description
stringlengths
171
4k
code
stringlengths
94
3.98k
normalized_code
stringlengths
57
4.99k
Read problems statements in [Mandarin Chinese], [Russian], and [Bengali] as well. Construct an array of length N containing only positive integers in the range [1, 1000] such that there doesn’t exist a subarray that has all elements occurring in even frequency and the maximum element in the array is minimized. In case there are multiple solutions, you can output any. ------ Input Format ------ - First line will contain T, number of testcases. Then the testcases follow. - Each testcase contains of a single line of input, one integer N. ------ Output Format ------ For each test case, output in a single line N space-separated integers representing the required array. If there are multiple solutions, you may output any. ------ Constraints ------ $1 ≤ T ≤ 500$ $1 ≤ N ≤ 1000$ ----- Sample Input 1 ------ 3 1 2 7 ----- Sample Output 1 ------ 1 2 1 1 2 3 2 1 2 3 ----- explanation 1 ------ Test case $1$: $[1]$ is the obvious answer. Test case $2$: Since we need two elements and they can't be the same (otherwise the frequency of that element of the whole array is even), $[2, 1]$ is the optimal answer. $[1, 2]$ is another optimal one. Test case $3$: It can be proven that no construction exists with the maximum element of $2$.
t = int(input()) ans = [1] n = 10 for i in range(2, n + 1): c = ans[:] ans.append(i) ans += c for _ in range(t): n = int(input()) print(*ans[:n])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR
Read problems statements in [Mandarin Chinese], [Russian], and [Bengali] as well. Construct an array of length N containing only positive integers in the range [1, 1000] such that there doesn’t exist a subarray that has all elements occurring in even frequency and the maximum element in the array is minimized. In case there are multiple solutions, you can output any. ------ Input Format ------ - First line will contain T, number of testcases. Then the testcases follow. - Each testcase contains of a single line of input, one integer N. ------ Output Format ------ For each test case, output in a single line N space-separated integers representing the required array. If there are multiple solutions, you may output any. ------ Constraints ------ $1 ≤ T ≤ 500$ $1 ≤ N ≤ 1000$ ----- Sample Input 1 ------ 3 1 2 7 ----- Sample Output 1 ------ 1 2 1 1 2 3 2 1 2 3 ----- explanation 1 ------ Test case $1$: $[1]$ is the obvious answer. Test case $2$: Since we need two elements and they can't be the same (otherwise the frequency of that element of the whole array is even), $[2, 1]$ is the optimal answer. $[1, 2]$ is another optimal one. Test case $3$: It can be proven that no construction exists with the maximum element of $2$.
t = int(input()) def lsb(num): idx = 0 while num % 2 == 0: num = num // 2 idx = idx + 1 return idx + 1 while t > 0: n = int(input()) ans = [] for i in range(1, n + 1): ans.append(lsb(i)) print(*ans) t = t - 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER WHILE BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN BIN_OP VAR NUMBER WHILE VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER
Read problems statements in [Mandarin Chinese], [Russian], and [Bengali] as well. Construct an array of length N containing only positive integers in the range [1, 1000] such that there doesn’t exist a subarray that has all elements occurring in even frequency and the maximum element in the array is minimized. In case there are multiple solutions, you can output any. ------ Input Format ------ - First line will contain T, number of testcases. Then the testcases follow. - Each testcase contains of a single line of input, one integer N. ------ Output Format ------ For each test case, output in a single line N space-separated integers representing the required array. If there are multiple solutions, you may output any. ------ Constraints ------ $1 ≤ T ≤ 500$ $1 ≤ N ≤ 1000$ ----- Sample Input 1 ------ 3 1 2 7 ----- Sample Output 1 ------ 1 2 1 1 2 3 2 1 2 3 ----- explanation 1 ------ Test case $1$: $[1]$ is the obvious answer. Test case $2$: Since we need two elements and they can't be the same (otherwise the frequency of that element of the whole array is even), $[2, 1]$ is the optimal answer. $[1, 2]$ is another optimal one. Test case $3$: It can be proven that no construction exists with the maximum element of $2$.
s = [1] mx = 1 while len(s) <= 1000: temp = s.copy() mx += 1 s.append(mx) s.extend(temp) for _ in range(int(input())): n = int(input()) for i in range(n): print(s[i], end=" ") print()
ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR
Read problems statements in [Mandarin Chinese], [Russian], and [Bengali] as well. Construct an array of length N containing only positive integers in the range [1, 1000] such that there doesn’t exist a subarray that has all elements occurring in even frequency and the maximum element in the array is minimized. In case there are multiple solutions, you can output any. ------ Input Format ------ - First line will contain T, number of testcases. Then the testcases follow. - Each testcase contains of a single line of input, one integer N. ------ Output Format ------ For each test case, output in a single line N space-separated integers representing the required array. If there are multiple solutions, you may output any. ------ Constraints ------ $1 ≤ T ≤ 500$ $1 ≤ N ≤ 1000$ ----- Sample Input 1 ------ 3 1 2 7 ----- Sample Output 1 ------ 1 2 1 1 2 3 2 1 2 3 ----- explanation 1 ------ Test case $1$: $[1]$ is the obvious answer. Test case $2$: Since we need two elements and they can't be the same (otherwise the frequency of that element of the whole array is even), $[2, 1]$ is the optimal answer. $[1, 2]$ is another optimal one. Test case $3$: It can be proven that no construction exists with the maximum element of $2$.
millors = [[1]] for i in range(1000): p = millors[-1] for v in range(1, max(p) + 2): imp = {v} for r in p[::-1]: if r not in imp: imp.add(r) else: imp.remove(r) if not imp: break if imp: millors.append(p + [v]) break for _ in range(int(input())): n = int(input()) print(" ".join(str(v) for v in millors[n - 1]))
ASSIGN VAR LIST LIST NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR FOR VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR IF VAR IF VAR EXPR FUNC_CALL VAR BIN_OP VAR LIST VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER
Read problems statements in [Mandarin Chinese], [Russian], and [Bengali] as well. Construct an array of length N containing only positive integers in the range [1, 1000] such that there doesn’t exist a subarray that has all elements occurring in even frequency and the maximum element in the array is minimized. In case there are multiple solutions, you can output any. ------ Input Format ------ - First line will contain T, number of testcases. Then the testcases follow. - Each testcase contains of a single line of input, one integer N. ------ Output Format ------ For each test case, output in a single line N space-separated integers representing the required array. If there are multiple solutions, you may output any. ------ Constraints ------ $1 ≤ T ≤ 500$ $1 ≤ N ≤ 1000$ ----- Sample Input 1 ------ 3 1 2 7 ----- Sample Output 1 ------ 1 2 1 1 2 3 2 1 2 3 ----- explanation 1 ------ Test case $1$: $[1]$ is the obvious answer. Test case $2$: Since we need two elements and they can't be the same (otherwise the frequency of that element of the whole array is even), $[2, 1]$ is the optimal answer. $[1, 2]$ is another optimal one. Test case $3$: It can be proven that no construction exists with the maximum element of $2$.
ans = [0] * 1000 def solution(n): def recur(l, r, ele): nonlocal n if l > r: return m = (l + r) // 2 ans[m] = ele recur(l, m - 1, ele + 1) recur(m + 1, r, ele + 1) recur(0, n - 1, 1) return ans for _ in range(int(input())): n = int(input()) print(*solution(n)[:n])
ASSIGN VAR BIN_OP LIST NUMBER NUMBER FUNC_DEF FUNC_DEF IF VAR VAR RETURN ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Read problems statements in [Mandarin Chinese], [Russian], and [Bengali] as well. Construct an array of length N containing only positive integers in the range [1, 1000] such that there doesn’t exist a subarray that has all elements occurring in even frequency and the maximum element in the array is minimized. In case there are multiple solutions, you can output any. ------ Input Format ------ - First line will contain T, number of testcases. Then the testcases follow. - Each testcase contains of a single line of input, one integer N. ------ Output Format ------ For each test case, output in a single line N space-separated integers representing the required array. If there are multiple solutions, you may output any. ------ Constraints ------ $1 ≤ T ≤ 500$ $1 ≤ N ≤ 1000$ ----- Sample Input 1 ------ 3 1 2 7 ----- Sample Output 1 ------ 1 2 1 1 2 3 2 1 2 3 ----- explanation 1 ------ Test case $1$: $[1]$ is the obvious answer. Test case $2$: Since we need two elements and they can't be the same (otherwise the frequency of that element of the whole array is even), $[2, 1]$ is the optimal answer. $[1, 2]$ is another optimal one. Test case $3$: It can be proven that no construction exists with the maximum element of $2$.
t = int(input()) mylist = [1] current = 2 while len(mylist) < 1000: newlist = [current] newlist += mylist mylist += newlist current += 1 for _ in range(t): n = int(input()) for i in range(n): print(mylist[i], end=" ") print()
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST VAR VAR VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR
Read problems statements in [Mandarin Chinese], [Russian], and [Bengali] as well. Construct an array of length N containing only positive integers in the range [1, 1000] such that there doesn’t exist a subarray that has all elements occurring in even frequency and the maximum element in the array is minimized. In case there are multiple solutions, you can output any. ------ Input Format ------ - First line will contain T, number of testcases. Then the testcases follow. - Each testcase contains of a single line of input, one integer N. ------ Output Format ------ For each test case, output in a single line N space-separated integers representing the required array. If there are multiple solutions, you may output any. ------ Constraints ------ $1 ≤ T ≤ 500$ $1 ≤ N ≤ 1000$ ----- Sample Input 1 ------ 3 1 2 7 ----- Sample Output 1 ------ 1 2 1 1 2 3 2 1 2 3 ----- explanation 1 ------ Test case $1$: $[1]$ is the obvious answer. Test case $2$: Since we need two elements and they can't be the same (otherwise the frequency of that element of the whole array is even), $[2, 1]$ is the optimal answer. $[1, 2]$ is another optimal one. Test case $3$: It can be proven that no construction exists with the maximum element of $2$.
T = int(input()) for t in range(T): N = int(input()) i = 0 j = -1 A = [] curr = 1 while i < N: if j == -1: A.append(curr) curr += 1 j = i - 1 i += 1 else: A.append(A[j]) i += 1 j -= 1 for a in A: print(a, end=" ") print("")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER WHILE VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR STRING
Read problems statements in [Mandarin Chinese], [Russian], and [Bengali] as well. Construct an array of length N containing only positive integers in the range [1, 1000] such that there doesn’t exist a subarray that has all elements occurring in even frequency and the maximum element in the array is minimized. In case there are multiple solutions, you can output any. ------ Input Format ------ - First line will contain T, number of testcases. Then the testcases follow. - Each testcase contains of a single line of input, one integer N. ------ Output Format ------ For each test case, output in a single line N space-separated integers representing the required array. If there are multiple solutions, you may output any. ------ Constraints ------ $1 ≤ T ≤ 500$ $1 ≤ N ≤ 1000$ ----- Sample Input 1 ------ 3 1 2 7 ----- Sample Output 1 ------ 1 2 1 1 2 3 2 1 2 3 ----- explanation 1 ------ Test case $1$: $[1]$ is the obvious answer. Test case $2$: Since we need two elements and they can't be the same (otherwise the frequency of that element of the whole array is even), $[2, 1]$ is the optimal answer. $[1, 2]$ is another optimal one. Test case $3$: It can be proven that no construction exists with the maximum element of $2$.
t = int(input()) while t: n = int(input()) if n == 1: ans = [1] else: ans = [1] for i in range(2, 100): ans += ans ans = ans[: len(ans) - 1] ans = ans + [i] if len(ans) >= n: break ans = ans[:n] for f in ans: print(f, end=" ") print() t -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF VAR NUMBER ASSIGN VAR LIST NUMBER ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR LIST VAR IF FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR VAR NUMBER
Read problems statements in [Mandarin Chinese], [Russian], and [Bengali] as well. Construct an array of length N containing only positive integers in the range [1, 1000] such that there doesn’t exist a subarray that has all elements occurring in even frequency and the maximum element in the array is minimized. In case there are multiple solutions, you can output any. ------ Input Format ------ - First line will contain T, number of testcases. Then the testcases follow. - Each testcase contains of a single line of input, one integer N. ------ Output Format ------ For each test case, output in a single line N space-separated integers representing the required array. If there are multiple solutions, you may output any. ------ Constraints ------ $1 ≤ T ≤ 500$ $1 ≤ N ≤ 1000$ ----- Sample Input 1 ------ 3 1 2 7 ----- Sample Output 1 ------ 1 2 1 1 2 3 2 1 2 3 ----- explanation 1 ------ Test case $1$: $[1]$ is the obvious answer. Test case $2$: Since we need two elements and they can't be the same (otherwise the frequency of that element of the whole array is even), $[2, 1]$ is the optimal answer. $[1, 2]$ is another optimal one. Test case $3$: It can be proven that no construction exists with the maximum element of $2$.
final = [1] incr = 1 while len(final) <= 1000: temp = final.copy() incr += 1 final.append(incr) final += temp def prog_name(): n = int(input()) if n == 1: print(1) elif n == 2: print(1, 2) elif n == 3: print(1, 2, 1) else: for x in range(n): print(final[x], end=" ") print() T = int(input()) for unique in range(T): prog_name()
ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Read problems statements in [Mandarin Chinese], [Russian], and [Bengali] as well. Construct an array of length N containing only positive integers in the range [1, 1000] such that there doesn’t exist a subarray that has all elements occurring in even frequency and the maximum element in the array is minimized. In case there are multiple solutions, you can output any. ------ Input Format ------ - First line will contain T, number of testcases. Then the testcases follow. - Each testcase contains of a single line of input, one integer N. ------ Output Format ------ For each test case, output in a single line N space-separated integers representing the required array. If there are multiple solutions, you may output any. ------ Constraints ------ $1 ≤ T ≤ 500$ $1 ≤ N ≤ 1000$ ----- Sample Input 1 ------ 3 1 2 7 ----- Sample Output 1 ------ 1 2 1 1 2 3 2 1 2 3 ----- explanation 1 ------ Test case $1$: $[1]$ is the obvious answer. Test case $2$: Since we need two elements and they can't be the same (otherwise the frequency of that element of the whole array is even), $[2, 1]$ is the optimal answer. $[1, 2]$ is another optimal one. Test case $3$: It can be proven that no construction exists with the maximum element of $2$.
def solveG(N): n = len(bin(N)) - 2 A = [] l = 0 for mx in range(1, n + 1): A.append(mx) l += 1 if l == N: return A for i in range(2 ** (mx - 1) - 1): A.append(A[i]) l += 1 if l == N: return A for _ in range(int(input())): print(*solveG(int(input())))
FUNC_DEF ASSIGN VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER IF VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR
Read problems statements in [Mandarin Chinese], [Russian], and [Bengali] as well. Construct an array of length N containing only positive integers in the range [1, 1000] such that there doesn’t exist a subarray that has all elements occurring in even frequency and the maximum element in the array is minimized. In case there are multiple solutions, you can output any. ------ Input Format ------ - First line will contain T, number of testcases. Then the testcases follow. - Each testcase contains of a single line of input, one integer N. ------ Output Format ------ For each test case, output in a single line N space-separated integers representing the required array. If there are multiple solutions, you may output any. ------ Constraints ------ $1 ≤ T ≤ 500$ $1 ≤ N ≤ 1000$ ----- Sample Input 1 ------ 3 1 2 7 ----- Sample Output 1 ------ 1 2 1 1 2 3 2 1 2 3 ----- explanation 1 ------ Test case $1$: $[1]$ is the obvious answer. Test case $2$: Since we need two elements and they can't be the same (otherwise the frequency of that element of the whole array is even), $[2, 1]$ is the optimal answer. $[1, 2]$ is another optimal one. Test case $3$: It can be proven that no construction exists with the maximum element of $2$.
def arr(left, right, res, n, m): if left > right: return mid = (left + right) // 2 res[mid] = m arr(left, mid - 1, res, n, m + 1) arr(mid + 1, right, res, n, m + 1) def main(): for _ in range(int(input())): n = int(input()) res = [0] * n arr(0, n - 1, res, n, 1) print(*res) main()
FUNC_DEF IF VAR VAR RETURN ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR EXPR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Read problems statements in [Mandarin Chinese], [Russian], and [Bengali] as well. Construct an array of length N containing only positive integers in the range [1, 1000] such that there doesn’t exist a subarray that has all elements occurring in even frequency and the maximum element in the array is minimized. In case there are multiple solutions, you can output any. ------ Input Format ------ - First line will contain T, number of testcases. Then the testcases follow. - Each testcase contains of a single line of input, one integer N. ------ Output Format ------ For each test case, output in a single line N space-separated integers representing the required array. If there are multiple solutions, you may output any. ------ Constraints ------ $1 ≤ T ≤ 500$ $1 ≤ N ≤ 1000$ ----- Sample Input 1 ------ 3 1 2 7 ----- Sample Output 1 ------ 1 2 1 1 2 3 2 1 2 3 ----- explanation 1 ------ Test case $1$: $[1]$ is the obvious answer. Test case $2$: Since we need two elements and they can't be the same (otherwise the frequency of that element of the whole array is even), $[2, 1]$ is the optimal answer. $[1, 2]$ is another optimal one. Test case $3$: It can be proven that no construction exists with the maximum element of $2$.
def give(a, k): return a[0:-1] + [k] a = [1, 2] k = 3 for i in range(9): a += give(a, k) k += 1 for _ in range(int(input())): n = int(input()) print(*a[0:n])
FUNC_DEF RETURN BIN_OP VAR NUMBER NUMBER LIST VAR ASSIGN VAR LIST NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR NUMBER VAR
Read problems statements in [Mandarin Chinese], [Russian], and [Bengali] as well. Construct an array of length N containing only positive integers in the range [1, 1000] such that there doesn’t exist a subarray that has all elements occurring in even frequency and the maximum element in the array is minimized. In case there are multiple solutions, you can output any. ------ Input Format ------ - First line will contain T, number of testcases. Then the testcases follow. - Each testcase contains of a single line of input, one integer N. ------ Output Format ------ For each test case, output in a single line N space-separated integers representing the required array. If there are multiple solutions, you may output any. ------ Constraints ------ $1 ≤ T ≤ 500$ $1 ≤ N ≤ 1000$ ----- Sample Input 1 ------ 3 1 2 7 ----- Sample Output 1 ------ 1 2 1 1 2 3 2 1 2 3 ----- explanation 1 ------ Test case $1$: $[1]$ is the obvious answer. Test case $2$: Since we need two elements and they can't be the same (otherwise the frequency of that element of the whole array is even), $[2, 1]$ is the optimal answer. $[1, 2]$ is another optimal one. Test case $3$: It can be proven that no construction exists with the maximum element of $2$.
dp = [1] x = 2 while len(dp) < 1000: dp = dp + [x] + dp x += 1 def solve(): n = int(input()) print(*dp[:n]) for _ in range(int(input())): solve()
ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR LIST VAR VAR VAR NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
Read problems statements in [Mandarin Chinese], [Russian], and [Bengali] as well. Construct an array of length N containing only positive integers in the range [1, 1000] such that there doesn’t exist a subarray that has all elements occurring in even frequency and the maximum element in the array is minimized. In case there are multiple solutions, you can output any. ------ Input Format ------ - First line will contain T, number of testcases. Then the testcases follow. - Each testcase contains of a single line of input, one integer N. ------ Output Format ------ For each test case, output in a single line N space-separated integers representing the required array. If there are multiple solutions, you may output any. ------ Constraints ------ $1 ≤ T ≤ 500$ $1 ≤ N ≤ 1000$ ----- Sample Input 1 ------ 3 1 2 7 ----- Sample Output 1 ------ 1 2 1 1 2 3 2 1 2 3 ----- explanation 1 ------ Test case $1$: $[1]$ is the obvious answer. Test case $2$: Since we need two elements and they can't be the same (otherwise the frequency of that element of the whole array is even), $[2, 1]$ is the optimal answer. $[1, 2]$ is another optimal one. Test case $3$: It can be proven that no construction exists with the maximum element of $2$.
t = int(input()) for i in range(t): n = int(input()) m = 1 l = [] p = 1 s = [] c = 0 for j in range(n): if c: l1 = list(reversed(s)) l += l1[0 : n - len(l)] c = 0 if len(l) == n: break if len(l) + 1 == 2**p: m += 1 p += 1 c = 1 s = l.copy() l.append(m) l = " ".join([str(x) for x in l]) print(l)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR NUMBER BIN_OP VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR IF BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP NUMBER VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
Read problems statements in [Mandarin Chinese], [Russian], and [Bengali] as well. Construct an array of length N containing only positive integers in the range [1, 1000] such that there doesn’t exist a subarray that has all elements occurring in even frequency and the maximum element in the array is minimized. In case there are multiple solutions, you can output any. ------ Input Format ------ - First line will contain T, number of testcases. Then the testcases follow. - Each testcase contains of a single line of input, one integer N. ------ Output Format ------ For each test case, output in a single line N space-separated integers representing the required array. If there are multiple solutions, you may output any. ------ Constraints ------ $1 ≤ T ≤ 500$ $1 ≤ N ≤ 1000$ ----- Sample Input 1 ------ 3 1 2 7 ----- Sample Output 1 ------ 1 2 1 1 2 3 2 1 2 3 ----- explanation 1 ------ Test case $1$: $[1]$ is the obvious answer. Test case $2$: Since we need two elements and they can't be the same (otherwise the frequency of that element of the whole array is even), $[2, 1]$ is the optimal answer. $[1, 2]$ is another optimal one. Test case $3$: It can be proven that no construction exists with the maximum element of $2$.
from sys import stdin input = stdin.readline def answer(): ans = [0] * n skip, value = 2, 1 for i in range(n): if ans[i] == 0: for j in range(i, n, skip): ans[j] = value value += 1 skip *= 2 return ans for T in range(int(input())): n = int(input()) print(*answer())
ASSIGN VAR VAR FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR
Read problems statements in [Mandarin Chinese], [Russian], and [Bengali] as well. Construct an array of length N containing only positive integers in the range [1, 1000] such that there doesn’t exist a subarray that has all elements occurring in even frequency and the maximum element in the array is minimized. In case there are multiple solutions, you can output any. ------ Input Format ------ - First line will contain T, number of testcases. Then the testcases follow. - Each testcase contains of a single line of input, one integer N. ------ Output Format ------ For each test case, output in a single line N space-separated integers representing the required array. If there are multiple solutions, you may output any. ------ Constraints ------ $1 ≤ T ≤ 500$ $1 ≤ N ≤ 1000$ ----- Sample Input 1 ------ 3 1 2 7 ----- Sample Output 1 ------ 1 2 1 1 2 3 2 1 2 3 ----- explanation 1 ------ Test case $1$: $[1]$ is the obvious answer. Test case $2$: Since we need two elements and they can't be the same (otherwise the frequency of that element of the whole array is even), $[2, 1]$ is the optimal answer. $[1, 2]$ is another optimal one. Test case $3$: It can be proven that no construction exists with the maximum element of $2$.
from sys import stdin, stdout input = stdin.readline pows = set() for i in range(11): pows.add(1 << i) t = int(input()) for _ in range(t): n = int(input()) vals = [] arr = [] curr = 0 ind = -1 for i in range(n): if i + 1 in pows: curr += 1 vals.append(curr) arr.append(curr) ind = -1 continue ind += 1 if ind == i: ind = 0 arr.append(arr[ind]) print(*arr)
ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Read problems statements in [Mandarin Chinese], [Russian], and [Bengali] as well. Construct an array of length N containing only positive integers in the range [1, 1000] such that there doesn’t exist a subarray that has all elements occurring in even frequency and the maximum element in the array is minimized. In case there are multiple solutions, you can output any. ------ Input Format ------ - First line will contain T, number of testcases. Then the testcases follow. - Each testcase contains of a single line of input, one integer N. ------ Output Format ------ For each test case, output in a single line N space-separated integers representing the required array. If there are multiple solutions, you may output any. ------ Constraints ------ $1 ≤ T ≤ 500$ $1 ≤ N ≤ 1000$ ----- Sample Input 1 ------ 3 1 2 7 ----- Sample Output 1 ------ 1 2 1 1 2 3 2 1 2 3 ----- explanation 1 ------ Test case $1$: $[1]$ is the obvious answer. Test case $2$: Since we need two elements and they can't be the same (otherwise the frequency of that element of the whole array is even), $[2, 1]$ is the optimal answer. $[1, 2]$ is another optimal one. Test case $3$: It can be proven that no construction exists with the maximum element of $2$.
import sys import time start_time = time.time() try: sys.stdin = open("5.txt", "r") except: pass input = sys.stdin.readline T = int(input()) a = "1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 7 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 8 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 7 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 9 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 7 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 8 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 7 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 10 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 7 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 8 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 7 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 9 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 7 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 8 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 7 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4".split( " " ) for _ in range(T): n = int(input()) print(*a[:n]) end_time = time.time() sys.stderr.write("Time: " + str(end_time - start_time))
IMPORT IMPORT ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING STRING ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL STRING STRING FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP STRING FUNC_CALL VAR BIN_OP VAR VAR
Read problems statements in [Mandarin Chinese], [Russian], and [Bengali] as well. Construct an array of length N containing only positive integers in the range [1, 1000] such that there doesn’t exist a subarray that has all elements occurring in even frequency and the maximum element in the array is minimized. In case there are multiple solutions, you can output any. ------ Input Format ------ - First line will contain T, number of testcases. Then the testcases follow. - Each testcase contains of a single line of input, one integer N. ------ Output Format ------ For each test case, output in a single line N space-separated integers representing the required array. If there are multiple solutions, you may output any. ------ Constraints ------ $1 ≤ T ≤ 500$ $1 ≤ N ≤ 1000$ ----- Sample Input 1 ------ 3 1 2 7 ----- Sample Output 1 ------ 1 2 1 1 2 3 2 1 2 3 ----- explanation 1 ------ Test case $1$: $[1]$ is the obvious answer. Test case $2$: Since we need two elements and they can't be the same (otherwise the frequency of that element of the whole array is even), $[2, 1]$ is the optimal answer. $[1, 2]$ is another optimal one. Test case $3$: It can be proven that no construction exists with the maximum element of $2$.
l = [1, 2, 1] for x in range(1000): l.append(x + 3) l = l + l[: len(l) - 1] if len(l) > 1000: break t = int(input()) while t: n = int(input()) print(" ".join([str(l[x]) for x in range(n)])) t = t - 1
ASSIGN VAR LIST NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER
Read problems statements in [Mandarin Chinese], [Russian], and [Bengali] as well. Construct an array of length N containing only positive integers in the range [1, 1000] such that there doesn’t exist a subarray that has all elements occurring in even frequency and the maximum element in the array is minimized. In case there are multiple solutions, you can output any. ------ Input Format ------ - First line will contain T, number of testcases. Then the testcases follow. - Each testcase contains of a single line of input, one integer N. ------ Output Format ------ For each test case, output in a single line N space-separated integers representing the required array. If there are multiple solutions, you may output any. ------ Constraints ------ $1 ≤ T ≤ 500$ $1 ≤ N ≤ 1000$ ----- Sample Input 1 ------ 3 1 2 7 ----- Sample Output 1 ------ 1 2 1 1 2 3 2 1 2 3 ----- explanation 1 ------ Test case $1$: $[1]$ is the obvious answer. Test case $2$: Since we need two elements and they can't be the same (otherwise the frequency of that element of the whole array is even), $[2, 1]$ is the optimal answer. $[1, 2]$ is another optimal one. Test case $3$: It can be proven that no construction exists with the maximum element of $2$.
for _ in range(int(input())): n = int(input()) a = [1] i = 2 while len(a) < n: a = a + [i] + a i += 1 print(*a[:n])
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR LIST VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR
Read problems statements in [Mandarin Chinese], [Russian], and [Bengali] as well. Construct an array of length N containing only positive integers in the range [1, 1000] such that there doesn’t exist a subarray that has all elements occurring in even frequency and the maximum element in the array is minimized. In case there are multiple solutions, you can output any. ------ Input Format ------ - First line will contain T, number of testcases. Then the testcases follow. - Each testcase contains of a single line of input, one integer N. ------ Output Format ------ For each test case, output in a single line N space-separated integers representing the required array. If there are multiple solutions, you may output any. ------ Constraints ------ $1 ≤ T ≤ 500$ $1 ≤ N ≤ 1000$ ----- Sample Input 1 ------ 3 1 2 7 ----- Sample Output 1 ------ 1 2 1 1 2 3 2 1 2 3 ----- explanation 1 ------ Test case $1$: $[1]$ is the obvious answer. Test case $2$: Since we need two elements and they can't be the same (otherwise the frequency of that element of the whole array is even), $[2, 1]$ is the optimal answer. $[1, 2]$ is another optimal one. Test case $3$: It can be proven that no construction exists with the maximum element of $2$.
print( *[ " ".join([str(bin(i ^ i + 1).count("1")) for i in range(int(input()))]) for _ in range(int(input())) ], sep="\n" )
EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER STRING VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR STRING
Read problems statements in [Mandarin Chinese], [Russian], and [Bengali] as well. Construct an array of length N containing only positive integers in the range [1, 1000] such that there doesn’t exist a subarray that has all elements occurring in even frequency and the maximum element in the array is minimized. In case there are multiple solutions, you can output any. ------ Input Format ------ - First line will contain T, number of testcases. Then the testcases follow. - Each testcase contains of a single line of input, one integer N. ------ Output Format ------ For each test case, output in a single line N space-separated integers representing the required array. If there are multiple solutions, you may output any. ------ Constraints ------ $1 ≤ T ≤ 500$ $1 ≤ N ≤ 1000$ ----- Sample Input 1 ------ 3 1 2 7 ----- Sample Output 1 ------ 1 2 1 1 2 3 2 1 2 3 ----- explanation 1 ------ Test case $1$: $[1]$ is the obvious answer. Test case $2$: Since we need two elements and they can't be the same (otherwise the frequency of that element of the whole array is even), $[2, 1]$ is the optimal answer. $[1, 2]$ is another optimal one. Test case $3$: It can be proven that no construction exists with the maximum element of $2$.
def construct(N): arr = [] top = 1 while len(arr) < N: arr = arr + [top] + arr top += 1 return arr A = [str(x) for x in construct(1000)] T = int(input()) for t in range(T): N = int(input()) print(" ".join(A[:N]))
FUNC_DEF ASSIGN VAR LIST ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR LIST VAR VAR VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR VAR
Read problems statements in [Mandarin Chinese], [Russian], and [Bengali] as well. Construct an array of length N containing only positive integers in the range [1, 1000] such that there doesn’t exist a subarray that has all elements occurring in even frequency and the maximum element in the array is minimized. In case there are multiple solutions, you can output any. ------ Input Format ------ - First line will contain T, number of testcases. Then the testcases follow. - Each testcase contains of a single line of input, one integer N. ------ Output Format ------ For each test case, output in a single line N space-separated integers representing the required array. If there are multiple solutions, you may output any. ------ Constraints ------ $1 ≤ T ≤ 500$ $1 ≤ N ≤ 1000$ ----- Sample Input 1 ------ 3 1 2 7 ----- Sample Output 1 ------ 1 2 1 1 2 3 2 1 2 3 ----- explanation 1 ------ Test case $1$: $[1]$ is the obvious answer. Test case $2$: Since we need two elements and they can't be the same (otherwise the frequency of that element of the whole array is even), $[2, 1]$ is the optimal answer. $[1, 2]$ is another optimal one. Test case $3$: It can be proven that no construction exists with the maximum element of $2$.
import sys def input(): return sys.stdin.readline().rstrip("\r\n") def maps(): return [int(i) for i in input().split()] a = "1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 7 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 8 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 7 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 9 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 7 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 8 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 7 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 10 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 7 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 8 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 7 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 9 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 7 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 8 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 7 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 6 1 2 1 3 1 2 1 4".split( " " ) arr = [1, 2, 1] for mx in range(3, 11): t = arr[:] arr.append(mx) arr.extend(t) for _ in range(*maps()): (n,) = maps() print(*arr[:n])
IMPORT FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR STRING FUNC_DEF RETURN FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL STRING STRING ASSIGN VAR LIST NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR
Read problems statements in [Mandarin Chinese], [Russian], and [Bengali] as well. Construct an array of length N containing only positive integers in the range [1, 1000] such that there doesn’t exist a subarray that has all elements occurring in even frequency and the maximum element in the array is minimized. In case there are multiple solutions, you can output any. ------ Input Format ------ - First line will contain T, number of testcases. Then the testcases follow. - Each testcase contains of a single line of input, one integer N. ------ Output Format ------ For each test case, output in a single line N space-separated integers representing the required array. If there are multiple solutions, you may output any. ------ Constraints ------ $1 ≤ T ≤ 500$ $1 ≤ N ≤ 1000$ ----- Sample Input 1 ------ 3 1 2 7 ----- Sample Output 1 ------ 1 2 1 1 2 3 2 1 2 3 ----- explanation 1 ------ Test case $1$: $[1]$ is the obvious answer. Test case $2$: Since we need two elements and they can't be the same (otherwise the frequency of that element of the whole array is even), $[2, 1]$ is the optimal answer. $[1, 2]$ is another optimal one. Test case $3$: It can be proven that no construction exists with the maximum element of $2$.
t = int(input()) for _ in range(t): n = int(input()) l = [] i = 1 p = 0 while len(l) < n: l.append(i) for j in range(p): l.append(l[j]) i += 1 p = 2 * p + 1 for i in range(n): print(l[i], end=" ") print()
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR
Read problems statements in [Mandarin Chinese], [Russian], and [Bengali] as well. Construct an array of length N containing only positive integers in the range [1, 1000] such that there doesn’t exist a subarray that has all elements occurring in even frequency and the maximum element in the array is minimized. In case there are multiple solutions, you can output any. ------ Input Format ------ - First line will contain T, number of testcases. Then the testcases follow. - Each testcase contains of a single line of input, one integer N. ------ Output Format ------ For each test case, output in a single line N space-separated integers representing the required array. If there are multiple solutions, you may output any. ------ Constraints ------ $1 ≤ T ≤ 500$ $1 ≤ N ≤ 1000$ ----- Sample Input 1 ------ 3 1 2 7 ----- Sample Output 1 ------ 1 2 1 1 2 3 2 1 2 3 ----- explanation 1 ------ Test case $1$: $[1]$ is the obvious answer. Test case $2$: Since we need two elements and they can't be the same (otherwise the frequency of that element of the whole array is even), $[2, 1]$ is the optimal answer. $[1, 2]$ is another optimal one. Test case $3$: It can be proven that no construction exists with the maximum element of $2$.
T = int(input()) for test in range(T): N = int(input()) if N == 1: print(1) continue elif N == 2: print(1, 2) continue res = [1] N -= 1 l = 0 max_el = 2 while N > 0: res.append(max_el) N -= 1 r = len(res) - 1 max_el += 1 l = 0 while l < r and N > 0: res.append(res[l]) l += 1 N -= 1 print(" ".join([str(x) for x in res]))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR LIST NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR
Consider an array of $n$ binary integers (i.e., $1$'s and $1$'s) defined as $A=[a_0,a_1,...,a_{n-1}]$. Let $f(i,j)$ be the bitwise XOR of all elements in the inclusive range between index $\boldsymbol{i}$ and index $j$ in array $\mbox{A}$. In other words, $f(i,j)=a_i\oplus a_{i+1}\oplus\ldots\oplus a_j$. Next, we'll define another function, $\mathrm{~g~}$: $g(x,y)=\sum_{i=x}^{y}\sum_{j=i}^{y}f(i,j)$ Given array $\mbox{A}$ and $\textit{q}$ independent queries, perform each query on $\mbox{A}$ and print the result on a new line. A query consists of three integers, $\boldsymbol{x}$, $y$, and $\boldsymbol{\mbox{k}}$, and you must find the maximum possible $g(x,y)$ you can get by changing at most $\boldsymbol{\mbox{k}}$ elements in the array from $1$ to $1$ or from $1$ to $1$. Note: Each query is independent and considered separately from all other queries, so changes made in one query have no effect on the other queries. Input Format The first line contains two space-separated integers denoting the respective values of $n$ (the number of elements in array $\mbox{A}$) and $\textit{q}$ (the number of queries). The second line contains $n$ space-separated integers where element $\boldsymbol{i}$ corresponds to array element $a_i$ $(0\leq i<n)$. Each line $\boldsymbol{i}$ of the $\textit{q}$ subsequent lines contains $3$ space-separated integers, $x_i$, $y_i$ and $k_i$ respectively, describing query $\boldsymbol{q}_i$ $(0\leq i<q)$. Constraints $1\leq n,q\leq5\times10^5$ $0\leq a_i\leq1$ $0\leq x_i\leq y_i<n$ $0\leq k_i\leq n$ Subtask $1\leq n,q\leq5000$ and $0\leq k_i\leq1$ for $\textbf{40\%}$ of the maximum score $n=5\times10^5$, $m=5\times10^5$ and $k_i=0$ for $20\%$ of the maximum score Output Format Print $\textit{q}$ lines where line $\boldsymbol{i}$ contains the answer to query $\boldsymbol{q}_i$ (i.e., the maximum value of $g(x_i,y_i)$ if no more than $k_i$ bits are changed). Sample Input 3 2 0 0 1 0 2 1 0 1 0 Sample Output 4 0 Explanation Given $A=[0,0,1]$, we perform the following $q=2$ queries: If we change $a_{0}=0$ to $1$, then we get $A'=[1,0,1]$ and $g(x=0,y=2)=4$. In this query, $g(x=0,y=1)=0$.
def init(A, n): retA = [0] * (n + 1) B = [0] * (n + 1) tmp = 0 for i in range(n): tmp ^= A[i] B[i + 1] = tmp retA[i + 1] += retA[i] + tmp return retA, B n, q = list(map(int, input().rstrip().split())) A = list(map(int, input().rstrip().split())) newA, B = init(A, n) while q > 0: x, y, k = list(map(int, input().rstrip().split())) num = newA[y + 1] - newA[x] if B[x]: num = y + 1 - x - num size = y - x + 2 num = abs(int(size / 2)) if k else num print(num * (size - num)) q -= 1
FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR RETURN VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR WHILE VAR NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR VAR NUMBER
There is a room with n lights which are turned on initially and 4 buttons on the wall. After performing exactly m unknown operations towards buttons, you need to return how many different kinds of status of the n lights could be. Suppose n lights are labeled as number [1, 2, 3 ..., n], function of these 4 buttons are given below: Flip all the lights. Flip lights with even numbers. Flip lights with odd numbers. Flip lights with (3k + 1) numbers, k = 0, 1, 2, ... Example 1: Input: n = 1, m = 1. Output: 2 Explanation: Status can be: [on], [off] Example 2: Input: n = 2, m = 1. Output: 3 Explanation: Status can be: [on, off], [off, on], [off, off] Example 3: Input: n = 3, m = 1. Output: 4 Explanation: Status can be: [off, on, off], [on, off, on], [off, off, off], [off, on, on]. Note: n and m both fit in range [0, 1000].
class Solution(object): def flipLights(self, lightNum, performTime): if lightNum == 0: return 0 if performTime == 0: return 1 if lightNum == 1: return 2 statuNumToStatu = dict() statuNumToStatu[0] = (False,) * lightNum statuNumToStatu[1] = (True,) * lightNum statuNumToStatu[2] = tuple( True if i % 2 == 0 else False for i in range(1, lightNum + 1) ) statuNumToStatu[3] = tuple( True if i % 2 == 1 else False for i in range(1, lightNum + 1) ) statuNumToStatu[4] = tuple( True if i % 3 == 1 else False for i in range(1, lightNum + 1) ) statuNumToStatu[4] = tuple( True if i % 3 == 1 else False for i in range(1, lightNum + 1) ) statuNumToStatu[1, 4] = tuple( True if i % 3 != 1 else False for i in range(1, lightNum + 1) ) statuNumToStatu[2, 4] = tuple( True if (i % 2 == 0) ^ (i % 3 == 1) else False for i in range(1, lightNum + 1) ) statuNumToStatu[3, 4] = tuple( True if (i % 2 == 1) ^ (i % 3 == 1) else False for i in range(1, lightNum + 1) ) statuNumToNextStatuNums = { (0): [1, 2, 3, 4], (1): [0, 2, 3, (1, 4)], (2): [0, 1, 3, (2, 4)], (3): [0, 1, 2, (3, 4)], (4): [0, (1, 4), (2, 4), (3, 4)], (1, 4): [1, 4, (2, 4), (3, 4)], (2, 4): [2, 4, (1, 4), (3, 4)], (3, 4): [3, 4, (1, 4), (2, 4)], } prevStatuNums = {0} for eachTime in range(performTime): nextStatuNums = set() for eachStatuNum in prevStatuNums: for eachNextStatu in statuNumToNextStatuNums[eachStatuNum]: nextStatuNums.add(eachNextStatu) prevStatuNums = nextStatuNums allStatus = set() for eachStatuNum in prevStatuNums: allStatus.add(statuNumToStatu[eachStatuNum]) return len(allStatus)
CLASS_DEF VAR FUNC_DEF IF VAR NUMBER RETURN NUMBER IF VAR NUMBER RETURN NUMBER IF VAR NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER BIN_OP NUMBER VAR ASSIGN VAR NUMBER BIN_OP NUMBER VAR ASSIGN VAR NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER NUMBER FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER NUMBER NUMBER NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER NUMBER FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER NUMBER NUMBER NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR DICT NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER LIST NUMBER NUMBER NUMBER NUMBER LIST NUMBER NUMBER NUMBER NUMBER NUMBER LIST NUMBER NUMBER NUMBER NUMBER NUMBER LIST NUMBER NUMBER NUMBER NUMBER NUMBER LIST NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER LIST NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER LIST NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER LIST NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FOR VAR VAR FOR VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR VAR RETURN FUNC_CALL VAR VAR
There is a room with n lights which are turned on initially and 4 buttons on the wall. After performing exactly m unknown operations towards buttons, you need to return how many different kinds of status of the n lights could be. Suppose n lights are labeled as number [1, 2, 3 ..., n], function of these 4 buttons are given below: Flip all the lights. Flip lights with even numbers. Flip lights with odd numbers. Flip lights with (3k + 1) numbers, k = 0, 1, 2, ... Example 1: Input: n = 1, m = 1. Output: 2 Explanation: Status can be: [on], [off] Example 2: Input: n = 2, m = 1. Output: 3 Explanation: Status can be: [on, off], [off, on], [off, off] Example 3: Input: n = 3, m = 1. Output: 4 Explanation: Status can be: [off, on, off], [on, off, on], [off, off, off], [off, on, on]. Note: n and m both fit in range [0, 1000].
class Solution(object): def flipLights(self, n, m): if not n: return 0 n, b = min(6, n), set() b.add(tuple([1] * n)) for j in range(m): c = set() for x in b: for t in ( tuple([((x[i] + 1) % 2) for i in range(n)]), tuple([(x[i] if i % 2 == 0 else (x[i] + 1) % 2) for i in range(n)]), tuple([((x[i] + 1) % 2 if i % 2 == 0 else x[i]) for i in range(n)]), tuple([((x[i] + 1) % 2 if i % 3 == 0 else x[i]) for i in range(n)]), ): if t not in c: c.add(t) b = c if len(b) == 8: return 8 return len(b)
CLASS_DEF VAR FUNC_DEF IF VAR RETURN NUMBER ASSIGN VAR VAR FUNC_CALL VAR NUMBER VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FOR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER VAR VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR IF FUNC_CALL VAR VAR NUMBER RETURN NUMBER RETURN FUNC_CALL VAR VAR
There is a room with n lights which are turned on initially and 4 buttons on the wall. After performing exactly m unknown operations towards buttons, you need to return how many different kinds of status of the n lights could be. Suppose n lights are labeled as number [1, 2, 3 ..., n], function of these 4 buttons are given below: Flip all the lights. Flip lights with even numbers. Flip lights with odd numbers. Flip lights with (3k + 1) numbers, k = 0, 1, 2, ... Example 1: Input: n = 1, m = 1. Output: 2 Explanation: Status can be: [on], [off] Example 2: Input: n = 2, m = 1. Output: 3 Explanation: Status can be: [on, off], [off, on], [off, off] Example 3: Input: n = 3, m = 1. Output: 4 Explanation: Status can be: [off, on, off], [on, off, on], [off, off, off], [off, on, on]. Note: n and m both fit in range [0, 1000].
class Solution: def flipLights(self, n, m): n = min(n, 3) if n == 0: return 0 if n == 1: return 2 if m > 0 else 1 if n == 2: if m == 0: return 1 elif m == 1: return 3 else: return 4 if n == 3: if m == 0: return 1 elif m == 1: return 4 elif m == 2: return 7 else: return 8
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER RETURN NUMBER IF VAR NUMBER RETURN VAR NUMBER NUMBER NUMBER IF VAR NUMBER IF VAR NUMBER RETURN NUMBER IF VAR NUMBER RETURN NUMBER RETURN NUMBER IF VAR NUMBER IF VAR NUMBER RETURN NUMBER IF VAR NUMBER RETURN NUMBER IF VAR NUMBER RETURN NUMBER RETURN NUMBER
There is a room with n lights which are turned on initially and 4 buttons on the wall. After performing exactly m unknown operations towards buttons, you need to return how many different kinds of status of the n lights could be. Suppose n lights are labeled as number [1, 2, 3 ..., n], function of these 4 buttons are given below: Flip all the lights. Flip lights with even numbers. Flip lights with odd numbers. Flip lights with (3k + 1) numbers, k = 0, 1, 2, ... Example 1: Input: n = 1, m = 1. Output: 2 Explanation: Status can be: [on], [off] Example 2: Input: n = 2, m = 1. Output: 3 Explanation: Status can be: [on, off], [off, on], [off, off] Example 3: Input: n = 3, m = 1. Output: 4 Explanation: Status can be: [off, on, off], [on, off, on], [off, off, off], [off, on, on]. Note: n and m both fit in range [0, 1000].
class Solution: def flipLights(self, n, m): states = set() for op_odd in [0, 1]: for op_even in [0, 1]: for op_third in [0, 1]: op_all = m - op_odd - op_even - op_third if op_all >= 0: one = (op_odd + op_all + op_third) % 2 two = (op_even + op_all) % 2 three = op_odd % 2 four = (op_even + op_all + op_third) % 2 states.add((one, two, three, four)[:n]) return len(states)
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR FOR VAR LIST NUMBER NUMBER FOR VAR LIST NUMBER NUMBER FOR VAR LIST NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR VAR VAR RETURN FUNC_CALL VAR VAR
There is a room with n lights which are turned on initially and 4 buttons on the wall. After performing exactly m unknown operations towards buttons, you need to return how many different kinds of status of the n lights could be. Suppose n lights are labeled as number [1, 2, 3 ..., n], function of these 4 buttons are given below: Flip all the lights. Flip lights with even numbers. Flip lights with odd numbers. Flip lights with (3k + 1) numbers, k = 0, 1, 2, ... Example 1: Input: n = 1, m = 1. Output: 2 Explanation: Status can be: [on], [off] Example 2: Input: n = 2, m = 1. Output: 3 Explanation: Status can be: [on, off], [off, on], [off, off] Example 3: Input: n = 3, m = 1. Output: 4 Explanation: Status can be: [off, on, off], [on, off, on], [off, off, off], [off, on, on]. Note: n and m both fit in range [0, 1000].
class Solution: def flipLights(self, n, m): if n == 0: return 0 if m == 0: return 1 if n == 1: return 2 if n == 2: if m >= 2: return 4 if m == 1: return 3 if n >= 3: if m >= 3: return 8 if m == 2: return 7 if m == 1: return 4
CLASS_DEF FUNC_DEF IF VAR NUMBER RETURN NUMBER IF VAR NUMBER RETURN NUMBER IF VAR NUMBER RETURN NUMBER IF VAR NUMBER IF VAR NUMBER RETURN NUMBER IF VAR NUMBER RETURN NUMBER IF VAR NUMBER IF VAR NUMBER RETURN NUMBER IF VAR NUMBER RETURN NUMBER IF VAR NUMBER RETURN NUMBER
There is a room with n lights which are turned on initially and 4 buttons on the wall. After performing exactly m unknown operations towards buttons, you need to return how many different kinds of status of the n lights could be. Suppose n lights are labeled as number [1, 2, 3 ..., n], function of these 4 buttons are given below: Flip all the lights. Flip lights with even numbers. Flip lights with odd numbers. Flip lights with (3k + 1) numbers, k = 0, 1, 2, ... Example 1: Input: n = 1, m = 1. Output: 2 Explanation: Status can be: [on], [off] Example 2: Input: n = 2, m = 1. Output: 3 Explanation: Status can be: [on, off], [off, on], [off, off] Example 3: Input: n = 3, m = 1. Output: 4 Explanation: Status can be: [off, on, off], [on, off, on], [off, off, off], [off, on, on]. Note: n and m both fit in range [0, 1000].
class Solution: def flipLights(self, n, m): if m == 0: return 1 lights = [True] * min(n, 3) if m > 4: if m & 1: m = 3 else: m = 4 return self.final(m, lights) def operate(self, num, array): if num == 1: array = [(not i) for i in array] elif num == 2: for i in range(len(array)): if i & 1: array[i] = not array[i] elif num == 3: for i in range(len(array)): if not i & 1: array[i] = not array[i] elif num == 4: for i in range(len(array)): if i % 3 == 0: array[i] = not array[i] return array def final(self, num, array): ops = [ [[1], [2], [3], [4]], [[], [1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]], [[1], [2], [3], [4], [1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]], [[], [1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4], [1, 2, 3, 4]], ] res = [] for op in ops[num - 1]: tmp = array.copy() if not op: res.append(tmp) else: for i in op: tmp = self.operate(i, tmp) if not tmp in res: res.append(tmp) return len(res)
CLASS_DEF FUNC_DEF IF VAR NUMBER RETURN NUMBER ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR NUMBER IF VAR NUMBER IF BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER RETURN FUNC_CALL VAR VAR VAR FUNC_DEF IF VAR NUMBER ASSIGN VAR VAR VAR VAR IF VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR IF VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR IF VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR LIST LIST LIST NUMBER LIST NUMBER LIST NUMBER LIST NUMBER LIST LIST LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST LIST NUMBER LIST NUMBER LIST NUMBER LIST NUMBER LIST NUMBER NUMBER NUMBER LIST NUMBER NUMBER NUMBER LIST NUMBER NUMBER NUMBER LIST NUMBER NUMBER NUMBER LIST LIST LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER LIST NUMBER NUMBER NUMBER NUMBER ASSIGN VAR LIST FOR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR IF VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR RETURN FUNC_CALL VAR VAR
Petya learned a new programming language CALPAS. A program in this language always takes one non-negative integer and returns one non-negative integer as well. In the language, there are only three commands: apply a bitwise operation AND, OR or XOR with a given constant to the current integer. A program can contain an arbitrary sequence of these operations with arbitrary constants from 0 to 1023. When the program is run, all operations are applied (in the given order) to the argument and in the end the result integer is returned. Petya wrote a program in this language, but it turned out to be too long. Write a program in CALPAS that does the same thing as the Petya's program, and consists of no more than 5 lines. Your program should return the same integer as Petya's program for all arguments from 0 to 1023. Input The first line contains an integer n (1 ≤ n ≤ 5·105) — the number of lines. Next n lines contain commands. A command consists of a character that represents the operation ("&", "|" or "^" for AND, OR or XOR respectively), and the constant xi 0 ≤ xi ≤ 1023. Output Output an integer k (0 ≤ k ≤ 5) — the length of your program. Next k lines must contain commands in the same format as in the input. Examples Input 3 | 3 ^ 2 | 1 Output 2 | 3 ^ 2 Input 3 &amp; 1 &amp; 3 &amp; 5 Output 1 &amp; 1 Input 3 ^ 1 ^ 2 ^ 3 Output 0 Note You can read about bitwise operations in <https://en.wikipedia.org/wiki/Bitwise_operation>. Second sample: Let x be an input of the Petya's program. It's output is ((x&1)&3)&5 = x&(1&3&5) = x&1. So these two programs always give the same outputs.
a, b = 0, 1023 for i in range(int(input())): cmd = input() c, x = cmd.split() x = int(x) if c == "|": a, b = a | x, b | x elif c == "&": a, b = a & x, b & x else: a, b = a ^ x, b ^ x x = 0 y = 1023 z = 0 for i in range(10): a_i = a >> i & 1 b_i = b >> i & 1 if a_i and b_i: x |= 1 << i if not a_i and not b_i: y ^= 1 << i if a_i and not b_i: z ^= 1 << i print( """3 | {} & {} ^ {}""".format( x, y, z ) )
ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR STRING ASSIGN VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR IF VAR STRING ASSIGN VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR BIN_OP NUMBER VAR IF VAR VAR VAR BIN_OP NUMBER VAR IF VAR VAR VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR VAR VAR
You are a member of a bomb-disposal squad. Each bomb is identified by a unique serial id X, which is a positive integer. To disarm the bomb, a positive integral key Y needs to be entered such that X + Y = X ⊕ Y (here "⊕" denotes the bit-wise XOR operator and "+" denotes the arithmetic sum operator). However, there are multiple such keys that satisfy the above equation. All the positive integers satisfying the above equation are arranged in a list in increasing order. Your task is to find the K^th key in this list. Input Format : The first line of the input gives the number of test cases, T. T test cases follow. Each test case starts with one line with two integers: X and K. Output Format: For each test case, output one line containing "Case #x:", where x is the test case number (starting from 1). Then, for every test case, output the K^th key that satisfies the equation. Constraints: X, Y and K are positive integers. 0 < T ≤ 20 0 < X, Y ≤ 10^14 0 < K ≤ 10^10 SAMPLE INPUT 2 16 3 8 1 SAMPLE OUTPUT Case #1: 3 Case #2: 1 Explanation For the first test case, 16 + 1 = 16 ⊕ 1 = 17, 16 + 2 = 16 ⊕ 2 = 18, 16 + 3 = 16 ⊕ 3 = 19. Hence, the answer is 3. For the second test case, 8 + 1 = 8 ⊕ 1 = 9. Hence, the answer is 1.
t = 0 for _ in range(int(input())): x, y = list(map(int, input().split())) t += 1 c = 0 k = 1 while True: if x + k == x ^ k: c += 1 if c == y: break k += 1 print("Case #%d:" % t, k, end="") print("")
ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER IF BIN_OP VAR VAR BIN_OP VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP STRING VAR VAR STRING EXPR FUNC_CALL VAR STRING
You are a member of a bomb-disposal squad. Each bomb is identified by a unique serial id X, which is a positive integer. To disarm the bomb, a positive integral key Y needs to be entered such that X + Y = X ⊕ Y (here "⊕" denotes the bit-wise XOR operator and "+" denotes the arithmetic sum operator). However, there are multiple such keys that satisfy the above equation. All the positive integers satisfying the above equation are arranged in a list in increasing order. Your task is to find the K^th key in this list. Input Format : The first line of the input gives the number of test cases, T. T test cases follow. Each test case starts with one line with two integers: X and K. Output Format: For each test case, output one line containing "Case #x:", where x is the test case number (starting from 1). Then, for every test case, output the K^th key that satisfies the equation. Constraints: X, Y and K are positive integers. 0 < T ≤ 20 0 < X, Y ≤ 10^14 0 < K ≤ 10^10 SAMPLE INPUT 2 16 3 8 1 SAMPLE OUTPUT Case #1: 3 Case #2: 1 Explanation For the first test case, 16 + 1 = 16 ⊕ 1 = 17, 16 + 2 = 16 ⊕ 2 = 18, 16 + 3 = 16 ⊕ 3 = 19. Hence, the answer is 3. For the second test case, 8 + 1 = 8 ⊕ 1 = 9. Hence, the answer is 1.
for i in range(eval(input())): a, k = list(map(int, input().split())) cnt = 0 start = 1 while True: if (a & start) << 1 > 0: start += 1 continue else: cnt += 1 start += 1 if cnt == k: break print("Case #%d: %d" % (i + 1, start - 1))
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP STRING BIN_OP VAR NUMBER BIN_OP VAR NUMBER
Given two integers dividend and divisor, divide two integers without using multiplication, division and mod operator. Return the quotient after dividing dividend by divisor. The integer division should truncate toward zero. Example 1: Input: dividend = 10, divisor = 3 Output: 3 Example 2: Input: dividend = 7, divisor = -3 Output: -2 Note: Both dividend and divisor will be 32-bit signed integers. The divisor will never be 0. Assume we are dealing with an environment which could only store integers within the 32-bit signed integer range: [−231,  231 − 1]. For the purpose of this problem, assume that your function returns 231 − 1 when the division result overflows.
class Solution: def get_half(self, dividend, divisor): abs_dividend = abs(dividend) abs_divisor = abs(divisor) num = divisor num_temp = 0 result = 1 result_temp = 0 while num <= dividend: num_temp = num num += num result_temp = result result += result return num_temp, result_temp def divide(self, dividend, divisor): MAX_INT = 2147483647 if divisor == 0: return MAX_INT abs_dividend = abs(dividend) abs_divisor = abs(divisor) if abs_dividend < abs_divisor: return 0 minus_flag = (dividend is abs_dividend) is (divisor is abs_divisor) final_result = 0 while abs_dividend >= abs_divisor: num, result = self.get_half(abs_dividend, abs_divisor) abs_dividend -= num final_result += result if minus_flag == 1: if final_result > MAX_INT: return MAX_INT return final_result else: if 0 - final_result < 0 - MAX_INT - 1: return 0 - MAX_INT return 0 - final_result
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR RETURN VAR VAR FUNC_DEF ASSIGN VAR NUMBER IF VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR RETURN NUMBER ASSIGN VAR VAR VAR VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR IF VAR NUMBER IF VAR VAR RETURN VAR RETURN VAR IF BIN_OP NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER RETURN BIN_OP NUMBER VAR RETURN BIN_OP NUMBER VAR
Given two integers dividend and divisor, divide two integers without using multiplication, division and mod operator. Return the quotient after dividing dividend by divisor. The integer division should truncate toward zero. Example 1: Input: dividend = 10, divisor = 3 Output: 3 Example 2: Input: dividend = 7, divisor = -3 Output: -2 Note: Both dividend and divisor will be 32-bit signed integers. The divisor will never be 0. Assume we are dealing with an environment which could only store integers within the 32-bit signed integer range: [−231,  231 − 1]. For the purpose of this problem, assume that your function returns 231 − 1 when the division result overflows.
class Solution: def divide(self, dividend, divisor): flag = (dividend < 0) is (divisor < 0) dividend, divisor = abs(dividend), abs(divisor) result = 0 while dividend >= divisor: newDivisor, rate = divisor, 1 while dividend >= newDivisor: dividend -= newDivisor result += rate newDivisor <<= 1 rate <<= 1 if not flag: result = 0 - result return min(max(-2147483648, result), 2147483647)
CLASS_DEF FUNC_DEF ASSIGN VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR VAR NUMBER WHILE VAR VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR ASSIGN VAR BIN_OP NUMBER VAR RETURN FUNC_CALL VAR FUNC_CALL VAR NUMBER VAR NUMBER
Given two integers dividend and divisor, divide two integers without using multiplication, division and mod operator. Return the quotient after dividing dividend by divisor. The integer division should truncate toward zero. Example 1: Input: dividend = 10, divisor = 3 Output: 3 Example 2: Input: dividend = 7, divisor = -3 Output: -2 Note: Both dividend and divisor will be 32-bit signed integers. The divisor will never be 0. Assume we are dealing with an environment which could only store integers within the 32-bit signed integer range: [−231,  231 − 1]. For the purpose of this problem, assume that your function returns 231 − 1 when the division result overflows.
import sys class Solution: import sys def divide(self, dividend, divisor): maxint = 2**31 - 1 minint = -(2**31) sign = (2 * (dividend > 0) - 1) * (2 * (divisor > 0) - 1) quotient = 0 dividend *= 2 * (dividend > 0) - 1 divisor *= 2 * (divisor > 0) - 1 remainder = dividend for i in reversed(list(range(32))): if remainder == 0: break if divisor << i <= remainder: remainder -= divisor << i quotient += 1 << i quotient *= sign print(quotient) if quotient > maxint or quotient < minint: quotient = maxint return quotient
IMPORT CLASS_DEF IMPORT FUNC_DEF ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER NUMBER ASSIGN VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER IF VAR NUMBER IF BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP NUMBER VAR VAR VAR EXPR FUNC_CALL VAR VAR IF VAR VAR VAR VAR ASSIGN VAR VAR RETURN VAR
Given two integers dividend and divisor, divide two integers without using multiplication, division and mod operator. Return the quotient after dividing dividend by divisor. The integer division should truncate toward zero. Example 1: Input: dividend = 10, divisor = 3 Output: 3 Example 2: Input: dividend = 7, divisor = -3 Output: -2 Note: Both dividend and divisor will be 32-bit signed integers. The divisor will never be 0. Assume we are dealing with an environment which could only store integers within the 32-bit signed integer range: [−231,  231 − 1]. For the purpose of this problem, assume that your function returns 231 − 1 when the division result overflows.
class Solution: def divide(self, dividend, divisor): tag = 1 if (dividend < 0) is (divisor < 0) else -1 dividend, divisor = abs(dividend), abs(divisor) if divisor == 0: return float("inf") count = 0 while dividend >= divisor: mul = 1 t = divisor while dividend > t << 1: t <<= 1 mul <<= 1 dividend -= t count += mul return min(max(-2147483648, count * tag), 2147483647)
CLASS_DEF FUNC_DEF ASSIGN VAR VAR NUMBER VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER RETURN FUNC_CALL VAR STRING ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR VAR VAR VAR RETURN FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR NUMBER
Given two integers dividend and divisor, divide two integers without using multiplication, division and mod operator. Return the quotient after dividing dividend by divisor. The integer division should truncate toward zero. Example 1: Input: dividend = 10, divisor = 3 Output: 3 Example 2: Input: dividend = 7, divisor = -3 Output: -2 Note: Both dividend and divisor will be 32-bit signed integers. The divisor will never be 0. Assume we are dealing with an environment which could only store integers within the 32-bit signed integer range: [−231,  231 − 1]. For the purpose of this problem, assume that your function returns 231 − 1 when the division result overflows.
class Solution: def divide(self, dividend, divisor): if abs(dividend) < abs(divisor): return 0 sum, count, result = 0, 0, 0 a, b = abs(dividend), abs(divisor) while a >= b: sum = b count = 1 while sum + sum < a: sum += sum count += count a -= sum result += count if dividend < 0 and divisor > 0 or dividend > 0 and divisor < 0: result = 0 - result return min(result, 2147483647)
CLASS_DEF FUNC_DEF IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR RETURN NUMBER ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE BIN_OP VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR IF VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR RETURN FUNC_CALL VAR VAR NUMBER
Given two integers dividend and divisor, divide two integers without using multiplication, division and mod operator. Return the quotient after dividing dividend by divisor. The integer division should truncate toward zero. Example 1: Input: dividend = 10, divisor = 3 Output: 3 Example 2: Input: dividend = 7, divisor = -3 Output: -2 Note: Both dividend and divisor will be 32-bit signed integers. The divisor will never be 0. Assume we are dealing with an environment which could only store integers within the 32-bit signed integer range: [−231,  231 − 1]. For the purpose of this problem, assume that your function returns 231 − 1 when the division result overflows.
class Solution: def divide(self, dividend, divisor): MIN_INT = -(2**31) MAX_INT = -MIN_INT - 1 if divisor == 0 or dividend == MIN_INT and divisor == -1: return MAX_INT sign = 1 if dividend < 0: sign = -sign dividend = -dividend if divisor < 0: sign = -sign divisor = -divisor ans = bits = 0 while divisor << bits + 1 <= dividend: bits += 1 while bits >= 0: if dividend >= divisor << bits: dividend -= divisor << bits ans += 1 << bits bits -= 1 return ans if sign == 1 else -ans
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER VAR VAR VAR NUMBER RETURN VAR ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR IF VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR NUMBER WHILE BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER WHILE VAR NUMBER IF VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP NUMBER VAR VAR NUMBER RETURN VAR NUMBER VAR VAR
Given two integers dividend and divisor, divide two integers without using multiplication, division and mod operator. Return the quotient after dividing dividend by divisor. The integer division should truncate toward zero. Example 1: Input: dividend = 10, divisor = 3 Output: 3 Example 2: Input: dividend = 7, divisor = -3 Output: -2 Note: Both dividend and divisor will be 32-bit signed integers. The divisor will never be 0. Assume we are dealing with an environment which could only store integers within the 32-bit signed integer range: [−231,  231 − 1]. For the purpose of this problem, assume that your function returns 231 − 1 when the division result overflows.
class Solution: def divide(self, dividend, divisor): if dividend < 0 and divisor > 0 or dividend > 0 and divisor < 0: if abs(dividend) < abs(divisor): return 0 summ = 0 count = 0 res = 0 a = abs(dividend) b = abs(divisor) while a >= b: summ = b count = 1 while summ + summ <= a: summ += summ count += count a -= summ res += count if dividend < 0 and divisor > 0 or dividend > 0 and divisor < 0: res = 0 - res if res > 2**31 - 1: res = 2**31 - 1 return res
CLASS_DEF FUNC_DEF IF VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE BIN_OP VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR IF VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR IF VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER RETURN VAR
Given two integers dividend and divisor, divide two integers without using multiplication, division and mod operator. Return the quotient after dividing dividend by divisor. The integer division should truncate toward zero. Example 1: Input: dividend = 10, divisor = 3 Output: 3 Example 2: Input: dividend = 7, divisor = -3 Output: -2 Note: Both dividend and divisor will be 32-bit signed integers. The divisor will never be 0. Assume we are dealing with an environment which could only store integers within the 32-bit signed integer range: [−231,  231 − 1]. For the purpose of this problem, assume that your function returns 231 − 1 when the division result overflows.
class Solution: def divide(self, dividend, divisor): positive = (dividend < 0) is (divisor < 0) dividend, divisor, div = abs(dividend), abs(divisor), abs(divisor) res = 0 q = 1 while dividend >= divisor: dividend -= div res += q q += q div += div if dividend < div: div = divisor q = 1 if not positive: res = -res return min(max(-2147483648, res), 2147483647)
CLASS_DEF FUNC_DEF ASSIGN VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER IF VAR ASSIGN VAR VAR RETURN FUNC_CALL VAR FUNC_CALL VAR NUMBER VAR NUMBER
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
t = int(input()) for z in range(t): [a, b] = [int(j) for j in input().split()] if a == b: print(0) elif a == b - 1: print(1) elif b == 0: print(-1) elif b == 1 and a != 0: print(-1) else: b = b - 1 n1 = bin(a)[2:].count("1") n2 = bin(b)[2:].count("1") if n1 < n2: print(1 + n2 - n1) elif n1 == n2: print(1 + 0) else: print(1 + 1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN LIST VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR VAR NUMBER STRING ASSIGN VAR FUNC_CALL FUNC_CALL VAR VAR NUMBER STRING IF VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP NUMBER NUMBER
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
t = int(input()) for i in range(t): a, b = list(map(int, input().split())) if a == b: print(0) elif b == 0 or not a == 0 and b == 2 // 2: print(-1) else: if a - b + 1 == 0: print(1) continue b -= 1 count = 0 bina = bin(a)[2:] binb = bin(b)[2:] counta = bina.count("1") countb = binb.count("1") if countb == counta: print(2 // 2) continue if counta > countb: print(4 // 2) else: print(countb - counta + 1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER VAR BIN_OP NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING IF VAR VAR EXPR FUNC_CALL VAR BIN_OP NUMBER NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
for z in range(int(input())): a, b = (int(x) for x in input().split()) if a == b: print("0") elif b == 1 and a == 0: print("1") elif b == 1 or b == 0: print("-1") else: c1 = b - 1 q = bin(c1)[2:] p = bin(a)[2:] s = p.count("1") t = q.count("1") if s == t: print("1") elif s < t: print(t - s + 1) else: print("2")
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR STRING IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING IF VAR VAR EXPR FUNC_CALL VAR STRING IF VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
test_case = int(input()) def count_zero_one(num): arr = [0, 0] for n in num: if n == 0: arr[0] += 1 elif n == 1: arr[1] += 1 return arr while test_case: a, b = input().split() a = int(a) b = int(b) if a == b: print(0) elif a == 0 and b == 1: print(1) elif b == 0: print(-1) elif b == 1 and not a == 0: print(-1) else: b = b - 1 a_bin = list(map(int, bin(a)[2:])) b_bin = list(map(int, bin(b)[2:])) if len(a_bin) < len(b_bin): diff = len(b_bin) - len(a_bin) a_bin = [0] * diff + a_bin result = count_zero_one(b_bin)[1] - count_zero_one(a_bin)[1] + 1 if result > 0: print(result) else: print(2) test_case = test_case - 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR LIST NUMBER NUMBER FOR VAR VAR IF VAR NUMBER VAR NUMBER NUMBER IF VAR NUMBER VAR NUMBER NUMBER RETURN VAR WHILE VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP LIST NUMBER VAR VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
T = int(input()) for i in range(T): a, b = map(int, input().split(" ")) to_get = b - 1 counter_get = bin(to_get).count("1") counter_a = bin(a).count("1") counter_b = bin(a).count("1") if a == b: result = 0 elif b == 0: if a == 0: result = 0 else: result = -1 elif b == 1: if a == 0: result = 1 else: result = -1 elif counter_get > counter_a: min_ops = counter_get - counter_a + 1 result = min_ops elif counter_get < counter_a: min_ops = 1 + 1 result = min_ops else: result = 1 print(result)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR VAR STRING ASSIGN VAR FUNC_CALL FUNC_CALL VAR VAR STRING ASSIGN VAR FUNC_CALL FUNC_CALL VAR VAR STRING IF VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR IF VAR VAR ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
def main(): for _ in range(int(input())): a, b = [int(x) for x in input().split()] bina = bin(a)[2:] binb = bin(b)[2:] binac = bina.count("1") binbc = binb.count("1") extra = binac - binbc revidx = binb[::-1].index("1") if b != 0 else 0 ans = 0 if a == b: ans = 0 elif b == 0 and a != 0: ans = -1 elif b == 1 and a > 1: ans = -1 elif b == 1 and a == 0: ans = 1 elif extra < 0: ans = revidx - extra elif extra == 0: if binb[-1] == "0": ans = revidx else: ans = 2 elif revidx > extra: ans = revidx - extra else: ans = 2 print(ans) main()
FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR NUMBER FUNC_CALL VAR NUMBER STRING NUMBER ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER IF VAR NUMBER STRING ASSIGN VAR VAR ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
cnt = lambda x: bin(x).count("1") def solve(a, b): b_orig = b ans = 0 if a == b: ans = 0 elif a == b - 1: ans = 1 elif b <= 1: ans = -1 else: ans = abs(cnt(a) - cnt(b - 1)) + 1 if cnt(a) > cnt(b - 1): ans = min(ans, 2) return ans for _ in range(int(input())): a, b = map(int, input().split()) print(solve(a, b))
ASSIGN VAR FUNC_CALL FUNC_CALL VAR VAR STRING FUNC_DEF ASSIGN VAR VAR ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER IF VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
t = int(input()) for i in range(t): a, b = [int(x) for x in input().split()] if a == b: print(0) elif b == 0: print(-1) elif b == 1: if a == 0: print(1) else: print(-1) else: aa = bin(a) bb = bin(b - 1) oa = aa.count("1") ob = bb.count("1") if oa > ob: print(2) else: print(ob - oa + 1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
def StringListToNumList(L): for i in range(0, len(L), 1): L[i] = int(L[i]) return L def NumberOfOnesInBinary(N): NumOfOnes = 0 if N == 0: pass else: while N > 0: if N % 2 == 1: NumOfOnes += 1 N = N // 2 return NumOfOnes T = int(input("")) for k in range(0, T, 1): Numbers = input("") NumList = Numbers.split(" ") NumList = StringListToNumList(NumList) A = NumList[0] B = NumList[1] if A == B: print(0) continue elif A == 0 and B == 1: print(1) continue elif B == 0: print(-1) continue elif B == 1 and A != 0: print(-1) continue B = B - 1 AOnes = NumberOfOnesInBinary(A) BOnes = NumberOfOnesInBinary(B) if BOnes == AOnes: print(1) elif BOnes < AOnes: print(2) else: print(BOnes - AOnes + 1)
FUNC_DEF FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR NUMBER IF VAR NUMBER WHILE VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
t = int(input()) for i in range(t): inp = input().split() a = int(inp[0]) b = int(inp[1]) if a == b: print(0) elif a == b - 1: print(1) elif b <= 1: print(-1) else: count1 = bin(a).count("1") count2 = bin(b - 1).count("1") if count1 == count2: print(1) elif count1 < count2: print(count2 - count1 + 1) elif count1 > count2: print(2)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR VAR STRING ASSIGN VAR FUNC_CALL FUNC_CALL VAR BIN_OP VAR NUMBER STRING IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
t = int(input()) for j in range(t): a, b = [int(x) for x in input().split()] cnta1 = 0 a1 = bin(a)[2:] b1 = bin(b)[2:] cntb1 = 0 for i in a1: if i == "1": cnta1 += 1 for i in b1: if i == "1": cntb1 += 1 fap = 0 for i in range(1, len(b1) + 1, 1): if b1[-i] == "1": fap = i break if b == 0 or b == 1: if b == 0: if a: print(-1) else: print(0) if b == 1: if a < 2: print(b - a) else: print(-1) elif cnta1 == cntb1: if b % 2: if b >= a: print(min(2, b - a)) else: print(2) elif b >= a: print(min(b - a, fap - 1)) else: print(fap - 1) elif cnta1 < cntb1: print(cntb1 - 1 - cnta1 + fap) elif cnta1 - cntb1 + 1 == fap - 1: print(1) elif cnta1 - cntb1 + 1 < fap - 1: print(1 + fap - cnta1 + cntb1 - 2) else: print(2)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING VAR NUMBER FOR VAR VAR IF VAR STRING VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER IF VAR VAR STRING ASSIGN VAR VAR IF VAR NUMBER VAR NUMBER IF VAR NUMBER IF VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR IF BIN_OP VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP NUMBER VAR VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
def set_bits(n): return bin(n).count("1") t = int(input()) for test in range(t): a, b = map(int, input().split()) if a == b: ans = 0 elif b == 0 or a > 0 and b == 1: ans = -1 else: set_bits_a = set_bits(a) set_bits_b_less_1 = set_bits(b - 1) if set_bits_a <= set_bits_b_less_1: ans = set_bits_b_less_1 - set_bits_a + 1 else: ans = 2 print(ans)
FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
def val(a, b): if a == b: return 0 elif b == 0 and a != 0: return -1 elif b == 1: if a == 0: return 1 else: return -1 numb = bin(b - 1).count("1") numa = bin(a).count("1") if numb - numa + 1 >= 1: return numb - numa + 1 else: return 2 t = int(input()) while t: t = t - 1 a, b = input().split() a, b = int(a), int(b) print(val(a, b))
FUNC_DEF IF VAR VAR RETURN NUMBER IF VAR NUMBER VAR NUMBER RETURN NUMBER IF VAR NUMBER IF VAR NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR BIN_OP VAR NUMBER STRING ASSIGN VAR FUNC_CALL FUNC_CALL VAR VAR STRING IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER RETURN BIN_OP BIN_OP VAR VAR NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
for i in range(int(input())): a, b = (int(s) for s in input().split()) s1 = bin(a)[2:] if a == b: print(0) elif b == 0: print(-1) elif b == 1: if a == 0: print(1) else: print(-1) else: s3 = bin(b - 1)[2:] c1 = s1.count("1") c3 = s3.count("1") if c3 < c1: ans1 = 1 elif c3 == c1: ans1 = 0 else: ans1 = c3 - c1 print(ans1 + 1)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING IF VAR VAR ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
def ones(a): res = 0 while a: res += a % 2 a = a // 2 return res def counting(a, b): if a == b: return 0 elif b == 0: return -1 elif b == 1: return 1 if a == 0 else -1 ops = ones(b - 1) - ones(a) + 1 return ops if ops > 0 else 2 for i in range(int(input())): j, k = list(map(int, input().split())) print(counting(j, k))
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FUNC_DEF IF VAR VAR RETURN NUMBER IF VAR NUMBER RETURN NUMBER IF VAR NUMBER RETURN VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR NUMBER RETURN VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
for t in range(int(input())): a, b = list(map(int, input().split())) bin_a, bin_b = "{0:b}".format(a), "{0:b}".format(b) a_one, b_one = list(bin_a).count("1"), list(bin_b).count("1") len_a, len_b = len(bin_a), len(bin_b) tr_zero = 0 pos = -1 while pos > -1 * len(bin_b): if bin_b[pos] == "0": tr_zero += 1 pos -= 1 else: break b_one = b_one + tr_zero diff = b_one - a_one if a == b: print(0) elif b == 1 and a != 0 and a != 1: print(-1) elif b == 0 and a != 0: print(-1) elif b_one > a_one: print(diff) elif b_one <= a_one: print(2)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL STRING VAR FUNC_CALL STRING VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR VAR STRING FUNC_CALL FUNC_CALL VAR VAR STRING ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP NUMBER FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
t = int(input()) for test in range(t): a, b = map(int, input().split()) if a == b: print(0) continue if a == 0 and b == 1: print(1) continue if b == 0 or b == 1: print("-1") continue b = b - 1 aones = 0 bones = 0 x = a y = b while x > 0: if x % 2 == 1: aones += 1 x = x // 2 while y > 0: if y % 2 == 1: bones += 1 y = y // 2 ans = 1 if aones < bones: ans += bones - aones elif aones > bones: ans += 1 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR WHILE VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR BIN_OP VAR VAR IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
def calc(a, b): s1 = bin(a)[2:] s2 = bin(b - 1)[2:] if s1.count("1") > s2.count("1"): return 2 elif s1.count("1") <= s2.count("1"): return s2.count("1") - s1.count("1") + 1 for _ in range(int(input())): a, b = map(int, input().split()) if a == b: print(0) elif b - a == 1: print(1) elif b == 0 and a >= 1: print(-1) elif b == 1 and a >= 1: print(-1) else: print(calc(a, b))
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER IF FUNC_CALL VAR STRING FUNC_CALL VAR STRING RETURN NUMBER IF FUNC_CALL VAR STRING FUNC_CALL VAR STRING RETURN BIN_OP BIN_OP FUNC_CALL VAR STRING FUNC_CALL VAR STRING NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
t = int(input()) for test in range(t): a, b = map(int, input().split()) ans = -1 if a == b: ans = 0 elif a == 0 and b == 1: ans = 1 elif b > 1: counta = 0 while a > 0: if a & 1: counta += 1 a >>= 1 countb = 0 index = -2 flag = 0 while b > 0: if flag == 0: index += 1 if b & 1: flag = 1 countb += 1 b >>= 1 index += 1 if countb <= counta and index <= counta - countb: ans = 2 else: ans = countb - counta + index print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER IF BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER IF VAR NUMBER VAR NUMBER IF BIN_OP VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
def no_of_ending_zeros(r): z = 0 for i in range(len(r) - 1, -1, -1): if r[i] == "0": z = z + 1 if r[i] == "1": break return z for _ in range(int(input())): N1, N2 = map(int, input().split()) A = format(N1, "b") B = format(N2, "b") p = -1 nez = no_of_ending_zeros(B) if A != "0" and B == "0" or B == "1" and A != "1" and A != "0": print(p) continue if A == B: p = 0 elif A.count("1") < B.count("1"): if nez == 0: p = B.count("1") - A.count("1") else: p = B.count("1") - A.count("1") + nez elif A.count("1") == B.count("1"): if nez == 0: p = 2 else: p = nez elif A.count("1") > B.count("1"): if nez == 0: p = 2 elif nez >= A.count("1") - B.count("1") + 1: p = nez - (A.count("1") - B.count("1") + 1) + 1 else: p = 2 print(p)
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR STRING RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR STRING ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR STRING VAR STRING VAR STRING VAR STRING VAR STRING EXPR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR STRING FUNC_CALL VAR STRING IF VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR STRING FUNC_CALL VAR STRING ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR STRING FUNC_CALL VAR STRING VAR IF FUNC_CALL VAR STRING FUNC_CALL VAR STRING IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR IF FUNC_CALL VAR STRING FUNC_CALL VAR STRING IF VAR NUMBER ASSIGN VAR NUMBER IF VAR BIN_OP BIN_OP FUNC_CALL VAR STRING FUNC_CALL VAR STRING NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP FUNC_CALL VAR STRING FUNC_CALL VAR STRING NUMBER NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
T = int(input()) for i in range(T): A, B = list(map(int, input().strip().split(" "))) C = B - 1 D = "{0:08b}".format(A) C = "{0:08b}".format(C) a1 = D.count("1") b1 = C.count("1") if B == 1 and A > 1: print(-1) elif a1 > b1 and A != B and A != 0 and B != 0: print(2) elif B == 0 and A != 0: print(-1) elif B == 1 and A != 0 and A != 1: print(-1) elif A == B: print(0) else: c = b1 - a1 + 1 print(c)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL STRING VAR ASSIGN VAR FUNC_CALL STRING VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
T = int(input()) for t in range(T): A, B = map(int, input().split()) if B == 0: if A == 0: print(0) else: print(-1) elif B == 1: if A == 0: print(1) elif A == 1: print(0) else: print(-1) elif A == B: print(0) else: binB = bin(B - 1) binA = bin(A) ctbinA = str(binA).count("1") ctbinB = str(binB).count("1") if ctbinA == ctbinB: print(1) elif ctbinA > ctbinB: print(2) else: print(ctbinB - ctbinA + 1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR VAR STRING ASSIGN VAR FUNC_CALL FUNC_CALL VAR VAR STRING IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
def bin1(x): res = 0 while x > 0: res += x % 2 x = x // 2 return res for t in range(int(input())): a, b = map(int, input().split()) if b == a: print(0) elif b == 0: print(-1) else: cta = bin1(a) ctb = bin1(b - 1) if cta > ctb: if ctb == 0: print(-1) else: print(2) else: print(ctb - cta + 1)
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
def convert(n): if n == 0: return 0 else: return (n & 1) + convert(n >> 1) t = int(input()) for i in range(0, t): s = input().split() a = int(s[0]) b = int(s[1]) if a == b: print("0") elif a > 0 and b == 1: print("-1") elif b == 0: print("-1") else: c = b - 1 A = convert(a) B = convert(c) if A < B: count = 1 + B - A elif A == B: count = 1 else: count = 2 print(count)
FUNC_DEF IF VAR NUMBER RETURN NUMBER RETURN BIN_OP BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR STRING IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER VAR VAR IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
t = int(input()) for i in range(t): a, b = [int(i) for i in input().split()] if a == b: count = 0 elif b == 0 and a != 0: count = -1 elif b == 1 and a != 0: count = -1 else: p1 = bin(a).count("1") p2 = bin(b - 1).count("1") if p1 > p2: count = 2 if p2 >= p1: count = 1 + (p2 - p1) print(count)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR VAR STRING ASSIGN VAR FUNC_CALL FUNC_CALL VAR BIN_OP VAR NUMBER STRING IF VAR VAR ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP NUMBER BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
t = int(input()) i = 0 while i < t: a, b = [int(j) for j in input().split()] if a == b: print("0") elif b == 0: print("-1") elif b == 1: if a != 0: print("-1") else: print("1") else: a1 = 0 b1 = 0 while a > 0: if a % 2 == 1: a1 = a1 + 1 a = a // 2 b = b - 1 while b > 0: if b % 2 == 1: b1 = b1 + 1 b = b // 2 if a1 <= b1: print(b1 - a1 + 1) elif a1 > b1: print("2") i = i + 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR NUMBER
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
for i in range(int(input())): a, b = map(int, input().split()) c1 = bin(a).count("1") c2 = bin(b - 1).count("1") ans = c2 - c1 + 1 if a == b: print(0) elif a == 0 and b == 1: print(1) elif b == 0 or b == 1: print(-1) elif ans <= 0: print(2) else: print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR VAR STRING ASSIGN VAR FUNC_CALL FUNC_CALL VAR BIN_OP VAR NUMBER STRING ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
for _ in range(int(input())): A, B = map(int, input().split()) a = format(A, "b") b = format(B, "b") if A == B: print(0) elif B == 1 and A >= 1 or B == 0: print(-1) else: t = True s = 0 i = -1 while t: if b[i] == "0": s += 1 else: t = False i -= 1 a1 = a.count("1") b1 = b.count("1") if a1 > b1: if b1 - 1 + s == a1: print(1) elif a1 >= b1 - 1 + s: print(2) else: print(s - a1 + b1) elif a1 == b1: if b[-1] == "0": print(s) else: print(2) else: print(b1 - a1 + s)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR STRING IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR IF VAR VAR STRING VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING IF VAR VAR IF BIN_OP BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR BIN_OP BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR IF VAR VAR IF VAR NUMBER STRING EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
n = int(input()) for i in range(0, n): arr = [int(x) for x in input().split(" ")] if arr[0] == arr[1]: print(0) continue if arr[1] == 0 or arr[1] == 1 and arr[0] > 0: print(-1) continue nb = bin(arr[1] - 1).count("1") na = bin(arr[0]).count("1") if nb < na: print(2) continue if nb == na: print(1) continue if nb > na: print(nb - na + 1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER NUMBER VAR NUMBER NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER STRING ASSIGN VAR FUNC_CALL FUNC_CALL VAR VAR NUMBER STRING IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
def sb(num): binary = bin(num) setBits = [ones for ones in binary[2:] if ones == "1"] return len(setBits) def doIt(x, y): if x == y: return 0 if y == 0: return -1 if y == 1: if x == 0: return 1 return -1 kachra = sb(y - 1) - sb(x) + 1 if kachra > 0: return kachra else: return 2 def main(): t = int(input()) for _ in range(t): a, b = map(int, input().split()) print(doIt(a, b)) main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR NUMBER VAR STRING RETURN FUNC_CALL VAR VAR FUNC_DEF IF VAR VAR RETURN NUMBER IF VAR NUMBER RETURN NUMBER IF VAR NUMBER IF VAR NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR NUMBER IF VAR NUMBER RETURN VAR RETURN NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
t = int(input()) for i in range(t): a, b = [int(i) for i in input().split()] if a == b: print("0") elif b == 1 and a > 1 or b == 0 and a != 0: print("-1") else: na, nb = 0, 0 res = 0 j = a while j != 0: j = j & j - 1 na += 1 j = b while j != 0: j = j & j - 1 nb += 1 if b % 2 == 1: if nb > na: res = nb - na else: res = 2 else: x = 2 exp = 0 while b % x == 0: x *= 2 exp += 1 if nb > na: res = nb - na + exp elif exp == na - (nb - 1): res = 1 elif exp > na - (nb - 1): res = exp - na + nb else: res = 2 if b < a: print(res) elif b - a < res: print(b - a) else: print(res)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR STRING IF VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR VAR WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR NUMBER IF BIN_OP VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE BIN_OP VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR IF VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
def countone(num): count = 0 while num > 0: num = num & num - 1 count += 1 return count T = int(input()) for t in range(T): A, B = map(int, input().split()) a = "{0:b}".format(A) b = "{0:b}".format(B) x = len(a) y = len(b) anum1 = countone(A) bnum1 = countone(B) count = 0 if B == 0 and A > 0: print(-1) elif B == 1 and A > 1: print(-1) elif A == B: print(0) else: C = B - 1 cnum1 = countone(C) if cnum1 > anum1: count += cnum1 - anum1 elif cnum1 < anum1: count += 1 else: count += 0 count += 1 print(count)
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL STRING VAR ASSIGN VAR FUNC_CALL STRING VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR VAR BIN_OP VAR VAR IF VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
def dbin(x): return int(bin(x)[2:]) def dbin1(x): return bin(x)[2:] def print1(x): if x > 0: print(x) else: x = 1 print(x + 1) def zero(x): flag = 0 count = 0 while flag == 0 and x > 0: if x % 10 != 0: flag = 1 else: count = count + 1 x = x // 10 return count T = int(input()) for i in range(T): n1 = input() n2 = list(map(int, n1.split())) A1 = n2[0] B1 = n2[1] A = dbin(A1) B = dbin(B1) A1 = dbin1(A1) B1 = dbin1(B1) if n2[0] == n2[1]: print(0) elif n2[1] == 1 and n2[0] == 0: print(1) elif n2[1] == 1 or n2[1] == 0: print(-1) else: oneB = B1.count("1") oneA = A1.count("1") if oneA < oneB: print(oneB - oneA + zero(B)) elif oneA > oneB: B1 = dbin1(n2[1] - 1) oneB = B1.count("1") print1(oneB - oneA + 1) else: B1 = dbin1(n2[1] - 1) output = B1.count("1") - A1.count("1") + 1 print1(output)
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER FUNC_DEF RETURN FUNC_CALL VAR VAR NUMBER FUNC_DEF IF VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER VAR NUMBER IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING IF VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR STRING FUNC_CALL VAR STRING NUMBER EXPR FUNC_CALL VAR VAR
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
t = int(input()) for cnt in range(t): a, b = input().split() a, b = [int(a), int(b)] if a == b: print(0) elif b <= 1 and a != 0: print(-1) else: binary = bin(a) setBits = [ones for ones in binary[2:] if ones == "1"] countA = len(setBits) binary = bin(b) setBits = [ones for ones in binary[2:] if ones == "1"] countB = len(setBits) for i in range(1, len(binary) - 1): if binary[-i] == "1": x = i - 1 break countB = countB - 1 + x if countA <= countB: ans = countB - countA ans += 1 print(ans) else: ans = 2 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR LIST FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR NUMBER VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR NUMBER VAR STRING ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
def ones(n): o = 0 while n: if n % 2: o += 1 n //= 2 return o t = int(input()) while t: t -= 1 a, b = input().split() if a == b: print(0) continue elif b == "0": print(-1) continue elif b == "1": if a == "0": print(1) else: print(-1) continue oa = ones(int(a)) ob = ones(int(b) - 1) if oa > ob: print(2) else: print(ob - oa + 1)
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR IF BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR STRING EXPR FUNC_CALL VAR NUMBER IF VAR STRING IF VAR STRING EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
T = int(input()) for f in range(T): inp = list(map(int, input().split())) a = inp[0] b = inp[1] if a == b: ans = 0 elif b == 1 and a > 0: ans = -1 elif b == 0: ans = -1 else: b = b - 1 bbin = bin(b) abin = bin(a) b1 = bbin.count("1") a1 = abin.count("1") val = b1 - a1 + 1 if val > 0: ans = val else: ans = 2 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
for t in range(int(input())): A, B = map(int, input().split()) if A == B: print(0) elif B == 0: print(-1) elif B == 1: if A == 0: print(1) else: print(-1) else: a, b = bin(A).count("1"), bin(B - 1).count("1") if a == b: print(1) elif a < b: print(b - a + 1) else: print(2)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR VAR STRING FUNC_CALL FUNC_CALL VAR BIN_OP VAR NUMBER STRING IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
def cnt(n): count = 0 while n > 0: if n % 2 == 1: count += 1 n = n // 2 return count t = int(input()) while t > 0: a, b = map(int, input().split()) c = cnt(a) d = cnt(b - 1) if a == b: print(0) elif b == 0 or b == 1 and a != 0: print(-1) elif c > d: print(2) else: print(d - c + 1) t -= 1
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
def dtb(n): g = bin(n) k = len(g) m = g[2:k] return int(m) def jkl(p): c = 0 while p != 0: if p % 10 == 1: c = c + 1 p = p // 10 return c t = int(input()) for i in range(0, t): a, b = map(int, input().split()) if b == a: print(0) elif b == 0: print(-1) elif b == 1 and a > b: print(-1) else: aa = jkl(dtb(a)) bb = jkl(dtb(b - 1)) if bb < aa: print(2) elif bb == aa: print(1) else: print(1 + (bb - aa))
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER VAR RETURN FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP NUMBER BIN_OP VAR VAR
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
a = int(input()) for i in range(a): qq = list(map(int, input().split())) a = qq[0] b = qq[1] if a == b: print(0) elif b == 0 or b == 1 and a != 0: print(-1) elif b == 1 and a == 1: print(1) else: b = b - 1 a = a q1 = bin(b)[2:].count("1") - bin(a)[2:].count("1") + 1 if q1 <= 0: print("2") else: print(q1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL FUNC_CALL VAR VAR NUMBER STRING FUNC_CALL FUNC_CALL VAR VAR NUMBER STRING NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
import itertools def bruteForceMethod(A, B): if B == 0: return -1 if A != 0 and B == 1: return -1 if A == B: return 0 if A + 1 == B: return 1 A_ = bin(A)[2:] B_ = bin(B)[2:] digitsToCheck, newDigitsFormed = {A}, set() iterationsMade = 0 while True: iterationsMade += 1 onesSeen = set() for a in digitsToCheck: a = bin(a)[2:] ones = a.count("1") if ones in onesSeen: continue else: onesSeen.add(ones) for leadingZeroes in range(0, max(0, 10 - len(a)) + 1): newDigitLength = len(a) + leadingZeroes for k in itertools.combinations(range(newDigitLength), ones): newDigitFormed = ["0"] * newDigitLength for i in k: newDigitFormed[i] = "1" newDigitFormed = "".join(newDigitFormed) newDigitFormed = int(newDigitFormed, 2) + 1 newDigitsFormed.add(newDigitFormed) if B in newDigitsFormed: return iterationsMade elif iterationsMade > 9: return -1 else: digitsToCheck, newDigitsFormed = newDigitsFormed, set() def clearMethod(A, B): if A == B: return 0 if A + 1 == B: return 1 if A != 0 and B == 0: return -1 if (A != 0 and A != 1) and B == 1: return -1 A = bin(A)[2:] B = bin(B)[2:] A1 = A.count("1") B1 = B.count("1") if B[-1] == "1": if A1 < B1: return B1 - A1 elif A1 + 1 == B1: return 1 elif A1 >= B1: return 2 elif B[-1] == "0": B = bin(int(B, 2) - 1)[2:] B1 = B.count("1") if A1 < B1: return B1 - A1 + 1 elif A1 == B1: return 1 elif A1 >= B1: return 2 T = int(input()) for _ in range(T): A, B = [int(x) for x in input().split()] print(clearMethod(A, B))
IMPORT FUNC_DEF IF VAR NUMBER RETURN NUMBER IF VAR NUMBER VAR NUMBER RETURN NUMBER IF VAR VAR RETURN NUMBER IF BIN_OP VAR NUMBER VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING IF VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR NUMBER BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP LIST STRING VAR FOR VAR VAR ASSIGN VAR VAR STRING ASSIGN VAR FUNC_CALL STRING VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR RETURN VAR IF VAR NUMBER RETURN NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_DEF IF VAR VAR RETURN NUMBER IF BIN_OP VAR NUMBER VAR RETURN NUMBER IF VAR NUMBER VAR NUMBER RETURN NUMBER IF VAR NUMBER VAR NUMBER VAR NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING IF VAR NUMBER STRING IF VAR VAR RETURN BIN_OP VAR VAR IF BIN_OP VAR NUMBER VAR RETURN NUMBER IF VAR VAR RETURN NUMBER IF VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR STRING IF VAR VAR RETURN BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR RETURN NUMBER IF VAR VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
t = int(input()) while t: a, b = map(int, input().split(" ")) f = 0 if a == b: print(0) elif a == 0 and b == 1: print(1) elif b == 0 or b == 1: print(-1) else: f = f + 1 b = b - 1 x = 0 y = 0 while a: if a % 2: x += 1 a = a // 2 while b: if b % 2: y += 1 b = b // 2 if x < y: f = f + y - x elif x > y: f = f + 1 print(f) t = t - 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR IF BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR IF BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
def countSetBits(num): binary = bin(num) setBits = [ones for ones in binary[2:] if ones == "1"] return len(setBits) t = int(input()) for _ in range(t): A, B = [int(x) for x in input().split()] set_A = countSetBits(A) set_B = countSetBits(B - 1) if A == B: print("0") elif A > 1 and B < 2 or A == 1 and B == 0: print("-1") elif set_B < set_A: print("2") else: ans = set_B - set_A + 1 print(ans)
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR NUMBER VAR STRING RETURN FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR STRING IF VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
for i in range(int(input())): a, b = [int(x) for x in input().split()] if a == b: print(0) continue if b == 0 or b == 1 and a != 0: print(-1) continue one_a = bin(a)[2:].count("1") one_b = bin(b - 1)[2:].count("1") if one_a > one_b: print(2) elif one_a <= one_b: print(one_b - one_a + 1)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR VAR NUMBER STRING ASSIGN VAR FUNC_CALL FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER STRING IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
for t in range(int(input())): a, b = input().split() a, b = int(a), int(b) if a == b: print("0") elif b == 0: print(-1) elif b == 1: if a == 0: print(1) else: print(-1) else: a1 = bin(a) b1 = bin(b - 1) a1 = a1.count("1") b1 = b1.count("1") if a1 == b1: print(1) if a1 < b1: print(b1 - a1 + 1) if a1 > b1: print(2)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
t = int(input()) while t: t = t - 1 s = input().split() a = int(s[0]) b = int(s[1]) if a == b: print(0) continue if b == 0 or b == 1 and a != 0: print(-1) continue x = bin(a).count("1") k = bin(b).count("1") + list(reversed(bin(b))).index("1") - 1 if k == x: print(1) if k > x: print(k - x + 1) if k < x: print(2)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR VAR STRING ASSIGN VAR BIN_OP BIN_OP FUNC_CALL FUNC_CALL VAR VAR STRING FUNC_CALL FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR STRING NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
def setBits(n): cnt = 0 while n > 0: rsbm = n & -n n -= rsbm cnt += 1 return cnt t = int(input()) for i in range(t): a, b = list(map(int, input().split())) if a == b: print(0) continue elif b == 0: print(-1) continue elif b == 1: if a == 0: print(1) continue else: print(-1) continue na = setBits(a) nb = setBits(b - 1) if na > nb: print(2) else: print(nb - na + 1)
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR VAR VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
def count1(n): count = 0 while n > 0: count += n % 2 n = n // 2 return count for t in range(int(input())): a, b = map(int, input().split()) oa, ob = count1(a), count1(b - 1) ans = 0 if a == b: ans = 0 elif b == 0: ans = -1 elif b == 1: if a != 0: ans = -1 else: ans = 1 elif oa <= ob: ans = ob - oa + 1 else: ans = 2 print(ans)
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
for T in range(int(input())): A, B = input().split() A = bin(int(A))[2:] B = bin(int(B))[2:] A1 = A.count("1") B1 = B.count("1") if A == B: print(0) continue if B == "1" or B == "0": print([-1, 1][B == "1" and A == "0"]) continue B1 = B1 + (len(B) - B.rindex("1") - 1) if B1 - A1 > 0: print(B1 - A1) else: print(2)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR STRING VAR STRING EXPR FUNC_CALL VAR LIST NUMBER NUMBER VAR STRING VAR STRING ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
for t in range(int(input())): A, B = map(int, input().split(" ")) countA, countB = str(bin(A)).count("1"), str(bin(B - 1)).count("1") if A == B: print("0") elif A != 0 and (B == 0 or B == 1): print("-1") pass elif countA > countB: print("2") pass else: print(countB - countA + 1)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_CALL VAR VAR STRING FUNC_CALL FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER STRING IF VAR VAR EXPR FUNC_CALL VAR STRING IF VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
def bcnt(x): res = 0 for i in range(0, 64): if x >> i & 1 == 1: res = res + 1 return res for _ in range(0, int(input())): a, b = map(int, input().split()) if a == b: print(0) elif b == 0 and a > 0 or b == 1 and a > 1: print(-1) elif bcnt(a) > bcnt(b - 1): print(2) else: print(bcnt(b - 1) - bcnt(a) + 1)
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR NUMBER
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
for _ in range(int(input())): a, b = [int(x) for x in input().split()] if a == b: print(0) elif a == 0 and b == 1: print(1) elif b <= 1: print(-1) else: b -= 1 x, y = bin(a)[2:], bin(b)[2:] c1, c2 = x.count("1"), y.count("1") if c1 == c2: print(1) elif c1 < c2: print(c2 - c1 + 1) else: print(2)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR STRING FUNC_CALL VAR STRING IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
for testc in range(int(input())): aa, bb = map(int, input().split()) b = "{0:b}".format(bb) a = "{0:b}".format(aa) na = a.count("1") nb = b.count("1") b = "0" * 60 + b l = len(b) odd = False if bb % 2 != 0: odd = True if nb == 0 and na != 0: print("-1") elif bb == 1 and (aa != 0 or aa != 1): if aa == 0: print("1") elif aa == 1: print("0") else: print("-1") elif na > nb: diff = na - nb + 1 one = 0 l = l - 1 while b[l] == "0": l = l - 1 one += 1 if one == diff: print("1") elif one < diff: print("2") else: print(one - diff + 1) elif nb > na: diff = nb - na - 1 if odd: print(diff + 1) else: one = 0 l = l - 1 while b[l] == "0": l = l - 1 one += 1 print(one + 1 + diff) elif aa == bb: print("0") elif odd: print("2") else: one = 0 l = l - 1 while b[l] == "0": l = l - 1 one += 1 print(one)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL STRING VAR ASSIGN VAR FUNC_CALL STRING VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP BIN_OP STRING NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR STRING IF VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER VAR IF VAR VAR EXPR FUNC_CALL VAR STRING IF VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
t = int(input()) def f(A, B): str_A = bin(A)[2:] str_B = bin(B - 1)[2:] lhs = str_A.count("1") rhs = str_B.count("1") if A == B: return 0 if B == 0: return -1 if B == 1: if A == 0: return 1 else: return -1 if lhs == rhs: return 1 elif lhs < rhs: return rhs - lhs + 1 else: return 2 for _ in range(t): A, B = map(int, input().split()) print(f(A, B))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING IF VAR VAR RETURN NUMBER IF VAR NUMBER RETURN NUMBER IF VAR NUMBER IF VAR NUMBER RETURN NUMBER RETURN NUMBER IF VAR VAR RETURN NUMBER IF VAR VAR RETURN BIN_OP BIN_OP VAR VAR NUMBER RETURN NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
def count_ones(a): return bin(a)[2:].count("1") def count_opts(a, b): if a == b: return 0 elif b == 0: return -1 elif b == 1: if a == 0: return 1 else: return -1 opts = count_ones(b - 1) - count_ones(a) + 1 if opts > 0: return opts else: return 2 for _ in range(int(input())): a, b = map(int, input().split()) print(count_opts(a, b))
FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR VAR NUMBER STRING FUNC_DEF IF VAR VAR RETURN NUMBER IF VAR NUMBER RETURN NUMBER IF VAR NUMBER IF VAR NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR NUMBER IF VAR NUMBER RETURN VAR RETURN NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
t = int(input().strip()) for _ in range(t): a, b = map(int, input().strip().split()) d = b - a b_a = bin(a) b_b = bin(b) b_a = b_a[2:] b_b = b_b[2:] one_a = b_a.count("1") one_b = b_b.count("1") if d == 0: print("0") elif d == 1: print("1") elif b == 0 or b == 1: print("-1") elif one_a > one_b: if b % 2 == 0: b_b = bin(b - 1) b_b = b_b[2:] one_b = b_b.count("1") if one_a > one_b: print(2) elif d > 0: print(min(d, one_b - one_a + 1)) else: print(one_b - one_a + 1) else: print(2) elif one_a == one_b: if b_b[len(b_b) - 1] == "0": if b_b[len(b_b) - 2] == "1": print("1") else: b_b = bin(b - 1) b_b = b_b[2:] one_b = b_b.count("1") if d > 0: print(min(d, one_b - one_a + 1)) else: print(one_b - one_a + 1) else: print(2) elif b & 1: if d > 0: print(min(d, one_b - one_a)) else: print(one_b - one_a) else: b_b = bin(b - 1) b_b = b_b[2:] one_b = b_b.count("1") if d > 0: print(min(d, one_b - one_a + 1)) else: print(one_b - one_a + 1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER STRING IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER STRING EXPR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF BIN_OP VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
t = input() t = int(t) for i in range(0, t): cnt = 0 a, b = map(int, input().split()) if a == b: print(0) continue if a == 0 and b == 1: print(1) continue if b <= 1: print(-1) continue b = b - 1 ba = list(map(int, list(bin(b))[2:])) aa = list(map(int, list(bin(a))[2:])) b_cnt = ba.count(1) a_cnt = aa.count(1) if a_cnt < b_cnt: print(b_cnt - a_cnt + 1) elif b_cnt < a_cnt: print(2) elif b_cnt == a_cnt: print(1)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER
Read problems statements in Mandarin chinese, Russian and Vietnamese as well. Chef has two integers $A$ and $B$. He can perform the following operation on $A$ an arbitrary number of times (including zero): write $A$ as a binary number with an arbitrary number of leading zeroes (possibly without any) shuffle the binary digits of $A$ in an arbitrary way, obtaining a number $s$ replace $A$ by $s+1$ Chef is wondering about the minimum number of operations he has to perform on $A$ in order to obtain $B$. Compute this number or determine that it is impossible. ------ Input ------ The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. The first and only line of each test case contains two space-separated integers $A$ and $B$. ------ Output ------ For each test case, print a single line containing one integer — the minimum number of operations or $-1$ if it is impossible to obtain $B$ from $A$. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $0 ≤ A, B ≤ 10^{18}$ ------ Subtasks ------ Subtask #1 (20 points): $A, B ≤ 2^{7}$ Subtask #2 (80 points): original constraints ----- Sample Input 1 ------ 2 2 4 1 5 ----- Sample Output 1 ------ 2 1 ----- explanation 1 ------ Example case 1: One optimal solution is to not shuffle anything, so Chef just adds $1$ twice. Example case 2: We can obtain $5$ from $1$ in one operation.
def num(A): cnt = 0 while A > 0: if A % 2 == 1: cnt += 1 A = A // 2 return cnt t = int(input()) for kk in range(t): A, B = list(map(int, input().split())) if A == B: print(0) elif B == 0 and A > 0: print(-1) elif B == 1 and A > 1: print(-1) elif B == 1 and A == 0: print(1) else: B -= 1 if num(A) > num(B): print(2) else: print(num(B) - num(A) + 1)
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER