source
stringclasses 1
value | version
stringclasses 1
value | module
stringclasses 43
values | function
stringclasses 307
values | input
stringlengths 3
496
| expected
stringlengths 0
40.5k
| signature
stringclasses 0
values |
|---|---|---|---|---|---|---|
cpython
|
cfcd524
|
statistics
|
StatisticsError.mode
|
>>> mode([1, 1, 2, 3, 3, 3, 3, 4])
|
3
This also works with nominal (non-numeric) data:
| null |
cpython
|
cfcd524
|
statistics
|
StatisticsError.mode
|
>>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
|
'red'
If there are multiple modes with same frequency, return the first one
encountered:
| null |
cpython
|
cfcd524
|
statistics
|
StatisticsError.mode
|
>>> mode(['red', 'red', 'green', 'blue', 'blue'])
|
'red'
If *data* is empty, ``mode``, raises StatisticsError.
| null |
cpython
|
cfcd524
|
statistics
|
StatisticsError.multimode
|
>>> multimode('aabbbbbbbbcc')
|
['b']
| null |
cpython
|
cfcd524
|
statistics
|
StatisticsError.multimode
|
>>> multimode('aabbbbccddddeeffffgg')
|
['b', 'd', 'f']
| null |
cpython
|
cfcd524
|
statistics
|
StatisticsError.multimode
|
>>> multimode('')
|
[]
| null |
cpython
|
cfcd524
|
statistics
|
StatisticsError.variance
|
>>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
| null |
|
cpython
|
cfcd524
|
statistics
|
StatisticsError.variance
|
>>> variance(data)
|
1.3720238095238095
If you have already calculated the mean of your data, you can pass it as
the optional second argument ``xbar`` to avoid recalculating it:
| null |
cpython
|
cfcd524
|
statistics
|
StatisticsError.variance
|
>>> m = mean(data)
| null |
|
cpython
|
cfcd524
|
statistics
|
StatisticsError.variance
|
>>> variance(data, m)
|
1.3720238095238095
This function does not check that ``xbar`` is actually the mean of
``data``. Giving arbitrary values for ``xbar`` may lead to invalid or
impossible results.
Decimals and Fractions are supported:
| null |
cpython
|
cfcd524
|
statistics
|
StatisticsError.variance
|
>>> from decimal import Decimal as D
| null |
|
cpython
|
cfcd524
|
statistics
|
StatisticsError.variance
|
>>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
|
Decimal('31.01875')
| null |
cpython
|
cfcd524
|
statistics
|
StatisticsError.variance
|
>>> from fractions import Fraction as F
| null |
|
cpython
|
cfcd524
|
statistics
|
StatisticsError.variance
|
>>> variance([F(1, 6), F(1, 2), F(5, 3)])
|
Fraction(67, 108)
| null |
cpython
|
cfcd524
|
statistics
|
StatisticsError.pvariance
|
>>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
| null |
|
cpython
|
cfcd524
|
statistics
|
StatisticsError.pvariance
|
>>> pvariance(data)
|
1.25
If you have already calculated the mean of the data, you can pass it as
the optional second argument to avoid recalculating it:
| null |
cpython
|
cfcd524
|
statistics
|
StatisticsError.pvariance
|
>>> mu = mean(data)
| null |
|
cpython
|
cfcd524
|
statistics
|
StatisticsError.pvariance
|
>>> pvariance(data, mu)
|
1.25
Decimals and Fractions are supported:
| null |
cpython
|
cfcd524
|
statistics
|
StatisticsError.pvariance
|
>>> from decimal import Decimal as D
| null |
|
cpython
|
cfcd524
|
statistics
|
StatisticsError.pvariance
|
>>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
|
Decimal('24.815')
| null |
cpython
|
cfcd524
|
statistics
|
StatisticsError.pvariance
|
>>> from fractions import Fraction as F
| null |
|
cpython
|
cfcd524
|
statistics
|
StatisticsError.pvariance
|
>>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
|
Fraction(13, 72)
| null |
cpython
|
cfcd524
|
statistics
|
StatisticsError.stdev
|
>>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
|
1.0810874155219827
| null |
cpython
|
cfcd524
|
statistics
|
StatisticsError.pstdev
|
>>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
|
0.986893273527251
| null |
cpython
|
cfcd524
|
statistics
|
StatisticsError.covariance
|
>>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
| null |
|
cpython
|
cfcd524
|
statistics
|
StatisticsError.covariance
|
>>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3]
| null |
|
cpython
|
cfcd524
|
statistics
|
StatisticsError.covariance
|
>>> covariance(x, y)
|
0.75
| null |
cpython
|
cfcd524
|
statistics
|
StatisticsError.covariance
|
>>> z = [9, 8, 7, 6, 5, 4, 3, 2, 1]
| null |
|
cpython
|
cfcd524
|
statistics
|
StatisticsError.covariance
|
>>> covariance(x, z)
|
-7.5
| null |
cpython
|
cfcd524
|
statistics
|
StatisticsError.covariance
|
>>> covariance(z, x)
|
-7.5
| null |
cpython
|
cfcd524
|
statistics
|
StatisticsError.correlation
|
>>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
| null |
|
cpython
|
cfcd524
|
statistics
|
StatisticsError.correlation
|
>>> y = [9, 8, 7, 6, 5, 4, 3, 2, 1]
| null |
|
cpython
|
cfcd524
|
statistics
|
StatisticsError.correlation
|
>>> correlation(x, x)
|
1.0
| null |
cpython
|
cfcd524
|
statistics
|
StatisticsError.correlation
|
>>> correlation(x, y)
|
-1.0
If *method* is "ranked", computes Spearman's rank correlation coefficient
for two inputs. The data is replaced by ranks. Ties are averaged
so that equal values receive the same rank. The resulting coefficient
measures the strength of a monotonic relationship.
Spearman's rank correlation coefficient is appropriate for ordinal
data or for continuous data that doesn't meet the linear proportion
requirement for Pearson's correlation coefficient.
| null |
cpython
|
cfcd524
|
statistics
|
StatisticsError.linear_regression
|
>>> x = [1, 2, 3, 4, 5]
| null |
|
cpython
|
cfcd524
|
statistics
|
StatisticsError.linear_regression
|
>>> noise = NormalDist().samples(5, seed=42)
| null |
|
cpython
|
cfcd524
|
statistics
|
StatisticsError.linear_regression
|
>>> y = [3 * x[i] + 2 + noise[i] for i in range(5)]
| null |
|
cpython
|
cfcd524
|
statistics
|
StatisticsError.linear_regression
|
>>> linear_regression(x, y) #doctest: +ELLIPSIS
|
LinearRegression(slope=3.17495..., intercept=1.00925...)
If *proportional* is true, the independent variable *x* and the
dependent variable *y* are assumed to be directly proportional.
The data is fit to a line passing through the origin.
Since the *intercept* will always be 0.0, the underlying linear
function simplifies to:
y = slope * x + noise
| null |
cpython
|
cfcd524
|
statistics
|
StatisticsError.linear_regression
|
>>> y = [3 * x[i] + noise[i] for i in range(5)]
| null |
|
cpython
|
cfcd524
|
statistics
|
StatisticsError.linear_regression
|
>>> linear_regression(x, y, proportional=True) #doctest: +ELLIPSIS
|
LinearRegression(slope=2.90475..., intercept=0.0)
| null |
cpython
|
cfcd524
|
statistics
|
StatisticsError.kde
|
>>> sample = [-2.1, -1.3, -0.4, 1.9, 5.1, 6.2]
| null |
|
cpython
|
cfcd524
|
statistics
|
StatisticsError.kde
|
>>> f_hat = kde(sample, h=1.5)
|
Compute the area under the curve:
| null |
cpython
|
cfcd524
|
statistics
|
StatisticsError.kde
|
>>> area = sum(f_hat(x) for x in range(-20, 20))
| null |
|
cpython
|
cfcd524
|
statistics
|
StatisticsError.kde
|
>>> round(area, 4)
|
1.0
Plot the estimated probability density function at
evenly spaced points from -6 to 10:
| null |
cpython
|
cfcd524
|
statistics
|
StatisticsError.kde
|
>>> for x in range(-6, 11):
... density = f_hat(x)
... plot = ' ' * int(density * 400) + 'x'
... print(f'{x:2}: {density:.3f} {plot}')
...
|
-6: 0.002 x
-5: 0.009 x
-4: 0.031 x
-3: 0.070 x
-2: 0.111 x
-1: 0.125 x
0: 0.110 x
1: 0.086 x
2: 0.068 x
3: 0.059 x
4: 0.066 x
5: 0.082 x
6: 0.082 x
7: 0.058 x
8: 0.028 x
9: 0.009 x
10: 0.002 x
Estimate P(4.5 < X <= 7.5), the probability that a new sample value
will be between 4.5 and 7.5:
| null |
cpython
|
cfcd524
|
statistics
|
StatisticsError.kde
|
>>> cdf = kde(sample, h=1.5, cumulative=True)
| null |
|
cpython
|
cfcd524
|
statistics
|
StatisticsError.kde
|
>>> round(cdf(7.5) - cdf(4.5), 2)
|
0.22
References
----------
Kernel density estimation and its application:
https://www.itm-conferences.org/articles/itmconf/pdf/2018/08/itmconf_sam2018_00037.pdf
Kernel functions in common use:
https://en.wikipedia.org/wiki/Kernel_(statistics)#kernel_functions_in_common_use
Interactive graphical demonstration and exploration:
https://demonstrations.wolfram.com/KernelDensityEstimation/
Kernel estimation of cumulative distribution function of a random variable with bounded support
https://www.econstor.eu/bitstream/10419/207829/1/10.21307_stattrans-2016-037.pdf
| null |
cpython
|
cfcd524
|
statistics
|
StatisticsError.kde_random
|
>>> data = [-2.1, -1.3, -0.4, 1.9, 5.1, 6.2]
| null |
|
cpython
|
cfcd524
|
statistics
|
StatisticsError.kde_random
|
>>> rand = kde_random(data, h=1.5, seed=8675309)
| null |
|
cpython
|
cfcd524
|
statistics
|
StatisticsError.kde_random
|
>>> new_selections = [rand() for i in range(10)]
| null |
|
cpython
|
cfcd524
|
statistics
|
StatisticsError.kde_random
|
>>> [round(x, 1) for x in new_selections]
|
[0.7, 6.2, 1.2, 6.9, 7.0, 1.8, 2.5, -0.5, -1.8, 5.6]
| null |
cpython
|
cfcd524
|
statistics
|
NormalDist.overlap
|
>>> N1 = NormalDist(2.4, 1.6)
| null |
|
cpython
|
cfcd524
|
statistics
|
NormalDist.overlap
|
>>> N2 = NormalDist(3.2, 2.0)
| null |
|
cpython
|
cfcd524
|
statistics
|
NormalDist.overlap
|
>>> N1.overlap(N2)
|
0.8035050657330205
| null |
cpython
|
cfcd524
|
statistics
|
NormalDist._sum
|
>>> _sum([3, 2.25, 4.5, -0.5, 0.25])
|
(<class 'float'>, Fraction(19, 2), 5)
Some sources of round-off error will be avoided:
# Built-in sum returns zero.
| null |
cpython
|
cfcd524
|
statistics
|
NormalDist._sum
|
>>> _sum([1e50, 1, -1e50] * 1000)
|
(<class 'float'>, Fraction(1000, 1), 3000)
Fractions and Decimals are also supported:
| null |
cpython
|
cfcd524
|
statistics
|
NormalDist._sum
|
>>> from fractions import Fraction as F
| null |
|
cpython
|
cfcd524
|
statistics
|
NormalDist._sum
|
>>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)])
|
(<class 'fractions.Fraction'>, Fraction(63, 20), 4)
| null |
cpython
|
cfcd524
|
statistics
|
NormalDist._sum
|
>>> from decimal import Decimal as D
| null |
|
cpython
|
cfcd524
|
statistics
|
NormalDist._sum
|
>>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")]
| null |
|
cpython
|
cfcd524
|
statistics
|
NormalDist._sum
|
>>> _sum(data)
|
(<class 'decimal.Decimal'>, Fraction(6963, 10000), 4)
Mixed types are currently treated as an error, except that int is
allowed.
| null |
cpython
|
cfcd524
|
statistics
|
NormalDist._exact_ratio
|
>>> _exact_ratio(0.25)
|
(1, 4)
x is expected to be an int, Fraction, Decimal or float.
| null |
cpython
|
cfcd524
|
statistics
|
NormalDist._rank
|
>>> data = [31, 56, 31, 25, 75, 18]
| null |
|
cpython
|
cfcd524
|
statistics
|
NormalDist._rank
|
>>> _rank(data)
|
[3.5, 5.0, 3.5, 2.0, 6.0, 1.0]
The operation is idempotent:
| null |
cpython
|
cfcd524
|
statistics
|
NormalDist._rank
|
>>> _rank([3.5, 5.0, 3.5, 2.0, 6.0, 1.0])
|
[3.5, 5.0, 3.5, 2.0, 6.0, 1.0]
It is possible to rank the data in reverse order so that the
highest value has rank 1. Also, a key-function can extract
the field to be ranked:
| null |
cpython
|
cfcd524
|
statistics
|
NormalDist._rank
|
>>> goals = [('eagles', 45), ('bears', 48), ('lions', 44)]
| null |
|
cpython
|
cfcd524
|
statistics
|
NormalDist._rank
|
>>> _rank(goals, key=itemgetter(1), reverse=True)
|
[2.0, 1.0, 3.0]
Ranks are conventionally numbered starting from one; however,
setting *start* to zero allows the ranks to be used as array indices:
| null |
cpython
|
cfcd524
|
statistics
|
NormalDist._rank
|
>>> prize = ['Gold', 'Silver', 'Bronze', 'Certificate']
| null |
|
cpython
|
cfcd524
|
statistics
|
NormalDist._rank
|
>>> scores = [8.1, 7.3, 9.4, 8.3]
| null |
|
cpython
|
cfcd524
|
statistics
|
NormalDist._rank
|
>>> [prize[int(i)] for i in _rank(scores, start=0, reverse=True)]
|
['Bronze', 'Certificate', 'Gold', 'Silver']
| null |
cpython
|
cfcd524
|
doctest
|
_SpoofOut._ellipsis_match
|
>>> _ellipsis_match('aa...aa', 'aaa')
|
False
| null |
cpython
|
cfcd524
|
doctest
|
DocTestRunner
|
>>> save_colorize = _colorize.COLORIZE
| null |
|
cpython
|
cfcd524
|
doctest
|
DocTestRunner
|
>>> _colorize.COLORIZE = False
| null |
|
cpython
|
cfcd524
|
doctest
|
DocTestRunner
|
>>> tests = DocTestFinder().find(_TestClass)
| null |
|
cpython
|
cfcd524
|
doctest
|
DocTestRunner
|
>>> runner = DocTestRunner(verbose=False)
| null |
|
cpython
|
cfcd524
|
doctest
|
DocTestRunner
|
>>> tests.sort(key = lambda test: test.name)
| null |
|
cpython
|
cfcd524
|
doctest
|
DocTestRunner
|
>>> for test in tests:
... print(test.name, '->', runner.run(test))
|
_TestClass -> TestResults(failed=0, attempted=2)
_TestClass.__init__ -> TestResults(failed=0, attempted=2)
_TestClass.get -> TestResults(failed=0, attempted=2)
_TestClass.square -> TestResults(failed=0, attempted=1)
The `summarize` method prints a summary of all the test cases that
have been run by the runner, and returns an aggregated TestResults
instance:
| null |
cpython
|
cfcd524
|
doctest
|
DocTestRunner
|
>>> runner.summarize(verbose=1)
|
4 items passed all tests:
2 tests in _TestClass
2 tests in _TestClass.__init__
2 tests in _TestClass.get
1 test in _TestClass.square
7 tests in 4 items.
7 passed.
Test passed.
TestResults(failed=0, attempted=7)
The aggregated number of tried examples and failed examples is also
available via the `tries`, `failures` and `skips` attributes:
| null |
cpython
|
cfcd524
|
doctest
|
DocTestRunner
|
>>> runner.tries
|
7
| null |
cpython
|
cfcd524
|
doctest
|
DocTestRunner
|
>>> runner.failures
|
0
| null |
cpython
|
cfcd524
|
doctest
|
DocTestRunner
|
>>> runner.skips
|
0
The comparison between expected outputs and actual outputs is done
by an `OutputChecker`. This comparison may be customized with a
number of option flags; see the documentation for `testmod` for
more information. If the option flags are insufficient, then the
comparison may also be customized by passing a subclass of
`OutputChecker` to the constructor.
The test runner's display output can be controlled in two ways.
First, an output function (`out`) can be passed to
`TestRunner.run`; this function will be called with strings that
should be displayed. It defaults to `sys.stdout.write`. If
capturing the output is not sufficient, then the display output
can be also customized by subclassing DocTestRunner, and
overriding the methods `report_start`, `report_success`,
`report_unexpected_exception`, and `report_failure`.
| null |
cpython
|
cfcd524
|
doctest
|
DocTestRunner
|
>>> _colorize.COLORIZE = save_colorize
| null |
|
cpython
|
cfcd524
|
doctest
|
DebugRunner
|
>>> runner = DebugRunner(verbose=False)
| null |
|
cpython
|
cfcd524
|
doctest
|
DebugRunner
|
>>> test = DocTestParser().get_doctest('>>> raise KeyError\n42',
... {}, 'foo', 'foo.py', 0)
| null |
|
cpython
|
cfcd524
|
doctest
|
DebugRunner
|
>>> try:
... runner.run(test)
... except UnexpectedException as f:
... failure = f
| null |
|
cpython
|
cfcd524
|
doctest
|
DebugRunner
|
>>> failure.test is test
|
True
| null |
cpython
|
cfcd524
|
doctest
|
DebugRunner
|
>>> failure.example.want
|
'42\n'
| null |
cpython
|
cfcd524
|
doctest
|
DebugRunner
|
>>> exc_info = failure.exc_info
| null |
|
cpython
|
cfcd524
|
doctest
|
DebugRunner
|
>>> raise exc_info[1] # Already has the traceback
|
Traceback (most recent call last):
...
KeyError
We wrap the original exception to give the calling application
access to the test and example information.
If the output doesn't match, then a DocTestFailure is raised:
| null |
cpython
|
cfcd524
|
doctest
|
DebugRunner
|
>>> test = DocTestParser().get_doctest('''
... >>> x = 1
... >>> x
... 2
... ''', {}, 'foo', 'foo.py', 0)
| null |
|
cpython
|
cfcd524
|
doctest
|
DebugRunner
|
>>> try:
... runner.run(test)
... except DocTestFailure as f:
... failure = f
|
DocTestFailure objects provide access to the test:
| null |
cpython
|
cfcd524
|
doctest
|
DebugRunner
|
>>> failure.test is test
|
True
As well as to the example:
| null |
cpython
|
cfcd524
|
doctest
|
DebugRunner
|
>>> failure.example.want
|
'2\n'
and the actual output:
| null |
cpython
|
cfcd524
|
doctest
|
DebugRunner
|
>>> failure.got
|
'1\n'
If a failure or error occurs, the globals are left intact:
| null |
cpython
|
cfcd524
|
doctest
|
DebugRunner
|
>>> del test.globs['__builtins__']
| null |
|
cpython
|
cfcd524
|
doctest
|
DebugRunner
|
>>> test.globs
|
{'x': 1}
| null |
cpython
|
cfcd524
|
doctest
|
DebugRunner
|
>>> test = DocTestParser().get_doctest('''
... >>> x = 2
... >>> raise KeyError
... ''', {}, 'foo', 'foo.py', 0)
| null |
|
cpython
|
cfcd524
|
doctest
|
DebugRunner
|
>>> runner.run(test)
|
Traceback (most recent call last):
...
doctest.UnexpectedException: <DocTest foo from foo.py:0 (2 examples)>
| null |
cpython
|
cfcd524
|
doctest
|
DebugRunner
|
>>> del test.globs['__builtins__']
| null |
|
cpython
|
cfcd524
|
doctest
|
DebugRunner
|
>>> test.globs
|
{'x': 2}
But the globals are cleared if there is no error:
| null |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.