description
stringlengths
171
4k
code
stringlengths
94
3.98k
normalized_code
stringlengths
57
4.99k
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
for q in range(int(input())): line = list(map(int, input())) cou = [0] * 10 for i in line: cou[i] += 1 ans = len(line) - 2 for i in range(10): ans = min(ans, len(line) - cou[i]) for a in range(10): for b in range(10): fl = False i = 0 ans_ = 0 while i < len(line) and line[i] != a: i += 1 ans_ += 1 i += 1 while i < len(line): while i < len(line) and line[i] != b: i += 1 ans_ += 1 if i < len(line): fl = False i += 1 while i < len(line) and line[i] != a: i += 1 ans_ += 1 if i < len(line): fl = True i += 1 if fl: ans_ += 1 ans = min(ans, ans_) print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER WHILE VAR FUNC_CALL VAR VAR WHILE VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
for _ in range(int(input())): s = input() n = len(s) ans = 0 for i in range(10): for j in range(10): f = True c = 0 for k in range(n): if f and int(s[k]) == i: c += 1 f = False elif not f and int(s[k]) == j: c += 1 f = True if i != j and c % 2: c -= 1 ans = max(ans, c) print(n - ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
for g in range(int(input())): s = input() slov = [0] * 10 data = [0] * 10 for i in range(len(s)): data[int(s[i])] += 1 ans = max(data) for i in range(10): slov[i] = 1 for i in range(len(s)): if slov[int(s[i])] == 1: slov[int(s[i])] = 0 data = [0] * 10 data[int(s[i])] = 1 data1 = [1] * 10 for j in range(i, len(s)): if s[j] != s[i] and data1[int(s[j])] == 1: data1[int(s[j])] = 0 data[int(s[j])] += 1 elif s[j] == s[i]: data[int(s[i])] += 1 data1 = [1] * 10 r = max(data) data.remove(r) ans = max(ans, 2 * max(data)) print(len(s) - ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
for _ in range(int(input())): s = input() n = len(s) ans = len(s) - 1 for i in range(0, 10): cnt = 0 for j in s: if j != str(i): cnt += 1 ans = min(ans, cnt) for i in range(0, 10): for j in range(0, 10): if i == j: continue isi = True cnt = 0 for k in s: if isi and k == str(i): cnt += 1 isi = not isi elif not isi and k == str(j): cnt += 1 isi = not isi if cnt % 2 != 0: cnt -= 1 ans = min(ans, n - cnt) print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR IF VAR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
n = int(input()) for i in range(n): s = input() l = len(s) d = dict() for i in "0123456789": d[i] = 0 for i in s: d[i] = d[i] + 1 d = sorted(d.items(), key=lambda x: x[1], reverse=True) maxi = d[0][1] arr = d for i in range(len(arr)): for j in range(len(arr)): if i == j: continue else: e = arr[i][0] f = arr[j][0] slag = -1 sount = 0 for q in s: if q == e: slag = 0 if q == f and slag == 0: sount = sount + 1 slag = 1 if sount * 2 >= maxi: maxi = sount * 2 print(l - maxi)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FOR VAR STRING ASSIGN VAR VAR NUMBER FOR VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR ASSIGN VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
for m in [*open(0)][1:]: kj = [0] * 100 for i in map(int, m[:-1]): for j in range(10): kj[10 * i + j] = kj[10 * j + i] + 1 print(len(m) - 1 - max(max(kj) & ~1, *kj[::11]))
FOR VAR LIST FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER VAR VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR NUMBER
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
def mergeSort(L, R, a): i = j = k = 0 while i < len(L) and j < len(R): if L[i] < R[j]: a[k] = 0 i += 1 else: a[k] = 1 j += 1 k += 1 while i < len(L): a[k] = 0 i += 1 k += 1 while j < len(R): a[k] = 1 j += 1 k += 1 for _ in range(int(input())): s = input() arr = [0] * 10 for i in range(len(s)): if arr[int(s[i])] == 0: arr[int(s[i])] = [i] else: arr[int(s[i])].append(i) possible = 2 for i in range(10): if arr[i] != 0: possible = max(possible, len(arr[i])) for j in range(i + 1, 10): if arr[i] != 0 and arr[j] != 0: a = [0] * (len(arr[i]) + len(arr[j])) mergeSort(arr[i], arr[j], a) pair = 0 k = 0 while k < len(a): start = a[k] while k < len(a) and a[k] == start: k += 1 if k == len(a): break start = a[k] while k < len(a) and a[k] == start: k += 1 pair += 1 possible = max(possible, 2 * pair) print(len(s) - possible)
FUNC_DEF ASSIGN VAR VAR VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR ASSIGN VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER VAR NUMBER WHILE VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER VAR NUMBER VAR NUMBER WHILE VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR LIST VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR WHILE VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR WHILE VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
import sys input = sys.stdin.readline t = int(input()) for r in range(t): s = input().strip("\n") n = len(s) d = {} for i in s: try: d[i] += 1 except: d[i] = 1 if len(d) == n: print(n - 2) elif len(d) == 1: print(0) else: mini = 9999999999999999999999999 for i in range(0, 10): for j in range(0, 10): counter = 0 toggle = 0 for k in range(n): if toggle == 0 and s[k] == str(i): toggle ^= 1 elif toggle == 1 and s[k] == str(j): toggle ^= 1 else: counter += 1 if i != j and (len(s) - counter) % 2 == 1: counter += 1 mini = min(mini, counter) print(mini)
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT FOR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR NUMBER VAR VAR FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
for i in range(int(input())): a = list(map(int, input())) z = len(a) + 1 a1 = [0] * 10 a2 = [z] * 10 a3 = list(range(10)) for j, x in enumerate(a): a1[x] += 1 if a2[x] == z: a2[x] = j a4 = [x[0] for x in sorted(zip(a3, a2), key=lambda q: q[1])] b = [[(0) for y in range(10)] for x in range(10)] for j in range(10): for k in range(j + 1, 10): j1 = a4[j] k1 = a4[k] v = True c = 0 for x in a: if v and x == j1: v = False c += 1 elif not v and x == k1: v = True c += 1 b[j1][k1] = c b1 = max(map(max, b)) b1 -= b1 % 2 print(len(a) - max(max(a1), b1))
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR BIN_OP LIST VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR ASSIGN VAR NUMBER VAR NUMBER IF VAR VAR VAR ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
t = int(input()) for i in range(t): a = input() b = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] k = 0 for j in range(10): for l in range(10): q = str(b[j]) w = str(b[l]) e = 0 r = 0 d = 0 for f in a: d += 1 if f == q and e == r: e += 1 elif f == w and e != r: r += 1 if q == w: if e + r > k: k = e + r elif e + r - (e + r) % 2 > k: k = e + r - (e + r) % 2 print(d - k)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER IF VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
t = int(input()) for i in range(t): lin = input() a = {"0": 0, "1": 0, "2": 0, "3": 0, "4": 0, "5": 0, "6": 0, "7": 0, "8": 0, "9": 0} b = { "0": -1, "1": -1, "2": -1, "3": -1, "4": -1, "5": -1, "6": -1, "7": -1, "8": -1, "9": -1, } bp = { "0": -1, "1": -1, "2": -1, "3": -1, "4": -1, "5": -1, "6": -1, "7": -1, "8": -1, "9": -1, } enct = [[(0) for k in range(10)] for l in range(10)] for j in range(len(lin)): a[lin[j]] += 1 bp[lin[j]] = b[lin[j]] b[lin[j]] = j for k in range(10): if b[str(k)] != -1 and bp[lin[j]] < b[str(k)] and b[lin[j]] > b[str(k)]: enct[int(lin[j])][k] += 1 max1 = 0 max2 = 0 for j in range(10): max1 = max(a[str(j)], max1) max2 = max(max(enct[j]), max2) print(min(len(lin) - 2 * max2, len(lin) - max1))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR DICT STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER ASSIGN VAR DICT STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER ASSIGN VAR DICT STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER IF VAR FUNC_CALL VAR VAR NUMBER VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP NUMBER VAR BIN_OP FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
from itertools import product T = int(input()) for _ in range(T): s = input() mn, n = len(s), len(s) for a, b in product(list("0123456789"), list("0123456789")): cc = 0 for ch in s: if cc % 2 == 0: if ch == a: cc += 1 elif ch == b: cc += 1 if a == b: mn = min(mn, n - cc) else: mn = min(mn, n - cc if cc % 2 == 0 else n - cc + 1) print(mn)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FOR VAR VAR FUNC_CALL VAR FUNC_CALL VAR STRING FUNC_CALL VAR STRING ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
for _ in range(int(input())): s = input() ans = 0 for d1 in "1234567890": for d2 in "1234567890": d11 = d1 d21 = d2 cur_ans = 0 for c in s: if c == d11: cur_ans += 1 d11, d21 = d21, d11 if d1 != d2: cur_ans = cur_ans // 2 * 2 ans = max(ans, cur_ans) print(len(s) - ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR STRING FOR VAR STRING ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
t = int(input()) def max_len(two, num): two = str(two) if len(two) == 1: two = "0" + two lenth = 0 to_check = 0 for i in num: if i == two[to_check]: to_check = (to_check + 1) % 2 lenth += 1 if lenth % 2 == 0: return lenth return lenth - 1 def solve(): num = input() freq = {} for i in num: freq[i] = freq.get(i, 0) + 1 maxx = max(freq.values()) can = maxx for i in range(100): can = max(can, max_len(i, num)) print(len(num) - can) while t: solve() t -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP STRING VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR NUMBER IF BIN_OP VAR NUMBER NUMBER RETURN VAR RETURN BIN_OP VAR NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR WHILE VAR EXPR FUNC_CALL VAR VAR NUMBER
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
for _ in range(int(input())): s = input() dp = [[(0) for i in range(10)] for j in range(10)] mx = 0 for i in range(10): sl = str(i) for j in range(10): nl = str(j) fi, ei = -1, -1 used = 0 for k in range(len(s)): if i == j and s[k] == sl: dp[i][i] += 1 continue elif i == j: continue else: if s[k] == sl: fi = k used = 0 elif s[k] == nl: ei = k if not used and ei > fi and fi >= 0: dp[i][j] += 1 used = 1 if i != j: mx = max(mx, dp[i][j]) mx = max(mx * 2, max(dp[i][i] for i in range(10))) print(len(s) - mx)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR IF VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR IF VAR VAR VAR VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
t = int(input()) def swap(p): b = p[0] p[0] = p[1] p[1] = b return p def calculate_delets(s, pat): or_pat = pat.copy() res = 0 for el in s: if el == pat[0]: pat = swap(pat) else: res += 1 if pat != or_pat: res += 1 return res for i in range(t): s = input() l1 = "0123456789" l2 = "0123456789" m_del = len(s) for k1 in l1: for k2 in l2: pat = [k1, k2] m_del = min(calculate_delets(s, pat), m_del) print(m_del)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR FOR VAR VAR ASSIGN VAR LIST VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
def giveCost(x, y, s): cost = 0 lookFor = x l = 0 for i in s: if i != lookFor: cost += 1 else: lookFor = y if lookFor == x else x l += 1 return cost if l % 2 == 0 or x == y else cost + 1 for _ in range(int(input())): s = list(map(int, list(input()))) cost = float("inf") for i in range(10): for j in range(10): cost = min(cost, giveCost(i, j, s)) print(cost)
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR VAR NUMBER RETURN BIN_OP VAR NUMBER NUMBER VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
for _ in range(int(input())): n = input() cnt = 2 f = [(0) for i in range(10)] for i in range(10): for c in n: if c == str(i): f[i] += 1 for j in range(i + 1, 10): ind1, ind2 = True, True cnt1, cnt2 = 0, 0 for c in n: if ind1 and c == str(i): ind1 = False if not ind1 and c == str(j): ind1 = True cnt1 += 2 for c in n: if ind2 and c == str(j): ind2 = False if not ind2 and c == str(i): ind2 = True cnt2 += 2 cnt = max(cnt, cnt1, cnt2) x = max(f) cnt = max(cnt, x) print(len(n) - cnt)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR VAR IF VAR FUNC_CALL VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR VAR IF VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR NUMBER FOR VAR VAR IF VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
import sys input = sys.stdin.readline def name(arr): patterns = {} highest = 0 count = 0 for i in range(10): for j in range(10): first = 0 found = False for char in arr[:-1]: if i == j: if char == str(i): count += 1 else: if first != 1: if char == str(i): first = 1 elif first == 1: if char == str(j): first = 0 found = True if found: count += 2 found = False if count > highest: highest = count count = 0 return len(arr) - 1 - highest def solution(): arr = input() print(name(arr)) t = int(input()) for i in range(0, t): solution()
IMPORT ASSIGN VAR VAR FUNC_DEF ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR NUMBER IF VAR VAR IF VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER RETURN BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
def test(s, c): matrix = [ [ [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], ], [ [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], ], [ [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], ], [ [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], ], [ [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], ], [ [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], ], [ [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], ], [ [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], ], [ [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], ], [ [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], [-1, 0], ], ] max = 0 for i in range(len(s)): x = int(s[i]) for y in range(10): if x != y: current = matrix[y][x][0] if current == y: matrix[y][x][0] = x matrix[y][x][1] += 1 if matrix[y][x][1] > max: max = matrix[y][x][1] current = matrix[x][y][0] if current == y or current == -1: matrix[x][y][0] = x if matrix[x][y][1] > max: max = matrix[x][y][1] return max * 2 def calc(s): positions = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] for i in range(len(s)): c = int(s[i]) positions[c] += 1 m = max(positions) combinations = [] for i in range(10): for j in range(10): l1 = positions[i] l2 = positions[j] if l1 + l2 > m and i != j: combinations.append((i, j)) t = test(s, combinations) return m if m > t else t n = int(input()) for t in range(n): s = input() print(len(s) - calc(s))
FUNC_DEF ASSIGN VAR LIST LIST LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR NUMBER VAR VAR VAR VAR NUMBER NUMBER IF VAR VAR VAR NUMBER VAR ASSIGN VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER VAR IF VAR VAR VAR NUMBER VAR ASSIGN VAR VAR VAR VAR NUMBER RETURN BIN_OP VAR NUMBER FUNC_DEF ASSIGN VAR LIST NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR IF BIN_OP VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
t = int(input()) for _ in range(t): s = input() data = [] req = [] for _ in range(10): temp = [] temp1 = [] for _ in range(10): temp.append(0) temp1.append(-1) data.append(temp) req.append(temp1) for i in s: i = int(i) for j in range(10): if req[i][j] == i or req[i][j] == -1: data[i][j] += 1 req[i][j] = j if req[j][i] == i and i != j: data[j][i] += 1 req[j][i] = j l = [] for i in range(10): for j in range(10): if data[i][j] % 2 != 0: if i != j: data[i][j] = data[i][j] - 1 for i in data: l.append(max(i)) print(len(s) - max(l))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR IF VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF BIN_OP VAR VAR VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR VAR VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
n = int(input()) for i in range(n): m = 0 arr1 = str(input()) for j in range(0, 10): for k in range(0, 10): if j < k: coun = 0 y = 0 for t in range(len(arr1)): if coun == 0 and arr1[t] == str(j): coun += 1 y = str(j) elif coun == 0 and arr1[t] == str(k): coun += 1 y = str(k) elif arr1[t] == str(j) and y == str(k): coun += 1 y = str(j) elif arr1[t] == str(k) and y == str(j): coun += 1 y = str(k) if coun % 2 == 0 and coun > m: m = coun elif coun % 2 == 1 and coun - 1 > m: m = coun - 1 for j in range(10): if arr1.count(str(j)) > m: m = arr1.count(str(j)) print(len(arr1) - m)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR VAR ASSIGN VAR VAR IF BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
for _ in range(int(input())): n = input() ans = 2 * int(100000.0) for pair in range(100): i = 0 s = str(pair) if len(s) == 1: s = "0" + s d = 0 for j in n: if j != s[i]: d += 1 else: i = 1 - i if i == 1 and s[0] != s[1]: d += 1 ans = min(ans, d) print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP NUMBER FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP STRING VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR IF VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
from sys import stdin tt = int(stdin.readline()) nn = "0123456789" for loop in range(tt): s = stdin.readline() s = s[:-1] ans = len(s) for fi in nn: for sc in nn: state = 0 now = 0 for i in s: if i == fi and state == 0: now += 1 state = 1 elif i == sc and state == 1: now += 1 state = 0 if fi == sc: ans = min(ans, len(s) - now) else: ans = min(ans, len(s) - now // 2 * 2) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR FOR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
t = int(input()) for tc in range(t): s = str(input()) freq = {} for i in range(10): freq[str(i)] = 0 for i in s: freq[i] += 1 res = len(s) - max(freq.values()) for i in range(10): for j in range(10): flag = 0 cnt = 0 for k in s: if flag == 0 and k == str(i): flag = 1 cnt += 1 elif flag == 1 and k == str(j): flag = 0 cnt += 1 if cnt % 2 == 1: cnt -= 1 res = min(res, len(s) - cnt) print(res)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER FOR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR NUMBER IF VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
t = int(input()) def min_erase(c, s): erase = 0 t = 0 for d in s: if d == c[t]: t ^= 1 else: erase += 1 if c[0] != c[1] and t == 1: erase += 1 return erase for _ in range(t): s = input() ans = len(s) for x in range(10): for y in range(10): c = [str(x), str(y)] cur = min_erase(c, s) ans = min(ans, cur) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR LIST FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
for _ in range(int(input())): s = input() a = [] for i in s: a.append(int(i)) b = [] n = len(s) for i in range(10): for j in range(10): check = False cnt = 0 st = 11 nd = 11 for k in a: if k == i or k == j: if k == i: st = i nd = j else: st = j nd = i break if st != 11: for k in a: if k == st and not check: cnt += 1 check = True elif k == nd and check: cnt += 1 check = False if st != nd and cnt % 2 != 0: cnt -= 1 b.append(cnt) print(n - max(b))
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF VAR NUMBER FOR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
import sys reader = (s.rstrip() for s in sys.stdin) input = reader.__next__ nn = "0123456789" def gift(): for _ in range(t): s = input() ans = len(s) for fi in nn: for sc in nn: state = 0 now = 0 for i in s: if i == fi and state == 0: now += 1 state = 1 elif i == sc and state == 1: now += 1 state = 0 if fi == sc: ans = min(ans, len(s) - now) else: ans = min(ans, len(s) - now + now % 2) yield ans t = int(input()) ans = gift() print(*ans, sep="\n")
IMPORT ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR STRING FUNC_DEF FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR FOR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER EXPR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR STRING
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
T = int(input()) while T: s = input() D = {} for i in range(len(s)): if int(s[i]) in D: D[int(s[i])].append(i) else: D[int(s[i])] = [i] m = 0 for i in D: m = max(m, len(D[i])) for i in D: for j in D: if i != j: a = 1 b = 0 Z = [] x = D[i][0] Z.append(x) while a < len(D[i]) + 1 and b < len(D[j]) and x < len(s): while b < len(D[j]) and D[j][b] < x: b = b + 1 if b < len(D[j]): x = D[j][b] Z.append(x) else: x = len(s) + 1 while a < len(D[i]) and D[i][a] < x: a = a + 1 if a < len(D[i]): x = D[i][a] Z.append(x) else: x = len(s) + 1 m = max(m, len(Z) - len(Z) % 2) print(len(s) - m) T = T - 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR LIST VAR ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR FOR VAR VAR FOR VAR VAR IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR WHILE VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR WHILE VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
from itertools import product for _ in range(int(input())): s = input() res = min(2, len(s)) for c1, c2 in product("0123456789", repeat=2): cnt = 0 idx = 0 for c in s: if c == (c1 if idx == 0 else c2): cnt += 1 idx = 1 - idx res = max(res, cnt // 2 * 2 if c1 != c2 else cnt) print(len(s) - res)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR FOR VAR VAR FUNC_CALL VAR STRING NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
import sys input = sys.stdin.readline t = int(input()) for _ in range(t): s = [int(ch) for ch in input().rstrip()] ans = 0 for d1 in range(0, 10): for d2 in range(0, 10): if d1 == d2: cnt = s.count(d1) ans = max(ans, cnt) continue cnt = 0 state = 0 for item in s: if item == d1 and not state: state = 1 cnt += 1 elif item == d2 and state: state = 0 cnt += 1 if state == 1: ans = max(ans, cnt - 1) else: ans = max(ans, cnt) print(len(s) - ans)
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR ASSIGN VAR NUMBER VAR NUMBER IF VAR VAR VAR ASSIGN VAR NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
def func(a, x, y): res = 0 for c in a: if c == x: res += 1 temp = x x = y y = temp if x != y and res % 2 == 1: res -= 1 return res for _ in range(int(input())): a = [int(x) for x in input()] ans = 0 for x in range(10): for y in range(10): ans = max(ans, func(a, x, y)) print(len(a) - ans)
FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF VAR VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
t = int(input()) def func(s, j, k): c = 0 if j == k: for b in s: if int(b) != j: c += 1 else: v = 0 for b in s: if v == 0: if int(b) != j: c += 1 else: v = (v + 1) % 2 elif int(b) != k: c += 1 else: v = (v + 1) % 2 if v == 1: c += 1 return c for i in range(t): s = input() m = len(s) for j in range(10): for k in range(10): m = min(m, func(s, j, k)) print(m)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER IF VAR VAR FOR VAR VAR IF FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER IF FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER IF VAR NUMBER VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
T = int(input()) for _ in range(T): s = input() n = len(s) ans = n - 2 A = [(0) for i in range(10)] for i in range(10): for j in range(10): l = 0 st = 0 B = [str(i), str(j)] for val in s: if val == B[st]: l = l + 1 st = (st + 1) % 2 if i != j: if l % 2 != 0: l = l - 1 ans = min(ans, n - l) else: ans = min(ans, n - l) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST FUNC_CALL VAR VAR FUNC_CALL VAR VAR FOR VAR VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER IF VAR VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
import sys def count_alternation(s, a, b): n = len(s) for i in range(n): if s[i] == a: break if s[i] == b: a, b = b, a break i1 = 0 for i in range(n)[::-1]: if s[i] == b: i1 = i break flip = {a: b, b: a} which = a count = 0 for i in range(i1 + 1): if s[i] == which: if which == b: count += 1 which = flip[which] return 2 * count def solve(s): s = [(ord(c) - ord("0")) for c in s] k = 10 n = len(s) counts = [0] * k for i in range(n): counts[s[i]] += 1 result = max(counts) for a in range(k): for b in range(a + 1, k): if counts[a] == 0 or counts[b] == 0: continue result = max(result, count_alternation(s, a, b)) return n - result def main(istr, ostr): t = int(istr.readline()) for _ in range(t): s = istr.readline().strip() result = solve(s) print(result, file=ostr) main(sys.stdin, sys.stdout)
IMPORT FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR DICT VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR VAR VAR RETURN BIN_OP NUMBER VAR FUNC_DEF ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR RETURN BIN_OP VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
t = int(input()) while t: t -= 1 s = input() if len(list(set(s))) == 1: print("0") else: x = [ "00", "01", "02", "03", "04", "05", "06", "07", "08", "09", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99", ] l = len(x) y = [0] * l extra = [0] * 10 ans = [0] * l for i in range(len(s)): extra[int(s[i])] += 1 for j in range(l): if s[i] == x[j][y[j] % 2]: y[j] += 1 if y[j] % 2 == 0: ans[j] += 1 print(len(s) - max(2 * max(ans), max(extra)))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR IF FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR LIST STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP NUMBER FUNC_CALL VAR VAR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
for _ in range(int(input())): s = input() m = 0 for i in range(10): m = max(m, s.count(str(i))) ans1 = len(s) - m second = 0 for i in range(10): for j in range(i + 1, 10): last = "" c = 0 for k in s: if k == str(i) or k == str(j): if k != last: c += 1 last = k if c % 2 == 0: second = max(second, c) else: second = max(second, c - 1) ans2 = len(s) - second ans3 = len(s) - 2 print(min(ans1, ans2, ans3))
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR VAR IF VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
import sys input = sys.stdin.readline inf = int(10000000000.0) t = int(input()) while t: t -= 1 s = input().strip() n = len(s) d = dict() for i in s: if i in d: d[i] += 1 else: d[i] = 1 m1 = max(d.values()) m2 = 0 for i in range(10): for j in range(10): if i != j: f = 0 l = 0 for k in s: if f == 0 and k == str(i): f = 1 l += 1 elif f == 1 and k == str(j): f = 0 l += 1 m2 = max(l, m2) print(n - max(m1, m2 >> 1 << 1))
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FOR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR NUMBER IF VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
t = int(input()) for _ in range(0, t): st = str(input()) if len(st) <= 2: print(0) continue ans = 2 for i in range(10): for j in range(10): temp = 0 for char in st: if temp & 1: if char == str(j): temp += 1 elif char == str(i): temp += 1 if i != j: if temp & 1: temp -= 1 ans = max(ans, temp) print(len(st) - ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR VAR IF BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
t = int(input()) for _ in range(t): l = [int(i) for i in list(input())] ans = float("INF") for i in range(10): for j in range(10): count = 0 now = 1 for k in l: if now == 1: if k != i: count += 1 else: now *= -1 elif k != j: count += 1 else: now *= -1 if i != j and now == -1: count += 1 ans = min(ans, count) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
t = int(input()) for _ in range(t): s = input() counts = {} for i in s: if i in counts: counts[i] += 1 else: counts[i] = 1 longest = max(counts.values()) for a1 in "0123456789": for a2 in "0123456789": length = 0 found_a1 = False for i in s: if found_a1: if i == a2: length += 2 found_a1 = False elif i == a1: found_a1 = True longest = max(longest, length) print(len(s) - longest)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR STRING FOR VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR IF VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
import sys input = sys.stdin.readline aaaa = list() for kek in range(int(input())): s = input().split()[0] ans = 0 for i in range(10): for j in range(10): flg = True answer = 0 for x in s: if flg and int(x) == i: answer += 1 flg = False elif flg == False and int(x) == j: answer += 1 flg = True if i == j: ans = max(answer, ans) else: ans = max(answer // 2 * 2, ans) aaaa.append(len(s) - ans) print(*aaaa, sep="\n")
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR STRING
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
def list_input(): return list(map(int, input().split())) def multiple_input(): return map(int, input().split()) def solve(a, b): res = 0 for it in s: if it == a: res += 1 a, b = b, a if res % 2 != 0 and a != b: res -= 1 return res for _ in range(int(input())): s = input() m = 0 ans = 0 for i in range(10): for j in range(10): ans = max(ans, solve(str(i), str(j))) print(len(s) - ans)
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR VAR VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
t = int(input()) for _ in range(t): s = list(str(input())) d = [0] * 10 for i in range(len(s)): d[int(s[i])] += 1 max_len = max(d) for a in range(0, 10): for b in range(0, 10): now_len = 0 p = a for i in range(len(s)): if int(s[i]) == p: now_len += 1 if p == a: p = b else: p = a max_len = max(max_len, now_len - now_len % 2) print(len(s) - max_len)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
import sys input = sys.stdin.readline def solve(char): ind = 0 cnt = 0 for c in s: if c == char[ind]: cnt += 1 ind ^= 1 if char[0] != char[1]: cnt = cnt // 2 * 2 return len(s) - cnt t = int(input()) for _ in range(t): s = input()[:-1] ans = len(s) for i in range(0, 10): for j in range(0, 10): char = str(i), str(j) ans = min(ans, solve(char)) print(ans)
IMPORT ASSIGN VAR VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER RETURN BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
def check(a, b): ok = False cnt = 0 for i in range(len(u)): if ok and u[i] == a: cnt += 1 ok = False elif not ok and u[i] == b: cnt += 1 ok = True if a == b: return cnt return cnt - cnt % 2 ans = [] for stp in range(int(input())): u = list(map(int, list(input()))) ansi = 0 for i in range(10): for j in range(10): ansi = max(ansi, check(i, j)) ans.append(len(u) - ansi) print("\n".join(map(str, ans)))
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR RETURN VAR RETURN BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
def main(): t = int(input()) for i in range(t): s = input() answer = 10**9 for i in range(9): for j in range(i + 1, 10): a = str(i) b = str(j) last = "a" count = 0 for f in s: if (f == a or f == b) and f != last: last = f else: count += 1 if (len(s) - count) % 2 == 1: count += 1 answer = min(answer, count) counts = [(0) for i in range(10)] for f in s: counts[int(f)] += 1 for i in counts: answer = min(answer, len(s) - i) print(answer) main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR NUMBER IF BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
from sys import stdin, stdout q = int(input()) for i in range(q): s = input() sum1 = 0 flag = 0 for i in range(10): for j in range(10): maxi = 0 flag = 0 for k in s: if flag == 0: if int(k) == i: maxi += 1 flag = 1 elif int(k) == j: maxi += 1 flag = 0 if i != j: maxi -= maxi % 2 sum1 = max(maxi, sum1) print(len(s) - sum1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
T = int(input()) for t in range(T): s = input() mx = 0 arr = [] for i in range(10): arr.append([]) cnt = 0 for k in s: arr[int(k)].append(cnt) cnt += 1 for i in range(9): for j in range(i + 1, 10): odd = 0 even = 0 m, n = 0, 0 ans = 0 for k in range(len(arr[i]) + len(arr[j])): if m == len(arr[i]) or n == len(arr[j]): break if arr[i][m] < arr[j][n]: even = 0 m += 1 if odd == 0: ans += 1 odd = 1 else: odd = 0 n += 1 if even == 0: ans += 1 even = 1 if len(arr[i]) != 0 and len(arr[j]) != 0: if ( arr[i][-1] > arr[j][-1] and arr[i][0] > arr[j][0] or arr[i][-1] < arr[j][-1] and arr[i][0] < arr[j][0] ): ans += ans % 2 else: ans -= ans % 2 mx = max(mx, ans) for i in range(10): mx = max(mx, len(arr[i])) print(len(s) - mx)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR LIST ASSIGN VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR VAR VAR ASSIGN VAR NUMBER VAR NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR NUMBER FUNC_CALL VAR VAR VAR NUMBER IF VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
for _ in range(int(input())): s = input() n = len(s) pairs = [] for i in range(10): for j in range(10): pairs.append(str(i) + str(j)) maxx = 0 for i in pairs: c = 0 v = i[0] for j in range(n): if s[j] == v: c += 1 if v == i[0]: v = i[1] else: v = i[0] if v == i[1] and i[0] != i[1]: c -= 1 maxx = max(c, maxx) print(n - maxx)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
from sys import stdin for _ in range(int(stdin.readline())): t = stdin.readline().strip() ans = 0 for i in range(10): cand1 = str(i) for j in range(10): cand2 = str(j) pos = 0 flag = False for k in t: if k == cand1 and flag == False: flag = True elif k == cand2 and flag == True: pos += 2 flag = False if flag and i == j: pos += 1 ans = max(ans, pos) print(len(t) - ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
def everythingfine(s, n): for i in range(n): if s[i] != s[(i + 2) % n]: return False return True for _ in range(int(input())): s = input() n = len(s) maxi = 0 temp = list("0123456789") d = dict() for i in temp: d[i] = s.count(i) maxi = max(maxi, d[i]) if everythingfine(s, n): print("0") continue ans = min(n - 2, n - maxi) for i in range(10): for j in range(10): if i == j or d[temp[i]] == 0 or d[temp[j]] == 0: continue tempans = 0 diff = 0 for x in s: if x == temp[i] and diff == 1: tempans += 1 elif x == temp[j] and diff == 0: tempans += 1 elif x == temp[i] and diff == 0: diff += 1 elif x == temp[j] and diff == 1: diff -= 1 else: tempans += 1 if diff == 0: ans = min(ans, tempans) print(ans)
FUNC_DEF FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR RETURN NUMBER RETURN NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FOR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR VAR FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
def hhh(s, u, v): c = b = 0 for i in range(len(s)): if b == 0: if s[i] == u: x = u y = v b = 1 elif s[i] == v: x = v y = u b = 1 elif b == 1: if s[i] == y: c += 2 b = 2 elif s[i] == x: b = 1 return c for t in range(int(input())): s = input() a = [] for i in range(10): a.append(s.count(str(i))) m = max(a) for i in range(10): for j in range(i + 1, 10): n = hhh(s, str(i), str(j)) if n > m: m = n print(len(s) - m)
FUNC_DEF ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER IF VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR ASSIGN VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
for _ in range(0, int(input())): l = list(input()) d = {} for i in range(0, len(l)): if int(l[i]) in d: d[int(l[i])].append(i) else: d.update({int(l[i]): [i]}) odd_res = 0 even_res = 999999999 for i in d: odd_res = max(len(d[i]), odd_res) odd_res = len(l) - odd_res if odd_res == len(l) - 1: odd_res -= 1 for i in range(0, 10): for j in range(0, 10): if i != j: temp = [] for m in range(0, len(l)): if int(l[m]) in [i, j]: if temp != [] and temp[-1] == l[m]: pass else: temp.append(l[m]) if temp != []: flag5 = 0 tem = 0 for m in range(0, len(temp) - 1): if temp[m] == temp[m + 1]: tem += 1 if flag5 == 0: if len(temp) % 2 == 0: even_res = min(even_res, len(l) - len(temp)) else: even_res = min(even_res, len(l) - len(temp) + 1) print(min(odd_res, even_res))
FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR DICT FUNC_CALL VAR VAR VAR LIST VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR LIST VAR VAR IF VAR LIST VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR VAR IF VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER IF BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
for _ in range(int(input())): s = input() n = len(s) cnt = [(0) for i in range(10)] for i in s: cnt[int(i)] += 1 arr = [] maxa = 0 for i in range(10): for j in range(10): tmp = 0 c = 0 p = 1 if i != j: for k in s: w = int(k) if w == i: tmp = 1 if w == j and tmp == 1: tmp = 0 c += 1 arr.append((i, j)) maxa = max(c * 2, maxa) print(n - max(max(cnt), maxa))
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
def f(s, n): if n % 2 != 0: return False else: p = s[0] q = s[1] for i in range(0, n, 2): if s[i] != p: return False for i in range(1, n, 2): if s[i] != q: return False return True def g(s, i, j): k = 0 while int(s[k]) != i: k = k + 1 p = i q = j l = 1 for m in range(k + 1, n): if int(s[m]) == q: l = l + 1 q = p p = int(s[m]) if l % 2 == 0: return l else: return l - 1 t = int(input()) while t > 0: t = t - 1 s = input() n = len(s) if f(s, n) == True: print(0) else: d = {} m = 0 for i in s: j = int(i) if j in d: d[j] = d[j] + 1 else: d[j] = 1 m = max(m, d[j]) if m == 1: print(n - 2) else: table = [[(0) for i in range(10)] for j in range(10)] for i in range(10): if i not in d: for j in range(10): table[i][j] = 0 else: for j in range(10): if j == i: table[i][j] = d[i] elif j not in d: table[i][j] = 0 else: table[i][j] = g(s, i, j) mi = 0 for i in range(10): mi = max(mi, max(table[i])) print(n - mi)
FUNC_DEF IF BIN_OP VAR NUMBER NUMBER RETURN NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR NUMBER IF VAR VAR VAR RETURN NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR NUMBER IF VAR VAR VAR RETURN NUMBER RETURN NUMBER FUNC_DEF ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF BIN_OP VAR NUMBER NUMBER RETURN VAR RETURN BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
for qwerty in range(int(input())): s = input() ans = 10**8 for i in range(10): t = 0 for j in s: if int(j) != i: t += 1 ans = min(ans, t) for a in range(10): for b in range(10): q = 0 t = 0 for j in s: if int(j) == a and q == 0 or int(j) == b and q == 1: q = (q + 1) % 2 else: t += 1 t += (len(s) - t) % 2 ans = min(ans, t) print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF FUNC_CALL VAR VAR VAR VAR NUMBER FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
t = int(input()) for i in range(t): s = input() pair = [] res = [] for i in range(10): for j in range(10): pair.append([i, j]) for i in range(100): turn = pair[i][0] c = 0 for j in range(len(s)): if int(s[j]) != turn: c += 1 elif turn == pair[i][0]: turn = pair[i][1] else: turn = pair[i][0] if (len(s) - c) % 2 == 0: res.append(c) if (len(s) - c) % 2 != 0 and pair[i][0] == pair[i][1]: res.append(c) print(min(res))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR LIST VAR VAR FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER IF BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR IF BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
t = int(input()) for _ in range(t): s = list(input()) res = len(s) - 2 for i in range(10): for j in range(10): cur, ci, cj = 0, 0, 0 ii, jj = str(i), str(j) for c in s: if ci == cj and c == ii: ci += 1 elif ci > cj and c == jj: cj += 1 else: cur += 1 res = min(cur + (1 if ci > cj and i != j else 0), res) print(res)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FOR VAR VAR IF VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR NUMBER NUMBER VAR EXPR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
import sys def make_pat(p): bit = 0 size = 0 for i in range(len(arr)): if bit == 0 and arr[i] == p[0]: bit = 1 size += 1 elif bit == 1 and arr[i] == p[1]: bit = 0 size += 1 if p[0] == p[1]: return size elif size % 2 == 0: return size else: return 0 tc = int(sys.stdin.readline()) for _ in range(tc): arr = list(sys.stdin.readline().rstrip()) ans = 0 for i in range(10): for j in range(10): temp = make_pat(str(i) + str(j)) ans = max(ans, temp) print(len(arr) - ans)
IMPORT FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER IF VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER IF VAR NUMBER VAR NUMBER RETURN VAR IF BIN_OP VAR NUMBER NUMBER RETURN VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
t = int(input()) for _ in range(t): s = input() n = len(s) ans = [0] * 10 for i in range(n): ans[ord(s[i]) - ord("0")] = ans[ord(s[i]) - ord("0")] + 1 ans.sort() mx = ans[9] for i in range(10): for j in range(10): c = 0 if j == i: continue b = 0 for k in range(n): if b == 0 and ord(s[k]) - ord("0") == i: b = 1 c = c + 1 elif b == 1 and ord(s[k]) - ord("0") == j: b = 0 c = c + 1 mx = max(c - c % 2, mx) print(n - max(mx, ans[9]))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING BIN_OP VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING NUMBER EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR NUMBER BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR VAR NUMBER
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
from sys import stdin for _ in range(int(input())): a = stdin.readline().rstrip() d = {} le = len(a) for i in range(le): x = d.get(a[i], 0) if x: d[a[i]] += 1 else: d[a[i]] = 1 d = dict(sorted(d.items(), key=lambda x: x[1], reverse=True)) m = max(d.values()) done = [] for i, j in d.items(): for k, l in d.items(): if i != k and i + k not in done: done.append(i + k) done.append(k + i) if min([j, l]) * 2 > m: start = [] for test in range(le): if not start: if a[test] in [i, k]: start.append(a[test]) elif start[-1] != a[test] and a[test] in [i, k]: start.append(a[test]) if len(start) > m: if start[0] == start[-1]: m = len(start) - 1 else: m = len(start) print(le - m)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR VAR FUNC_CALL VAR FOR VAR VAR FUNC_CALL VAR IF VAR VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP FUNC_CALL VAR LIST VAR VAR NUMBER VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR IF VAR VAR LIST VAR VAR EXPR FUNC_CALL VAR VAR VAR IF VAR NUMBER VAR VAR VAR VAR LIST VAR VAR EXPR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR VAR IF VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
def answer(A): d = {} for i in A: if i not in d: d[i] = 1 else: d[i] += 1 maxi = max(d.values()) for i in range(0, 10): for j in range(0, 10): if i != j: count = 0 search = str(i) for k in range(len(A)): if A[k] == search: if search == str(i): search = str(j) else: search = str(i) count += 1 maxi = max(maxi, count - count % 2) return len(A) - maxi t = int(input()) for i in range(t): s = input() print(answer(s))
FUNC_DEF ASSIGN VAR DICT FOR VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR IF VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER RETURN BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
def main(): return "\n".join( map(str, (nCharactersToEraseFrom(input()) for _ in range(int(input())))) ) def nCharactersToEraseFrom(string): repetition = { "0": 0, "1": 0, "2": 0, "3": 0, "4": 0, "5": 0, "6": 0, "7": 0, "8": 0, "9": 0, } for letter in string: repetition[letter] += 1 longestLength1 = max(repetition.values()) letters = tuple(set(string)) if len(letters) > 1: longestLength2 = max( goodStringLengthFrom(string, {letters[i], letters[j]}) for i in range(len(letters) - 1) for j in range(i + 1, len(letters)) ) else: longestLength2 = 0 if longestLength1 >= longestLength2: return len(string) - longestLength1 return len(string) - (longestLength2 - 1 if longestLength2 % 2 else longestLength2) def goodStringLengthFrom(string, pairOfLetters): currLetter = [0] return sum(isElement(l, pairOfLetters, currLetter) for l in string) def isElement(letter, letters, currLetter): if letter in letters and letter != currLetter[0]: currLetter[0] = letter return 1 return 0 print(main())
FUNC_DEF RETURN FUNC_CALL STRING FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR DICT STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER FOR VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR VAR RETURN BIN_OP FUNC_CALL VAR VAR VAR RETURN BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR FUNC_DEF ASSIGN VAR LIST NUMBER RETURN FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR VAR FUNC_DEF IF VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER VAR RETURN NUMBER RETURN NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
from sys import stdin, stdout k = "" def yark(a, i, j): z = 0 p = str(i) f = p for k in a: if k == f: z += 1 f = p if f != p else str(j) if i != j and z & 1: z -= 1 return z for t in range(int(stdin.readline())): a = stdin.readline() ans = 0 for i in range(10): for j in range(10): ans = max(ans, yark(a, i, j)) k += str(len(a) - ans - 1) + " " stdout.write(k)
ASSIGN VAR STRING FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FOR VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR VAR BIN_OP FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER STRING EXPR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
def solve(): s = input() n = len(s) dic = {} occ = {} for i in range(0, n): if s[i] not in dic: dic[s[i]] = [i] occ[s[i]] = 1 else: dic[s[i]].append(i) occ[s[i]] += 1 dic2 = {} maxx = 2 for d in dic: others = { "0": 0, "1": 0, "2": 0, "3": 0, "4": 0, "5": 0, "6": 0, "7": 0, "8": 0, "9": 0, } maxx_others = 0 if len(dic[d]) <= 1: continue for i in range(len(dic[d])): st = dic[d][i] if i + 1 < len(dic[d]): end = dic[d][i + 1] sets = set(s[st + 1 : end]) for i in sets: others[i] += 1 maxx_others = max(maxx_others, others[i]) elif i + 1 == len(dic[d]): end = n sets = set(s[st + 1 : end]) for i in sets: others[i] += 1 maxx_others = max(maxx_others, others[i]) maxx1 = max(occ[d], maxx_others * 2) maxx = max(maxx1, maxx) print(n - maxx) t = int(input()) for i in range(t): solve()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT ASSIGN VAR DICT FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR ASSIGN VAR VAR VAR LIST VAR ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR DICT STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR VAR IF BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR FOR VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR FOR VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
for _ in range(int(input())): s = input() n = len(s) ans = n - 2 g = {i: [] for i in "0123456789"} for i in range(n): g[s[i]].append(i) for a in "0123456789": for b in "0123456789": cs = 0 i = j = 0 aa = g[a] bb = g[b] ans = min(ans, n - len(aa)) while i < len(aa): while j < len(bb) and aa[i] >= bb[j]: j += 1 if j < len(bb): while i < len(aa) and aa[i] <= bb[j]: i += 1 else: break cs += 1 ans = min(ans, n - cs * 2) print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR LIST VAR STRING FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR FOR VAR STRING FOR VAR STRING ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR FUNC_CALL VAR VAR WHILE VAR FUNC_CALL VAR VAR WHILE VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR WHILE VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
import sys readline = sys.stdin.readline def solve(): S = readline().rstrip() N = len(S) odds = [S.count(str(i)) for i in range(10)] odds_max = max(odds) ans = N - max(odds) for i in range(10): if odds[i] * 2 <= odds_max: continue for j in range(i + 1, 10): if odds[j] * 2 <= odds_max: continue count = 0 last = None _i, _j = str(i), str(j) for v, c in enumerate(S): if c != last: if c == _i: last = _i count += 1 elif c == _j: last = _j count += 1 ans = min(ans, N - count // 2 * 2) print(ans) T = int(readline()) for t in range(T): solve()
IMPORT ASSIGN VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER IF BIN_OP VAR VAR NUMBER VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER IF BIN_OP VAR VAR NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR NONE ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FOR VAR VAR FUNC_CALL VAR VAR IF VAR VAR IF VAR VAR ASSIGN VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
for s in [*open(0)][1:]: a = [0] * 10 b = [0] * 10 c = [0] * 100 i = 0 for x in map(int, s[:-1]): for j in range(10): c[10 * j + x] += (a[j] > a[x]) * 2 i += 1 a[x] = i b[x] += 1 print(i - max(b + c))
FOR VAR LIST FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR VAR BIN_OP VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR BIN_OP VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
T = int(input()) l = [] for i in range(10): for j in range(i, 10): l.append([]) l[-1].append(str(i)) l[-1].append(str(j)) def solve(): if len(set(s)) == 1: return 0 val = 0 for i in range(55): l1 = [x for x in s if x in l[i]] if len(l1) == 0: continue if len(set(l1)) == 1: val = max(len(l1), val) else: newlist = [l1[0]] for j in range(1, len(l1)): if l1[j] != l1[j - 1]: newlist.append(l1[j]) if len(newlist) % 2 == 1: val = max(len(newlist) - 1, val) else: val = max(len(newlist), val) return len(s) - val for test in range(T): s = list(input()) print(solve())
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR LIST EXPR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR FUNC_DEF IF FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER RETURN NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR VAR VAR VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR LIST VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR IF BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR RETURN BIN_OP FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
def solve(s, n): ans = n - 1 for a in range(10): for b in range(10): cnt1 = 0 cnt2 = 0 f = "fst" for i in range(n): if f == "fst": if s[i] == a: cnt1 += 1 f = "snd" elif s[i] == b: cnt2 += 1 f = "fst" if a != b: res = min(cnt1, cnt2) * 2 else: res = cnt1 + cnt2 ans = min(ans, n - res) return ans def main(): t = int(input()) for i in range(t): a = [int(i) for i in input()] print(solve(a, len(a))) main()
FUNC_DEF ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR IF VAR STRING IF VAR VAR VAR VAR NUMBER ASSIGN VAR STRING IF VAR VAR VAR VAR NUMBER ASSIGN VAR STRING IF VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
for _ in range(int(input())): s = input() digits = "0123456789" total = len(s) for i in digits: for j in digits: if i != j: count = 0 order = 0 for d in s: if d == i and not order: count += 1 order = 1 elif d == j and order: count += 1 order = 0 count = count // 2 * 2 total = min(total, len(s) - count) for i in digits: total = min(total, len(s) - s.count(i)) print(total)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR FOR VAR VAR IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
from sys import stdin input = stdin.readline def solve(a, b): a, b = str(a), str(b) curr = None first = None cnt = 0 for i in s: if not first: if a == i: first = a curr = b cnt += 1 elif b == i: first = b curr = a cnt += 1 elif curr == i: curr = a if curr == b else b cnt += 1 return cnt if curr == first else cnt - 1 for _ in range(int(input())): s = input().strip() mini = len(s) for i in range(10): for j in range(i, 10): mini = min(mini, len(s) - solve(i, j)) print(mini)
ASSIGN VAR VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NONE ASSIGN VAR NONE ASSIGN VAR NUMBER FOR VAR VAR IF VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR NUMBER RETURN VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
t = int(input()) for _ in range(t): s = input() n = len(s) maxx = 0 maxxs = 0 for i in range(0, 10): maxxs = max(maxxs, s.count(str(i))) for i in range(0, 100): cnt = 0 y = str(i) if len(y) == 1: y = "0" + y f = 0 for j in range(n): if s[j] == y[0]: f = 1 elif s[j] == y[1] and f == 1: cnt += 1 f = 0 maxx = max(maxx, cnt) print(min(len(s) - 2 * maxx, len(s) - maxxs))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP STRING VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP NUMBER VAR BIN_OP FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
from sys import stdin def r(): return stdin.readline().strip() def r_t(tp): return map(tp, r().strip().split()) def r_a(tp): return list(r_t(tp)) def solve(t): occur = [(0) for _ in range(10)] for x in t: occur[int(x)] += 1 ans = float("inf") for x in occur: ans = min(ans, len(t) - x) for i in range(10): for j in range(10): a, b, u, cnt = str(i), str(j), "a", 0 for x in t: if x == a and u == "a": u = "b" elif x == b and u == "b": cnt += 2 u = "a" ans = min(ans, len(t) - cnt) return ans def main(): cases = int(r()) for case in range(cases): t = r() print(solve(t)) main()
FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR STRING NUMBER FOR VAR VAR IF VAR VAR VAR STRING ASSIGN VAR STRING IF VAR VAR VAR STRING VAR NUMBER ASSIGN VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
pairs = tuple((i, j) for i in range(10) for j in range(10) if i != j) for _ in range(int(input())): s = tuple(int(i) for i in input()) ans = [] for digit in range(10): counter = s.count(digit) while ans and len(s) - counter < ans[-1]: ans.pop() ans.append(len(s) - counter) for pair in pairs: flag = 0 counter = 0 for digit in s: if pair[0] == digit and flag == 0: flag = 1 elif pair[1] == digit and flag == 1: flag = 0 counter += 2 while ans and len(s) - counter < ans[-1]: ans.pop() ans.append(len(s) - counter) print(ans[0])
ASSIGN VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR NUMBER VAR FUNC_CALL VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR BIN_OP FUNC_CALL VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FOR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER WHILE VAR BIN_OP FUNC_CALL VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR NUMBER
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
for _ in range(int(input())): a = input() ans = 0 for i in range(10): for j in range(10): t = 0 for s in a: if t % 2: if int(s) == i: t += 1 elif int(s) == j: t += 1 if i != j: t = t // 2 * 2 ans = max(ans, t) print(len(a) - ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
t = int(input()) for t_ in range(t): s = input() best = 0 for a in range(10): for b in range(10): c = 0 state = 0 for n in range(len(s)): if s[n] == str(a) and state == 0: c += 1 state = 1 elif s[n] == str(b) and state == 1: c += 1 state = 0 if a != b and state == 1: c -= 1 if c > best: best = c print(len(s) - best)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
from sys import stdin input = stdin.readline def help(): stri = list(input().strip()) n = len(stri) if n <= 2: print(0) return seti = list(set(stri)) ans = 0 for i in range(10): ans = max(ans, max(stri.count(str(i)), ans)) for a in seti: for b in seti: if a == b: continue cnt = 0 for i in range(n): if stri[i] == a and cnt % 2 == 0: cnt += 1 elif stri[i] == b and cnt % 2 == 1: cnt += 1 cnt = cnt - cnt % 2 ans = max(ans, cnt) print(n - ans) for _ in range(int(input())): help()
ASSIGN VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FOR VAR VAR FOR VAR VAR IF VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
t = int(input()) for i in range(t): st = input() lis = [] for j in range(len(st)): lis.append(st[j]) uni = set() stack = [] cnt = 0 combination = [] for j in range(10): for k in range(10): st22 = str(j) + str(k) combination.append(st22) ans = 0 for k in combination: res = 0 for kl in range(len(st)): if st[kl] == k[0] and res % 2 == 0: res += 1 elif st[kl] == k[1] and res % 2 == 1: res += 1 if k[0] != k[1] and res % 2 == 1: res -= 1 ans = max(ans, res) print(len(st) - ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER VAR NUMBER IF VAR VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER VAR NUMBER IF VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
def check(a, b, string): res = "" cnt = 0 for s in string: if s == a or s == b: if s != res: cnt += 1 res = s if cnt % 2: cnt -= 1 return cnt def main(): string = str(input()) if len(set(string)) == 1: print(0) return elif len(set(string)) == len(string): print(len(string) - 2) return arr = {} for x in string: if arr.get(x) == None: arr[x] = 1 else: arr[x] += 1 mx = -1 for x in arr: mx = max(mx, arr[x]) mn = -1 for x in arr: for y in arr: if x != y: temp = check(x, y, string) temp2 = check(y, x, string) if max(temp, temp2) > mn: mn = max(temp, temp2) print(len(string) - max(mn, mx)) return def test(): t = int(input()) while t: main() t -= 1 test()
FUNC_DEF ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR VAR IF BIN_OP VAR NUMBER VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN IF FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER RETURN ASSIGN VAR DICT FOR VAR VAR IF FUNC_CALL VAR VAR NONE ASSIGN VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR VAR FOR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR RETURN FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
for _ in range(int(input())): num = input() maxLen = 2 cnt = [(0) for i in range(10)] for d in num: cnt[int(d)] += 1 maxLen = max(maxLen, cnt[int(d)]) for a in range(10): for b in range(10): pre, cur = -1, 0 for d in num: x = int(d) if x != pre and (x == a or x == b): pre = x cur += 1 maxLen = max(maxLen, cur - cur % 2) print(len(num) - maxLen)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
def fu(b): c = 0 j = 0 for i in range(n): if a[i] == b[j]: c += 1 j = (j + 1) % 2 if len(set(b)) == 1: return n - c return n - c + j t = int(input()) for _ in range(t): a = input() n = len(a) d = list(set(a)) c = [] for i in range(len(d)): for j in range(len(d)): c.append(fu(str(d[i]) + str(d[j]))) print(min(c))
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER IF FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER RETURN BIN_OP VAR VAR RETURN BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
for i in range(int(input())): s = input() c = 0 for j in range(10): for k in range(10): a = 0 go = True bo = False for m in s: x = int(m) if x == j and go: a += 1 go = False bo = True elif x == k and bo: a += 1 go = True bo = False if j != k: a -= a & 1 c = max(c, a) print(len(s) - c)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
def solution(S): counter = [([0] * 10) for _ in range(10)] expect_smaller = [([True] * 10) for _ in range(10)] for i in range(10): for j in range(10): if i > j: expect_smaller[i][j] = False for s in S: sc = int(s) for i in range(sc): if expect_smaller[i][sc]: expect_smaller[i][sc] = not expect_smaller[i][sc] counter[i][sc] += 1 if expect_smaller[sc][i]: expect_smaller[sc][i] = not expect_smaller[sc][i] counter[sc][i] += 1 counter[sc][sc] += 1 for i in range(sc + 1, 10): if not expect_smaller[i][sc]: expect_smaller[i][sc] = not expect_smaller[i][sc] counter[i][sc] += 1 if not expect_smaller[sc][i]: expect_smaller[sc][i] = not expect_smaller[sc][i] counter[sc][i] += 1 mi, mj, m = 0, 0, 0 for i in range(10): for j in range(10): val = counter[i][j] if i != j and val % 2 == 1: val -= 1 if val > m: mi, mj, m = i, j, val return len(S) - m t = int(input()) for i in range(t): s = input() print(solution(s))
FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER NUMBER VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR VAR VAR IF VAR VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR RETURN BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
t = int(input()) for _ in range(t): s = input() l = [0] * 10 for i in range(10): l[i] = s.count(str(i)) minans = len(s) - max(l) ans = -1 for i in range(10): if s.find(str(i)) != -1: last = s.find(str(i)) ll = last for j in range(10): last = ll kol = 0 if s.find(str(j), last + 1) != -1: kol = 2 last = s.find(str(j), last + 1) ok = True while ok: if s.find(str(i), last + 1) != -1: last = s.find(str(i), last + 1) if s.find(str(j), last + 1) != -1: last = s.find(str(j), last + 1) kol += 2 else: ok = False else: ok = False ans = max(ans, kol) print(min(minans, len(s) - ans))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR IF FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
def test_case(): s = input() n = len(s) ans = n - 2 for a in range(10): for b in range(10): cur = 0 want = a for c in s: if ord(c) - ord("0") == want: want = b if a == want else a else: cur += 1 if (n - cur) % 2 == 1 and a != b: cur += 1 ans = min(ans, cur) print(ans) for i in range(int(input())): test_case()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR FOR VAR VAR IF BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING VAR ASSIGN VAR VAR VAR VAR VAR VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
def ip(): return int(input()) def sip(): return input() def mip(): return map(int, input().split()) def lip(): return list(map(int, input().split())) def matip(n, m): lst = [] for i in range(n): arr = lip() lst.append(arr) return lst t = ip() while t: t -= 1 s = sip() n = len(s) maxx = 0 maxxs = 0 for i in range(0, 10): maxxs = max(maxxs, s.count(str(i))) for i in range(0, 100): cnt = 0 y = str(i) if len(y) == 1: y = "0" + y f = 0 for j in range(n): if s[j] == y[0]: f = 1 elif s[j] == y[1] and f == 1: cnt += 1 f = 0 maxx = max(maxx, cnt) print(min(len(s) - 2 * maxx, len(s) - maxxs))
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR WHILE VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP STRING VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP NUMBER VAR BIN_OP FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
def readGenerator(): while True: tokens = input().split(" ") for t in tokens: yield t reader = readGenerator() def readWord(): return next(reader) def readInt(): return int(next(reader)) def readFloat(): return float(next(reader)) def readLine(): return input() tests = readInt() def solve(n): return n for t in range(0, tests): s = readLine() res = len(s) for i in range(0, 10): res = min(res, len(s) - s.count(str(i))) for i in range(0, 10): for j in range(0, 10): p = str(i) + str(j) f = 0 for v in s: if v == p[f % 2]: f += 1 res = min(res, len(s) - 2 * (f // 2)) print(res)
FUNC_DEF WHILE NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING FOR VAR VAR EXPR VAR ASSIGN VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_DEF RETURN FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_DEF RETURN VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR BIN_OP NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
for t in range(int(input())): alpha = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] s = input() ans = 10**6 for c1 in alpha: for c2 in alpha: l = [] count = 0 for i in range(len(s)): if s[i] == c1 and count == 0: l.append(i) count = 1 elif s[i] == c2 and count == 1: l.append(i) count = 0 if len(l) % 2 == 0: ans = min(ans, len(s) - len(l)) elif c1 != c2: ans = min(ans, len(s) - len(l) + 1 * (len(l) != 1)) else: ans = min(ans, len(s) - len(l)) print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP NUMBER NUMBER FOR VAR VAR FOR VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
def solve(s): n = len(s) ans = 1000000 for i in range(10): d = 0 for j in s: if j == str(i): d += 1 ans = min(ans, n - d) for j in range(10): if i == j: continue p = str(i) + str(j) k = 0 for l in range(n): if s[l] == p[k % 2]: k += 1 v = k // 2 * 2 ans = min(ans, n - v) return ans for _ in range(int(input())): print(solve(input()))
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
t = int(input()) for _ in range(t): s = input() n = len(s) ans = n for i in range(10): cnt = 0 for c in s: if int(c) == i: cnt += 1 ans = min(ans, n - cnt) for c1 in range(10): for c2 in range(10): if c1 != c2: length = 0 findc1 = True for c in s: if findc1 == True and int(c) == c1: findc1 = False elif findc1 == False and int(c) == c2: length += 2 findc1 = True ans = min(ans, n - length) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR NUMBER FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
for __ in range(int(input())): ar = list(map(int, input())) kek = [[] for i in range(10)] i = 0 for elem in ar: kek[elem].append(i) i += 1 ans = 0 for i in range(10): z = 0 fifi = [0] * 10 while z < len(kek[i]) - 1: lol = set() for j in range(kek[i][z] + 1, kek[i][z + 1]): lol.add(ar[j]) for elem in lol: fifi[elem] += 1 z += 1 for j in range(10): flag = 0 if kek[i]: for z in range(kek[i][0]): if ar[z] == j: flag = 2 ans = max(ans, fifi[j] * 2 + flag, len(kek[i])) print(len(ar) - ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR ASSIGN VAR LIST VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER WHILE VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR FOR VAR VAR VAR VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR FOR VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
t = int(input()) for _ in range(t): s = str(input()) if s[-1] + s[: len(s) - 1] == s[1:] + s[0]: print(0) continue s = [x for x in s] a = "0123456789" d = {(x + y): [False, 0] for x in a for y in a} for i, x in enumerate(s): for y in a: z = x + y if not d[z][0]: d[z][0] = True d[z][1] += 1 z = y + x if d[z][0]: d[z][0] = False d[z][1] += 1 ans = 0 for x in a: d[x + x][1] //= 2 for x in d.keys(): if x[0] == x[1]: ans = max(ans, d[x][1]) else: ans = max(ans, int(d[x][1] // 2) * 2) print(int(len(s) - ans))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF BIN_OP VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR VAR VAR ASSIGN VAR STRING ASSIGN VAR BIN_OP VAR VAR LIST NUMBER NUMBER VAR VAR VAR VAR FOR VAR VAR FUNC_CALL VAR VAR FOR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR BIN_OP VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR IF VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
def solution(): s = list(input()) ans = 0 for i in range(10): for j in range(10): x = 0 cnt = 0 for k in s: if x == 0 and str(i) == k: x = 1 - x cnt += 1 elif x == 1 and str(j) == k: x = 1 - x cnt += 1 if cnt % 2 == 0 or i == j: ans = max(ans, cnt) print(len(s) - ans) t = int(input()) for _ in range(t): solution()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR NUMBER FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP NUMBER VAR VAR NUMBER IF VAR NUMBER FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP NUMBER VAR VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
def find_path(al, bl): len_path = 0 az = bz = 0 an, bn = len(al), len(bl) want_a = True ap = bp = -1 while True: if want_a: for i in range(az, an): if al[i] > bp: len_path += 1 ap = al[i] az = i want_a = False break if want_a: return len_path else: for i in range(bz, bn): if bl[i] > ap: len_path += 1 bp = bl[i] bz = i want_a = True break if not want_a: return len_path def main(): t = int(input()) for _ in range(t): s = input() n = len(s) freq = {} M = 0 for i in range(n): if s[i] not in freq: freq[s[i]] = [i] else: freq[s[i]].append(i) for ca in "0123456789": if ca not in freq: continue for cb in "0123456789": if cb not in freq: continue len_path = find_path(freq[ca], freq[cb]) if len_path % 2 != 0: len_path -= 1 M = max(M, len_path) max_freq = 0 for val in freq.values(): max_freq = max(max_freq, len(val)) print(min(n - 2, n - max_freq, n - M)) main()
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER WHILE NUMBER IF VAR FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER IF VAR RETURN VAR FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER IF VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR LIST VAR EXPR FUNC_CALL VAR VAR VAR VAR FOR VAR STRING IF VAR VAR FOR VAR STRING IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
z = "0123456789" for _ in range(int(input())): s = input() n = len(s) m = 0 for i in z: for j in z: c = 0 for k in range(n): if s[k] == i and c % 2 == 0: c += 1 elif s[k] == j and c % 2 == 1: c += 1 if i != j and c % 2 == 1: c -= 1 if c > m: m = c print(n - m)
ASSIGN VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR FOR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER IF VAR VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
def solver(a, b): result = 0 for elem in s: if elem == a: result += 1 a, b = b, a if result % 2 != 0 and a != b: result -= 1 return result for _ in range(int(input())): s = input() m, answer = 0, 0 for i in range(10): for j in range(10): answer = max(answer, solver(str(i), str(j))) print(len(s) - answer)
FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR VAR VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
t = int(input()) for _ in range(t): A = str(input()) A = list(A) A = [int(s) for s in A] ans = 10000007 for i in range(10): for j in range(10): c = 0 d = 0 for k in range(len(A)): if c % 2 == 0: if A[k] == i: c += 1 else: d += 1 elif A[k] == j: c += 1 else: d += 1 if c % 2 == 0: ans = min(ans, d) elif i == j: ans = min(ans, d) else: ans = min(ans, d + 1) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Let's call left cyclic shift of some string $t_1 t_2 t_3 \dots t_{n - 1} t_n$ as string $t_2 t_3 \dots t_{n - 1} t_n t_1$. Analogically, let's call right cyclic shift of string $t$ as string $t_n t_1 t_2 t_3 \dots t_{n - 1}$. Let's say string $t$ is good if its left cyclic shift is equal to its right cyclic shift. You are given string $s$ which consists of digits 0–9. What is the minimum number of characters you need to erase from $s$ to make it good? -----Input----- The first line contains single integer $t$ ($1 \le t \le 1000$) — the number of test cases. Next $t$ lines contains test cases — one per line. The first and only line of each test case contains string $s$ ($2 \le |s| \le 2 \cdot 10^5$). Each character $s_i$ is digit 0–9. It's guaranteed that the total length of strings doesn't exceed $2 \cdot 10^5$. -----Output----- For each test case, print the minimum number of characters you need to erase from $s$ to make it good. -----Example----- Input 3 95831 100120013 252525252525 Output 3 5 0 -----Note----- In the first test case, you can erase any $3$ characters, for example, the $1$-st, the $3$-rd, and the $4$-th. You'll get string 51 and it is good. In the second test case, we can erase all characters except 0: the remaining string is 0000 and it's good. In the third test case, the given string $s$ is already good.
for s in range(int(input())): string = input() store = [(0) for i in range(10)] add = 0 for i in string: add += 1 store[int(i)] += 1 store.sort() maxi, plus, flag = 9999999999, add, 1 a = store[-1] for i in range(10): for j in range(10): add, flag = 0, 1 for k in range(plus): if int(string[k]) == i and flag == 1: add += 1 flag = 0 elif int(string[k]) == j and flag == 0: add += 1 flag = 1 if add % 2 == 1: add -= 1 maxi = min(maxi, plus - add) maxi = min(maxi, plus - a) print(maxi)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR NUMBER VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR