>any</strong> number of times.</p> <p>Return a string denoting the <strong><span data-keyword="lexicographically-smaller-string">lexicographically smallest</span></strong> string <code>t</code> you can get after some changes, such that <code>distance(s, t) &lt;= k</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;zbbz&quot;, k = 3</span></p> <p><strong>Output:</strong> <span class="example-io">&quot;aaaz&quot;</span></p> <p><strong>Explanation:</strong></p> <p>Change <code>s</code> to <code>&quot;aaaz&quot;</code>. The distance between <code>&quot;zbbz&quot;</code> and <code>&quot;aaaz&quot;</code> is equal to <code>k = 3</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;xaxcd&quot;, k = 4</span></p> <p><strong>Output:</strong> <span class="example-io">&quot;aawcd&quot;</span></p> <p><strong>Explanation:</strong></p> <p>The distance between &quot;xaxcd&quot; and &quot;aawcd&quot; is equal to k = 4.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;lol&quot;, k = 0</span></p> <p><strong>Output:</strong> <span class="example-io">&quot;lol&quot;</span></p> <p><strong>Explanation:</strong></p> <p>It&#39;s impossible to change any character as <code>k = 0</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= s.length &lt;= 100</code></li> <li><code>0 &lt;= k &lt;= 2000</code></li> <li><code>s</code> consists only of lowercase English letters.</li> </ul>
Greedy; String
Python
class Solution: def getSmallestString(self, s: str, k: int) -> str: cs = list(s) for i, c1 in enumerate(s): for c2 in ascii_lowercase: if c2 >= c1: break d = min(ord(c1) - ord(c2), 26 - ord(c1) + ord(c2)) if d <= k: cs[i] = c2 k -= d break return "".join(cs)
3,106
Lexicographically Smallest String After Operations With Constraint
Medium
<p>You are given a string <code>s</code> and an integer <code>k</code>.</p> <p>Define a function <code>distance(s<sub>1</sub>, s<sub>2</sub>)</code> between two strings <code>s<sub>1</sub></code> and <code>s<sub>2</sub></code> of the same length <code>n</code> as:</p> <ul> <li>The<strong> sum</strong> of the <strong>minimum distance</strong> between <code>s<sub>1</sub>[i]</code> and <code>s<sub>2</sub>[i]</code> when the characters from <code>&#39;a&#39;</code> to <code>&#39;z&#39;</code> are placed in a <strong>cyclic</strong> order, for all <code>i</code> in the range <code>[0, n - 1]</code>.</li> </ul> <p>For example, <code>distance(&quot;ab&quot;, &quot;cd&quot;) == 4</code>, and <code>distance(&quot;a&quot;, &quot;z&quot;) == 1</code>.</p> <p>You can <strong>change</strong> any letter of <code>s</code> to <strong>any</strong> other lowercase English letter, <strong>any</strong> number of times.</p> <p>Return a string denoting the <strong><span data-keyword="lexicographically-smaller-string">lexicographically smallest</span></strong> string <code>t</code> you can get after some changes, such that <code>distance(s, t) &lt;= k</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;zbbz&quot;, k = 3</span></p> <p><strong>Output:</strong> <span class="example-io">&quot;aaaz&quot;</span></p> <p><strong>Explanation:</strong></p> <p>Change <code>s</code> to <code>&quot;aaaz&quot;</code>. The distance between <code>&quot;zbbz&quot;</code> and <code>&quot;aaaz&quot;</code> is equal to <code>k = 3</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;xaxcd&quot;, k = 4</span></p> <p><strong>Output:</strong> <span class="example-io">&quot;aawcd&quot;</span></p> <p><strong>Explanation:</strong></p> <p>The distance between &quot;xaxcd&quot; and &quot;aawcd&quot; is equal to k = 4.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;lol&quot;, k = 0</span></p> <p><strong>Output:</strong> <span class="example-io">&quot;lol&quot;</span></p> <p><strong>Explanation:</strong></p> <p>It&#39;s impossible to change any character as <code>k = 0</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= s.length &lt;= 100</code></li> <li><code>0 &lt;= k &lt;= 2000</code></li> <li><code>s</code> consists only of lowercase English letters.</li> </ul>
Greedy; String
TypeScript
function getSmallestString(s: string, k: number): string { const cs: string[] = s.split(''); for (let i = 0; i < s.length; ++i) { for (let j = 97; j < s[i].charCodeAt(0); ++j) { const d = Math.min(s[i].charCodeAt(0) - j, 26 - s[i].charCodeAt(0) + j); if (d <= k) { cs[i] = String.fromCharCode(j); k -= d; break; } } } return cs.join(''); }
3,107
Minimum Operations to Make Median of Array Equal to K
Medium
<p>You are given an integer array <code>nums</code> and a <strong>non-negative</strong> integer <code>k</code>. In one operation, you can increase or decrease any element by 1.</p> <p>Return the <strong>minimum</strong> number of operations needed to make the <strong>median</strong> of <code>nums</code> <em>equal</em> to <code>k</code>.</p> <p>The median of an array is defined as the middle element of the array when it is sorted in non-decreasing order. If there are two choices for a median, the larger of the two values is taken.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [2,5,6,8,5], k = 4</span></p> <p><strong>Output:</strong> <span class="example-io">2</span></p> <p><strong>Explanation:</strong></p> <p>We can subtract one from <code>nums[1]</code> and <code>nums[4]</code> to obtain <code>[2, 4, 6, 8, 4]</code>. The median of the resulting array is equal to <code>k</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [2,5,6,8,5], k = 7</span></p> <p><strong>Output:</strong> <span class="example-io">3</span></p> <p><strong>Explanation:</strong></p> <p>We can add one to <code>nums[1]</code> twice and add one to <code>nums[2]</code> once to obtain <code>[2, 7, 7, 8, 5]</code>.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4,5,6], k = 4</span></p> <p><strong>Output:</strong> <span class="example-io">0</span></p> <p><strong>Explanation:</strong></p> <p>The median of the array is already equal to <code>k</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 2 * 10<sup>5</sup></code></li> <li><code>1 &lt;= nums[i] &lt;= 10<sup>9</sup></code></li> <li><code>1 &lt;= k &lt;= 10<sup>9</sup></code></li> </ul>
Greedy; Array; Sorting
C++
class Solution { public: long long minOperationsToMakeMedianK(vector<int>& nums, int k) { sort(nums.begin(), nums.end()); int n = nums.size(); int m = n >> 1; long long ans = abs(nums[m] - k); if (nums[m] > k) { for (int i = m - 1; i >= 0 && nums[i] > k; --i) { ans += nums[i] - k; } } else { for (int i = m + 1; i < n && nums[i] < k; ++i) { ans += k - nums[i]; } } return ans; } };
3,107
Minimum Operations to Make Median of Array Equal to K
Medium
<p>You are given an integer array <code>nums</code> and a <strong>non-negative</strong> integer <code>k</code>. In one operation, you can increase or decrease any element by 1.</p> <p>Return the <strong>minimum</strong> number of operations needed to make the <strong>median</strong> of <code>nums</code> <em>equal</em> to <code>k</code>.</p> <p>The median of an array is defined as the middle element of the array when it is sorted in non-decreasing order. If there are two choices for a median, the larger of the two values is taken.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [2,5,6,8,5], k = 4</span></p> <p><strong>Output:</strong> <span class="example-io">2</span></p> <p><strong>Explanation:</strong></p> <p>We can subtract one from <code>nums[1]</code> and <code>nums[4]</code> to obtain <code>[2, 4, 6, 8, 4]</code>. The median of the resulting array is equal to <code>k</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [2,5,6,8,5], k = 7</span></p> <p><strong>Output:</strong> <span class="example-io">3</span></p> <p><strong>Explanation:</strong></p> <p>We can add one to <code>nums[1]</code> twice and add one to <code>nums[2]</code> once to obtain <code>[2, 7, 7, 8, 5]</code>.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4,5,6], k = 4</span></p> <p><strong>Output:</strong> <span class="example-io">0</span></p> <p><strong>Explanation:</strong></p> <p>The median of the array is already equal to <code>k</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 2 * 10<sup>5</sup></code></li> <li><code>1 &lt;= nums[i] &lt;= 10<sup>9</sup></code></li> <li><code>1 &lt;= k &lt;= 10<sup>9</sup></code></li> </ul>
Greedy; Array; Sorting
Go
func minOperationsToMakeMedianK(nums []int, k int) (ans int64) { sort.Ints(nums) n := len(nums) m := n >> 1 ans = int64(abs(nums[m] - k)) if nums[m] > k { for i := m - 1; i >= 0 && nums[i] > k; i-- { ans += int64(nums[i] - k) } } else { for i := m + 1; i < n && nums[i] < k; i++ { ans += int64(k - nums[i]) } } return } func abs(x int) int { if x < 0 { return -x } return x }
3,107
Minimum Operations to Make Median of Array Equal to K
Medium
<p>You are given an integer array <code>nums</code> and a <strong>non-negative</strong> integer <code>k</code>. In one operation, you can increase or decrease any element by 1.</p> <p>Return the <strong>minimum</strong> number of operations needed to make the <strong>median</strong> of <code>nums</code> <em>equal</em> to <code>k</code>.</p> <p>The median of an array is defined as the middle element of the array when it is sorted in non-decreasing order. If there are two choices for a median, the larger of the two values is taken.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [2,5,6,8,5], k = 4</span></p> <p><strong>Output:</strong> <span class="example-io">2</span></p> <p><strong>Explanation:</strong></p> <p>We can subtract one from <code>nums[1]</code> and <code>nums[4]</code> to obtain <code>[2, 4, 6, 8, 4]</code>. The median of the resulting array is equal to <code>k</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [2,5,6,8,5], k = 7</span></p> <p><strong>Output:</strong> <span class="example-io">3</span></p> <p><strong>Explanation:</strong></p> <p>We can add one to <code>nums[1]</code> twice and add one to <code>nums[2]</code> once to obtain <code>[2, 7, 7, 8, 5]</code>.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4,5,6], k = 4</span></p> <p><strong>Output:</strong> <span class="example-io">0</span></p> <p><strong>Explanation:</strong></p> <p>The median of the array is already equal to <code>k</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 2 * 10<sup>5</sup></code></li> <li><code>1 &lt;= nums[i] &lt;= 10<sup>9</sup></code></li> <li><code>1 &lt;= k &lt;= 10<sup>9</sup></code></li> </ul>
Greedy; Array; Sorting
Java
class Solution { public long minOperationsToMakeMedianK(int[] nums, int k) { Arrays.sort(nums); int n = nums.length; int m = n >> 1; long ans = Math.abs(nums[m] - k); if (nums[m] > k) { for (int i = m - 1; i >= 0 && nums[i] > k; --i) { ans += nums[i] - k; } } else { for (int i = m + 1; i < n && nums[i] < k; ++i) { ans += k - nums[i]; } } return ans; } }
3,107
Minimum Operations to Make Median of Array Equal to K
Medium
<p>You are given an integer array <code>nums</code> and a <strong>non-negative</strong> integer <code>k</code>. In one operation, you can increase or decrease any element by 1.</p> <p>Return the <strong>minimum</strong> number of operations needed to make the <strong>median</strong> of <code>nums</code> <em>equal</em> to <code>k</code>.</p> <p>The median of an array is defined as the middle element of the array when it is sorted in non-decreasing order. If there are two choices for a median, the larger of the two values is taken.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [2,5,6,8,5], k = 4</span></p> <p><strong>Output:</strong> <span class="example-io">2</span></p> <p><strong>Explanation:</strong></p> <p>We can subtract one from <code>nums[1]</code> and <code>nums[4]</code> to obtain <code>[2, 4, 6, 8, 4]</code>. The median of the resulting array is equal to <code>k</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [2,5,6,8,5], k = 7</span></p> <p><strong>Output:</strong> <span class="example-io">3</span></p> <p><strong>Explanation:</strong></p> <p>We can add one to <code>nums[1]</code> twice and add one to <code>nums[2]</code> once to obtain <code>[2, 7, 7, 8, 5]</code>.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4,5,6], k = 4</span></p> <p><strong>Output:</strong> <span class="example-io">0</span></p> <p><strong>Explanation:</strong></p> <p>The median of the array is already equal to <code>k</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 2 * 10<sup>5</sup></code></li> <li><code>1 &lt;= nums[i] &lt;= 10<sup>9</sup></code></li> <li><code>1 &lt;= k &lt;= 10<sup>9</sup></code></li> </ul>
Greedy; Array; Sorting
Python
class Solution: def minOperationsToMakeMedianK(self, nums: List[int], k: int) -> int: nums.sort() n = len(nums) m = n >> 1 ans = abs(nums[m] - k) if nums[m] > k: for i in range(m - 1, -1, -1): if nums[i] <= k: break ans += nums[i] - k else: for i in range(m + 1, n): if nums[i] >= k: break ans += k - nums[i] return ans
3,107
Minimum Operations to Make Median of Array Equal to K
Medium
<p>You are given an integer array <code>nums</code> and a <strong>non-negative</strong> integer <code>k</code>. In one operation, you can increase or decrease any element by 1.</p> <p>Return the <strong>minimum</strong> number of operations needed to make the <strong>median</strong> of <code>nums</code> <em>equal</em> to <code>k</code>.</p> <p>The median of an array is defined as the middle element of the array when it is sorted in non-decreasing order. If there are two choices for a median, the larger of the two values is taken.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [2,5,6,8,5], k = 4</span></p> <p><strong>Output:</strong> <span class="example-io">2</span></p> <p><strong>Explanation:</strong></p> <p>We can subtract one from <code>nums[1]</code> and <code>nums[4]</code> to obtain <code>[2, 4, 6, 8, 4]</code>. The median of the resulting array is equal to <code>k</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [2,5,6,8,5], k = 7</span></p> <p><strong>Output:</strong> <span class="example-io">3</span></p> <p><strong>Explanation:</strong></p> <p>We can add one to <code>nums[1]</code> twice and add one to <code>nums[2]</code> once to obtain <code>[2, 7, 7, 8, 5]</code>.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4,5,6], k = 4</span></p> <p><strong>Output:</strong> <span class="example-io">0</span></p> <p><strong>Explanation:</strong></p> <p>The median of the array is already equal to <code>k</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 2 * 10<sup>5</sup></code></li> <li><code>1 &lt;= nums[i] &lt;= 10<sup>9</sup></code></li> <li><code>1 &lt;= k &lt;= 10<sup>9</sup></code></li> </ul>
Greedy; Array; Sorting
TypeScript
function minOperationsToMakeMedianK(nums: number[], k: number): number { nums.sort((a, b) => a - b); const n = nums.length; const m = n >> 1; let ans = Math.abs(nums[m] - k); if (nums[m] > k) { for (let i = m - 1; i >= 0 && nums[i] > k; --i) { ans += nums[i] - k; } } else { for (let i = m + 1; i < n && nums[i] < k; ++i) { ans += k - nums[i]; } } return ans; }
3,108
Minimum Cost Walk in Weighted Graph
Hard
<p>There is an undirected weighted graph with <code>n</code> vertices labeled from <code>0</code> to <code>n - 1</code>.</p> <p>You are given the integer <code>n</code> and an array <code>edges</code>, where <code>edges[i] = [u<sub>i</sub>, v<sub>i</sub>, w<sub>i</sub>]</code> indicates that there is an edge between vertices <code>u<sub>i</sub></code> and <code>v<sub>i</sub></code> with a weight of <code>w<sub>i</sub></code>.</p> <p>A walk on a graph is a sequence of vertices and edges. The walk starts and ends with a vertex, and each edge connects the vertex that comes before it and the vertex that comes after it. It&#39;s important to note that a walk may visit the same edge or vertex more than once.</p> <p>The <strong>cost</strong> of a walk starting at node <code>u</code> and ending at node <code>v</code> is defined as the bitwise <code>AND</code> of the weights of the edges traversed during the walk. In other words, if the sequence of edge weights encountered during the walk is <code>w<sub>0</sub>, w<sub>1</sub>, w<sub>2</sub>, ..., w<sub>k</sub></code>, then the cost is calculated as <code>w<sub>0</sub> &amp; w<sub>1</sub> &amp; w<sub>2</sub> &amp; ... &amp; w<sub>k</sub></code>, where <code>&amp;</code> denotes the bitwise <code>AND</code> operator.</p> <p>You are also given a 2D array <code>query</code>, where <code>query[i] = [s<sub>i</sub>, t<sub>i</sub>]</code>. For each query, you need to find the minimum cost of the walk starting at vertex <code>s<sub>i</sub></code> and ending at vertex <code>t<sub>i</sub></code>. If there exists no such walk, the answer is <code>-1</code>.</p> <p>Return <em>the array </em><code>answer</code><em>, where </em><code>answer[i]</code><em> denotes the <strong>minimum</strong> cost of a walk for query </em><code>i</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">n = 5, edges = [[0,1,7],[1,3,7],[1,2,1]], query = [[0,3],[3,4]]</span></p> <p><strong>Output:</strong> <span class="example-io">[1,-1]</span></p> <p><strong>Explanation:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3108.Minimum%20Cost%20Walk%20in%20Weighted%20Graph/images/q4_example1-1.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 351px; height: 141px;" /> <p>To achieve the cost of 1 in the first query, we need to move on the following edges: <code>0-&gt;1</code> (weight 7), <code>1-&gt;2</code> (weight 1), <code>2-&gt;1</code> (weight 1), <code>1-&gt;3</code> (weight 7).</p> <p>In the second query, there is no walk between nodes 3 and 4, so the answer is -1.</p> <p><strong class="example">Example 2:</strong></p> </div> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">n = 3, edges = [[0,2,7],[0,1,15],[1,2,6],[1,2,1]], query = [[1,2]]</span></p> <p><strong>Output:</strong> <span class="example-io">[0]</span></p> <p><strong>Explanation:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3108.Minimum%20Cost%20Walk%20in%20Weighted%20Graph/images/q4_example2e.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 211px; height: 181px;" /> <p>To achieve the cost of 0 in the first query, we need to move on the following edges: <code>1-&gt;2</code> (weight 1), <code>2-&gt;1</code> (weight 6), <code>1-&gt;2</code> (weight 1).</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= n &lt;= 10<sup>5</sup></code></li> <li><code>0 &lt;= edges.length &lt;= 10<sup>5</sup></code></li> <li><code>edges[i].length == 3</code></li> <li><code>0 &lt;= u<sub>i</sub>, v<sub>i</sub> &lt;= n - 1</code></li> <li><code>u<sub>i</sub> != v<sub>i</sub></code></li> <li><code>0 &lt;= w<sub>i</sub> &lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= query.length &lt;= 10<sup>5</sup></code></li> <li><code>query[i].length == 2</code></li> <li><code>0 &lt;= s<sub>i</sub>, t<sub>i</sub> &lt;= n - 1</code></li> <li><code>s<sub>i</sub> !=&nbsp;t<sub>i</sub></code></li> </ul>
Bit Manipulation; Union Find; Graph; Array
C++
class UnionFind { public: UnionFind(int n) { p = vector<int>(n); size = vector<int>(n, 1); iota(p.begin(), p.end(), 0); } bool unite(int a, int b) { int pa = find(a), pb = find(b); if (pa == pb) { return false; } if (size[pa] > size[pb]) { p[pb] = pa; size[pa] += size[pb]; } else { p[pa] = pb; size[pb] += size[pa]; } return true; } int find(int x) { if (p[x] != x) { p[x] = find(p[x]); } return p[x]; } int getSize(int x) { return size[find(x)]; } private: vector<int> p, size; }; class Solution { public: vector<int> minimumCost(int n, vector<vector<int>>& edges, vector<vector<int>>& query) { g = vector<int>(n, -1); uf = new UnionFind(n); for (auto& e : edges) { uf->unite(e[0], e[1]); } for (auto& e : edges) { int root = uf->find(e[0]); g[root] &= e[2]; } vector<int> ans; for (auto& q : query) { ans.push_back(f(q[0], q[1])); } return ans; } private: UnionFind* uf; vector<int> g; int f(int u, int v) { if (u == v) { return 0; } int a = uf->find(u), b = uf->find(v); return a == b ? g[a] : -1; } };
3,108
Minimum Cost Walk in Weighted Graph
Hard
<p>There is an undirected weighted graph with <code>n</code> vertices labeled from <code>0</code> to <code>n - 1</code>.</p> <p>You are given the integer <code>n</code> and an array <code>edges</code>, where <code>edges[i] = [u<sub>i</sub>, v<sub>i</sub>, w<sub>i</sub>]</code> indicates that there is an edge between vertices <code>u<sub>i</sub></code> and <code>v<sub>i</sub></code> with a weight of <code>w<sub>i</sub></code>.</p> <p>A walk on a graph is a sequence of vertices and edges. The walk starts and ends with a vertex, and each edge connects the vertex that comes before it and the vertex that comes after it. It&#39;s important to note that a walk may visit the same edge or vertex more than once.</p> <p>The <strong>cost</strong> of a walk starting at node <code>u</code> and ending at node <code>v</code> is defined as the bitwise <code>AND</code> of the weights of the edges traversed during the walk. In other words, if the sequence of edge weights encountered during the walk is <code>w<sub>0</sub>, w<sub>1</sub>, w<sub>2</sub>, ..., w<sub>k</sub></code>, then the cost is calculated as <code>w<sub>0</sub> &amp; w<sub>1</sub> &amp; w<sub>2</sub> &amp; ... &amp; w<sub>k</sub></code>, where <code>&amp;</code> denotes the bitwise <code>AND</code> operator.</p> <p>You are also given a 2D array <code>query</code>, where <code>query[i] = [s<sub>i</sub>, t<sub>i</sub>]</code>. For each query, you need to find the minimum cost of the walk starting at vertex <code>s<sub>i</sub></code> and ending at vertex <code>t<sub>i</sub></code>. If there exists no such walk, the answer is <code>-1</code>.</p> <p>Return <em>the array </em><code>answer</code><em>, where </em><code>answer[i]</code><em> denotes the <strong>minimum</strong> cost of a walk for query </em><code>i</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">n = 5, edges = [[0,1,7],[1,3,7],[1,2,1]], query = [[0,3],[3,4]]</span></p> <p><strong>Output:</strong> <span class="example-io">[1,-1]</span></p> <p><strong>Explanation:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3108.Minimum%20Cost%20Walk%20in%20Weighted%20Graph/images/q4_example1-1.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 351px; height: 141px;" /> <p>To achieve the cost of 1 in the first query, we need to move on the following edges: <code>0-&gt;1</code> (weight 7), <code>1-&gt;2</code> (weight 1), <code>2-&gt;1</code> (weight 1), <code>1-&gt;3</code> (weight 7).</p> <p>In the second query, there is no walk between nodes 3 and 4, so the answer is -1.</p> <p><strong class="example">Example 2:</strong></p> </div> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">n = 3, edges = [[0,2,7],[0,1,15],[1,2,6],[1,2,1]], query = [[1,2]]</span></p> <p><strong>Output:</strong> <span class="example-io">[0]</span></p> <p><strong>Explanation:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3108.Minimum%20Cost%20Walk%20in%20Weighted%20Graph/images/q4_example2e.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 211px; height: 181px;" /> <p>To achieve the cost of 0 in the first query, we need to move on the following edges: <code>1-&gt;2</code> (weight 1), <code>2-&gt;1</code> (weight 6), <code>1-&gt;2</code> (weight 1).</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= n &lt;= 10<sup>5</sup></code></li> <li><code>0 &lt;= edges.length &lt;= 10<sup>5</sup></code></li> <li><code>edges[i].length == 3</code></li> <li><code>0 &lt;= u<sub>i</sub>, v<sub>i</sub> &lt;= n - 1</code></li> <li><code>u<sub>i</sub> != v<sub>i</sub></code></li> <li><code>0 &lt;= w<sub>i</sub> &lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= query.length &lt;= 10<sup>5</sup></code></li> <li><code>query[i].length == 2</code></li> <li><code>0 &lt;= s<sub>i</sub>, t<sub>i</sub> &lt;= n - 1</code></li> <li><code>s<sub>i</sub> !=&nbsp;t<sub>i</sub></code></li> </ul>
Bit Manipulation; Union Find; Graph; Array
Go
type unionFind struct { p, size []int } func newUnionFind(n int) *unionFind { p := make([]int, n) size := make([]int, n) for i := range p { p[i] = i size[i] = 1 } return &unionFind{p, size} } func (uf *unionFind) find(x int) int { if uf.p[x] != x { uf.p[x] = uf.find(uf.p[x]) } return uf.p[x] } func (uf *unionFind) union(a, b int) bool { pa, pb := uf.find(a), uf.find(b) if pa == pb { return false } if uf.size[pa] > uf.size[pb] { uf.p[pb] = pa uf.size[pa] += uf.size[pb] } else { uf.p[pa] = pb uf.size[pb] += uf.size[pa] } return true } func (uf *unionFind) getSize(x int) int { return uf.size[uf.find(x)] } func minimumCost(n int, edges [][]int, query [][]int) (ans []int) { uf := newUnionFind(n) g := make([]int, n) for i := range g { g[i] = -1 } for _, e := range edges { uf.union(e[0], e[1]) } for _, e := range edges { root := uf.find(e[0]) g[root] &= e[2] } f := func(u, v int) int { if u == v { return 0 } a, b := uf.find(u), uf.find(v) if a == b { return g[a] } return -1 } for _, q := range query { ans = append(ans, f(q[0], q[1])) } return }
3,108
Minimum Cost Walk in Weighted Graph
Hard
<p>There is an undirected weighted graph with <code>n</code> vertices labeled from <code>0</code> to <code>n - 1</code>.</p> <p>You are given the integer <code>n</code> and an array <code>edges</code>, where <code>edges[i] = [u<sub>i</sub>, v<sub>i</sub>, w<sub>i</sub>]</code> indicates that there is an edge between vertices <code>u<sub>i</sub></code> and <code>v<sub>i</sub></code> with a weight of <code>w<sub>i</sub></code>.</p> <p>A walk on a graph is a sequence of vertices and edges. The walk starts and ends with a vertex, and each edge connects the vertex that comes before it and the vertex that comes after it. It&#39;s important to note that a walk may visit the same edge or vertex more than once.</p> <p>The <strong>cost</strong> of a walk starting at node <code>u</code> and ending at node <code>v</code> is defined as the bitwise <code>AND</code> of the weights of the edges traversed during the walk. In other words, if the sequence of edge weights encountered during the walk is <code>w<sub>0</sub>, w<sub>1</sub>, w<sub>2</sub>, ..., w<sub>k</sub></code>, then the cost is calculated as <code>w<sub>0</sub> &amp; w<sub>1</sub> &amp; w<sub>2</sub> &amp; ... &amp; w<sub>k</sub></code>, where <code>&amp;</code> denotes the bitwise <code>AND</code> operator.</p> <p>You are also given a 2D array <code>query</code>, where <code>query[i] = [s<sub>i</sub>, t<sub>i</sub>]</code>. For each query, you need to find the minimum cost of the walk starting at vertex <code>s<sub>i</sub></code> and ending at vertex <code>t<sub>i</sub></code>. If there exists no such walk, the answer is <code>-1</code>.</p> <p>Return <em>the array </em><code>answer</code><em>, where </em><code>answer[i]</code><em> denotes the <strong>minimum</strong> cost of a walk for query </em><code>i</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">n = 5, edges = [[0,1,7],[1,3,7],[1,2,1]], query = [[0,3],[3,4]]</span></p> <p><strong>Output:</strong> <span class="example-io">[1,-1]</span></p> <p><strong>Explanation:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3108.Minimum%20Cost%20Walk%20in%20Weighted%20Graph/images/q4_example1-1.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 351px; height: 141px;" /> <p>To achieve the cost of 1 in the first query, we need to move on the following edges: <code>0-&gt;1</code> (weight 7), <code>1-&gt;2</code> (weight 1), <code>2-&gt;1</code> (weight 1), <code>1-&gt;3</code> (weight 7).</p> <p>In the second query, there is no walk between nodes 3 and 4, so the answer is -1.</p> <p><strong class="example">Example 2:</strong></p> </div> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">n = 3, edges = [[0,2,7],[0,1,15],[1,2,6],[1,2,1]], query = [[1,2]]</span></p> <p><strong>Output:</strong> <span class="example-io">[0]</span></p> <p><strong>Explanation:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3108.Minimum%20Cost%20Walk%20in%20Weighted%20Graph/images/q4_example2e.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 211px; height: 181px;" /> <p>To achieve the cost of 0 in the first query, we need to move on the following edges: <code>1-&gt;2</code> (weight 1), <code>2-&gt;1</code> (weight 6), <code>1-&gt;2</code> (weight 1).</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= n &lt;= 10<sup>5</sup></code></li> <li><code>0 &lt;= edges.length &lt;= 10<sup>5</sup></code></li> <li><code>edges[i].length == 3</code></li> <li><code>0 &lt;= u<sub>i</sub>, v<sub>i</sub> &lt;= n - 1</code></li> <li><code>u<sub>i</sub> != v<sub>i</sub></code></li> <li><code>0 &lt;= w<sub>i</sub> &lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= query.length &lt;= 10<sup>5</sup></code></li> <li><code>query[i].length == 2</code></li> <li><code>0 &lt;= s<sub>i</sub>, t<sub>i</sub> &lt;= n - 1</code></li> <li><code>s<sub>i</sub> !=&nbsp;t<sub>i</sub></code></li> </ul>
Bit Manipulation; Union Find; Graph; Array
Java
class UnionFind { private final int[] p; private final int[] size; public UnionFind(int n) { p = new int[n]; size = new int[n]; for (int i = 0; i < n; ++i) { p[i] = i; size[i] = 1; } } public int find(int x) { if (p[x] != x) { p[x] = find(p[x]); } return p[x]; } public boolean union(int a, int b) { int pa = find(a), pb = find(b); if (pa == pb) { return false; } if (size[pa] > size[pb]) { p[pb] = pa; size[pa] += size[pb]; } else { p[pa] = pb; size[pb] += size[pa]; } return true; } public int size(int x) { return size[find(x)]; } } class Solution { private UnionFind uf; private int[] g; public int[] minimumCost(int n, int[][] edges, int[][] query) { uf = new UnionFind(n); for (var e : edges) { uf.union(e[0], e[1]); } g = new int[n]; Arrays.fill(g, -1); for (var e : edges) { int root = uf.find(e[0]); g[root] &= e[2]; } int m = query.length; int[] ans = new int[m]; for (int i = 0; i < m; ++i) { int s = query[i][0], t = query[i][1]; ans[i] = f(s, t); } return ans; } private int f(int u, int v) { if (u == v) { return 0; } int a = uf.find(u), b = uf.find(v); return a == b ? g[a] : -1; } }
3,108
Minimum Cost Walk in Weighted Graph
Hard
<p>There is an undirected weighted graph with <code>n</code> vertices labeled from <code>0</code> to <code>n - 1</code>.</p> <p>You are given the integer <code>n</code> and an array <code>edges</code>, where <code>edges[i] = [u<sub>i</sub>, v<sub>i</sub>, w<sub>i</sub>]</code> indicates that there is an edge between vertices <code>u<sub>i</sub></code> and <code>v<sub>i</sub></code> with a weight of <code>w<sub>i</sub></code>.</p> <p>A walk on a graph is a sequence of vertices and edges. The walk starts and ends with a vertex, and each edge connects the vertex that comes before it and the vertex that comes after it. It&#39;s important to note that a walk may visit the same edge or vertex more than once.</p> <p>The <strong>cost</strong> of a walk starting at node <code>u</code> and ending at node <code>v</code> is defined as the bitwise <code>AND</code> of the weights of the edges traversed during the walk. In other words, if the sequence of edge weights encountered during the walk is <code>w<sub>0</sub>, w<sub>1</sub>, w<sub>2</sub>, ..., w<sub>k</sub></code>, then the cost is calculated as <code>w<sub>0</sub> &amp; w<sub>1</sub> &amp; w<sub>2</sub> &amp; ... &amp; w<sub>k</sub></code>, where <code>&amp;</code> denotes the bitwise <code>AND</code> operator.</p> <p>You are also given a 2D array <code>query</code>, where <code>query[i] = [s<sub>i</sub>, t<sub>i</sub>]</code>. For each query, you need to find the minimum cost of the walk starting at vertex <code>s<sub>i</sub></code> and ending at vertex <code>t<sub>i</sub></code>. If there exists no such walk, the answer is <code>-1</code>.</p> <p>Return <em>the array </em><code>answer</code><em>, where </em><code>answer[i]</code><em> denotes the <strong>minimum</strong> cost of a walk for query </em><code>i</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">n = 5, edges = [[0,1,7],[1,3,7],[1,2,1]], query = [[0,3],[3,4]]</span></p> <p><strong>Output:</strong> <span class="example-io">[1,-1]</span></p> <p><strong>Explanation:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3108.Minimum%20Cost%20Walk%20in%20Weighted%20Graph/images/q4_example1-1.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 351px; height: 141px;" /> <p>To achieve the cost of 1 in the first query, we need to move on the following edges: <code>0-&gt;1</code> (weight 7), <code>1-&gt;2</code> (weight 1), <code>2-&gt;1</code> (weight 1), <code>1-&gt;3</code> (weight 7).</p> <p>In the second query, there is no walk between nodes 3 and 4, so the answer is -1.</p> <p><strong class="example">Example 2:</strong></p> </div> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">n = 3, edges = [[0,2,7],[0,1,15],[1,2,6],[1,2,1]], query = [[1,2]]</span></p> <p><strong>Output:</strong> <span class="example-io">[0]</span></p> <p><strong>Explanation:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3108.Minimum%20Cost%20Walk%20in%20Weighted%20Graph/images/q4_example2e.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 211px; height: 181px;" /> <p>To achieve the cost of 0 in the first query, we need to move on the following edges: <code>1-&gt;2</code> (weight 1), <code>2-&gt;1</code> (weight 6), <code>1-&gt;2</code> (weight 1).</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= n &lt;= 10<sup>5</sup></code></li> <li><code>0 &lt;= edges.length &lt;= 10<sup>5</sup></code></li> <li><code>edges[i].length == 3</code></li> <li><code>0 &lt;= u<sub>i</sub>, v<sub>i</sub> &lt;= n - 1</code></li> <li><code>u<sub>i</sub> != v<sub>i</sub></code></li> <li><code>0 &lt;= w<sub>i</sub> &lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= query.length &lt;= 10<sup>5</sup></code></li> <li><code>query[i].length == 2</code></li> <li><code>0 &lt;= s<sub>i</sub>, t<sub>i</sub> &lt;= n - 1</code></li> <li><code>s<sub>i</sub> !=&nbsp;t<sub>i</sub></code></li> </ul>
Bit Manipulation; Union Find; Graph; Array
Python
class UnionFind: def __init__(self, n): self.p = list(range(n)) self.size = [1] * n def find(self, x): if self.p[x] != x: self.p[x] = self.find(self.p[x]) return self.p[x] def union(self, a, b): pa, pb = self.find(a), self.find(b) if pa == pb: return False if self.size[pa] > self.size[pb]: self.p[pb] = pa self.size[pa] += self.size[pb] else: self.p[pa] = pb self.size[pb] += self.size[pa] return True class Solution: def minimumCost( self, n: int, edges: List[List[int]], query: List[List[int]] ) -> List[int]: g = [-1] * n uf = UnionFind(n) for u, v, _ in edges: uf.union(u, v) for u, _, w in edges: root = uf.find(u) g[root] &= w def f(u: int, v: int) -> int: if u == v: return 0 a, b = uf.find(u), uf.find(v) return g[a] if a == b else -1 return [f(s, t) for s, t in query]
3,108
Minimum Cost Walk in Weighted Graph
Hard
<p>There is an undirected weighted graph with <code>n</code> vertices labeled from <code>0</code> to <code>n - 1</code>.</p> <p>You are given the integer <code>n</code> and an array <code>edges</code>, where <code>edges[i] = [u<sub>i</sub>, v<sub>i</sub>, w<sub>i</sub>]</code> indicates that there is an edge between vertices <code>u<sub>i</sub></code> and <code>v<sub>i</sub></code> with a weight of <code>w<sub>i</sub></code>.</p> <p>A walk on a graph is a sequence of vertices and edges. The walk starts and ends with a vertex, and each edge connects the vertex that comes before it and the vertex that comes after it. It&#39;s important to note that a walk may visit the same edge or vertex more than once.</p> <p>The <strong>cost</strong> of a walk starting at node <code>u</code> and ending at node <code>v</code> is defined as the bitwise <code>AND</code> of the weights of the edges traversed during the walk. In other words, if the sequence of edge weights encountered during the walk is <code>w<sub>0</sub>, w<sub>1</sub>, w<sub>2</sub>, ..., w<sub>k</sub></code>, then the cost is calculated as <code>w<sub>0</sub> &amp; w<sub>1</sub> &amp; w<sub>2</sub> &amp; ... &amp; w<sub>k</sub></code>, where <code>&amp;</code> denotes the bitwise <code>AND</code> operator.</p> <p>You are also given a 2D array <code>query</code>, where <code>query[i] = [s<sub>i</sub>, t<sub>i</sub>]</code>. For each query, you need to find the minimum cost of the walk starting at vertex <code>s<sub>i</sub></code> and ending at vertex <code>t<sub>i</sub></code>. If there exists no such walk, the answer is <code>-1</code>.</p> <p>Return <em>the array </em><code>answer</code><em>, where </em><code>answer[i]</code><em> denotes the <strong>minimum</strong> cost of a walk for query </em><code>i</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">n = 5, edges = [[0,1,7],[1,3,7],[1,2,1]], query = [[0,3],[3,4]]</span></p> <p><strong>Output:</strong> <span class="example-io">[1,-1]</span></p> <p><strong>Explanation:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3108.Minimum%20Cost%20Walk%20in%20Weighted%20Graph/images/q4_example1-1.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 351px; height: 141px;" /> <p>To achieve the cost of 1 in the first query, we need to move on the following edges: <code>0-&gt;1</code> (weight 7), <code>1-&gt;2</code> (weight 1), <code>2-&gt;1</code> (weight 1), <code>1-&gt;3</code> (weight 7).</p> <p>In the second query, there is no walk between nodes 3 and 4, so the answer is -1.</p> <p><strong class="example">Example 2:</strong></p> </div> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">n = 3, edges = [[0,2,7],[0,1,15],[1,2,6],[1,2,1]], query = [[1,2]]</span></p> <p><strong>Output:</strong> <span class="example-io">[0]</span></p> <p><strong>Explanation:</strong></p> <img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3108.Minimum%20Cost%20Walk%20in%20Weighted%20Graph/images/q4_example2e.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 211px; height: 181px;" /> <p>To achieve the cost of 0 in the first query, we need to move on the following edges: <code>1-&gt;2</code> (weight 1), <code>2-&gt;1</code> (weight 6), <code>1-&gt;2</code> (weight 1).</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= n &lt;= 10<sup>5</sup></code></li> <li><code>0 &lt;= edges.length &lt;= 10<sup>5</sup></code></li> <li><code>edges[i].length == 3</code></li> <li><code>0 &lt;= u<sub>i</sub>, v<sub>i</sub> &lt;= n - 1</code></li> <li><code>u<sub>i</sub> != v<sub>i</sub></code></li> <li><code>0 &lt;= w<sub>i</sub> &lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= query.length &lt;= 10<sup>5</sup></code></li> <li><code>query[i].length == 2</code></li> <li><code>0 &lt;= s<sub>i</sub>, t<sub>i</sub> &lt;= n - 1</code></li> <li><code>s<sub>i</sub> !=&nbsp;t<sub>i</sub></code></li> </ul>
Bit Manipulation; Union Find; Graph; Array
TypeScript
class UnionFind { p: number[]; size: number[]; constructor(n: number) { this.p = Array(n) .fill(0) .map((_, i) => i); this.size = Array(n).fill(1); } find(x: number): number { if (this.p[x] !== x) { this.p[x] = this.find(this.p[x]); } return this.p[x]; } union(a: number, b: number): boolean { const [pa, pb] = [this.find(a), this.find(b)]; if (pa === pb) { return false; } if (this.size[pa] > this.size[pb]) { this.p[pb] = pa; this.size[pa] += this.size[pb]; } else { this.p[pa] = pb; this.size[pb] += this.size[pa]; } return true; } getSize(x: number): number { return this.size[this.find(x)]; } } function minimumCost(n: number, edges: number[][], query: number[][]): number[] { const uf = new UnionFind(n); const g: number[] = Array(n).fill(-1); for (const [u, v, _] of edges) { uf.union(u, v); } for (const [u, _, w] of edges) { const root = uf.find(u); g[root] &= w; } const f = (u: number, v: number): number => { if (u === v) { return 0; } const [a, b] = [uf.find(u), uf.find(v)]; return a === b ? g[a] : -1; }; return query.map(([u, v]) => f(u, v)); }
3,109
Find the Index of Permutation
Medium
<p>Given an array <code>perm</code> of length <code>n</code> which is a permutation of <code>[1, 2, ..., n]</code>, return the index of <code>perm</code> in the <span data-keyword="lexicographically-sorted-array">lexicographically sorted</span> array of all of the permutations of <code>[1, 2, ..., n]</code>.</p> <p>Since the answer may be very large, return it <strong>modulo</strong> <code>10<sup>9</sup>&nbsp;+ 7</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">perm = [1,2]</span></p> <p><strong>Output:</strong> <span class="example-io">0</span></p> <p><strong>Explanation:</strong></p> <p>There are only two permutations in the following order:</p> <p><code>[1,2]</code>, <code>[2,1]</code><br /> <br /> And <code>[1,2]</code> is at index 0.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">perm = [3,1,2]</span></p> <p><strong>Output:</strong> <span class="example-io">4</span></p> <p><strong>Explanation:</strong></p> <p>There are only six permutations in the following order:</p> <p><code>[1,2,3]</code>, <code>[1,3,2]</code>, <code>[2,1,3]</code>, <code>[2,3,1]</code>, <code>[3,1,2]</code>, <code>[3,2,1]</code><br /> <br /> And <code>[3,1,2]</code> is at index 4.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n == perm.length &lt;= 10<sup>5</sup></code></li> <li><code>perm</code> is a permutation of <code>[1, 2, ..., n]</code>.</li> </ul>
Binary Indexed Tree; Segment Tree; Array; Binary Search; Divide and Conquer; Ordered Set; Merge Sort
C++
class BinaryIndexedTree { private: int n; vector<int> c; public: BinaryIndexedTree(int n) : n(n) , c(n + 1) {} void update(int x, int delta) { for (; x <= n; x += x & -x) { c[x] += delta; } } int query(int x) { int s = 0; for (; x > 0; x -= x & -x) { s += c[x]; } return s; } }; class Solution { public: int getPermutationIndex(vector<int>& perm) { const int mod = 1e9 + 7; using ll = long long; ll ans = 0; int n = perm.size(); BinaryIndexedTree tree(n + 1); ll f[n]; f[0] = 1; for (int i = 1; i < n; ++i) { f[i] = f[i - 1] * i % mod; } for (int i = 0; i < n; ++i) { int cnt = perm[i] - 1 - tree.query(perm[i]); ans += cnt * f[n - i - 1] % mod; tree.update(perm[i], 1); } return ans % mod; } };
3,109
Find the Index of Permutation
Medium
<p>Given an array <code>perm</code> of length <code>n</code> which is a permutation of <code>[1, 2, ..., n]</code>, return the index of <code>perm</code> in the <span data-keyword="lexicographically-sorted-array">lexicographically sorted</span> array of all of the permutations of <code>[1, 2, ..., n]</code>.</p> <p>Since the answer may be very large, return it <strong>modulo</strong> <code>10<sup>9</sup>&nbsp;+ 7</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">perm = [1,2]</span></p> <p><strong>Output:</strong> <span class="example-io">0</span></p> <p><strong>Explanation:</strong></p> <p>There are only two permutations in the following order:</p> <p><code>[1,2]</code>, <code>[2,1]</code><br /> <br /> And <code>[1,2]</code> is at index 0.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">perm = [3,1,2]</span></p> <p><strong>Output:</strong> <span class="example-io">4</span></p> <p><strong>Explanation:</strong></p> <p>There are only six permutations in the following order:</p> <p><code>[1,2,3]</code>, <code>[1,3,2]</code>, <code>[2,1,3]</code>, <code>[2,3,1]</code>, <code>[3,1,2]</code>, <code>[3,2,1]</code><br /> <br /> And <code>[3,1,2]</code> is at index 4.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n == perm.length &lt;= 10<sup>5</sup></code></li> <li><code>perm</code> is a permutation of <code>[1, 2, ..., n]</code>.</li> </ul>
Binary Indexed Tree; Segment Tree; Array; Binary Search; Divide and Conquer; Ordered Set; Merge Sort
Go
type BinaryIndexedTree struct { n int c []int } func NewBinaryIndexedTree(n int) *BinaryIndexedTree { return &BinaryIndexedTree{n: n, c: make([]int, n+1)} } func (bit *BinaryIndexedTree) update(x, delta int) { for ; x <= bit.n; x += x & -x { bit.c[x] += delta } } func (bit *BinaryIndexedTree) query(x int) int { s := 0 for ; x > 0; x -= x & -x { s += bit.c[x] } return s } func getPermutationIndex(perm []int) (ans int) { const mod int = 1e9 + 7 n := len(perm) tree := NewBinaryIndexedTree(n + 1) f := make([]int, n) f[0] = 1 for i := 1; i < n; i++ { f[i] = f[i-1] * i % mod } for i, x := range perm { cnt := x - 1 - tree.query(x) ans += cnt * f[n-1-i] % mod tree.update(x, 1) } return ans % mod }
3,109
Find the Index of Permutation
Medium
<p>Given an array <code>perm</code> of length <code>n</code> which is a permutation of <code>[1, 2, ..., n]</code>, return the index of <code>perm</code> in the <span data-keyword="lexicographically-sorted-array">lexicographically sorted</span> array of all of the permutations of <code>[1, 2, ..., n]</code>.</p> <p>Since the answer may be very large, return it <strong>modulo</strong> <code>10<sup>9</sup>&nbsp;+ 7</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">perm = [1,2]</span></p> <p><strong>Output:</strong> <span class="example-io">0</span></p> <p><strong>Explanation:</strong></p> <p>There are only two permutations in the following order:</p> <p><code>[1,2]</code>, <code>[2,1]</code><br /> <br /> And <code>[1,2]</code> is at index 0.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">perm = [3,1,2]</span></p> <p><strong>Output:</strong> <span class="example-io">4</span></p> <p><strong>Explanation:</strong></p> <p>There are only six permutations in the following order:</p> <p><code>[1,2,3]</code>, <code>[1,3,2]</code>, <code>[2,1,3]</code>, <code>[2,3,1]</code>, <code>[3,1,2]</code>, <code>[3,2,1]</code><br /> <br /> And <code>[3,1,2]</code> is at index 4.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n == perm.length &lt;= 10<sup>5</sup></code></li> <li><code>perm</code> is a permutation of <code>[1, 2, ..., n]</code>.</li> </ul>
Binary Indexed Tree; Segment Tree; Array; Binary Search; Divide and Conquer; Ordered Set; Merge Sort
Java
class BinaryIndexedTree { private int n; private int[] c; public BinaryIndexedTree(int n) { this.n = n; this.c = new int[n + 1]; } public void update(int x, int delta) { for (; x <= n; x += x & -x) { c[x] += delta; } } public int query(int x) { int s = 0; for (; x > 0; x -= x & -x) { s += c[x]; } return s; } } class Solution { public int getPermutationIndex(int[] perm) { final int mod = (int) 1e9 + 7; long ans = 0; int n = perm.length; BinaryIndexedTree tree = new BinaryIndexedTree(n + 1); long[] f = new long[n]; f[0] = 1; for (int i = 1; i < n; ++i) { f[i] = f[i - 1] * i % mod; } for (int i = 0; i < n; ++i) { int cnt = perm[i] - 1 - tree.query(perm[i]); ans = (ans + cnt * f[n - i - 1] % mod) % mod; tree.update(perm[i], 1); } return (int) ans; } }
3,109
Find the Index of Permutation
Medium
<p>Given an array <code>perm</code> of length <code>n</code> which is a permutation of <code>[1, 2, ..., n]</code>, return the index of <code>perm</code> in the <span data-keyword="lexicographically-sorted-array">lexicographically sorted</span> array of all of the permutations of <code>[1, 2, ..., n]</code>.</p> <p>Since the answer may be very large, return it <strong>modulo</strong> <code>10<sup>9</sup>&nbsp;+ 7</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">perm = [1,2]</span></p> <p><strong>Output:</strong> <span class="example-io">0</span></p> <p><strong>Explanation:</strong></p> <p>There are only two permutations in the following order:</p> <p><code>[1,2]</code>, <code>[2,1]</code><br /> <br /> And <code>[1,2]</code> is at index 0.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">perm = [3,1,2]</span></p> <p><strong>Output:</strong> <span class="example-io">4</span></p> <p><strong>Explanation:</strong></p> <p>There are only six permutations in the following order:</p> <p><code>[1,2,3]</code>, <code>[1,3,2]</code>, <code>[2,1,3]</code>, <code>[2,3,1]</code>, <code>[3,1,2]</code>, <code>[3,2,1]</code><br /> <br /> And <code>[3,1,2]</code> is at index 4.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n == perm.length &lt;= 10<sup>5</sup></code></li> <li><code>perm</code> is a permutation of <code>[1, 2, ..., n]</code>.</li> </ul>
Binary Indexed Tree; Segment Tree; Array; Binary Search; Divide and Conquer; Ordered Set; Merge Sort
Python
class BinaryIndexedTree: __slots__ = "n", "c" def __init__(self, n: int): self.n = n self.c = [0] * (n + 1) def update(self, x: int, delta: int) -> None: while x <= self.n: self.c[x] += delta x += x & -x def query(self, x: int) -> int: s = 0 while x: s += self.c[x] x -= x & -x return s class Solution: def getPermutationIndex(self, perm: List[int]) -> int: mod = 10**9 + 7 ans, n = 0, len(perm) tree = BinaryIndexedTree(n + 1) f = [1] * n for i in range(1, n): f[i] = f[i - 1] * i % mod for i, x in enumerate(perm): cnt = x - 1 - tree.query(x) ans += cnt * f[n - i - 1] % mod tree.update(x, 1) return ans % mod
3,109
Find the Index of Permutation
Medium
<p>Given an array <code>perm</code> of length <code>n</code> which is a permutation of <code>[1, 2, ..., n]</code>, return the index of <code>perm</code> in the <span data-keyword="lexicographically-sorted-array">lexicographically sorted</span> array of all of the permutations of <code>[1, 2, ..., n]</code>.</p> <p>Since the answer may be very large, return it <strong>modulo</strong> <code>10<sup>9</sup>&nbsp;+ 7</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">perm = [1,2]</span></p> <p><strong>Output:</strong> <span class="example-io">0</span></p> <p><strong>Explanation:</strong></p> <p>There are only two permutations in the following order:</p> <p><code>[1,2]</code>, <code>[2,1]</code><br /> <br /> And <code>[1,2]</code> is at index 0.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">perm = [3,1,2]</span></p> <p><strong>Output:</strong> <span class="example-io">4</span></p> <p><strong>Explanation:</strong></p> <p>There are only six permutations in the following order:</p> <p><code>[1,2,3]</code>, <code>[1,3,2]</code>, <code>[2,1,3]</code>, <code>[2,3,1]</code>, <code>[3,1,2]</code>, <code>[3,2,1]</code><br /> <br /> And <code>[3,1,2]</code> is at index 4.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n == perm.length &lt;= 10<sup>5</sup></code></li> <li><code>perm</code> is a permutation of <code>[1, 2, ..., n]</code>.</li> </ul>
Binary Indexed Tree; Segment Tree; Array; Binary Search; Divide and Conquer; Ordered Set; Merge Sort
TypeScript
class BinaryIndexedTree { private n: number; private c: number[]; constructor(n: number) { this.n = n; this.c = Array(n + 1).fill(0); } update(x: number, delta: number): void { for (; x <= this.n; x += x & -x) { this.c[x] += delta; } } query(x: number): number { let s = 0; for (; x > 0; x -= x & -x) { s += this.c[x]; } return s; } } function getPermutationIndex(perm: number[]): number { const mod = 1e9 + 7; const n = perm.length; const tree = new BinaryIndexedTree(n + 1); let ans = 0; const f: number[] = Array(n).fill(1); for (let i = 1; i < n; ++i) { f[i] = (f[i - 1] * i) % mod; } for (let i = 0; i < n; ++i) { const cnt = perm[i] - 1 - tree.query(perm[i]); ans = (ans + cnt * f[n - i - 1]) % mod; tree.update(perm[i], 1); } return ans % mod; }
3,110
Score of a String
Easy
<p>You are given a string <code>s</code>. The <strong>score</strong> of a string is defined as the sum of the absolute difference between the <strong>ASCII</strong> values of adjacent characters.</p> <p>Return the <strong>score</strong> of<em> </em><code>s</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;hello&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">13</span></p> <p><strong>Explanation:</strong></p> <p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>&#39;h&#39; = 104</code>, <code>&#39;e&#39; = 101</code>, <code>&#39;l&#39; = 108</code>, <code>&#39;o&#39; = 111</code>. So, the score of <code>s</code> would be <code>|104 - 101| + |101 - 108| + |108 - 108| + |108 - 111| = 3 + 7 + 0 + 3 = 13</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;zaz&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">50</span></p> <p><strong>Explanation:</strong></p> <p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>&#39;z&#39; = 122</code>, <code>&#39;a&#39; = 97</code>. So, the score of <code>s</code> would be <code>|122 - 97| + |97 - 122| = 25 + 25 = 50</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= s.length &lt;= 100</code></li> <li><code>s</code> consists only of lowercase English letters.</li> </ul>
String
C++
class Solution { public: int scoreOfString(string s) { int ans = 0; for (int i = 1; i < s.size(); ++i) { ans += abs(s[i] - s[i - 1]); } return ans; } };
3,110
Score of a String
Easy
<p>You are given a string <code>s</code>. The <strong>score</strong> of a string is defined as the sum of the absolute difference between the <strong>ASCII</strong> values of adjacent characters.</p> <p>Return the <strong>score</strong> of<em> </em><code>s</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;hello&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">13</span></p> <p><strong>Explanation:</strong></p> <p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>&#39;h&#39; = 104</code>, <code>&#39;e&#39; = 101</code>, <code>&#39;l&#39; = 108</code>, <code>&#39;o&#39; = 111</code>. So, the score of <code>s</code> would be <code>|104 - 101| + |101 - 108| + |108 - 108| + |108 - 111| = 3 + 7 + 0 + 3 = 13</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;zaz&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">50</span></p> <p><strong>Explanation:</strong></p> <p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>&#39;z&#39; = 122</code>, <code>&#39;a&#39; = 97</code>. So, the score of <code>s</code> would be <code>|122 - 97| + |97 - 122| = 25 + 25 = 50</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= s.length &lt;= 100</code></li> <li><code>s</code> consists only of lowercase English letters.</li> </ul>
String
C#
public class Solution { public int ScoreOfString(string s) { int ans = 0; for (int i = 1; i < s.Length; ++i) { ans += Math.Abs(s[i] - s[i - 1]); } return ans; } }
3,110
Score of a String
Easy
<p>You are given a string <code>s</code>. The <strong>score</strong> of a string is defined as the sum of the absolute difference between the <strong>ASCII</strong> values of adjacent characters.</p> <p>Return the <strong>score</strong> of<em> </em><code>s</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;hello&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">13</span></p> <p><strong>Explanation:</strong></p> <p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>&#39;h&#39; = 104</code>, <code>&#39;e&#39; = 101</code>, <code>&#39;l&#39; = 108</code>, <code>&#39;o&#39; = 111</code>. So, the score of <code>s</code> would be <code>|104 - 101| + |101 - 108| + |108 - 108| + |108 - 111| = 3 + 7 + 0 + 3 = 13</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;zaz&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">50</span></p> <p><strong>Explanation:</strong></p> <p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>&#39;z&#39; = 122</code>, <code>&#39;a&#39; = 97</code>. So, the score of <code>s</code> would be <code>|122 - 97| + |97 - 122| = 25 + 25 = 50</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= s.length &lt;= 100</code></li> <li><code>s</code> consists only of lowercase English letters.</li> </ul>
String
Go
func scoreOfString(s string) (ans int) { for i := 1; i < len(s); i++ { ans += abs(int(s[i-1]) - int(s[i])) } return } func abs(x int) int { if x < 0 { return -x } return x }
3,110
Score of a String
Easy
<p>You are given a string <code>s</code>. The <strong>score</strong> of a string is defined as the sum of the absolute difference between the <strong>ASCII</strong> values of adjacent characters.</p> <p>Return the <strong>score</strong> of<em> </em><code>s</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;hello&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">13</span></p> <p><strong>Explanation:</strong></p> <p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>&#39;h&#39; = 104</code>, <code>&#39;e&#39; = 101</code>, <code>&#39;l&#39; = 108</code>, <code>&#39;o&#39; = 111</code>. So, the score of <code>s</code> would be <code>|104 - 101| + |101 - 108| + |108 - 108| + |108 - 111| = 3 + 7 + 0 + 3 = 13</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;zaz&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">50</span></p> <p><strong>Explanation:</strong></p> <p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>&#39;z&#39; = 122</code>, <code>&#39;a&#39; = 97</code>. So, the score of <code>s</code> would be <code>|122 - 97| + |97 - 122| = 25 + 25 = 50</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= s.length &lt;= 100</code></li> <li><code>s</code> consists only of lowercase English letters.</li> </ul>
String
Java
class Solution { public int scoreOfString(String s) { int ans = 0; for (int i = 1; i < s.length(); ++i) { ans += Math.abs(s.charAt(i - 1) - s.charAt(i)); } return ans; } }
3,110
Score of a String
Easy
<p>You are given a string <code>s</code>. The <strong>score</strong> of a string is defined as the sum of the absolute difference between the <strong>ASCII</strong> values of adjacent characters.</p> <p>Return the <strong>score</strong> of<em> </em><code>s</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;hello&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">13</span></p> <p><strong>Explanation:</strong></p> <p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>&#39;h&#39; = 104</code>, <code>&#39;e&#39; = 101</code>, <code>&#39;l&#39; = 108</code>, <code>&#39;o&#39; = 111</code>. So, the score of <code>s</code> would be <code>|104 - 101| + |101 - 108| + |108 - 108| + |108 - 111| = 3 + 7 + 0 + 3 = 13</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;zaz&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">50</span></p> <p><strong>Explanation:</strong></p> <p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>&#39;z&#39; = 122</code>, <code>&#39;a&#39; = 97</code>. So, the score of <code>s</code> would be <code>|122 - 97| + |97 - 122| = 25 + 25 = 50</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= s.length &lt;= 100</code></li> <li><code>s</code> consists only of lowercase English letters.</li> </ul>
String
PHP
class Solution { /** * @param String $s * @return Integer */ function scoreOfString($s) { $ans = 0; $n = strlen($s); for ($i = 1; $i < $n; ++$i) { $ans += abs(ord($s[$i]) - ord($s[$i - 1])); } return $ans; } }
3,110
Score of a String
Easy
<p>You are given a string <code>s</code>. The <strong>score</strong> of a string is defined as the sum of the absolute difference between the <strong>ASCII</strong> values of adjacent characters.</p> <p>Return the <strong>score</strong> of<em> </em><code>s</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;hello&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">13</span></p> <p><strong>Explanation:</strong></p> <p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>&#39;h&#39; = 104</code>, <code>&#39;e&#39; = 101</code>, <code>&#39;l&#39; = 108</code>, <code>&#39;o&#39; = 111</code>. So, the score of <code>s</code> would be <code>|104 - 101| + |101 - 108| + |108 - 108| + |108 - 111| = 3 + 7 + 0 + 3 = 13</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;zaz&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">50</span></p> <p><strong>Explanation:</strong></p> <p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>&#39;z&#39; = 122</code>, <code>&#39;a&#39; = 97</code>. So, the score of <code>s</code> would be <code>|122 - 97| + |97 - 122| = 25 + 25 = 50</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= s.length &lt;= 100</code></li> <li><code>s</code> consists only of lowercase English letters.</li> </ul>
String
Python
class Solution: def scoreOfString(self, s: str) -> int: return sum(abs(a - b) for a, b in pairwise(map(ord, s)))
3,110
Score of a String
Easy
<p>You are given a string <code>s</code>. The <strong>score</strong> of a string is defined as the sum of the absolute difference between the <strong>ASCII</strong> values of adjacent characters.</p> <p>Return the <strong>score</strong> of<em> </em><code>s</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;hello&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">13</span></p> <p><strong>Explanation:</strong></p> <p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>&#39;h&#39; = 104</code>, <code>&#39;e&#39; = 101</code>, <code>&#39;l&#39; = 108</code>, <code>&#39;o&#39; = 111</code>. So, the score of <code>s</code> would be <code>|104 - 101| + |101 - 108| + |108 - 108| + |108 - 111| = 3 + 7 + 0 + 3 = 13</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;zaz&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">50</span></p> <p><strong>Explanation:</strong></p> <p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>&#39;z&#39; = 122</code>, <code>&#39;a&#39; = 97</code>. So, the score of <code>s</code> would be <code>|122 - 97| + |97 - 122| = 25 + 25 = 50</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= s.length &lt;= 100</code></li> <li><code>s</code> consists only of lowercase English letters.</li> </ul>
String
Rust
impl Solution { pub fn score_of_string(s: String) -> i32 { s.as_bytes() .windows(2) .map(|w| (w[0] as i32 - w[1] as i32).abs()) .sum() } }
3,110
Score of a String
Easy
<p>You are given a string <code>s</code>. The <strong>score</strong> of a string is defined as the sum of the absolute difference between the <strong>ASCII</strong> values of adjacent characters.</p> <p>Return the <strong>score</strong> of<em> </em><code>s</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;hello&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">13</span></p> <p><strong>Explanation:</strong></p> <p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>&#39;h&#39; = 104</code>, <code>&#39;e&#39; = 101</code>, <code>&#39;l&#39; = 108</code>, <code>&#39;o&#39; = 111</code>. So, the score of <code>s</code> would be <code>|104 - 101| + |101 - 108| + |108 - 108| + |108 - 111| = 3 + 7 + 0 + 3 = 13</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;zaz&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">50</span></p> <p><strong>Explanation:</strong></p> <p>The <strong>ASCII</strong> values of the characters in <code>s</code> are: <code>&#39;z&#39; = 122</code>, <code>&#39;a&#39; = 97</code>. So, the score of <code>s</code> would be <code>|122 - 97| + |97 - 122| = 25 + 25 = 50</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>2 &lt;= s.length &lt;= 100</code></li> <li><code>s</code> consists only of lowercase English letters.</li> </ul>
String
TypeScript
function scoreOfString(s: string): number { let ans = 0; for (let i = 1; i < s.length; ++i) { ans += Math.abs(s.charCodeAt(i) - s.charCodeAt(i - 1)); } return ans; }
3,111
Minimum Rectangles to Cover Points
Medium
<p>You are given a 2D integer array <code>points</code>, where <code>points[i] = [x<sub>i</sub>, y<sub>i</sub>]</code>. You are also given an integer <code>w</code>. Your task is to <strong>cover</strong> <strong>all</strong> the given points with rectangles.</p> <p>Each rectangle has its lower end at some point <code>(x<sub>1</sub>, 0)</code> and its upper end at some point <code>(x<sub>2</sub>, y<sub>2</sub>)</code>, where <code>x<sub>1</sub> &lt;= x<sub>2</sub></code>, <code>y<sub>2</sub> &gt;= 0</code>, and the condition <code>x<sub>2</sub> - x<sub>1</sub> &lt;= w</code> <strong>must</strong> be satisfied for each rectangle.</p> <p>A point is considered covered by a rectangle if it lies within or on the boundary of the rectangle.</p> <p>Return an integer denoting the <strong>minimum</strong> number of rectangles needed so that each point is covered by <strong>at least one</strong> rectangle<em>.</em></p> <p><strong>Note:</strong> A point may be covered by more than one rectangle.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3111.Minimum%20Rectangles%20to%20Cover%20Points/images/screenshot-from-2024-03-04-20-33-05.png" style="width: 205px; height: 300px;" /></p> <div class="example-block" style=" border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem; "> <p><strong>Input:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">points = [[2,1],[1,0],[1,4],[1,8],[3,5],[4,6]], w = 1</span></p> <p><strong>Output:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">2</span></p> <p><strong>Explanation: </strong></p> <p>The image above shows one possible placement of rectangles to cover the points:</p> <ul> <li>A rectangle with a lower end at <code>(1, 0)</code> and its upper end at <code>(2, 8)</code></li> <li>A rectangle with a lower end at <code>(3, 0)</code> and its upper end at <code>(4, 8)</code></li> </ul> </div> <p><strong class="example">Example 2:</strong></p> <p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3111.Minimum%20Rectangles%20to%20Cover%20Points/images/screenshot-from-2024-03-04-18-59-12.png" style="width: 260px; height: 250px;" /></p> <div class="example-block" style=" border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem; "> <p><strong>Input:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">points = [[0,0],[1,1],[2,2],[3,3],[4,4],[5,5],[6,6]], w = 2</span></p> <p><strong>Output:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">3</span></p> <p><strong>Explanation: </strong></p> <p>The image above shows one possible placement of rectangles to cover the points:</p> <ul> <li>A rectangle with a lower end at <code>(0, 0)</code> and its upper end at <code>(2, 2)</code></li> <li>A rectangle with a lower end at <code>(3, 0)</code> and its upper end at <code>(5, 5)</code></li> <li>A rectangle with a lower end at <code>(6, 0)</code> and its upper end at <code>(6, 6)</code></li> </ul> </div> <p><strong class="example">Example 3:</strong></p> <p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3111.Minimum%20Rectangles%20to%20Cover%20Points/images/screenshot-from-2024-03-04-20-24-03.png" style="height: 150px; width: 127px;" /></p> <div class="example-block" style=" border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem; "> <p><strong>Input:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">points = [[2,3],[1,2]], w = 0</span></p> <p><strong>Output:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">2</span></p> <p><strong>Explanation: </strong></p> <p>The image above shows one possible placement of rectangles to cover the points:</p> <ul> <li>A rectangle with a lower end at <code>(1, 0)</code> and its upper end at <code>(1, 2)</code></li> <li>A rectangle with a lower end at <code>(2, 0)</code> and its upper end at <code>(2, 3)</code></li> </ul> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= points.length &lt;= 10<sup>5</sup></code></li> <li><code>points[i].length == 2</code></li> <li><code>0 &lt;= x<sub>i</sub> == points[i][0] &lt;= 10<sup>9</sup></code></li> <li><code>0 &lt;= y<sub>i</sub> == points[i][1] &lt;= 10<sup>9</sup></code></li> <li><code>0 &lt;= w &lt;= 10<sup>9</sup></code></li> <li>All pairs <code>(x<sub>i</sub>, y<sub>i</sub>)</code> are distinct.</li> </ul>
Greedy; Array; Sorting
C++
class Solution { public: int minRectanglesToCoverPoints(vector<vector<int>>& points, int w) { sort(points.begin(), points.end()); int ans = 0, x1 = -1; for (const auto& p : points) { int x = p[0]; if (x > x1) { ++ans; x1 = x + w; } } return ans; } };
3,111
Minimum Rectangles to Cover Points
Medium
<p>You are given a 2D integer array <code>points</code>, where <code>points[i] = [x<sub>i</sub>, y<sub>i</sub>]</code>. You are also given an integer <code>w</code>. Your task is to <strong>cover</strong> <strong>all</strong> the given points with rectangles.</p> <p>Each rectangle has its lower end at some point <code>(x<sub>1</sub>, 0)</code> and its upper end at some point <code>(x<sub>2</sub>, y<sub>2</sub>)</code>, where <code>x<sub>1</sub> &lt;= x<sub>2</sub></code>, <code>y<sub>2</sub> &gt;= 0</code>, and the condition <code>x<sub>2</sub> - x<sub>1</sub> &lt;= w</code> <strong>must</strong> be satisfied for each rectangle.</p> <p>A point is considered covered by a rectangle if it lies within or on the boundary of the rectangle.</p> <p>Return an integer denoting the <strong>minimum</strong> number of rectangles needed so that each point is covered by <strong>at least one</strong> rectangle<em>.</em></p> <p><strong>Note:</strong> A point may be covered by more than one rectangle.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3111.Minimum%20Rectangles%20to%20Cover%20Points/images/screenshot-from-2024-03-04-20-33-05.png" style="width: 205px; height: 300px;" /></p> <div class="example-block" style=" border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem; "> <p><strong>Input:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">points = [[2,1],[1,0],[1,4],[1,8],[3,5],[4,6]], w = 1</span></p> <p><strong>Output:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">2</span></p> <p><strong>Explanation: </strong></p> <p>The image above shows one possible placement of rectangles to cover the points:</p> <ul> <li>A rectangle with a lower end at <code>(1, 0)</code> and its upper end at <code>(2, 8)</code></li> <li>A rectangle with a lower end at <code>(3, 0)</code> and its upper end at <code>(4, 8)</code></li> </ul> </div> <p><strong class="example">Example 2:</strong></p> <p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3111.Minimum%20Rectangles%20to%20Cover%20Points/images/screenshot-from-2024-03-04-18-59-12.png" style="width: 260px; height: 250px;" /></p> <div class="example-block" style=" border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem; "> <p><strong>Input:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">points = [[0,0],[1,1],[2,2],[3,3],[4,4],[5,5],[6,6]], w = 2</span></p> <p><strong>Output:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">3</span></p> <p><strong>Explanation: </strong></p> <p>The image above shows one possible placement of rectangles to cover the points:</p> <ul> <li>A rectangle with a lower end at <code>(0, 0)</code> and its upper end at <code>(2, 2)</code></li> <li>A rectangle with a lower end at <code>(3, 0)</code> and its upper end at <code>(5, 5)</code></li> <li>A rectangle with a lower end at <code>(6, 0)</code> and its upper end at <code>(6, 6)</code></li> </ul> </div> <p><strong class="example">Example 3:</strong></p> <p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3111.Minimum%20Rectangles%20to%20Cover%20Points/images/screenshot-from-2024-03-04-20-24-03.png" style="height: 150px; width: 127px;" /></p> <div class="example-block" style=" border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem; "> <p><strong>Input:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">points = [[2,3],[1,2]], w = 0</span></p> <p><strong>Output:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">2</span></p> <p><strong>Explanation: </strong></p> <p>The image above shows one possible placement of rectangles to cover the points:</p> <ul> <li>A rectangle with a lower end at <code>(1, 0)</code> and its upper end at <code>(1, 2)</code></li> <li>A rectangle with a lower end at <code>(2, 0)</code> and its upper end at <code>(2, 3)</code></li> </ul> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= points.length &lt;= 10<sup>5</sup></code></li> <li><code>points[i].length == 2</code></li> <li><code>0 &lt;= x<sub>i</sub> == points[i][0] &lt;= 10<sup>9</sup></code></li> <li><code>0 &lt;= y<sub>i</sub> == points[i][1] &lt;= 10<sup>9</sup></code></li> <li><code>0 &lt;= w &lt;= 10<sup>9</sup></code></li> <li>All pairs <code>(x<sub>i</sub>, y<sub>i</sub>)</code> are distinct.</li> </ul>
Greedy; Array; Sorting
C#
public class Solution { public int MinRectanglesToCoverPoints(int[][] points, int w) { Array.Sort(points, (a, b) => a[0] - b[0]); int ans = 0, x1 = -1; foreach (int[] p in points) { int x = p[0]; if (x > x1) { ans++; x1 = x + w; } } return ans; } }
3,111
Minimum Rectangles to Cover Points
Medium
<p>You are given a 2D integer array <code>points</code>, where <code>points[i] = [x<sub>i</sub>, y<sub>i</sub>]</code>. You are also given an integer <code>w</code>. Your task is to <strong>cover</strong> <strong>all</strong> the given points with rectangles.</p> <p>Each rectangle has its lower end at some point <code>(x<sub>1</sub>, 0)</code> and its upper end at some point <code>(x<sub>2</sub>, y<sub>2</sub>)</code>, where <code>x<sub>1</sub> &lt;= x<sub>2</sub></code>, <code>y<sub>2</sub> &gt;= 0</code>, and the condition <code>x<sub>2</sub> - x<sub>1</sub> &lt;= w</code> <strong>must</strong> be satisfied for each rectangle.</p> <p>A point is considered covered by a rectangle if it lies within or on the boundary of the rectangle.</p> <p>Return an integer denoting the <strong>minimum</strong> number of rectangles needed so that each point is covered by <strong>at least one</strong> rectangle<em>.</em></p> <p><strong>Note:</strong> A point may be covered by more than one rectangle.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3111.Minimum%20Rectangles%20to%20Cover%20Points/images/screenshot-from-2024-03-04-20-33-05.png" style="width: 205px; height: 300px;" /></p> <div class="example-block" style=" border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem; "> <p><strong>Input:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">points = [[2,1],[1,0],[1,4],[1,8],[3,5],[4,6]], w = 1</span></p> <p><strong>Output:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">2</span></p> <p><strong>Explanation: </strong></p> <p>The image above shows one possible placement of rectangles to cover the points:</p> <ul> <li>A rectangle with a lower end at <code>(1, 0)</code> and its upper end at <code>(2, 8)</code></li> <li>A rectangle with a lower end at <code>(3, 0)</code> and its upper end at <code>(4, 8)</code></li> </ul> </div> <p><strong class="example">Example 2:</strong></p> <p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3111.Minimum%20Rectangles%20to%20Cover%20Points/images/screenshot-from-2024-03-04-18-59-12.png" style="width: 260px; height: 250px;" /></p> <div class="example-block" style=" border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem; "> <p><strong>Input:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">points = [[0,0],[1,1],[2,2],[3,3],[4,4],[5,5],[6,6]], w = 2</span></p> <p><strong>Output:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">3</span></p> <p><strong>Explanation: </strong></p> <p>The image above shows one possible placement of rectangles to cover the points:</p> <ul> <li>A rectangle with a lower end at <code>(0, 0)</code> and its upper end at <code>(2, 2)</code></li> <li>A rectangle with a lower end at <code>(3, 0)</code> and its upper end at <code>(5, 5)</code></li> <li>A rectangle with a lower end at <code>(6, 0)</code> and its upper end at <code>(6, 6)</code></li> </ul> </div> <p><strong class="example">Example 3:</strong></p> <p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3111.Minimum%20Rectangles%20to%20Cover%20Points/images/screenshot-from-2024-03-04-20-24-03.png" style="height: 150px; width: 127px;" /></p> <div class="example-block" style=" border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem; "> <p><strong>Input:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">points = [[2,3],[1,2]], w = 0</span></p> <p><strong>Output:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">2</span></p> <p><strong>Explanation: </strong></p> <p>The image above shows one possible placement of rectangles to cover the points:</p> <ul> <li>A rectangle with a lower end at <code>(1, 0)</code> and its upper end at <code>(1, 2)</code></li> <li>A rectangle with a lower end at <code>(2, 0)</code> and its upper end at <code>(2, 3)</code></li> </ul> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= points.length &lt;= 10<sup>5</sup></code></li> <li><code>points[i].length == 2</code></li> <li><code>0 &lt;= x<sub>i</sub> == points[i][0] &lt;= 10<sup>9</sup></code></li> <li><code>0 &lt;= y<sub>i</sub> == points[i][1] &lt;= 10<sup>9</sup></code></li> <li><code>0 &lt;= w &lt;= 10<sup>9</sup></code></li> <li>All pairs <code>(x<sub>i</sub>, y<sub>i</sub>)</code> are distinct.</li> </ul>
Greedy; Array; Sorting
Go
func minRectanglesToCoverPoints(points [][]int, w int) (ans int) { sort.Slice(points, func(i, j int) bool { return points[i][0] < points[j][0] }) x1 := -1 for _, p := range points { if x := p[0]; x > x1 { ans++ x1 = x + w } } return }
3,111
Minimum Rectangles to Cover Points
Medium
<p>You are given a 2D integer array <code>points</code>, where <code>points[i] = [x<sub>i</sub>, y<sub>i</sub>]</code>. You are also given an integer <code>w</code>. Your task is to <strong>cover</strong> <strong>all</strong> the given points with rectangles.</p> <p>Each rectangle has its lower end at some point <code>(x<sub>1</sub>, 0)</code> and its upper end at some point <code>(x<sub>2</sub>, y<sub>2</sub>)</code>, where <code>x<sub>1</sub> &lt;= x<sub>2</sub></code>, <code>y<sub>2</sub> &gt;= 0</code>, and the condition <code>x<sub>2</sub> - x<sub>1</sub> &lt;= w</code> <strong>must</strong> be satisfied for each rectangle.</p> <p>A point is considered covered by a rectangle if it lies within or on the boundary of the rectangle.</p> <p>Return an integer denoting the <strong>minimum</strong> number of rectangles needed so that each point is covered by <strong>at least one</strong> rectangle<em>.</em></p> <p><strong>Note:</strong> A point may be covered by more than one rectangle.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3111.Minimum%20Rectangles%20to%20Cover%20Points/images/screenshot-from-2024-03-04-20-33-05.png" style="width: 205px; height: 300px;" /></p> <div class="example-block" style=" border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem; "> <p><strong>Input:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">points = [[2,1],[1,0],[1,4],[1,8],[3,5],[4,6]], w = 1</span></p> <p><strong>Output:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">2</span></p> <p><strong>Explanation: </strong></p> <p>The image above shows one possible placement of rectangles to cover the points:</p> <ul> <li>A rectangle with a lower end at <code>(1, 0)</code> and its upper end at <code>(2, 8)</code></li> <li>A rectangle with a lower end at <code>(3, 0)</code> and its upper end at <code>(4, 8)</code></li> </ul> </div> <p><strong class="example">Example 2:</strong></p> <p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3111.Minimum%20Rectangles%20to%20Cover%20Points/images/screenshot-from-2024-03-04-18-59-12.png" style="width: 260px; height: 250px;" /></p> <div class="example-block" style=" border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem; "> <p><strong>Input:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">points = [[0,0],[1,1],[2,2],[3,3],[4,4],[5,5],[6,6]], w = 2</span></p> <p><strong>Output:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">3</span></p> <p><strong>Explanation: </strong></p> <p>The image above shows one possible placement of rectangles to cover the points:</p> <ul> <li>A rectangle with a lower end at <code>(0, 0)</code> and its upper end at <code>(2, 2)</code></li> <li>A rectangle with a lower end at <code>(3, 0)</code> and its upper end at <code>(5, 5)</code></li> <li>A rectangle with a lower end at <code>(6, 0)</code> and its upper end at <code>(6, 6)</code></li> </ul> </div> <p><strong class="example">Example 3:</strong></p> <p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3111.Minimum%20Rectangles%20to%20Cover%20Points/images/screenshot-from-2024-03-04-20-24-03.png" style="height: 150px; width: 127px;" /></p> <div class="example-block" style=" border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem; "> <p><strong>Input:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">points = [[2,3],[1,2]], w = 0</span></p> <p><strong>Output:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">2</span></p> <p><strong>Explanation: </strong></p> <p>The image above shows one possible placement of rectangles to cover the points:</p> <ul> <li>A rectangle with a lower end at <code>(1, 0)</code> and its upper end at <code>(1, 2)</code></li> <li>A rectangle with a lower end at <code>(2, 0)</code> and its upper end at <code>(2, 3)</code></li> </ul> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= points.length &lt;= 10<sup>5</sup></code></li> <li><code>points[i].length == 2</code></li> <li><code>0 &lt;= x<sub>i</sub> == points[i][0] &lt;= 10<sup>9</sup></code></li> <li><code>0 &lt;= y<sub>i</sub> == points[i][1] &lt;= 10<sup>9</sup></code></li> <li><code>0 &lt;= w &lt;= 10<sup>9</sup></code></li> <li>All pairs <code>(x<sub>i</sub>, y<sub>i</sub>)</code> are distinct.</li> </ul>
Greedy; Array; Sorting
Java
class Solution { public int minRectanglesToCoverPoints(int[][] points, int w) { Arrays.sort(points, (a, b) -> a[0] - b[0]); int ans = 0, x1 = -1; for (int[] p : points) { int x = p[0]; if (x > x1) { ++ans; x1 = x + w; } } return ans; } }
3,111
Minimum Rectangles to Cover Points
Medium
<p>You are given a 2D integer array <code>points</code>, where <code>points[i] = [x<sub>i</sub>, y<sub>i</sub>]</code>. You are also given an integer <code>w</code>. Your task is to <strong>cover</strong> <strong>all</strong> the given points with rectangles.</p> <p>Each rectangle has its lower end at some point <code>(x<sub>1</sub>, 0)</code> and its upper end at some point <code>(x<sub>2</sub>, y<sub>2</sub>)</code>, where <code>x<sub>1</sub> &lt;= x<sub>2</sub></code>, <code>y<sub>2</sub> &gt;= 0</code>, and the condition <code>x<sub>2</sub> - x<sub>1</sub> &lt;= w</code> <strong>must</strong> be satisfied for each rectangle.</p> <p>A point is considered covered by a rectangle if it lies within or on the boundary of the rectangle.</p> <p>Return an integer denoting the <strong>minimum</strong> number of rectangles needed so that each point is covered by <strong>at least one</strong> rectangle<em>.</em></p> <p><strong>Note:</strong> A point may be covered by more than one rectangle.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3111.Minimum%20Rectangles%20to%20Cover%20Points/images/screenshot-from-2024-03-04-20-33-05.png" style="width: 205px; height: 300px;" /></p> <div class="example-block" style=" border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem; "> <p><strong>Input:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">points = [[2,1],[1,0],[1,4],[1,8],[3,5],[4,6]], w = 1</span></p> <p><strong>Output:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">2</span></p> <p><strong>Explanation: </strong></p> <p>The image above shows one possible placement of rectangles to cover the points:</p> <ul> <li>A rectangle with a lower end at <code>(1, 0)</code> and its upper end at <code>(2, 8)</code></li> <li>A rectangle with a lower end at <code>(3, 0)</code> and its upper end at <code>(4, 8)</code></li> </ul> </div> <p><strong class="example">Example 2:</strong></p> <p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3111.Minimum%20Rectangles%20to%20Cover%20Points/images/screenshot-from-2024-03-04-18-59-12.png" style="width: 260px; height: 250px;" /></p> <div class="example-block" style=" border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem; "> <p><strong>Input:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">points = [[0,0],[1,1],[2,2],[3,3],[4,4],[5,5],[6,6]], w = 2</span></p> <p><strong>Output:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">3</span></p> <p><strong>Explanation: </strong></p> <p>The image above shows one possible placement of rectangles to cover the points:</p> <ul> <li>A rectangle with a lower end at <code>(0, 0)</code> and its upper end at <code>(2, 2)</code></li> <li>A rectangle with a lower end at <code>(3, 0)</code> and its upper end at <code>(5, 5)</code></li> <li>A rectangle with a lower end at <code>(6, 0)</code> and its upper end at <code>(6, 6)</code></li> </ul> </div> <p><strong class="example">Example 3:</strong></p> <p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3111.Minimum%20Rectangles%20to%20Cover%20Points/images/screenshot-from-2024-03-04-20-24-03.png" style="height: 150px; width: 127px;" /></p> <div class="example-block" style=" border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem; "> <p><strong>Input:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">points = [[2,3],[1,2]], w = 0</span></p> <p><strong>Output:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">2</span></p> <p><strong>Explanation: </strong></p> <p>The image above shows one possible placement of rectangles to cover the points:</p> <ul> <li>A rectangle with a lower end at <code>(1, 0)</code> and its upper end at <code>(1, 2)</code></li> <li>A rectangle with a lower end at <code>(2, 0)</code> and its upper end at <code>(2, 3)</code></li> </ul> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= points.length &lt;= 10<sup>5</sup></code></li> <li><code>points[i].length == 2</code></li> <li><code>0 &lt;= x<sub>i</sub> == points[i][0] &lt;= 10<sup>9</sup></code></li> <li><code>0 &lt;= y<sub>i</sub> == points[i][1] &lt;= 10<sup>9</sup></code></li> <li><code>0 &lt;= w &lt;= 10<sup>9</sup></code></li> <li>All pairs <code>(x<sub>i</sub>, y<sub>i</sub>)</code> are distinct.</li> </ul>
Greedy; Array; Sorting
Python
class Solution: def minRectanglesToCoverPoints(self, points: List[List[int]], w: int) -> int: points.sort() ans, x1 = 0, -1 for x, _ in points: if x > x1: ans += 1 x1 = x + w return ans
3,111
Minimum Rectangles to Cover Points
Medium
<p>You are given a 2D integer array <code>points</code>, where <code>points[i] = [x<sub>i</sub>, y<sub>i</sub>]</code>. You are also given an integer <code>w</code>. Your task is to <strong>cover</strong> <strong>all</strong> the given points with rectangles.</p> <p>Each rectangle has its lower end at some point <code>(x<sub>1</sub>, 0)</code> and its upper end at some point <code>(x<sub>2</sub>, y<sub>2</sub>)</code>, where <code>x<sub>1</sub> &lt;= x<sub>2</sub></code>, <code>y<sub>2</sub> &gt;= 0</code>, and the condition <code>x<sub>2</sub> - x<sub>1</sub> &lt;= w</code> <strong>must</strong> be satisfied for each rectangle.</p> <p>A point is considered covered by a rectangle if it lies within or on the boundary of the rectangle.</p> <p>Return an integer denoting the <strong>minimum</strong> number of rectangles needed so that each point is covered by <strong>at least one</strong> rectangle<em>.</em></p> <p><strong>Note:</strong> A point may be covered by more than one rectangle.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3111.Minimum%20Rectangles%20to%20Cover%20Points/images/screenshot-from-2024-03-04-20-33-05.png" style="width: 205px; height: 300px;" /></p> <div class="example-block" style=" border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem; "> <p><strong>Input:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">points = [[2,1],[1,0],[1,4],[1,8],[3,5],[4,6]], w = 1</span></p> <p><strong>Output:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">2</span></p> <p><strong>Explanation: </strong></p> <p>The image above shows one possible placement of rectangles to cover the points:</p> <ul> <li>A rectangle with a lower end at <code>(1, 0)</code> and its upper end at <code>(2, 8)</code></li> <li>A rectangle with a lower end at <code>(3, 0)</code> and its upper end at <code>(4, 8)</code></li> </ul> </div> <p><strong class="example">Example 2:</strong></p> <p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3111.Minimum%20Rectangles%20to%20Cover%20Points/images/screenshot-from-2024-03-04-18-59-12.png" style="width: 260px; height: 250px;" /></p> <div class="example-block" style=" border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem; "> <p><strong>Input:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">points = [[0,0],[1,1],[2,2],[3,3],[4,4],[5,5],[6,6]], w = 2</span></p> <p><strong>Output:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">3</span></p> <p><strong>Explanation: </strong></p> <p>The image above shows one possible placement of rectangles to cover the points:</p> <ul> <li>A rectangle with a lower end at <code>(0, 0)</code> and its upper end at <code>(2, 2)</code></li> <li>A rectangle with a lower end at <code>(3, 0)</code> and its upper end at <code>(5, 5)</code></li> <li>A rectangle with a lower end at <code>(6, 0)</code> and its upper end at <code>(6, 6)</code></li> </ul> </div> <p><strong class="example">Example 3:</strong></p> <p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3111.Minimum%20Rectangles%20to%20Cover%20Points/images/screenshot-from-2024-03-04-20-24-03.png" style="height: 150px; width: 127px;" /></p> <div class="example-block" style=" border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem; "> <p><strong>Input:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">points = [[2,3],[1,2]], w = 0</span></p> <p><strong>Output:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">2</span></p> <p><strong>Explanation: </strong></p> <p>The image above shows one possible placement of rectangles to cover the points:</p> <ul> <li>A rectangle with a lower end at <code>(1, 0)</code> and its upper end at <code>(1, 2)</code></li> <li>A rectangle with a lower end at <code>(2, 0)</code> and its upper end at <code>(2, 3)</code></li> </ul> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= points.length &lt;= 10<sup>5</sup></code></li> <li><code>points[i].length == 2</code></li> <li><code>0 &lt;= x<sub>i</sub> == points[i][0] &lt;= 10<sup>9</sup></code></li> <li><code>0 &lt;= y<sub>i</sub> == points[i][1] &lt;= 10<sup>9</sup></code></li> <li><code>0 &lt;= w &lt;= 10<sup>9</sup></code></li> <li>All pairs <code>(x<sub>i</sub>, y<sub>i</sub>)</code> are distinct.</li> </ul>
Greedy; Array; Sorting
Rust
impl Solution { pub fn min_rectangles_to_cover_points(mut points: Vec<Vec<i32>>, w: i32) -> i32 { points.sort_by(|a, b| a[0].cmp(&b[0])); let mut ans = 0; let mut x1 = -1; for p in points { let x = p[0]; if x > x1 { ans += 1; x1 = x + w; } } ans } }
3,111
Minimum Rectangles to Cover Points
Medium
<p>You are given a 2D integer array <code>points</code>, where <code>points[i] = [x<sub>i</sub>, y<sub>i</sub>]</code>. You are also given an integer <code>w</code>. Your task is to <strong>cover</strong> <strong>all</strong> the given points with rectangles.</p> <p>Each rectangle has its lower end at some point <code>(x<sub>1</sub>, 0)</code> and its upper end at some point <code>(x<sub>2</sub>, y<sub>2</sub>)</code>, where <code>x<sub>1</sub> &lt;= x<sub>2</sub></code>, <code>y<sub>2</sub> &gt;= 0</code>, and the condition <code>x<sub>2</sub> - x<sub>1</sub> &lt;= w</code> <strong>must</strong> be satisfied for each rectangle.</p> <p>A point is considered covered by a rectangle if it lies within or on the boundary of the rectangle.</p> <p>Return an integer denoting the <strong>minimum</strong> number of rectangles needed so that each point is covered by <strong>at least one</strong> rectangle<em>.</em></p> <p><strong>Note:</strong> A point may be covered by more than one rectangle.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3111.Minimum%20Rectangles%20to%20Cover%20Points/images/screenshot-from-2024-03-04-20-33-05.png" style="width: 205px; height: 300px;" /></p> <div class="example-block" style=" border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem; "> <p><strong>Input:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">points = [[2,1],[1,0],[1,4],[1,8],[3,5],[4,6]], w = 1</span></p> <p><strong>Output:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">2</span></p> <p><strong>Explanation: </strong></p> <p>The image above shows one possible placement of rectangles to cover the points:</p> <ul> <li>A rectangle with a lower end at <code>(1, 0)</code> and its upper end at <code>(2, 8)</code></li> <li>A rectangle with a lower end at <code>(3, 0)</code> and its upper end at <code>(4, 8)</code></li> </ul> </div> <p><strong class="example">Example 2:</strong></p> <p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3111.Minimum%20Rectangles%20to%20Cover%20Points/images/screenshot-from-2024-03-04-18-59-12.png" style="width: 260px; height: 250px;" /></p> <div class="example-block" style=" border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem; "> <p><strong>Input:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">points = [[0,0],[1,1],[2,2],[3,3],[4,4],[5,5],[6,6]], w = 2</span></p> <p><strong>Output:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">3</span></p> <p><strong>Explanation: </strong></p> <p>The image above shows one possible placement of rectangles to cover the points:</p> <ul> <li>A rectangle with a lower end at <code>(0, 0)</code> and its upper end at <code>(2, 2)</code></li> <li>A rectangle with a lower end at <code>(3, 0)</code> and its upper end at <code>(5, 5)</code></li> <li>A rectangle with a lower end at <code>(6, 0)</code> and its upper end at <code>(6, 6)</code></li> </ul> </div> <p><strong class="example">Example 3:</strong></p> <p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3111.Minimum%20Rectangles%20to%20Cover%20Points/images/screenshot-from-2024-03-04-20-24-03.png" style="height: 150px; width: 127px;" /></p> <div class="example-block" style=" border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem; "> <p><strong>Input:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">points = [[2,3],[1,2]], w = 0</span></p> <p><strong>Output:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">2</span></p> <p><strong>Explanation: </strong></p> <p>The image above shows one possible placement of rectangles to cover the points:</p> <ul> <li>A rectangle with a lower end at <code>(1, 0)</code> and its upper end at <code>(1, 2)</code></li> <li>A rectangle with a lower end at <code>(2, 0)</code> and its upper end at <code>(2, 3)</code></li> </ul> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= points.length &lt;= 10<sup>5</sup></code></li> <li><code>points[i].length == 2</code></li> <li><code>0 &lt;= x<sub>i</sub> == points[i][0] &lt;= 10<sup>9</sup></code></li> <li><code>0 &lt;= y<sub>i</sub> == points[i][1] &lt;= 10<sup>9</sup></code></li> <li><code>0 &lt;= w &lt;= 10<sup>9</sup></code></li> <li>All pairs <code>(x<sub>i</sub>, y<sub>i</sub>)</code> are distinct.</li> </ul>
Greedy; Array; Sorting
TypeScript
function minRectanglesToCoverPoints(points: number[][], w: number): number { points.sort((a, b) => a[0] - b[0]); let [ans, x1] = [0, -1]; for (const [x, _] of points) { if (x > x1) { ++ans; x1 = x + w; } } return ans; }
3,112
Minimum Time to Visit Disappearing Nodes
Medium
<p>There is an undirected graph of <code>n</code> nodes. You are given a 2D array <code>edges</code>, where <code>edges[i] = [u<sub>i</sub>, v<sub>i</sub>, length<sub>i</sub>]</code> describes an edge between node <code>u<sub>i</sub></code> and node <code>v<sub>i</sub></code> with a traversal time of <code>length<sub>i</sub></code> units.</p> <p>Additionally, you are given an array <code>disappear</code>, where <code>disappear[i]</code> denotes the time when the node <code>i</code> disappears from the graph and you won&#39;t be able to visit it.</p> <p><strong>Note</strong>&nbsp;that the graph might be <em>disconnected</em> and might contain <em>multiple edges</em>.</p> <p>Return the array <code>answer</code>, with <code>answer[i]</code> denoting the <strong>minimum</strong> units of time required to reach node <code>i</code> from node 0. If node <code>i</code> is <strong>unreachable</strong> from node 0 then <code>answer[i]</code> is <code>-1</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">n = 3, edges = [[0,1,2],[1,2,1],[0,2,4]], disappear = [1,1,5]</span></p> <p><strong>Output:</strong> <span class="example-io">[0,-1,4]</span></p> <p><strong>Explanation:</strong></p> <p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3112.Minimum%20Time%20to%20Visit%20Disappearing%20Nodes/images/output-onlinepngtools.png" style="width: 350px; height: 210px;" /></p> <p>We are starting our journey from node 0, and our goal is to find the minimum time required to reach each node before it disappears.</p> <ul> <li>For node 0, we don&#39;t need any time as it is our starting point.</li> <li>For node 1, we need at least 2 units of time to traverse <code>edges[0]</code>. Unfortunately, it disappears at that moment, so we won&#39;t be able to visit it.</li> <li>For node 2, we need at least 4 units of time to traverse <code>edges[2]</code>.</li> </ul> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">n = 3, edges = [[0,1,2],[1,2,1],[0,2,4]], disappear = [1,3,5]</span></p> <p><strong>Output:</strong> <span class="example-io">[0,2,3]</span></p> <p><strong>Explanation:</strong></p> <p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3112.Minimum%20Time%20to%20Visit%20Disappearing%20Nodes/images/output-onlinepngtools-1.png" style="width: 350px; height: 210px;" /></p> <p>We are starting our journey from node 0, and our goal is to find the minimum time required to reach each node before it disappears.</p> <ul> <li>For node 0, we don&#39;t need any time as it is the starting point.</li> <li>For node 1, we need at least 2 units of time to traverse <code>edges[0]</code>.</li> <li>For node 2, we need at least 3 units of time to traverse <code>edges[0]</code> and <code>edges[1]</code>.</li> </ul> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">n = 2, edges = [[0,1,1]], disappear = [1,1]</span></p> <p><strong>Output:</strong> <span class="example-io">[0,-1]</span></p> <p><strong>Explanation:</strong></p> <p>Exactly when we reach node 1, it disappears.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n &lt;= 5 * 10<sup>4</sup></code></li> <li><code>0 &lt;= edges.length &lt;= 10<sup>5</sup></code></li> <li><code>edges[i] == [u<sub>i</sub>, v<sub>i</sub>, length<sub>i</sub>]</code></li> <li><code>0 &lt;= u<sub>i</sub>, v<sub>i</sub> &lt;= n - 1</code></li> <li><code>1 &lt;= length<sub>i</sub> &lt;= 10<sup>5</sup></code></li> <li><code>disappear.length == n</code></li> <li><code>1 &lt;= disappear[i] &lt;= 10<sup>5</sup></code></li> </ul>
Graph; Array; Shortest Path; Heap (Priority Queue)
C++
class Solution { public: vector<int> minimumTime(int n, vector<vector<int>>& edges, vector<int>& disappear) { vector<vector<pair<int, int>>> g(n); for (const auto& e : edges) { int u = e[0], v = e[1], w = e[2]; g[u].push_back({v, w}); g[v].push_back({u, w}); } vector<int> dist(n, 1 << 30); dist[0] = 0; using pii = pair<int, int>; priority_queue<pii, vector<pii>, greater<pii>> pq; pq.push({0, 0}); while (!pq.empty()) { auto [du, u] = pq.top(); pq.pop(); if (du > dist[u]) { continue; } for (auto [v, w] : g[u]) { if (dist[v] > dist[u] + w && dist[u] + w < disappear[v]) { dist[v] = dist[u] + w; pq.push({dist[v], v}); } } } vector<int> ans(n); for (int i = 0; i < n; ++i) { ans[i] = dist[i] < disappear[i] ? dist[i] : -1; } return ans; } };
3,112
Minimum Time to Visit Disappearing Nodes
Medium
<p>There is an undirected graph of <code>n</code> nodes. You are given a 2D array <code>edges</code>, where <code>edges[i] = [u<sub>i</sub>, v<sub>i</sub>, length<sub>i</sub>]</code> describes an edge between node <code>u<sub>i</sub></code> and node <code>v<sub>i</sub></code> with a traversal time of <code>length<sub>i</sub></code> units.</p> <p>Additionally, you are given an array <code>disappear</code>, where <code>disappear[i]</code> denotes the time when the node <code>i</code> disappears from the graph and you won&#39;t be able to visit it.</p> <p><strong>Note</strong>&nbsp;that the graph might be <em>disconnected</em> and might contain <em>multiple edges</em>.</p> <p>Return the array <code>answer</code>, with <code>answer[i]</code> denoting the <strong>minimum</strong> units of time required to reach node <code>i</code> from node 0. If node <code>i</code> is <strong>unreachable</strong> from node 0 then <code>answer[i]</code> is <code>-1</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">n = 3, edges = [[0,1,2],[1,2,1],[0,2,4]], disappear = [1,1,5]</span></p> <p><strong>Output:</strong> <span class="example-io">[0,-1,4]</span></p> <p><strong>Explanation:</strong></p> <p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3112.Minimum%20Time%20to%20Visit%20Disappearing%20Nodes/images/output-onlinepngtools.png" style="width: 350px; height: 210px;" /></p> <p>We are starting our journey from node 0, and our goal is to find the minimum time required to reach each node before it disappears.</p> <ul> <li>For node 0, we don&#39;t need any time as it is our starting point.</li> <li>For node 1, we need at least 2 units of time to traverse <code>edges[0]</code>. Unfortunately, it disappears at that moment, so we won&#39;t be able to visit it.</li> <li>For node 2, we need at least 4 units of time to traverse <code>edges[2]</code>.</li> </ul> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">n = 3, edges = [[0,1,2],[1,2,1],[0,2,4]], disappear = [1,3,5]</span></p> <p><strong>Output:</strong> <span class="example-io">[0,2,3]</span></p> <p><strong>Explanation:</strong></p> <p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3112.Minimum%20Time%20to%20Visit%20Disappearing%20Nodes/images/output-onlinepngtools-1.png" style="width: 350px; height: 210px;" /></p> <p>We are starting our journey from node 0, and our goal is to find the minimum time required to reach each node before it disappears.</p> <ul> <li>For node 0, we don&#39;t need any time as it is the starting point.</li> <li>For node 1, we need at least 2 units of time to traverse <code>edges[0]</code>.</li> <li>For node 2, we need at least 3 units of time to traverse <code>edges[0]</code> and <code>edges[1]</code>.</li> </ul> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">n = 2, edges = [[0,1,1]], disappear = [1,1]</span></p> <p><strong>Output:</strong> <span class="example-io">[0,-1]</span></p> <p><strong>Explanation:</strong></p> <p>Exactly when we reach node 1, it disappears.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n &lt;= 5 * 10<sup>4</sup></code></li> <li><code>0 &lt;= edges.length &lt;= 10<sup>5</sup></code></li> <li><code>edges[i] == [u<sub>i</sub>, v<sub>i</sub>, length<sub>i</sub>]</code></li> <li><code>0 &lt;= u<sub>i</sub>, v<sub>i</sub> &lt;= n - 1</code></li> <li><code>1 &lt;= length<sub>i</sub> &lt;= 10<sup>5</sup></code></li> <li><code>disappear.length == n</code></li> <li><code>1 &lt;= disappear[i] &lt;= 10<sup>5</sup></code></li> </ul>
Graph; Array; Shortest Path; Heap (Priority Queue)
Go
func minimumTime(n int, edges [][]int, disappear []int) []int { g := make([][]pair, n) for _, e := range edges { u, v, w := e[0], e[1], e[2] g[u] = append(g[u], pair{v, w}) g[v] = append(g[v], pair{u, w}) } dist := make([]int, n) for i := range dist { dist[i] = 1 << 30 } dist[0] = 0 pq := hp{{0, 0}} for len(pq) > 0 { du, u := pq[0].dis, pq[0].u heap.Pop(&pq) if du > dist[u] { continue } for _, nxt := range g[u] { v, w := nxt.dis, nxt.u if dist[v] > dist[u]+w && dist[u]+w < disappear[v] { dist[v] = dist[u] + w heap.Push(&pq, pair{dist[v], v}) } } } ans := make([]int, n) for i := 0; i < n; i++ { if dist[i] < disappear[i] { ans[i] = dist[i] } else { ans[i] = -1 } } return ans } type pair struct{ dis, u int } type hp []pair func (h hp) Len() int { return len(h) } func (h hp) Less(i, j int) bool { return h[i].dis < h[j].dis } func (h hp) Swap(i, j int) { h[i], h[j] = h[j], h[i] } func (h *hp) Push(v any) { *h = append(*h, v.(pair)) } func (h *hp) Pop() any { a := *h; v := a[len(a)-1]; *h = a[:len(a)-1]; return v }
3,112
Minimum Time to Visit Disappearing Nodes
Medium
<p>There is an undirected graph of <code>n</code> nodes. You are given a 2D array <code>edges</code>, where <code>edges[i] = [u<sub>i</sub>, v<sub>i</sub>, length<sub>i</sub>]</code> describes an edge between node <code>u<sub>i</sub></code> and node <code>v<sub>i</sub></code> with a traversal time of <code>length<sub>i</sub></code> units.</p> <p>Additionally, you are given an array <code>disappear</code>, where <code>disappear[i]</code> denotes the time when the node <code>i</code> disappears from the graph and you won&#39;t be able to visit it.</p> <p><strong>Note</strong>&nbsp;that the graph might be <em>disconnected</em> and might contain <em>multiple edges</em>.</p> <p>Return the array <code>answer</code>, with <code>answer[i]</code> denoting the <strong>minimum</strong> units of time required to reach node <code>i</code> from node 0. If node <code>i</code> is <strong>unreachable</strong> from node 0 then <code>answer[i]</code> is <code>-1</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">n = 3, edges = [[0,1,2],[1,2,1],[0,2,4]], disappear = [1,1,5]</span></p> <p><strong>Output:</strong> <span class="example-io">[0,-1,4]</span></p> <p><strong>Explanation:</strong></p> <p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3112.Minimum%20Time%20to%20Visit%20Disappearing%20Nodes/images/output-onlinepngtools.png" style="width: 350px; height: 210px;" /></p> <p>We are starting our journey from node 0, and our goal is to find the minimum time required to reach each node before it disappears.</p> <ul> <li>For node 0, we don&#39;t need any time as it is our starting point.</li> <li>For node 1, we need at least 2 units of time to traverse <code>edges[0]</code>. Unfortunately, it disappears at that moment, so we won&#39;t be able to visit it.</li> <li>For node 2, we need at least 4 units of time to traverse <code>edges[2]</code>.</li> </ul> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">n = 3, edges = [[0,1,2],[1,2,1],[0,2,4]], disappear = [1,3,5]</span></p> <p><strong>Output:</strong> <span class="example-io">[0,2,3]</span></p> <p><strong>Explanation:</strong></p> <p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3112.Minimum%20Time%20to%20Visit%20Disappearing%20Nodes/images/output-onlinepngtools-1.png" style="width: 350px; height: 210px;" /></p> <p>We are starting our journey from node 0, and our goal is to find the minimum time required to reach each node before it disappears.</p> <ul> <li>For node 0, we don&#39;t need any time as it is the starting point.</li> <li>For node 1, we need at least 2 units of time to traverse <code>edges[0]</code>.</li> <li>For node 2, we need at least 3 units of time to traverse <code>edges[0]</code> and <code>edges[1]</code>.</li> </ul> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">n = 2, edges = [[0,1,1]], disappear = [1,1]</span></p> <p><strong>Output:</strong> <span class="example-io">[0,-1]</span></p> <p><strong>Explanation:</strong></p> <p>Exactly when we reach node 1, it disappears.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n &lt;= 5 * 10<sup>4</sup></code></li> <li><code>0 &lt;= edges.length &lt;= 10<sup>5</sup></code></li> <li><code>edges[i] == [u<sub>i</sub>, v<sub>i</sub>, length<sub>i</sub>]</code></li> <li><code>0 &lt;= u<sub>i</sub>, v<sub>i</sub> &lt;= n - 1</code></li> <li><code>1 &lt;= length<sub>i</sub> &lt;= 10<sup>5</sup></code></li> <li><code>disappear.length == n</code></li> <li><code>1 &lt;= disappear[i] &lt;= 10<sup>5</sup></code></li> </ul>
Graph; Array; Shortest Path; Heap (Priority Queue)
Java
class Solution { public int[] minimumTime(int n, int[][] edges, int[] disappear) { List<int[]>[] g = new List[n]; Arrays.setAll(g, k -> new ArrayList<>()); for (var e : edges) { int u = e[0], v = e[1], w = e[2]; g[u].add(new int[] {v, w}); g[v].add(new int[] {u, w}); } int[] dist = new int[n]; Arrays.fill(dist, 1 << 30); dist[0] = 0; PriorityQueue<int[]> pq = new PriorityQueue<>((a, b) -> a[0] - b[0]); pq.offer(new int[] {0, 0}); while (!pq.isEmpty()) { var e = pq.poll(); int du = e[0], u = e[1]; if (du > dist[u]) { continue; } for (var nxt : g[u]) { int v = nxt[0], w = nxt[1]; if (dist[v] > dist[u] + w && dist[u] + w < disappear[v]) { dist[v] = dist[u] + w; pq.offer(new int[] {dist[v], v}); } } } int[] ans = new int[n]; for (int i = 0; i < n; ++i) { ans[i] = dist[i] < disappear[i] ? dist[i] : -1; } return ans; } }
3,112
Minimum Time to Visit Disappearing Nodes
Medium
<p>There is an undirected graph of <code>n</code> nodes. You are given a 2D array <code>edges</code>, where <code>edges[i] = [u<sub>i</sub>, v<sub>i</sub>, length<sub>i</sub>]</code> describes an edge between node <code>u<sub>i</sub></code> and node <code>v<sub>i</sub></code> with a traversal time of <code>length<sub>i</sub></code> units.</p> <p>Additionally, you are given an array <code>disappear</code>, where <code>disappear[i]</code> denotes the time when the node <code>i</code> disappears from the graph and you won&#39;t be able to visit it.</p> <p><strong>Note</strong>&nbsp;that the graph might be <em>disconnected</em> and might contain <em>multiple edges</em>.</p> <p>Return the array <code>answer</code>, with <code>answer[i]</code> denoting the <strong>minimum</strong> units of time required to reach node <code>i</code> from node 0. If node <code>i</code> is <strong>unreachable</strong> from node 0 then <code>answer[i]</code> is <code>-1</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">n = 3, edges = [[0,1,2],[1,2,1],[0,2,4]], disappear = [1,1,5]</span></p> <p><strong>Output:</strong> <span class="example-io">[0,-1,4]</span></p> <p><strong>Explanation:</strong></p> <p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3112.Minimum%20Time%20to%20Visit%20Disappearing%20Nodes/images/output-onlinepngtools.png" style="width: 350px; height: 210px;" /></p> <p>We are starting our journey from node 0, and our goal is to find the minimum time required to reach each node before it disappears.</p> <ul> <li>For node 0, we don&#39;t need any time as it is our starting point.</li> <li>For node 1, we need at least 2 units of time to traverse <code>edges[0]</code>. Unfortunately, it disappears at that moment, so we won&#39;t be able to visit it.</li> <li>For node 2, we need at least 4 units of time to traverse <code>edges[2]</code>.</li> </ul> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">n = 3, edges = [[0,1,2],[1,2,1],[0,2,4]], disappear = [1,3,5]</span></p> <p><strong>Output:</strong> <span class="example-io">[0,2,3]</span></p> <p><strong>Explanation:</strong></p> <p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3112.Minimum%20Time%20to%20Visit%20Disappearing%20Nodes/images/output-onlinepngtools-1.png" style="width: 350px; height: 210px;" /></p> <p>We are starting our journey from node 0, and our goal is to find the minimum time required to reach each node before it disappears.</p> <ul> <li>For node 0, we don&#39;t need any time as it is the starting point.</li> <li>For node 1, we need at least 2 units of time to traverse <code>edges[0]</code>.</li> <li>For node 2, we need at least 3 units of time to traverse <code>edges[0]</code> and <code>edges[1]</code>.</li> </ul> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">n = 2, edges = [[0,1,1]], disappear = [1,1]</span></p> <p><strong>Output:</strong> <span class="example-io">[0,-1]</span></p> <p><strong>Explanation:</strong></p> <p>Exactly when we reach node 1, it disappears.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n &lt;= 5 * 10<sup>4</sup></code></li> <li><code>0 &lt;= edges.length &lt;= 10<sup>5</sup></code></li> <li><code>edges[i] == [u<sub>i</sub>, v<sub>i</sub>, length<sub>i</sub>]</code></li> <li><code>0 &lt;= u<sub>i</sub>, v<sub>i</sub> &lt;= n - 1</code></li> <li><code>1 &lt;= length<sub>i</sub> &lt;= 10<sup>5</sup></code></li> <li><code>disappear.length == n</code></li> <li><code>1 &lt;= disappear[i] &lt;= 10<sup>5</sup></code></li> </ul>
Graph; Array; Shortest Path; Heap (Priority Queue)
Python
class Solution: def minimumTime( self, n: int, edges: List[List[int]], disappear: List[int] ) -> List[int]: g = defaultdict(list) for u, v, w in edges: g[u].append((v, w)) g[v].append((u, w)) dist = [inf] * n dist[0] = 0 pq = [(0, 0)] while pq: du, u = heappop(pq) if du > dist[u]: continue for v, w in g[u]: if dist[v] > dist[u] + w and dist[u] + w < disappear[v]: dist[v] = dist[u] + w heappush(pq, (dist[v], v)) return [a if a < b else -1 for a, b in zip(dist, disappear)]
3,112
Minimum Time to Visit Disappearing Nodes
Medium
<p>There is an undirected graph of <code>n</code> nodes. You are given a 2D array <code>edges</code>, where <code>edges[i] = [u<sub>i</sub>, v<sub>i</sub>, length<sub>i</sub>]</code> describes an edge between node <code>u<sub>i</sub></code> and node <code>v<sub>i</sub></code> with a traversal time of <code>length<sub>i</sub></code> units.</p> <p>Additionally, you are given an array <code>disappear</code>, where <code>disappear[i]</code> denotes the time when the node <code>i</code> disappears from the graph and you won&#39;t be able to visit it.</p> <p><strong>Note</strong>&nbsp;that the graph might be <em>disconnected</em> and might contain <em>multiple edges</em>.</p> <p>Return the array <code>answer</code>, with <code>answer[i]</code> denoting the <strong>minimum</strong> units of time required to reach node <code>i</code> from node 0. If node <code>i</code> is <strong>unreachable</strong> from node 0 then <code>answer[i]</code> is <code>-1</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">n = 3, edges = [[0,1,2],[1,2,1],[0,2,4]], disappear = [1,1,5]</span></p> <p><strong>Output:</strong> <span class="example-io">[0,-1,4]</span></p> <p><strong>Explanation:</strong></p> <p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3112.Minimum%20Time%20to%20Visit%20Disappearing%20Nodes/images/output-onlinepngtools.png" style="width: 350px; height: 210px;" /></p> <p>We are starting our journey from node 0, and our goal is to find the minimum time required to reach each node before it disappears.</p> <ul> <li>For node 0, we don&#39;t need any time as it is our starting point.</li> <li>For node 1, we need at least 2 units of time to traverse <code>edges[0]</code>. Unfortunately, it disappears at that moment, so we won&#39;t be able to visit it.</li> <li>For node 2, we need at least 4 units of time to traverse <code>edges[2]</code>.</li> </ul> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">n = 3, edges = [[0,1,2],[1,2,1],[0,2,4]], disappear = [1,3,5]</span></p> <p><strong>Output:</strong> <span class="example-io">[0,2,3]</span></p> <p><strong>Explanation:</strong></p> <p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/3100-3199/3112.Minimum%20Time%20to%20Visit%20Disappearing%20Nodes/images/output-onlinepngtools-1.png" style="width: 350px; height: 210px;" /></p> <p>We are starting our journey from node 0, and our goal is to find the minimum time required to reach each node before it disappears.</p> <ul> <li>For node 0, we don&#39;t need any time as it is the starting point.</li> <li>For node 1, we need at least 2 units of time to traverse <code>edges[0]</code>.</li> <li>For node 2, we need at least 3 units of time to traverse <code>edges[0]</code> and <code>edges[1]</code>.</li> </ul> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">n = 2, edges = [[0,1,1]], disappear = [1,1]</span></p> <p><strong>Output:</strong> <span class="example-io">[0,-1]</span></p> <p><strong>Explanation:</strong></p> <p>Exactly when we reach node 1, it disappears.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n &lt;= 5 * 10<sup>4</sup></code></li> <li><code>0 &lt;= edges.length &lt;= 10<sup>5</sup></code></li> <li><code>edges[i] == [u<sub>i</sub>, v<sub>i</sub>, length<sub>i</sub>]</code></li> <li><code>0 &lt;= u<sub>i</sub>, v<sub>i</sub> &lt;= n - 1</code></li> <li><code>1 &lt;= length<sub>i</sub> &lt;= 10<sup>5</sup></code></li> <li><code>disappear.length == n</code></li> <li><code>1 &lt;= disappear[i] &lt;= 10<sup>5</sup></code></li> </ul>
Graph; Array; Shortest Path; Heap (Priority Queue)
TypeScript
function minimumTime(n: number, edges: number[][], disappear: number[]): number[] { const g: [number, number][][] = Array.from({ length: n }, () => []); for (const [u, v, w] of edges) { g[u].push([v, w]); g[v].push([u, w]); } const dist = Array.from({ length: n }, () => Infinity); dist[0] = 0; const pq = new PriorityQueue({ compare: (a, b) => (a[0] === b[0] ? a[1] - b[1] : a[0] - b[0]), }); pq.enqueue([0, 0]); while (pq.size() > 0) { const [du, u] = pq.dequeue()!; if (du > dist[u]) { continue; } for (const [v, w] of g[u]) { if (dist[v] > dist[u] + w && dist[u] + w < disappear[v]) { dist[v] = dist[u] + w; pq.enqueue([dist[v], v]); } } } return dist.map((a, i) => (a < disappear[i] ? a : -1)); }
3,113
Find the Number of Subarrays Where Boundary Elements Are Maximum
Hard
<p>You are given an array of <strong>positive</strong> integers <code>nums</code>.</p> <p>Return the number of <span data-keyword="subarray-nonempty">subarrays</span> of <code>nums</code>, where the <strong>first</strong> and the <strong>last</strong> elements of the subarray are <em>equal</em> to the <strong>largest</strong> element in the subarray.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1,4,3,3,2]</span></p> <p><strong>Output:</strong> <span class="example-io">6</span></p> <p><strong>Explanation:</strong></p> <p>There are 6 subarrays which have the first and the last elements equal to the largest element of the subarray:</p> <ul> <li>subarray <code>[<strong><u>1</u></strong>,4,3,3,2]</code>, with its largest element 1. The first element is 1 and the last element is also 1.</li> <li>subarray <code>[1,<u><strong>4</strong></u>,3,3,2]</code>, with its largest element 4. The first element is 4 and the last element is also 4.</li> <li>subarray <code>[1,4,<u><strong>3</strong></u>,3,2]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[1,4,3,<u><strong>3</strong></u>,2]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[1,4,3,3,<u><strong>2</strong></u>]</code>, with its largest element 2. The first element is 2 and the last element is also 2.</li> <li>subarray <code>[1,4,<u><strong>3,3</strong></u>,2]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> </ul> <p>Hence, we return 6.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [3,3,3]</span></p> <p><strong>Output:</strong> <span class="example-io">6</span></p> <p><strong>Explanation:</strong></p> <p>There are 6 subarrays which have the first and the last elements equal to the largest element of the subarray:</p> <ul> <li>subarray <code>[<u><strong>3</strong></u>,3,3]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[3,<strong><u>3</u></strong>,3]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[3,3,<u><strong>3</strong></u>]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[<strong><u>3,3</u></strong>,3]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[3,<u><strong>3,3</strong></u>]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[<u><strong>3,3,3</strong></u>]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> </ul> <p>Hence, we return 6.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1]</span></p> <p><strong>Output:</strong> <span class="example-io">1</span></p> <p><strong>Explanation:</strong></p> <p>There is a single subarray of <code>nums</code> which is <code>[<strong><u>1</u></strong>]</code>, with its largest element 1. The first element is 1 and the last element is also 1.</p> <p>Hence, we return 1.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= nums[i] &lt;= 10<sup>9</sup></code></li> </ul>
Stack; Array; Binary Search; Monotonic Stack
C++
class Solution { public: long long numberOfSubarrays(vector<int>& nums) { vector<pair<int, int>> stk; long long ans = 0; for (int x : nums) { while (!stk.empty() && stk.back().first < x) { stk.pop_back(); } if (stk.empty() || stk.back().first > x) { stk.push_back(make_pair(x, 1)); } else { stk.back().second++; } ans += stk.back().second; } return ans; } };
3,113
Find the Number of Subarrays Where Boundary Elements Are Maximum
Hard
<p>You are given an array of <strong>positive</strong> integers <code>nums</code>.</p> <p>Return the number of <span data-keyword="subarray-nonempty">subarrays</span> of <code>nums</code>, where the <strong>first</strong> and the <strong>last</strong> elements of the subarray are <em>equal</em> to the <strong>largest</strong> element in the subarray.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1,4,3,3,2]</span></p> <p><strong>Output:</strong> <span class="example-io">6</span></p> <p><strong>Explanation:</strong></p> <p>There are 6 subarrays which have the first and the last elements equal to the largest element of the subarray:</p> <ul> <li>subarray <code>[<strong><u>1</u></strong>,4,3,3,2]</code>, with its largest element 1. The first element is 1 and the last element is also 1.</li> <li>subarray <code>[1,<u><strong>4</strong></u>,3,3,2]</code>, with its largest element 4. The first element is 4 and the last element is also 4.</li> <li>subarray <code>[1,4,<u><strong>3</strong></u>,3,2]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[1,4,3,<u><strong>3</strong></u>,2]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[1,4,3,3,<u><strong>2</strong></u>]</code>, with its largest element 2. The first element is 2 and the last element is also 2.</li> <li>subarray <code>[1,4,<u><strong>3,3</strong></u>,2]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> </ul> <p>Hence, we return 6.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [3,3,3]</span></p> <p><strong>Output:</strong> <span class="example-io">6</span></p> <p><strong>Explanation:</strong></p> <p>There are 6 subarrays which have the first and the last elements equal to the largest element of the subarray:</p> <ul> <li>subarray <code>[<u><strong>3</strong></u>,3,3]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[3,<strong><u>3</u></strong>,3]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[3,3,<u><strong>3</strong></u>]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[<strong><u>3,3</u></strong>,3]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[3,<u><strong>3,3</strong></u>]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[<u><strong>3,3,3</strong></u>]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> </ul> <p>Hence, we return 6.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1]</span></p> <p><strong>Output:</strong> <span class="example-io">1</span></p> <p><strong>Explanation:</strong></p> <p>There is a single subarray of <code>nums</code> which is <code>[<strong><u>1</u></strong>]</code>, with its largest element 1. The first element is 1 and the last element is also 1.</p> <p>Hence, we return 1.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= nums[i] &lt;= 10<sup>9</sup></code></li> </ul>
Stack; Array; Binary Search; Monotonic Stack
Go
func numberOfSubarrays(nums []int) (ans int64) { stk := [][2]int{} for _, x := range nums { for len(stk) > 0 && stk[len(stk)-1][0] < x { stk = stk[:len(stk)-1] } if len(stk) == 0 || stk[len(stk)-1][0] > x { stk = append(stk, [2]int{x, 1}) } else { stk[len(stk)-1][1]++ } ans += int64(stk[len(stk)-1][1]) } return }
3,113
Find the Number of Subarrays Where Boundary Elements Are Maximum
Hard
<p>You are given an array of <strong>positive</strong> integers <code>nums</code>.</p> <p>Return the number of <span data-keyword="subarray-nonempty">subarrays</span> of <code>nums</code>, where the <strong>first</strong> and the <strong>last</strong> elements of the subarray are <em>equal</em> to the <strong>largest</strong> element in the subarray.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1,4,3,3,2]</span></p> <p><strong>Output:</strong> <span class="example-io">6</span></p> <p><strong>Explanation:</strong></p> <p>There are 6 subarrays which have the first and the last elements equal to the largest element of the subarray:</p> <ul> <li>subarray <code>[<strong><u>1</u></strong>,4,3,3,2]</code>, with its largest element 1. The first element is 1 and the last element is also 1.</li> <li>subarray <code>[1,<u><strong>4</strong></u>,3,3,2]</code>, with its largest element 4. The first element is 4 and the last element is also 4.</li> <li>subarray <code>[1,4,<u><strong>3</strong></u>,3,2]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[1,4,3,<u><strong>3</strong></u>,2]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[1,4,3,3,<u><strong>2</strong></u>]</code>, with its largest element 2. The first element is 2 and the last element is also 2.</li> <li>subarray <code>[1,4,<u><strong>3,3</strong></u>,2]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> </ul> <p>Hence, we return 6.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [3,3,3]</span></p> <p><strong>Output:</strong> <span class="example-io">6</span></p> <p><strong>Explanation:</strong></p> <p>There are 6 subarrays which have the first and the last elements equal to the largest element of the subarray:</p> <ul> <li>subarray <code>[<u><strong>3</strong></u>,3,3]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[3,<strong><u>3</u></strong>,3]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[3,3,<u><strong>3</strong></u>]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[<strong><u>3,3</u></strong>,3]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[3,<u><strong>3,3</strong></u>]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[<u><strong>3,3,3</strong></u>]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> </ul> <p>Hence, we return 6.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1]</span></p> <p><strong>Output:</strong> <span class="example-io">1</span></p> <p><strong>Explanation:</strong></p> <p>There is a single subarray of <code>nums</code> which is <code>[<strong><u>1</u></strong>]</code>, with its largest element 1. The first element is 1 and the last element is also 1.</p> <p>Hence, we return 1.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= nums[i] &lt;= 10<sup>9</sup></code></li> </ul>
Stack; Array; Binary Search; Monotonic Stack
Java
class Solution { public long numberOfSubarrays(int[] nums) { Deque<int[]> stk = new ArrayDeque<>(); long ans = 0; for (int x : nums) { while (!stk.isEmpty() && stk.peek()[0] < x) { stk.pop(); } if (stk.isEmpty() || stk.peek()[0] > x) { stk.push(new int[] {x, 1}); } else { stk.peek()[1]++; } ans += stk.peek()[1]; } return ans; } }
3,113
Find the Number of Subarrays Where Boundary Elements Are Maximum
Hard
<p>You are given an array of <strong>positive</strong> integers <code>nums</code>.</p> <p>Return the number of <span data-keyword="subarray-nonempty">subarrays</span> of <code>nums</code>, where the <strong>first</strong> and the <strong>last</strong> elements of the subarray are <em>equal</em> to the <strong>largest</strong> element in the subarray.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1,4,3,3,2]</span></p> <p><strong>Output:</strong> <span class="example-io">6</span></p> <p><strong>Explanation:</strong></p> <p>There are 6 subarrays which have the first and the last elements equal to the largest element of the subarray:</p> <ul> <li>subarray <code>[<strong><u>1</u></strong>,4,3,3,2]</code>, with its largest element 1. The first element is 1 and the last element is also 1.</li> <li>subarray <code>[1,<u><strong>4</strong></u>,3,3,2]</code>, with its largest element 4. The first element is 4 and the last element is also 4.</li> <li>subarray <code>[1,4,<u><strong>3</strong></u>,3,2]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[1,4,3,<u><strong>3</strong></u>,2]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[1,4,3,3,<u><strong>2</strong></u>]</code>, with its largest element 2. The first element is 2 and the last element is also 2.</li> <li>subarray <code>[1,4,<u><strong>3,3</strong></u>,2]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> </ul> <p>Hence, we return 6.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [3,3,3]</span></p> <p><strong>Output:</strong> <span class="example-io">6</span></p> <p><strong>Explanation:</strong></p> <p>There are 6 subarrays which have the first and the last elements equal to the largest element of the subarray:</p> <ul> <li>subarray <code>[<u><strong>3</strong></u>,3,3]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[3,<strong><u>3</u></strong>,3]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[3,3,<u><strong>3</strong></u>]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[<strong><u>3,3</u></strong>,3]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[3,<u><strong>3,3</strong></u>]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[<u><strong>3,3,3</strong></u>]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> </ul> <p>Hence, we return 6.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1]</span></p> <p><strong>Output:</strong> <span class="example-io">1</span></p> <p><strong>Explanation:</strong></p> <p>There is a single subarray of <code>nums</code> which is <code>[<strong><u>1</u></strong>]</code>, with its largest element 1. The first element is 1 and the last element is also 1.</p> <p>Hence, we return 1.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= nums[i] &lt;= 10<sup>9</sup></code></li> </ul>
Stack; Array; Binary Search; Monotonic Stack
Python
class Solution: def numberOfSubarrays(self, nums: List[int]) -> int: stk = [] ans = 0 for x in nums: while stk and stk[-1][0] < x: stk.pop() if not stk or stk[-1][0] > x: stk.append([x, 1]) else: stk[-1][1] += 1 ans += stk[-1][1] return ans
3,113
Find the Number of Subarrays Where Boundary Elements Are Maximum
Hard
<p>You are given an array of <strong>positive</strong> integers <code>nums</code>.</p> <p>Return the number of <span data-keyword="subarray-nonempty">subarrays</span> of <code>nums</code>, where the <strong>first</strong> and the <strong>last</strong> elements of the subarray are <em>equal</em> to the <strong>largest</strong> element in the subarray.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1,4,3,3,2]</span></p> <p><strong>Output:</strong> <span class="example-io">6</span></p> <p><strong>Explanation:</strong></p> <p>There are 6 subarrays which have the first and the last elements equal to the largest element of the subarray:</p> <ul> <li>subarray <code>[<strong><u>1</u></strong>,4,3,3,2]</code>, with its largest element 1. The first element is 1 and the last element is also 1.</li> <li>subarray <code>[1,<u><strong>4</strong></u>,3,3,2]</code>, with its largest element 4. The first element is 4 and the last element is also 4.</li> <li>subarray <code>[1,4,<u><strong>3</strong></u>,3,2]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[1,4,3,<u><strong>3</strong></u>,2]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[1,4,3,3,<u><strong>2</strong></u>]</code>, with its largest element 2. The first element is 2 and the last element is also 2.</li> <li>subarray <code>[1,4,<u><strong>3,3</strong></u>,2]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> </ul> <p>Hence, we return 6.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [3,3,3]</span></p> <p><strong>Output:</strong> <span class="example-io">6</span></p> <p><strong>Explanation:</strong></p> <p>There are 6 subarrays which have the first and the last elements equal to the largest element of the subarray:</p> <ul> <li>subarray <code>[<u><strong>3</strong></u>,3,3]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[3,<strong><u>3</u></strong>,3]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[3,3,<u><strong>3</strong></u>]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[<strong><u>3,3</u></strong>,3]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[3,<u><strong>3,3</strong></u>]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> <li>subarray <code>[<u><strong>3,3,3</strong></u>]</code>, with its largest element 3. The first element is 3 and the last element is also 3.</li> </ul> <p>Hence, we return 6.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1]</span></p> <p><strong>Output:</strong> <span class="example-io">1</span></p> <p><strong>Explanation:</strong></p> <p>There is a single subarray of <code>nums</code> which is <code>[<strong><u>1</u></strong>]</code>, with its largest element 1. The first element is 1 and the last element is also 1.</p> <p>Hence, we return 1.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= nums[i] &lt;= 10<sup>9</sup></code></li> </ul>
Stack; Array; Binary Search; Monotonic Stack
TypeScript
function numberOfSubarrays(nums: number[]): number { const stk: number[][] = []; let ans = 0; for (const x of nums) { while (stk.length > 0 && stk.at(-1)![0] < x) { stk.pop(); } if (stk.length === 0 || stk.at(-1)![0] > x) { stk.push([x, 1]); } else { stk.at(-1)![1]++; } ans += stk.at(-1)![1]; } return ans; }
3,114
Latest Time You Can Obtain After Replacing Characters
Easy
<p>You are given a string <code>s</code> representing a 12-hour format time where some of the digits (possibly none) are replaced with a <code>&quot;?&quot;</code>.</p> <p>12-hour times are formatted as <code>&quot;HH:MM&quot;</code>, where <code>HH</code> is between <code>00</code> and <code>11</code>, and <code>MM</code> is between <code>00</code> and <code>59</code>. The earliest 12-hour time is <code>00:00</code>, and the latest is <code>11:59</code>.</p> <p>You have to replace <strong>all</strong> the <code>&quot;?&quot;</code> characters in <code>s</code> with digits such that the time we obtain by the resulting string is a <strong>valid</strong> 12-hour format time and is the <strong>latest</strong> possible.</p> <p>Return <em>the resulting string</em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;1?:?4&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">&quot;11:54&quot;</span></p> <p><strong>Explanation:</strong> The latest 12-hour format time we can achieve by replacing <code>&quot;?&quot;</code> characters is <code>&quot;11:54&quot;</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;0?:5?&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">&quot;09:59&quot;</span></p> <p><strong>Explanation:</strong> The latest 12-hour format time we can achieve by replacing <code>&quot;?&quot;</code> characters is <code>&quot;09:59&quot;</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>s.length == 5</code></li> <li><code>s[2]</code> is equal to the character <code>&quot;:&quot;</code>.</li> <li>All characters except <code>s[2]</code> are digits or <code>&quot;?&quot;</code> characters.</li> <li>The input is generated such that there is <strong>at least</strong> one time between <code>&quot;00:00&quot;</code> and <code>&quot;11:59&quot;</code> that you can obtain after replacing the <code>&quot;?&quot;</code> characters.</li> </ul>
String; Enumeration
C++
class Solution { public: string findLatestTime(string s) { for (int h = 11;; h--) { for (int m = 59; m >= 0; m--) { char t[6]; sprintf(t, "%02d:%02d", h, m); bool ok = true; for (int i = 0; i < s.length(); i++) { if (s[i] != '?' && s[i] != t[i]) { ok = false; break; } } if (ok) { return t; } } } } };
3,114
Latest Time You Can Obtain After Replacing Characters
Easy
<p>You are given a string <code>s</code> representing a 12-hour format time where some of the digits (possibly none) are replaced with a <code>&quot;?&quot;</code>.</p> <p>12-hour times are formatted as <code>&quot;HH:MM&quot;</code>, where <code>HH</code> is between <code>00</code> and <code>11</code>, and <code>MM</code> is between <code>00</code> and <code>59</code>. The earliest 12-hour time is <code>00:00</code>, and the latest is <code>11:59</code>.</p> <p>You have to replace <strong>all</strong> the <code>&quot;?&quot;</code> characters in <code>s</code> with digits such that the time we obtain by the resulting string is a <strong>valid</strong> 12-hour format time and is the <strong>latest</strong> possible.</p> <p>Return <em>the resulting string</em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;1?:?4&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">&quot;11:54&quot;</span></p> <p><strong>Explanation:</strong> The latest 12-hour format time we can achieve by replacing <code>&quot;?&quot;</code> characters is <code>&quot;11:54&quot;</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;0?:5?&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">&quot;09:59&quot;</span></p> <p><strong>Explanation:</strong> The latest 12-hour format time we can achieve by replacing <code>&quot;?&quot;</code> characters is <code>&quot;09:59&quot;</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>s.length == 5</code></li> <li><code>s[2]</code> is equal to the character <code>&quot;:&quot;</code>.</li> <li>All characters except <code>s[2]</code> are digits or <code>&quot;?&quot;</code> characters.</li> <li>The input is generated such that there is <strong>at least</strong> one time between <code>&quot;00:00&quot;</code> and <code>&quot;11:59&quot;</code> that you can obtain after replacing the <code>&quot;?&quot;</code> characters.</li> </ul>
String; Enumeration
Go
func findLatestTime(s string) string { for h := 11; ; h-- { for m := 59; m >= 0; m-- { t := fmt.Sprintf("%02d:%02d", h, m) ok := true for i := 0; i < len(s); i++ { if s[i] != '?' && s[i] != t[i] { ok = false break } } if ok { return t } } } }
3,114
Latest Time You Can Obtain After Replacing Characters
Easy
<p>You are given a string <code>s</code> representing a 12-hour format time where some of the digits (possibly none) are replaced with a <code>&quot;?&quot;</code>.</p> <p>12-hour times are formatted as <code>&quot;HH:MM&quot;</code>, where <code>HH</code> is between <code>00</code> and <code>11</code>, and <code>MM</code> is between <code>00</code> and <code>59</code>. The earliest 12-hour time is <code>00:00</code>, and the latest is <code>11:59</code>.</p> <p>You have to replace <strong>all</strong> the <code>&quot;?&quot;</code> characters in <code>s</code> with digits such that the time we obtain by the resulting string is a <strong>valid</strong> 12-hour format time and is the <strong>latest</strong> possible.</p> <p>Return <em>the resulting string</em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;1?:?4&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">&quot;11:54&quot;</span></p> <p><strong>Explanation:</strong> The latest 12-hour format time we can achieve by replacing <code>&quot;?&quot;</code> characters is <code>&quot;11:54&quot;</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;0?:5?&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">&quot;09:59&quot;</span></p> <p><strong>Explanation:</strong> The latest 12-hour format time we can achieve by replacing <code>&quot;?&quot;</code> characters is <code>&quot;09:59&quot;</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>s.length == 5</code></li> <li><code>s[2]</code> is equal to the character <code>&quot;:&quot;</code>.</li> <li>All characters except <code>s[2]</code> are digits or <code>&quot;?&quot;</code> characters.</li> <li>The input is generated such that there is <strong>at least</strong> one time between <code>&quot;00:00&quot;</code> and <code>&quot;11:59&quot;</code> that you can obtain after replacing the <code>&quot;?&quot;</code> characters.</li> </ul>
String; Enumeration
Java
class Solution { public String findLatestTime(String s) { for (int h = 11;; h--) { for (int m = 59; m >= 0; m--) { String t = String.format("%02d:%02d", h, m); boolean ok = true; for (int i = 0; i < s.length(); i++) { if (s.charAt(i) != '?' && s.charAt(i) != t.charAt(i)) { ok = false; break; } } if (ok) { return t; } } } } }
3,114
Latest Time You Can Obtain After Replacing Characters
Easy
<p>You are given a string <code>s</code> representing a 12-hour format time where some of the digits (possibly none) are replaced with a <code>&quot;?&quot;</code>.</p> <p>12-hour times are formatted as <code>&quot;HH:MM&quot;</code>, where <code>HH</code> is between <code>00</code> and <code>11</code>, and <code>MM</code> is between <code>00</code> and <code>59</code>. The earliest 12-hour time is <code>00:00</code>, and the latest is <code>11:59</code>.</p> <p>You have to replace <strong>all</strong> the <code>&quot;?&quot;</code> characters in <code>s</code> with digits such that the time we obtain by the resulting string is a <strong>valid</strong> 12-hour format time and is the <strong>latest</strong> possible.</p> <p>Return <em>the resulting string</em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;1?:?4&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">&quot;11:54&quot;</span></p> <p><strong>Explanation:</strong> The latest 12-hour format time we can achieve by replacing <code>&quot;?&quot;</code> characters is <code>&quot;11:54&quot;</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;0?:5?&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">&quot;09:59&quot;</span></p> <p><strong>Explanation:</strong> The latest 12-hour format time we can achieve by replacing <code>&quot;?&quot;</code> characters is <code>&quot;09:59&quot;</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>s.length == 5</code></li> <li><code>s[2]</code> is equal to the character <code>&quot;:&quot;</code>.</li> <li>All characters except <code>s[2]</code> are digits or <code>&quot;?&quot;</code> characters.</li> <li>The input is generated such that there is <strong>at least</strong> one time between <code>&quot;00:00&quot;</code> and <code>&quot;11:59&quot;</code> that you can obtain after replacing the <code>&quot;?&quot;</code> characters.</li> </ul>
String; Enumeration
Python
class Solution: def findLatestTime(self, s: str) -> str: for h in range(11, -1, -1): for m in range(59, -1, -1): t = f"{h:02d}:{m:02d}" if all(a == b for a, b in zip(s, t) if a != "?"): return t
3,114
Latest Time You Can Obtain After Replacing Characters
Easy
<p>You are given a string <code>s</code> representing a 12-hour format time where some of the digits (possibly none) are replaced with a <code>&quot;?&quot;</code>.</p> <p>12-hour times are formatted as <code>&quot;HH:MM&quot;</code>, where <code>HH</code> is between <code>00</code> and <code>11</code>, and <code>MM</code> is between <code>00</code> and <code>59</code>. The earliest 12-hour time is <code>00:00</code>, and the latest is <code>11:59</code>.</p> <p>You have to replace <strong>all</strong> the <code>&quot;?&quot;</code> characters in <code>s</code> with digits such that the time we obtain by the resulting string is a <strong>valid</strong> 12-hour format time and is the <strong>latest</strong> possible.</p> <p>Return <em>the resulting string</em>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;1?:?4&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">&quot;11:54&quot;</span></p> <p><strong>Explanation:</strong> The latest 12-hour format time we can achieve by replacing <code>&quot;?&quot;</code> characters is <code>&quot;11:54&quot;</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">s = &quot;0?:5?&quot;</span></p> <p><strong>Output:</strong> <span class="example-io">&quot;09:59&quot;</span></p> <p><strong>Explanation:</strong> The latest 12-hour format time we can achieve by replacing <code>&quot;?&quot;</code> characters is <code>&quot;09:59&quot;</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>s.length == 5</code></li> <li><code>s[2]</code> is equal to the character <code>&quot;:&quot;</code>.</li> <li>All characters except <code>s[2]</code> are digits or <code>&quot;?&quot;</code> characters.</li> <li>The input is generated such that there is <strong>at least</strong> one time between <code>&quot;00:00&quot;</code> and <code>&quot;11:59&quot;</code> that you can obtain after replacing the <code>&quot;?&quot;</code> characters.</li> </ul>
String; Enumeration
TypeScript
function findLatestTime(s: string): string { for (let h = 11; ; h--) { for (let m = 59; m >= 0; m--) { const t: string = `${h.toString().padStart(2, '0')}:${m.toString().padStart(2, '0')}`; let ok: boolean = true; for (let i = 0; i < s.length; i++) { if (s[i] !== '?' && s[i] !== t[i]) { ok = false; break; } } if (ok) { return t; } } } }
3,115
Maximum Prime Difference
Medium
<p>You are given an integer array <code>nums</code>.</p> <p>Return an integer that is the <strong>maximum</strong> distance between the <strong>indices</strong> of two (not necessarily different) prime numbers in <code>nums</code><em>.</em></p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [4,2,9,5,3]</span></p> <p><strong>Output:</strong> <span class="example-io">3</span></p> <p><strong>Explanation:</strong> <code>nums[1]</code>, <code>nums[3]</code>, and <code>nums[4]</code> are prime. So the answer is <code>|4 - 1| = 3</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [4,8,2,8]</span></p> <p><strong>Output:</strong> <span class="example-io">0</span></p> <p><strong>Explanation:</strong> <code>nums[2]</code> is prime. Because there is just one prime number, the answer is <code>|2 - 2| = 0</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 3 * 10<sup>5</sup></code></li> <li><code>1 &lt;= nums[i] &lt;= 100</code></li> <li>The input is generated such that the number of prime numbers in the <code>nums</code> is at least one.</li> </ul>
Array; Math; Number Theory
C++
class Solution { public: int maximumPrimeDifference(vector<int>& nums) { for (int i = 0;; ++i) { if (isPrime(nums[i])) { for (int j = nums.size() - 1;; --j) { if (isPrime(nums[j])) { return j - i; } } } } } bool isPrime(int n) { if (n < 2) { return false; } for (int i = 2; i <= n / i; ++i) { if (n % i == 0) { return false; } } return true; } };
3,115
Maximum Prime Difference
Medium
<p>You are given an integer array <code>nums</code>.</p> <p>Return an integer that is the <strong>maximum</strong> distance between the <strong>indices</strong> of two (not necessarily different) prime numbers in <code>nums</code><em>.</em></p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [4,2,9,5,3]</span></p> <p><strong>Output:</strong> <span class="example-io">3</span></p> <p><strong>Explanation:</strong> <code>nums[1]</code>, <code>nums[3]</code>, and <code>nums[4]</code> are prime. So the answer is <code>|4 - 1| = 3</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [4,8,2,8]</span></p> <p><strong>Output:</strong> <span class="example-io">0</span></p> <p><strong>Explanation:</strong> <code>nums[2]</code> is prime. Because there is just one prime number, the answer is <code>|2 - 2| = 0</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 3 * 10<sup>5</sup></code></li> <li><code>1 &lt;= nums[i] &lt;= 100</code></li> <li>The input is generated such that the number of prime numbers in the <code>nums</code> is at least one.</li> </ul>
Array; Math; Number Theory
Go
func maximumPrimeDifference(nums []int) int { for i := 0; ; i++ { if isPrime(nums[i]) { for j := len(nums) - 1; ; j-- { if isPrime(nums[j]) { return j - i } } } } } func isPrime(n int) bool { if n < 2 { return false } for i := 2; i <= n/i; i++ { if n%i == 0 { return false } } return true }
3,115
Maximum Prime Difference
Medium
<p>You are given an integer array <code>nums</code>.</p> <p>Return an integer that is the <strong>maximum</strong> distance between the <strong>indices</strong> of two (not necessarily different) prime numbers in <code>nums</code><em>.</em></p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [4,2,9,5,3]</span></p> <p><strong>Output:</strong> <span class="example-io">3</span></p> <p><strong>Explanation:</strong> <code>nums[1]</code>, <code>nums[3]</code>, and <code>nums[4]</code> are prime. So the answer is <code>|4 - 1| = 3</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [4,8,2,8]</span></p> <p><strong>Output:</strong> <span class="example-io">0</span></p> <p><strong>Explanation:</strong> <code>nums[2]</code> is prime. Because there is just one prime number, the answer is <code>|2 - 2| = 0</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 3 * 10<sup>5</sup></code></li> <li><code>1 &lt;= nums[i] &lt;= 100</code></li> <li>The input is generated such that the number of prime numbers in the <code>nums</code> is at least one.</li> </ul>
Array; Math; Number Theory
Java
class Solution { public int maximumPrimeDifference(int[] nums) { for (int i = 0;; ++i) { if (isPrime(nums[i])) { for (int j = nums.length - 1;; --j) { if (isPrime(nums[j])) { return j - i; } } } } } private boolean isPrime(int x) { if (x < 2) { return false; } for (int v = 2; v * v <= x; ++v) { if (x % v == 0) { return false; } } return true; } }
3,115
Maximum Prime Difference
Medium
<p>You are given an integer array <code>nums</code>.</p> <p>Return an integer that is the <strong>maximum</strong> distance between the <strong>indices</strong> of two (not necessarily different) prime numbers in <code>nums</code><em>.</em></p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [4,2,9,5,3]</span></p> <p><strong>Output:</strong> <span class="example-io">3</span></p> <p><strong>Explanation:</strong> <code>nums[1]</code>, <code>nums[3]</code>, and <code>nums[4]</code> are prime. So the answer is <code>|4 - 1| = 3</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [4,8,2,8]</span></p> <p><strong>Output:</strong> <span class="example-io">0</span></p> <p><strong>Explanation:</strong> <code>nums[2]</code> is prime. Because there is just one prime number, the answer is <code>|2 - 2| = 0</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 3 * 10<sup>5</sup></code></li> <li><code>1 &lt;= nums[i] &lt;= 100</code></li> <li>The input is generated such that the number of prime numbers in the <code>nums</code> is at least one.</li> </ul>
Array; Math; Number Theory
Python
class Solution: def maximumPrimeDifference(self, nums: List[int]) -> int: def is_prime(x: int) -> bool: if x < 2: return False return all(x % i for i in range(2, int(sqrt(x)) + 1)) for i, x in enumerate(nums): if is_prime(x): for j in range(len(nums) - 1, i - 1, -1): if is_prime(nums[j]): return j - i
3,115
Maximum Prime Difference
Medium
<p>You are given an integer array <code>nums</code>.</p> <p>Return an integer that is the <strong>maximum</strong> distance between the <strong>indices</strong> of two (not necessarily different) prime numbers in <code>nums</code><em>.</em></p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [4,2,9,5,3]</span></p> <p><strong>Output:</strong> <span class="example-io">3</span></p> <p><strong>Explanation:</strong> <code>nums[1]</code>, <code>nums[3]</code>, and <code>nums[4]</code> are prime. So the answer is <code>|4 - 1| = 3</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [4,8,2,8]</span></p> <p><strong>Output:</strong> <span class="example-io">0</span></p> <p><strong>Explanation:</strong> <code>nums[2]</code> is prime. Because there is just one prime number, the answer is <code>|2 - 2| = 0</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= nums.length &lt;= 3 * 10<sup>5</sup></code></li> <li><code>1 &lt;= nums[i] &lt;= 100</code></li> <li>The input is generated such that the number of prime numbers in the <code>nums</code> is at least one.</li> </ul>
Array; Math; Number Theory
TypeScript
function maximumPrimeDifference(nums: number[]): number { const isPrime = (x: number): boolean => { if (x < 2) { return false; } for (let i = 2; i <= x / i; i++) { if (x % i === 0) { return false; } } return true; }; for (let i = 0; ; ++i) { if (isPrime(nums[i])) { for (let j = nums.length - 1; ; --j) { if (isPrime(nums[j])) { return j - i; } } } } }
3,116
Kth Smallest Amount With Single Denomination Combination
Hard
<p>You are given an integer array <code>coins</code> representing coins of different denominations and an integer <code>k</code>.</p> <p>You have an infinite number of coins of each denomination. However, you are <strong>not allowed</strong> to combine coins of different denominations.</p> <p>Return the <code>k<sup>th</sup></code> <strong>smallest</strong> amount that can be made using these coins.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block" style=" border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem; "> <p><strong>Input:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">coins = [3,6,9], k = 3</span></p> <p><strong>Output:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; "> 9</span></p> <p><strong>Explanation:</strong> The given coins can make the following amounts:<br /> Coin 3 produces multiples of 3: 3, 6, 9, 12, 15, etc.<br /> Coin 6 produces multiples of 6: 6, 12, 18, 24, etc.<br /> Coin 9 produces multiples of 9: 9, 18, 27, 36, etc.<br /> All of the coins combined produce: 3, 6, <u><strong>9</strong></u>, 12, 15, etc.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block" style=" border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem; "> <p><strong>Input:</strong><span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; "> coins = [5,2], k = 7</span></p> <p><strong>Output:</strong><span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; "> 12 </span></p> <p><strong>Explanation:</strong> The given coins can make the following amounts:<br /> Coin 5 produces multiples of 5: 5, 10, 15, 20, etc.<br /> Coin 2 produces multiples of 2: 2, 4, 6, 8, 10, 12, etc.<br /> All of the coins combined produce: 2, 4, 5, 6, 8, 10, <u><strong>12</strong></u>, 14, 15, etc.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= coins.length &lt;= 15</code></li> <li><code>1 &lt;= coins[i] &lt;= 25</code></li> <li><code>1 &lt;= k &lt;= 2 * 10<sup>9</sup></code></li> <li><code>coins</code> contains pairwise distinct integers.</li> </ul>
Bit Manipulation; Array; Math; Binary Search; Combinatorics; Number Theory
C++
class Solution { public: long long findKthSmallest(vector<int>& coins, int k) { using ll = long long; ll l = 1, r = 1e11; int n = coins.size(); auto check = [&](ll mx) { ll cnt = 0; for (int i = 1; i < 1 << n; ++i) { ll v = 1; for (int j = 0; j < n; ++j) { if (i >> j & 1) { v = lcm(v, coins[j]); if (v > mx) { break; } } } int m = __builtin_popcount(i); if (m & 1) { cnt += mx / v; } else { cnt -= mx / v; } } return cnt >= k; }; while (l < r) { ll mid = (l + r) >> 1; if (check(mid)) { r = mid; } else { l = mid + 1; } } return l; } };
3,116
Kth Smallest Amount With Single Denomination Combination
Hard
<p>You are given an integer array <code>coins</code> representing coins of different denominations and an integer <code>k</code>.</p> <p>You have an infinite number of coins of each denomination. However, you are <strong>not allowed</strong> to combine coins of different denominations.</p> <p>Return the <code>k<sup>th</sup></code> <strong>smallest</strong> amount that can be made using these coins.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block" style=" border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem; "> <p><strong>Input:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">coins = [3,6,9], k = 3</span></p> <p><strong>Output:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; "> 9</span></p> <p><strong>Explanation:</strong> The given coins can make the following amounts:<br /> Coin 3 produces multiples of 3: 3, 6, 9, 12, 15, etc.<br /> Coin 6 produces multiples of 6: 6, 12, 18, 24, etc.<br /> Coin 9 produces multiples of 9: 9, 18, 27, 36, etc.<br /> All of the coins combined produce: 3, 6, <u><strong>9</strong></u>, 12, 15, etc.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block" style=" border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem; "> <p><strong>Input:</strong><span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; "> coins = [5,2], k = 7</span></p> <p><strong>Output:</strong><span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; "> 12 </span></p> <p><strong>Explanation:</strong> The given coins can make the following amounts:<br /> Coin 5 produces multiples of 5: 5, 10, 15, 20, etc.<br /> Coin 2 produces multiples of 2: 2, 4, 6, 8, 10, 12, etc.<br /> All of the coins combined produce: 2, 4, 5, 6, 8, 10, <u><strong>12</strong></u>, 14, 15, etc.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= coins.length &lt;= 15</code></li> <li><code>1 &lt;= coins[i] &lt;= 25</code></li> <li><code>1 &lt;= k &lt;= 2 * 10<sup>9</sup></code></li> <li><code>coins</code> contains pairwise distinct integers.</li> </ul>
Bit Manipulation; Array; Math; Binary Search; Combinatorics; Number Theory
Go
func findKthSmallest(coins []int, k int) int64 { var r int = 1e11 n := len(coins) ans := sort.Search(r, func(mx int) bool { cnt := 0 for i := 1; i < 1<<n; i++ { v := 1 for j, x := range coins { if i>>j&1 == 1 { v = lcm(v, x) if v > mx { break } } } m := bits.OnesCount(uint(i)) if m%2 == 1 { cnt += mx / v } else { cnt -= mx / v } } return cnt >= k }) return int64(ans) } func gcd(a, b int) int { if b == 0 { return a } return gcd(b, a%b) } func lcm(a, b int) int { return a * b / gcd(a, b) }
3,116
Kth Smallest Amount With Single Denomination Combination
Hard
<p>You are given an integer array <code>coins</code> representing coins of different denominations and an integer <code>k</code>.</p> <p>You have an infinite number of coins of each denomination. However, you are <strong>not allowed</strong> to combine coins of different denominations.</p> <p>Return the <code>k<sup>th</sup></code> <strong>smallest</strong> amount that can be made using these coins.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block" style=" border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem; "> <p><strong>Input:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">coins = [3,6,9], k = 3</span></p> <p><strong>Output:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; "> 9</span></p> <p><strong>Explanation:</strong> The given coins can make the following amounts:<br /> Coin 3 produces multiples of 3: 3, 6, 9, 12, 15, etc.<br /> Coin 6 produces multiples of 6: 6, 12, 18, 24, etc.<br /> Coin 9 produces multiples of 9: 9, 18, 27, 36, etc.<br /> All of the coins combined produce: 3, 6, <u><strong>9</strong></u>, 12, 15, etc.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block" style=" border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem; "> <p><strong>Input:</strong><span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; "> coins = [5,2], k = 7</span></p> <p><strong>Output:</strong><span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; "> 12 </span></p> <p><strong>Explanation:</strong> The given coins can make the following amounts:<br /> Coin 5 produces multiples of 5: 5, 10, 15, 20, etc.<br /> Coin 2 produces multiples of 2: 2, 4, 6, 8, 10, 12, etc.<br /> All of the coins combined produce: 2, 4, 5, 6, 8, 10, <u><strong>12</strong></u>, 14, 15, etc.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= coins.length &lt;= 15</code></li> <li><code>1 &lt;= coins[i] &lt;= 25</code></li> <li><code>1 &lt;= k &lt;= 2 * 10<sup>9</sup></code></li> <li><code>coins</code> contains pairwise distinct integers.</li> </ul>
Bit Manipulation; Array; Math; Binary Search; Combinatorics; Number Theory
Java
class Solution { private int[] coins; private int k; public long findKthSmallest(int[] coins, int k) { this.coins = coins; this.k = k; long l = 1, r = (long) 1e11; while (l < r) { long mid = (l + r) >> 1; if (check(mid)) { r = mid; } else { l = mid + 1; } } return l; } private boolean check(long mx) { long cnt = 0; int n = coins.length; for (int i = 1; i < 1 << n; ++i) { long v = 1; for (int j = 0; j < n; ++j) { if ((i >> j & 1) == 1) { v = lcm(v, coins[j]); if (v > mx) { break; } } } int m = Integer.bitCount(i); if (m % 2 == 1) { cnt += mx / v; } else { cnt -= mx / v; } } return cnt >= k; } private long lcm(long a, long b) { return a * b / gcd(a, b); } private long gcd(long a, long b) { return b == 0 ? a : gcd(b, a % b); } }
3,116
Kth Smallest Amount With Single Denomination Combination
Hard
<p>You are given an integer array <code>coins</code> representing coins of different denominations and an integer <code>k</code>.</p> <p>You have an infinite number of coins of each denomination. However, you are <strong>not allowed</strong> to combine coins of different denominations.</p> <p>Return the <code>k<sup>th</sup></code> <strong>smallest</strong> amount that can be made using these coins.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block" style=" border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem; "> <p><strong>Input:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">coins = [3,6,9], k = 3</span></p> <p><strong>Output:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; "> 9</span></p> <p><strong>Explanation:</strong> The given coins can make the following amounts:<br /> Coin 3 produces multiples of 3: 3, 6, 9, 12, 15, etc.<br /> Coin 6 produces multiples of 6: 6, 12, 18, 24, etc.<br /> Coin 9 produces multiples of 9: 9, 18, 27, 36, etc.<br /> All of the coins combined produce: 3, 6, <u><strong>9</strong></u>, 12, 15, etc.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block" style=" border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem; "> <p><strong>Input:</strong><span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; "> coins = [5,2], k = 7</span></p> <p><strong>Output:</strong><span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; "> 12 </span></p> <p><strong>Explanation:</strong> The given coins can make the following amounts:<br /> Coin 5 produces multiples of 5: 5, 10, 15, 20, etc.<br /> Coin 2 produces multiples of 2: 2, 4, 6, 8, 10, 12, etc.<br /> All of the coins combined produce: 2, 4, 5, 6, 8, 10, <u><strong>12</strong></u>, 14, 15, etc.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= coins.length &lt;= 15</code></li> <li><code>1 &lt;= coins[i] &lt;= 25</code></li> <li><code>1 &lt;= k &lt;= 2 * 10<sup>9</sup></code></li> <li><code>coins</code> contains pairwise distinct integers.</li> </ul>
Bit Manipulation; Array; Math; Binary Search; Combinatorics; Number Theory
Python
class Solution: def findKthSmallest(self, coins: List[int], k: int) -> int: def check(mx: int) -> bool: cnt = 0 for i in range(1, 1 << len(coins)): v = 1 for j, x in enumerate(coins): if i >> j & 1: v = lcm(v, x) if v > mx: break m = i.bit_count() if m & 1: cnt += mx // v else: cnt -= mx // v return cnt >= k return bisect_left(range(10**11), True, key=check)
3,116
Kth Smallest Amount With Single Denomination Combination
Hard
<p>You are given an integer array <code>coins</code> representing coins of different denominations and an integer <code>k</code>.</p> <p>You have an infinite number of coins of each denomination. However, you are <strong>not allowed</strong> to combine coins of different denominations.</p> <p>Return the <code>k<sup>th</sup></code> <strong>smallest</strong> amount that can be made using these coins.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block" style=" border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem; "> <p><strong>Input:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; ">coins = [3,6,9], k = 3</span></p> <p><strong>Output:</strong> <span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; "> 9</span></p> <p><strong>Explanation:</strong> The given coins can make the following amounts:<br /> Coin 3 produces multiples of 3: 3, 6, 9, 12, 15, etc.<br /> Coin 6 produces multiples of 6: 6, 12, 18, 24, etc.<br /> Coin 9 produces multiples of 9: 9, 18, 27, 36, etc.<br /> All of the coins combined produce: 3, 6, <u><strong>9</strong></u>, 12, 15, etc.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block" style=" border-color: var(--border-tertiary); border-left-width: 2px; color: var(--text-secondary); font-size: .875rem; margin-bottom: 1rem; margin-top: 1rem; overflow: visible; padding-left: 1rem; "> <p><strong>Input:</strong><span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; "> coins = [5,2], k = 7</span></p> <p><strong>Output:</strong><span class="example-io" style=" font-family: Menlo,sans-serif; font-size: 0.85rem; "> 12 </span></p> <p><strong>Explanation:</strong> The given coins can make the following amounts:<br /> Coin 5 produces multiples of 5: 5, 10, 15, 20, etc.<br /> Coin 2 produces multiples of 2: 2, 4, 6, 8, 10, 12, etc.<br /> All of the coins combined produce: 2, 4, 5, 6, 8, 10, <u><strong>12</strong></u>, 14, 15, etc.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= coins.length &lt;= 15</code></li> <li><code>1 &lt;= coins[i] &lt;= 25</code></li> <li><code>1 &lt;= k &lt;= 2 * 10<sup>9</sup></code></li> <li><code>coins</code> contains pairwise distinct integers.</li> </ul>
Bit Manipulation; Array; Math; Binary Search; Combinatorics; Number Theory
TypeScript
function findKthSmallest(coins: number[], k: number): number { let [l, r] = [1n, BigInt(1e11)]; const n = coins.length; const check = (mx: bigint): boolean => { let cnt = 0n; for (let i = 1; i < 1 << n; ++i) { let v = 1n; for (let j = 0; j < n; ++j) { if ((i >> j) & 1) { v = lcm(v, BigInt(coins[j])); if (v > mx) { break; } } } const m = bitCount(i); if (m & 1) { cnt += mx / v; } else { cnt -= mx / v; } } return cnt >= BigInt(k); }; while (l < r) { const mid = (l + r) >> 1n; if (check(mid)) { r = mid; } else { l = mid + 1n; } } return Number(l); } function gcd(a: bigint, b: bigint): bigint { return b === 0n ? a : gcd(b, a % b); } function lcm(a: bigint, b: bigint): bigint { return (a * b) / gcd(a, b); } function bitCount(i: number): number { i = i - ((i >>> 1) & 0x55555555); i = (i & 0x33333333) + ((i >>> 2) & 0x33333333); i = (i + (i >>> 4)) & 0x0f0f0f0f; i = i + (i >>> 8); i = i + (i >>> 16); return i & 0x3f; }
3,117
Minimum Sum of Values by Dividing Array
Hard
<p>You are given two arrays <code>nums</code> and <code>andValues</code> of length <code>n</code> and <code>m</code> respectively.</p> <p>The <strong>value</strong> of an array is equal to the <strong>last</strong> element of that array.</p> <p>You have to divide <code>nums</code> into <code>m</code> <strong>disjoint contiguous</strong> <span data-keyword="subarray-nonempty">subarrays</span> such that for the <code>i<sup>th</sup></code> subarray <code>[l<sub>i</sub>, r<sub>i</sub>]</code>, the bitwise <code>AND</code> of the subarray elements is equal to <code>andValues[i]</code>, in other words, <code>nums[l<sub>i</sub>] &amp; nums[l<sub>i</sub> + 1] &amp; ... &amp; nums[r<sub>i</sub>] == andValues[i]</code> for all <code>1 &lt;= i &lt;= m</code>, where <code>&amp;</code> represents the bitwise <code>AND</code> operator.</p> <p>Return <em>the <strong>minimum</strong> possible sum of the <strong>values</strong> of the </em><code>m</code><em> subarrays </em><code>nums</code><em> is divided into</em>. <em>If it is not possible to divide </em><code>nums</code><em> into </em><code>m</code><em> subarrays satisfying these conditions, return</em> <code>-1</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1,4,3,3,2], andValues = [0,3,3,2]</span></p> <p><strong>Output:</strong> <span class="example-io">12</span></p> <p><strong>Explanation:</strong></p> <p>The only possible way to divide <code>nums</code> is:</p> <ol> <li><code>[1,4]</code> as <code>1 &amp; 4 == 0</code>.</li> <li><code>[3]</code> as the bitwise <code>AND</code> of a single element subarray is that element itself.</li> <li><code>[3]</code> as the bitwise <code>AND</code> of a single element subarray is that element itself.</li> <li><code>[2]</code> as the bitwise <code>AND</code> of a single element subarray is that element itself.</li> </ol> <p>The sum of the values for these subarrays is <code>4 + 3 + 3 + 2 = 12</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [2,3,5,7,7,7,5], andValues = [0,7,5]</span></p> <p><strong>Output:</strong> <span class="example-io">17</span></p> <p><strong>Explanation:</strong></p> <p>There are three ways to divide <code>nums</code>:</p> <ol> <li><code>[[2,3,5],[7,7,7],[5]]</code> with the sum of the values <code>5 + 7 + 5 == 17</code>.</li> <li><code>[[2,3,5,7],[7,7],[5]]</code> with the sum of the values <code>7 + 7 + 5 == 19</code>.</li> <li><code>[[2,3,5,7,7],[7],[5]]</code> with the sum of the values <code>7 + 7 + 5 == 19</code>.</li> </ol> <p>The minimum possible sum of the values is <code>17</code>.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4], andValues = [2]</span></p> <p><strong>Output:</strong> <span class="example-io">-1</span></p> <p><strong>Explanation:</strong></p> <p>The bitwise <code>AND</code> of the entire array <code>nums</code> is <code>0</code>. As there is no possible way to divide <code>nums</code> into a single subarray to have the bitwise <code>AND</code> of elements <code>2</code>, return <code>-1</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n == nums.length &lt;= 10<sup>4</sup></code></li> <li><code>1 &lt;= m == andValues.length &lt;= min(n, 10)</code></li> <li><code>1 &lt;= nums[i] &lt; 10<sup>5</sup></code></li> <li><code>0 &lt;= andValues[j] &lt; 10<sup>5</sup></code></li> </ul>
Bit Manipulation; Segment Tree; Queue; Array; Binary Search; Dynamic Programming
C++
class Solution { public: int minimumValueSum(vector<int>& nums, vector<int>& andValues) { this->nums = nums; this->andValues = andValues; n = nums.size(); m = andValues.size(); int ans = dfs(0, 0, -1); return ans >= inf ? -1 : ans; } private: vector<int> nums; vector<int> andValues; int n; int m; const int inf = 1 << 29; unordered_map<long long, int> f; int dfs(int i, int j, int a) { if (n - i < m - j) { return inf; } if (j == m) { return i == n ? 0 : inf; } a &= nums[i]; if (a < andValues[j]) { return inf; } long long key = (long long) i << 36 | (long long) j << 32 | a; if (f.contains(key)) { return f[key]; } int ans = dfs(i + 1, j, a); if (a == andValues[j]) { ans = min(ans, dfs(i + 1, j + 1, -1) + nums[i]); } return f[key] = ans; } };
3,117
Minimum Sum of Values by Dividing Array
Hard
<p>You are given two arrays <code>nums</code> and <code>andValues</code> of length <code>n</code> and <code>m</code> respectively.</p> <p>The <strong>value</strong> of an array is equal to the <strong>last</strong> element of that array.</p> <p>You have to divide <code>nums</code> into <code>m</code> <strong>disjoint contiguous</strong> <span data-keyword="subarray-nonempty">subarrays</span> such that for the <code>i<sup>th</sup></code> subarray <code>[l<sub>i</sub>, r<sub>i</sub>]</code>, the bitwise <code>AND</code> of the subarray elements is equal to <code>andValues[i]</code>, in other words, <code>nums[l<sub>i</sub>] &amp; nums[l<sub>i</sub> + 1] &amp; ... &amp; nums[r<sub>i</sub>] == andValues[i]</code> for all <code>1 &lt;= i &lt;= m</code>, where <code>&amp;</code> represents the bitwise <code>AND</code> operator.</p> <p>Return <em>the <strong>minimum</strong> possible sum of the <strong>values</strong> of the </em><code>m</code><em> subarrays </em><code>nums</code><em> is divided into</em>. <em>If it is not possible to divide </em><code>nums</code><em> into </em><code>m</code><em> subarrays satisfying these conditions, return</em> <code>-1</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1,4,3,3,2], andValues = [0,3,3,2]</span></p> <p><strong>Output:</strong> <span class="example-io">12</span></p> <p><strong>Explanation:</strong></p> <p>The only possible way to divide <code>nums</code> is:</p> <ol> <li><code>[1,4]</code> as <code>1 &amp; 4 == 0</code>.</li> <li><code>[3]</code> as the bitwise <code>AND</code> of a single element subarray is that element itself.</li> <li><code>[3]</code> as the bitwise <code>AND</code> of a single element subarray is that element itself.</li> <li><code>[2]</code> as the bitwise <code>AND</code> of a single element subarray is that element itself.</li> </ol> <p>The sum of the values for these subarrays is <code>4 + 3 + 3 + 2 = 12</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [2,3,5,7,7,7,5], andValues = [0,7,5]</span></p> <p><strong>Output:</strong> <span class="example-io">17</span></p> <p><strong>Explanation:</strong></p> <p>There are three ways to divide <code>nums</code>:</p> <ol> <li><code>[[2,3,5],[7,7,7],[5]]</code> with the sum of the values <code>5 + 7 + 5 == 17</code>.</li> <li><code>[[2,3,5,7],[7,7],[5]]</code> with the sum of the values <code>7 + 7 + 5 == 19</code>.</li> <li><code>[[2,3,5,7,7],[7],[5]]</code> with the sum of the values <code>7 + 7 + 5 == 19</code>.</li> </ol> <p>The minimum possible sum of the values is <code>17</code>.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4], andValues = [2]</span></p> <p><strong>Output:</strong> <span class="example-io">-1</span></p> <p><strong>Explanation:</strong></p> <p>The bitwise <code>AND</code> of the entire array <code>nums</code> is <code>0</code>. As there is no possible way to divide <code>nums</code> into a single subarray to have the bitwise <code>AND</code> of elements <code>2</code>, return <code>-1</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n == nums.length &lt;= 10<sup>4</sup></code></li> <li><code>1 &lt;= m == andValues.length &lt;= min(n, 10)</code></li> <li><code>1 &lt;= nums[i] &lt; 10<sup>5</sup></code></li> <li><code>0 &lt;= andValues[j] &lt; 10<sup>5</sup></code></li> </ul>
Bit Manipulation; Segment Tree; Queue; Array; Binary Search; Dynamic Programming
Go
func minimumValueSum(nums []int, andValues []int) int { n, m := len(nums), len(andValues) f := map[int]int{} const inf int = 1 << 29 var dfs func(i, j, a int) int dfs = func(i, j, a int) int { if n-i < m-j { return inf } if j == m { if i == n { return 0 } return inf } a &= nums[i] if a < andValues[j] { return inf } key := i<<36 | j<<32 | a if v, ok := f[key]; ok { return v } ans := dfs(i+1, j, a) if a == andValues[j] { ans = min(ans, dfs(i+1, j+1, -1)+nums[i]) } f[key] = ans return ans } if ans := dfs(0, 0, -1); ans < inf { return ans } return -1 }
3,117
Minimum Sum of Values by Dividing Array
Hard
<p>You are given two arrays <code>nums</code> and <code>andValues</code> of length <code>n</code> and <code>m</code> respectively.</p> <p>The <strong>value</strong> of an array is equal to the <strong>last</strong> element of that array.</p> <p>You have to divide <code>nums</code> into <code>m</code> <strong>disjoint contiguous</strong> <span data-keyword="subarray-nonempty">subarrays</span> such that for the <code>i<sup>th</sup></code> subarray <code>[l<sub>i</sub>, r<sub>i</sub>]</code>, the bitwise <code>AND</code> of the subarray elements is equal to <code>andValues[i]</code>, in other words, <code>nums[l<sub>i</sub>] &amp; nums[l<sub>i</sub> + 1] &amp; ... &amp; nums[r<sub>i</sub>] == andValues[i]</code> for all <code>1 &lt;= i &lt;= m</code>, where <code>&amp;</code> represents the bitwise <code>AND</code> operator.</p> <p>Return <em>the <strong>minimum</strong> possible sum of the <strong>values</strong> of the </em><code>m</code><em> subarrays </em><code>nums</code><em> is divided into</em>. <em>If it is not possible to divide </em><code>nums</code><em> into </em><code>m</code><em> subarrays satisfying these conditions, return</em> <code>-1</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1,4,3,3,2], andValues = [0,3,3,2]</span></p> <p><strong>Output:</strong> <span class="example-io">12</span></p> <p><strong>Explanation:</strong></p> <p>The only possible way to divide <code>nums</code> is:</p> <ol> <li><code>[1,4]</code> as <code>1 &amp; 4 == 0</code>.</li> <li><code>[3]</code> as the bitwise <code>AND</code> of a single element subarray is that element itself.</li> <li><code>[3]</code> as the bitwise <code>AND</code> of a single element subarray is that element itself.</li> <li><code>[2]</code> as the bitwise <code>AND</code> of a single element subarray is that element itself.</li> </ol> <p>The sum of the values for these subarrays is <code>4 + 3 + 3 + 2 = 12</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [2,3,5,7,7,7,5], andValues = [0,7,5]</span></p> <p><strong>Output:</strong> <span class="example-io">17</span></p> <p><strong>Explanation:</strong></p> <p>There are three ways to divide <code>nums</code>:</p> <ol> <li><code>[[2,3,5],[7,7,7],[5]]</code> with the sum of the values <code>5 + 7 + 5 == 17</code>.</li> <li><code>[[2,3,5,7],[7,7],[5]]</code> with the sum of the values <code>7 + 7 + 5 == 19</code>.</li> <li><code>[[2,3,5,7,7],[7],[5]]</code> with the sum of the values <code>7 + 7 + 5 == 19</code>.</li> </ol> <p>The minimum possible sum of the values is <code>17</code>.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4], andValues = [2]</span></p> <p><strong>Output:</strong> <span class="example-io">-1</span></p> <p><strong>Explanation:</strong></p> <p>The bitwise <code>AND</code> of the entire array <code>nums</code> is <code>0</code>. As there is no possible way to divide <code>nums</code> into a single subarray to have the bitwise <code>AND</code> of elements <code>2</code>, return <code>-1</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n == nums.length &lt;= 10<sup>4</sup></code></li> <li><code>1 &lt;= m == andValues.length &lt;= min(n, 10)</code></li> <li><code>1 &lt;= nums[i] &lt; 10<sup>5</sup></code></li> <li><code>0 &lt;= andValues[j] &lt; 10<sup>5</sup></code></li> </ul>
Bit Manipulation; Segment Tree; Queue; Array; Binary Search; Dynamic Programming
Java
class Solution { private int[] nums; private int[] andValues; private final int inf = 1 << 29; private Map<Long, Integer> f = new HashMap<>(); public int minimumValueSum(int[] nums, int[] andValues) { this.nums = nums; this.andValues = andValues; int ans = dfs(0, 0, -1); return ans >= inf ? -1 : ans; } private int dfs(int i, int j, int a) { if (nums.length - i < andValues.length - j) { return inf; } if (j == andValues.length) { return i == nums.length ? 0 : inf; } a &= nums[i]; if (a < andValues[j]) { return inf; } long key = (long) i << 36 | (long) j << 32 | a; if (f.containsKey(key)) { return f.get(key); } int ans = dfs(i + 1, j, a); if (a == andValues[j]) { ans = Math.min(ans, dfs(i + 1, j + 1, -1) + nums[i]); } f.put(key, ans); return ans; } }
3,117
Minimum Sum of Values by Dividing Array
Hard
<p>You are given two arrays <code>nums</code> and <code>andValues</code> of length <code>n</code> and <code>m</code> respectively.</p> <p>The <strong>value</strong> of an array is equal to the <strong>last</strong> element of that array.</p> <p>You have to divide <code>nums</code> into <code>m</code> <strong>disjoint contiguous</strong> <span data-keyword="subarray-nonempty">subarrays</span> such that for the <code>i<sup>th</sup></code> subarray <code>[l<sub>i</sub>, r<sub>i</sub>]</code>, the bitwise <code>AND</code> of the subarray elements is equal to <code>andValues[i]</code>, in other words, <code>nums[l<sub>i</sub>] &amp; nums[l<sub>i</sub> + 1] &amp; ... &amp; nums[r<sub>i</sub>] == andValues[i]</code> for all <code>1 &lt;= i &lt;= m</code>, where <code>&amp;</code> represents the bitwise <code>AND</code> operator.</p> <p>Return <em>the <strong>minimum</strong> possible sum of the <strong>values</strong> of the </em><code>m</code><em> subarrays </em><code>nums</code><em> is divided into</em>. <em>If it is not possible to divide </em><code>nums</code><em> into </em><code>m</code><em> subarrays satisfying these conditions, return</em> <code>-1</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1,4,3,3,2], andValues = [0,3,3,2]</span></p> <p><strong>Output:</strong> <span class="example-io">12</span></p> <p><strong>Explanation:</strong></p> <p>The only possible way to divide <code>nums</code> is:</p> <ol> <li><code>[1,4]</code> as <code>1 &amp; 4 == 0</code>.</li> <li><code>[3]</code> as the bitwise <code>AND</code> of a single element subarray is that element itself.</li> <li><code>[3]</code> as the bitwise <code>AND</code> of a single element subarray is that element itself.</li> <li><code>[2]</code> as the bitwise <code>AND</code> of a single element subarray is that element itself.</li> </ol> <p>The sum of the values for these subarrays is <code>4 + 3 + 3 + 2 = 12</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [2,3,5,7,7,7,5], andValues = [0,7,5]</span></p> <p><strong>Output:</strong> <span class="example-io">17</span></p> <p><strong>Explanation:</strong></p> <p>There are three ways to divide <code>nums</code>:</p> <ol> <li><code>[[2,3,5],[7,7,7],[5]]</code> with the sum of the values <code>5 + 7 + 5 == 17</code>.</li> <li><code>[[2,3,5,7],[7,7],[5]]</code> with the sum of the values <code>7 + 7 + 5 == 19</code>.</li> <li><code>[[2,3,5,7,7],[7],[5]]</code> with the sum of the values <code>7 + 7 + 5 == 19</code>.</li> </ol> <p>The minimum possible sum of the values is <code>17</code>.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4], andValues = [2]</span></p> <p><strong>Output:</strong> <span class="example-io">-1</span></p> <p><strong>Explanation:</strong></p> <p>The bitwise <code>AND</code> of the entire array <code>nums</code> is <code>0</code>. As there is no possible way to divide <code>nums</code> into a single subarray to have the bitwise <code>AND</code> of elements <code>2</code>, return <code>-1</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n == nums.length &lt;= 10<sup>4</sup></code></li> <li><code>1 &lt;= m == andValues.length &lt;= min(n, 10)</code></li> <li><code>1 &lt;= nums[i] &lt; 10<sup>5</sup></code></li> <li><code>0 &lt;= andValues[j] &lt; 10<sup>5</sup></code></li> </ul>
Bit Manipulation; Segment Tree; Queue; Array; Binary Search; Dynamic Programming
Python
class Solution: def minimumValueSum(self, nums: List[int], andValues: List[int]) -> int: @cache def dfs(i: int, j: int, a: int) -> int: if n - i < m - j: return inf if j == m: return 0 if i == n else inf a &= nums[i] if a < andValues[j]: return inf ans = dfs(i + 1, j, a) if a == andValues[j]: ans = min(ans, dfs(i + 1, j + 1, -1) + nums[i]) return ans n, m = len(nums), len(andValues) ans = dfs(0, 0, -1) return ans if ans < inf else -1
3,117
Minimum Sum of Values by Dividing Array
Hard
<p>You are given two arrays <code>nums</code> and <code>andValues</code> of length <code>n</code> and <code>m</code> respectively.</p> <p>The <strong>value</strong> of an array is equal to the <strong>last</strong> element of that array.</p> <p>You have to divide <code>nums</code> into <code>m</code> <strong>disjoint contiguous</strong> <span data-keyword="subarray-nonempty">subarrays</span> such that for the <code>i<sup>th</sup></code> subarray <code>[l<sub>i</sub>, r<sub>i</sub>]</code>, the bitwise <code>AND</code> of the subarray elements is equal to <code>andValues[i]</code>, in other words, <code>nums[l<sub>i</sub>] &amp; nums[l<sub>i</sub> + 1] &amp; ... &amp; nums[r<sub>i</sub>] == andValues[i]</code> for all <code>1 &lt;= i &lt;= m</code>, where <code>&amp;</code> represents the bitwise <code>AND</code> operator.</p> <p>Return <em>the <strong>minimum</strong> possible sum of the <strong>values</strong> of the </em><code>m</code><em> subarrays </em><code>nums</code><em> is divided into</em>. <em>If it is not possible to divide </em><code>nums</code><em> into </em><code>m</code><em> subarrays satisfying these conditions, return</em> <code>-1</code>.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1,4,3,3,2], andValues = [0,3,3,2]</span></p> <p><strong>Output:</strong> <span class="example-io">12</span></p> <p><strong>Explanation:</strong></p> <p>The only possible way to divide <code>nums</code> is:</p> <ol> <li><code>[1,4]</code> as <code>1 &amp; 4 == 0</code>.</li> <li><code>[3]</code> as the bitwise <code>AND</code> of a single element subarray is that element itself.</li> <li><code>[3]</code> as the bitwise <code>AND</code> of a single element subarray is that element itself.</li> <li><code>[2]</code> as the bitwise <code>AND</code> of a single element subarray is that element itself.</li> </ol> <p>The sum of the values for these subarrays is <code>4 + 3 + 3 + 2 = 12</code>.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [2,3,5,7,7,7,5], andValues = [0,7,5]</span></p> <p><strong>Output:</strong> <span class="example-io">17</span></p> <p><strong>Explanation:</strong></p> <p>There are three ways to divide <code>nums</code>:</p> <ol> <li><code>[[2,3,5],[7,7,7],[5]]</code> with the sum of the values <code>5 + 7 + 5 == 17</code>.</li> <li><code>[[2,3,5,7],[7,7],[5]]</code> with the sum of the values <code>7 + 7 + 5 == 19</code>.</li> <li><code>[[2,3,5,7,7],[7],[5]]</code> with the sum of the values <code>7 + 7 + 5 == 19</code>.</li> </ol> <p>The minimum possible sum of the values is <code>17</code>.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4], andValues = [2]</span></p> <p><strong>Output:</strong> <span class="example-io">-1</span></p> <p><strong>Explanation:</strong></p> <p>The bitwise <code>AND</code> of the entire array <code>nums</code> is <code>0</code>. As there is no possible way to divide <code>nums</code> into a single subarray to have the bitwise <code>AND</code> of elements <code>2</code>, return <code>-1</code>.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= n == nums.length &lt;= 10<sup>4</sup></code></li> <li><code>1 &lt;= m == andValues.length &lt;= min(n, 10)</code></li> <li><code>1 &lt;= nums[i] &lt; 10<sup>5</sup></code></li> <li><code>0 &lt;= andValues[j] &lt; 10<sup>5</sup></code></li> </ul>
Bit Manipulation; Segment Tree; Queue; Array; Binary Search; Dynamic Programming
TypeScript
function minimumValueSum(nums: number[], andValues: number[]): number { const [n, m] = [nums.length, andValues.length]; const f: Map<bigint, number> = new Map(); const dfs = (i: number, j: number, a: number): number => { if (n - i < m - j) { return Infinity; } if (j === m) { return i === n ? 0 : Infinity; } a &= nums[i]; if (a < andValues[j]) { return Infinity; } const key = (BigInt(i) << 36n) | (BigInt(j) << 32n) | BigInt(a); if (f.has(key)) { return f.get(key)!; } let ans = dfs(i + 1, j, a); if (a === andValues[j]) { ans = Math.min(ans, dfs(i + 1, j + 1, -1) + nums[i]); } f.set(key, ans); return ans; }; const ans = dfs(0, 0, -1); return ans >= Infinity ? -1 : ans; }
3,118
Friday Purchase III
Medium
<p>Table: <code>Purchases</code></p> <pre> +---------------+------+ | Column Name | Type | +---------------+------+ | user_id | int | | purchase_date | date | | amount_spend | int | +---------------+------+ (user_id, purchase_date, amount_spend) is the primary key (combination of columns with unique values) for this table. purchase_date will range from November 1, 2023, to November 30, 2023, inclusive of both dates. Each row contains user_id, purchase_date, and amount_spend. </pre> <p>Table: <code>Users</code></p> <pre> +-------------+------+ | Column Name | Type | +-------------+------+ | user_id | int | | membership | enum | +-------------+------+ user_id is the primary key for this table. membership is an ENUM (category) type of (&#39;Standard&#39;, &#39;Premium&#39;, &#39;VIP&#39;). Each row of this table indicates the user_id, membership type. </pre> <p>Write a solution to calculate the <strong>total spending</strong> by <code>Premium</code>&nbsp;and <code>VIP</code> members on <strong>each Friday of every week</strong> in November 2023.&nbsp; If there are <strong>no purchases</strong> on a <strong>particular Friday</strong> by <code>Premium</code> or <code>VIP</code> members, it should be considered as <code>0</code>.</p> <p>Return <em>the result table</em>&nbsp;<em>ordered by week of the month,&nbsp; and </em><code>membership</code><em> in <strong>ascending</strong> order</em>.</p> <p>The result format is in the following example.</p> <p>&nbsp;</p> <p><strong class="example">Example:</strong></p> <div class="example-block"> <p><strong>Input:</strong></p> <p>Purchases table:</p> <pre class="example-io"> +---------+---------------+--------------+ | user_id | purchase_date | amount_spend | +---------+---------------+--------------+ | 11 | 2023-11-03 | 1126 | | 15 | 2023-11-10 | 7473 | | 17 | 2023-11-17 | 2414 | | 12 | 2023-11-24 | 9692 | | 8 | 2023-11-24 | 5117 | | 1 | 2023-11-24 | 5241 | | 10 | 2023-11-22 | 8266 | | 13 | 2023-11-21 | 12000 | +---------+---------------+--------------+ </pre> <p>Users table:</p> <pre class="example-io"> +---------+------------+ | user_id | membership | +---------+------------+ | 11 | Premium | | 15 | VIP | | 17 | Standard | | 12 | VIP | | 8 | Premium | | 1 | VIP | | 10 | Standard | | 13 | Premium | +---------+------------+ </pre> <p><strong>Output:</strong></p> <pre class="example-io"> +---------------+-------------+--------------+ | week_of_month | membership | total_amount | +---------------+-------------+--------------+ | 1 | Premium | 1126 | | 1 | VIP | 0 | | 2 | Premium | 0 | | 2 | VIP | 7473 | | 3 | Premium | 0 | | 3 | VIP | 0 | | 4 | Premium | 5117 | | 4 | VIP | 14933 | +---------------+-------------+--------------+ </pre> <p><strong>Explanation:</strong></p> <ul> <li>During the first week of November 2023, a transaction occurred on Friday, 2023-11-03, by a Premium member amounting to $1,126. No transactions were made by VIP members on this day, resulting in a value of 0.</li> <li>For the second week of November 2023, there was a transaction on Friday, 2023-11-10, and it was made by a VIP member, amounting to $7,473. Since there were no purchases by Premium members that Friday, the output shows 0 for Premium members.</li> <li>Similarly, during the third week of November 2023, no transactions by Premium or VIP members occurred on Friday, 2023-11-17, which shows 0 for both categories in this week.</li> <li>In the fourth week of November 2023, transactions occurred on Friday, 2023-11-24, involving one Premium member purchase of $5,117 and VIP member purchases totaling $14,933 ($9,692 from one and $5,241 from another).</li> </ul> <p><strong>Note:</strong> The output table is ordered by week_of_month and membership in ascending order.</p> </div>
Database
SQL
# Write your MySQL query statement below WITH RECURSIVE T AS ( SELECT 1 AS week_of_month UNION SELECT week_of_month + 1 FROM T WHERE week_of_month < 4 ), M AS ( SELECT 'Premium' AS membership UNION SELECT 'VIP' ), P AS ( SELECT CEIL(DAYOFMONTH(purchase_date) / 7) AS week_of_month, membership, amount_spend FROM Purchases JOIN Users USING (user_id) WHERE DAYOFWEEK(purchase_date) = 6 ) SELECT week_of_month, membership, IFNULL(SUM(amount_spend), 0) AS total_amount FROM T JOIN M LEFT JOIN P USING (week_of_month, membership) GROUP BY 1, 2 ORDER BY 1, 2;
3,119
Maximum Number of Potholes That Can Be Fixed
Medium
<p>You are given a string <code>road</code>, consisting only of characters <code>&quot;x&quot;</code> and <code>&quot;.&quot;</code>, where each <code>&quot;x&quot;</code> denotes a <em>pothole</em> and each <code>&quot;.&quot;</code> denotes a smooth road, and an integer <code>budget</code>.</p> <p>In one repair operation, you can repair <code>n</code> <strong>consecutive</strong> potholes for a price of <code>n + 1</code>.</p> <p>Return the <strong>maximum</strong> number of potholes that can be fixed such that the sum of the prices of all of the fixes <strong>doesn&#39;t go over</strong> the given budget.</p> <p>&nbsp;</p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">road = &quot;..&quot;, budget = 5</span></p> <p><strong>Output:</strong> <span class="example-io">0</span></p> <p><strong>Explanation:</strong></p> <p>There are no potholes to be fixed.</p> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">road = &quot;..xxxxx&quot;, budget = 4</span></p> <p><strong>Output:</strong> <span class="example-io">3</span></p> <p><strong>Explanation:</strong></p> <p>We fix the first three potholes (they are consecutive). The budget needed for this task is <code>3 + 1 = 4</code>.</p> </div> <p><strong class="example">Example 3:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">road = &quot;x.x.xxx...x&quot;, budget = 14</span></p> <p><strong>Output:</strong> <span class="example-io">6</span></p> <p><strong>Explanation:</strong></p> <p>We can fix all the potholes. The total cost would be <code>(1 + 1) + (1 + 1) + (3 + 1) + (1 + 1) = 10</code> which is within our budget of 14.</p> </div> <p>&nbsp;</p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 &lt;= road.length &lt;= 10<sup>5</sup></code></li> <li><code>1 &lt;= budget &lt;= 10<sup>5</sup> + 1</code></li> <li><code>road</code> consists only of characters <code>&#39;.&#39;</code> and <code>&#39;x&#39;</code>.</li> </ul>
Greedy; String; Sorting
C++
class Solution { public: int maxPotholes(string road, int budget) { road.push_back('.'); int n = road.size(); vector<int> cnt(n); int k = 0; for (char& c : road) { if (c == 'x') { ++k; } else if (k) { ++cnt[k]; k = 0; } } int ans = 0; for (k = n - 1; k && budget; --k) { int t = min(budget / (k + 1), cnt[k]); ans += t * k; budget -= t * (k + 1); cnt[k - 1] += cnt[k] - t; } return ans; } };