description
stringlengths 171
4k
| code
stringlengths 94
3.98k
| normalized_code
stringlengths 57
4.99k
|
|---|---|---|
Chef has invited Alice for his birthday party. Now, Alice is thinking about what to give Chef as a present. She should obviously choose a sequence β what could possibly be a better birthday gift than a sequence!
After some thinking, Alice chose a sequence of integers $A_1, A_2, \ldots, A_N$. However, she does not want to simply give this sequence to Chef. Instead, she decided to give Chef a sequence $B_1, B_2, \ldots, B_N$, where $B_i = \bigvee_{j=1}^i A_j$ for each valid $i$ and $\bigvee$ denotes the bitwise OR operation. Chef can try to generate a sequence $A$ from $B$, but there could be more than one such possible sequence.
Now, Alice is wondering how many sequences $A$ correspond to the given sequence $B$. Since this number could be very large, compute it modulo $10^9 + 7$. Note that it is not guaranteed that the given sequence $B$ was generated from some sequence $A$.
-----Input-----
- The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows.
- The first line of each test case contains a single integer $N$.
- The second line contains $N$ space-separated integers $B_1, B_2, \ldots, B_N$.
-----Output-----
For each test case, print a single line containing one integer β the number of possible sequences $A$ modulo $10^9 + 7$.
-----Constraints-----
- $1 \le T \le 25$
- $1 \le N \le 5 \cdot 10^4$
- $0 \le B_i < 2^{30}$ for each valid $i$
-----Example Input-----
2
2
2 3
4
2 6 7 7
-----Example Output-----
2
64
-----Explanation-----
Example case 1: There are two possible options for $A$: $(2, 1)$ and $(2, 3)$.
|
m = 1000000007
for t in range(int(input())):
n = int(input())
B = list(map(int, input().split()))
if B != sorted(B):
print(0)
else:
freq = [(B[i] & B[i + 1]) for i in range(n - 1)]
p = 0
for b in freq:
b = bin(b)
p += b.count("1")
print(pow(2, p, m))
|
ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR NUMBER VAR VAR
|
Chef has invited Alice for his birthday party. Now, Alice is thinking about what to give Chef as a present. She should obviously choose a sequence β what could possibly be a better birthday gift than a sequence!
After some thinking, Alice chose a sequence of integers $A_1, A_2, \ldots, A_N$. However, she does not want to simply give this sequence to Chef. Instead, she decided to give Chef a sequence $B_1, B_2, \ldots, B_N$, where $B_i = \bigvee_{j=1}^i A_j$ for each valid $i$ and $\bigvee$ denotes the bitwise OR operation. Chef can try to generate a sequence $A$ from $B$, but there could be more than one such possible sequence.
Now, Alice is wondering how many sequences $A$ correspond to the given sequence $B$. Since this number could be very large, compute it modulo $10^9 + 7$. Note that it is not guaranteed that the given sequence $B$ was generated from some sequence $A$.
-----Input-----
- The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows.
- The first line of each test case contains a single integer $N$.
- The second line contains $N$ space-separated integers $B_1, B_2, \ldots, B_N$.
-----Output-----
For each test case, print a single line containing one integer β the number of possible sequences $A$ modulo $10^9 + 7$.
-----Constraints-----
- $1 \le T \le 25$
- $1 \le N \le 5 \cdot 10^4$
- $0 \le B_i < 2^{30}$ for each valid $i$
-----Example Input-----
2
2
2 3
4
2 6 7 7
-----Example Output-----
2
64
-----Explanation-----
Example case 1: There are two possible options for $A$: $(2, 1)$ and $(2, 3)$.
|
for _ in range(int(input())):
n = int(input())
l = list(map(int, input().split()))
ans = 1
d = 0
for i in range(n - 1):
if l[i] & l[i + 1] != l[i]:
print(0)
d = 1
break
if d == 1:
continue
c = 0
for i in l:
c += bin(i)[2:].count("1")
c -= bin(i)[2:].count("1")
print(2**c % 1000000007)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL FUNC_CALL VAR VAR NUMBER STRING VAR FUNC_CALL FUNC_CALL VAR VAR NUMBER STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER
|
Chef has invited Alice for his birthday party. Now, Alice is thinking about what to give Chef as a present. She should obviously choose a sequence β what could possibly be a better birthday gift than a sequence!
After some thinking, Alice chose a sequence of integers $A_1, A_2, \ldots, A_N$. However, she does not want to simply give this sequence to Chef. Instead, she decided to give Chef a sequence $B_1, B_2, \ldots, B_N$, where $B_i = \bigvee_{j=1}^i A_j$ for each valid $i$ and $\bigvee$ denotes the bitwise OR operation. Chef can try to generate a sequence $A$ from $B$, but there could be more than one such possible sequence.
Now, Alice is wondering how many sequences $A$ correspond to the given sequence $B$. Since this number could be very large, compute it modulo $10^9 + 7$. Note that it is not guaranteed that the given sequence $B$ was generated from some sequence $A$.
-----Input-----
- The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows.
- The first line of each test case contains a single integer $N$.
- The second line contains $N$ space-separated integers $B_1, B_2, \ldots, B_N$.
-----Output-----
For each test case, print a single line containing one integer β the number of possible sequences $A$ modulo $10^9 + 7$.
-----Constraints-----
- $1 \le T \le 25$
- $1 \le N \le 5 \cdot 10^4$
- $0 \le B_i < 2^{30}$ for each valid $i$
-----Example Input-----
2
2
2 3
4
2 6 7 7
-----Example Output-----
2
64
-----Explanation-----
Example case 1: There are two possible options for $A$: $(2, 1)$ and $(2, 3)$.
|
import sys
sys.setrecursionlimit(10**3)
def fast_expo(n):
mod = 10**9 + 7
if n == 1:
return 2
x = fast_expo(n // 2) % mod
if n % 2 == 0:
return x * x % (10**9 + 7)
else:
return x * x * 2 % (10**9 + 7)
for _ in range(int(input())):
n = int(input())
l = list(map(int, input().split()))
p = 0
c = 0
flag = 0
mod = 10**9 + 7
for i in range(len(l) - 1):
t_1 = list(bin(l[i])[2:]).count("1")
if c <= t_1:
c = t_1
else:
flag = 1
p += t_1
if flag == 1:
print(0)
continue
t_2 = fast_expo(p) % mod
print(t_2)
|
IMPORT EXPR FUNC_CALL VAR BIN_OP NUMBER NUMBER FUNC_DEF ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER IF VAR NUMBER RETURN NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF BIN_OP VAR NUMBER NUMBER RETURN BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER RETURN BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER STRING IF VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Chef has invited Alice for his birthday party. Now, Alice is thinking about what to give Chef as a present. She should obviously choose a sequence β what could possibly be a better birthday gift than a sequence!
After some thinking, Alice chose a sequence of integers $A_1, A_2, \ldots, A_N$. However, she does not want to simply give this sequence to Chef. Instead, she decided to give Chef a sequence $B_1, B_2, \ldots, B_N$, where $B_i = \bigvee_{j=1}^i A_j$ for each valid $i$ and $\bigvee$ denotes the bitwise OR operation. Chef can try to generate a sequence $A$ from $B$, but there could be more than one such possible sequence.
Now, Alice is wondering how many sequences $A$ correspond to the given sequence $B$. Since this number could be very large, compute it modulo $10^9 + 7$. Note that it is not guaranteed that the given sequence $B$ was generated from some sequence $A$.
-----Input-----
- The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows.
- The first line of each test case contains a single integer $N$.
- The second line contains $N$ space-separated integers $B_1, B_2, \ldots, B_N$.
-----Output-----
For each test case, print a single line containing one integer β the number of possible sequences $A$ modulo $10^9 + 7$.
-----Constraints-----
- $1 \le T \le 25$
- $1 \le N \le 5 \cdot 10^4$
- $0 \le B_i < 2^{30}$ for each valid $i$
-----Example Input-----
2
2
2 3
4
2 6 7 7
-----Example Output-----
2
64
-----Explanation-----
Example case 1: There are two possible options for $A$: $(2, 1)$ and $(2, 3)$.
|
t = int(input())
mod = pow(10, 9) + 7
while t > 0:
t -= 1
n = int(input())
b = [int(x) for x in input().split()]
bprev = b[0]
ans = 1
for i in range(1, n):
if bin(~b[i] & b[i - 1]).count("1"):
ans = 0
break
ans += bin(b[i] & b[i - 1]).count("1")
if ans == 0:
print(ans)
else:
ans -= 1
print(2**ans % 1000000007)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR NUMBER NUMBER NUMBER WHILE VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF FUNC_CALL FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER STRING ASSIGN VAR NUMBER VAR FUNC_CALL FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER STRING IF VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER
|
Chef has invited Alice for his birthday party. Now, Alice is thinking about what to give Chef as a present. She should obviously choose a sequence β what could possibly be a better birthday gift than a sequence!
After some thinking, Alice chose a sequence of integers $A_1, A_2, \ldots, A_N$. However, she does not want to simply give this sequence to Chef. Instead, she decided to give Chef a sequence $B_1, B_2, \ldots, B_N$, where $B_i = \bigvee_{j=1}^i A_j$ for each valid $i$ and $\bigvee$ denotes the bitwise OR operation. Chef can try to generate a sequence $A$ from $B$, but there could be more than one such possible sequence.
Now, Alice is wondering how many sequences $A$ correspond to the given sequence $B$. Since this number could be very large, compute it modulo $10^9 + 7$. Note that it is not guaranteed that the given sequence $B$ was generated from some sequence $A$.
-----Input-----
- The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows.
- The first line of each test case contains a single integer $N$.
- The second line contains $N$ space-separated integers $B_1, B_2, \ldots, B_N$.
-----Output-----
For each test case, print a single line containing one integer β the number of possible sequences $A$ modulo $10^9 + 7$.
-----Constraints-----
- $1 \le T \le 25$
- $1 \le N \le 5 \cdot 10^4$
- $0 \le B_i < 2^{30}$ for each valid $i$
-----Example Input-----
2
2
2 3
4
2 6 7 7
-----Example Output-----
2
64
-----Explanation-----
Example case 1: There are two possible options for $A$: $(2, 1)$ and $(2, 3)$.
|
import sys
f = sys.stdin
readline = lambda: map(int, f.readline().rstrip().split(" "))
(T,) = readline()
for i in range(T):
(N,) = readline()
B = list(readline())
ans = 0
impossible = False
for i in range(len(B) - 1):
ans += bin(B[i] & B[i + 1]).count("1")
if bin(B[i] & ~B[i + 1]).count("1") > 0:
impossible = True
ans = 2**ans % 1000000007
print(0 if impossible else ans)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER STRING IF FUNC_CALL FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER STRING NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER VAR
|
Chef has invited Alice for his birthday party. Now, Alice is thinking about what to give Chef as a present. She should obviously choose a sequence β what could possibly be a better birthday gift than a sequence!
After some thinking, Alice chose a sequence of integers $A_1, A_2, \ldots, A_N$. However, she does not want to simply give this sequence to Chef. Instead, she decided to give Chef a sequence $B_1, B_2, \ldots, B_N$, where $B_i = \bigvee_{j=1}^i A_j$ for each valid $i$ and $\bigvee$ denotes the bitwise OR operation. Chef can try to generate a sequence $A$ from $B$, but there could be more than one such possible sequence.
Now, Alice is wondering how many sequences $A$ correspond to the given sequence $B$. Since this number could be very large, compute it modulo $10^9 + 7$. Note that it is not guaranteed that the given sequence $B$ was generated from some sequence $A$.
-----Input-----
- The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows.
- The first line of each test case contains a single integer $N$.
- The second line contains $N$ space-separated integers $B_1, B_2, \ldots, B_N$.
-----Output-----
For each test case, print a single line containing one integer β the number of possible sequences $A$ modulo $10^9 + 7$.
-----Constraints-----
- $1 \le T \le 25$
- $1 \le N \le 5 \cdot 10^4$
- $0 \le B_i < 2^{30}$ for each valid $i$
-----Example Input-----
2
2
2 3
4
2 6 7 7
-----Example Output-----
2
64
-----Explanation-----
Example case 1: There are two possible options for $A$: $(2, 1)$ and $(2, 3)$.
|
T = int(input())
mod = 10**9 + 7
for z in range(T):
N = int(input())
arr = [int(x) for x in input().split()]
count = 1
flag = False
for i in range(1, N):
if arr[i] | arr[i - 1] > arr[i]:
flag = True
break
count_1 = bin(arr[i - 1]).count("1")
count = count * 2**count_1 % mod
if flag == True:
print(0)
else:
print(count)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR VAR BIN_OP VAR NUMBER STRING ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP NUMBER VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Chef has invited Alice for his birthday party. Now, Alice is thinking about what to give Chef as a present. She should obviously choose a sequence β what could possibly be a better birthday gift than a sequence!
After some thinking, Alice chose a sequence of integers $A_1, A_2, \ldots, A_N$. However, she does not want to simply give this sequence to Chef. Instead, she decided to give Chef a sequence $B_1, B_2, \ldots, B_N$, where $B_i = \bigvee_{j=1}^i A_j$ for each valid $i$ and $\bigvee$ denotes the bitwise OR operation. Chef can try to generate a sequence $A$ from $B$, but there could be more than one such possible sequence.
Now, Alice is wondering how many sequences $A$ correspond to the given sequence $B$. Since this number could be very large, compute it modulo $10^9 + 7$. Note that it is not guaranteed that the given sequence $B$ was generated from some sequence $A$.
-----Input-----
- The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows.
- The first line of each test case contains a single integer $N$.
- The second line contains $N$ space-separated integers $B_1, B_2, \ldots, B_N$.
-----Output-----
For each test case, print a single line containing one integer β the number of possible sequences $A$ modulo $10^9 + 7$.
-----Constraints-----
- $1 \le T \le 25$
- $1 \le N \le 5 \cdot 10^4$
- $0 \le B_i < 2^{30}$ for each valid $i$
-----Example Input-----
2
2
2 3
4
2 6 7 7
-----Example Output-----
2
64
-----Explanation-----
Example case 1: There are two possible options for $A$: $(2, 1)$ and $(2, 3)$.
|
m = pow(10, 9) + 7
for _ in range(int(input())):
n = int(input())
l = list(map(int, input().split()))
t = 1
for i in range(n - 1):
if l[i] <= l[i + 1] and l[i] & l[i + 1] == l[i]:
y = bin(l[i]).count("1")
t = t * pow(2, y, m) % m
else:
t = 0
break
print(t % m)
|
ASSIGN VAR BIN_OP FUNC_CALL VAR NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR VAR VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR FUNC_CALL VAR NUMBER VAR VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
Chef has invited Alice for his birthday party. Now, Alice is thinking about what to give Chef as a present. She should obviously choose a sequence β what could possibly be a better birthday gift than a sequence!
After some thinking, Alice chose a sequence of integers $A_1, A_2, \ldots, A_N$. However, she does not want to simply give this sequence to Chef. Instead, she decided to give Chef a sequence $B_1, B_2, \ldots, B_N$, where $B_i = \bigvee_{j=1}^i A_j$ for each valid $i$ and $\bigvee$ denotes the bitwise OR operation. Chef can try to generate a sequence $A$ from $B$, but there could be more than one such possible sequence.
Now, Alice is wondering how many sequences $A$ correspond to the given sequence $B$. Since this number could be very large, compute it modulo $10^9 + 7$. Note that it is not guaranteed that the given sequence $B$ was generated from some sequence $A$.
-----Input-----
- The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows.
- The first line of each test case contains a single integer $N$.
- The second line contains $N$ space-separated integers $B_1, B_2, \ldots, B_N$.
-----Output-----
For each test case, print a single line containing one integer β the number of possible sequences $A$ modulo $10^9 + 7$.
-----Constraints-----
- $1 \le T \le 25$
- $1 \le N \le 5 \cdot 10^4$
- $0 \le B_i < 2^{30}$ for each valid $i$
-----Example Input-----
2
2
2 3
4
2 6 7 7
-----Example Output-----
2
64
-----Explanation-----
Example case 1: There are two possible options for $A$: $(2, 1)$ and $(2, 3)$.
|
def solve(n, b):
for i in range(n - 1):
if b[i] & b[i + 1] != b[i]:
print(0)
return
x = 0
for i in range(n - 1):
x += bin(b[i]).count("1")
print(pow(2, x, mod))
mod = 10**9 + 7
for _ in range(int(input())):
n = int(input())
b = list(map(int, input().split()))
solve(n, b)
|
FUNC_DEF FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR FUNC_CALL FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR NUMBER VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR
|
Chef has invited Alice for his birthday party. Now, Alice is thinking about what to give Chef as a present. She should obviously choose a sequence β what could possibly be a better birthday gift than a sequence!
After some thinking, Alice chose a sequence of integers $A_1, A_2, \ldots, A_N$. However, she does not want to simply give this sequence to Chef. Instead, she decided to give Chef a sequence $B_1, B_2, \ldots, B_N$, where $B_i = \bigvee_{j=1}^i A_j$ for each valid $i$ and $\bigvee$ denotes the bitwise OR operation. Chef can try to generate a sequence $A$ from $B$, but there could be more than one such possible sequence.
Now, Alice is wondering how many sequences $A$ correspond to the given sequence $B$. Since this number could be very large, compute it modulo $10^9 + 7$. Note that it is not guaranteed that the given sequence $B$ was generated from some sequence $A$.
-----Input-----
- The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows.
- The first line of each test case contains a single integer $N$.
- The second line contains $N$ space-separated integers $B_1, B_2, \ldots, B_N$.
-----Output-----
For each test case, print a single line containing one integer β the number of possible sequences $A$ modulo $10^9 + 7$.
-----Constraints-----
- $1 \le T \le 25$
- $1 \le N \le 5 \cdot 10^4$
- $0 \le B_i < 2^{30}$ for each valid $i$
-----Example Input-----
2
2
2 3
4
2 6 7 7
-----Example Output-----
2
64
-----Explanation-----
Example case 1: There are two possible options for $A$: $(2, 1)$ and $(2, 3)$.
|
const = 10**9 + 7
T = int(input())
for _ in range(T):
N = int(input())
ans = 1
Bi = list(map(int, input().split()))
for i in range(N - 1):
if str(bin(Bi[i])).count("1") - str(bin(Bi[i + 1])).count("1") > 0:
ans = 0
break
ans = ans % const * pow(2, str(bin(Bi[i])).count("1")) % const % const
print(ans)
|
ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF BIN_OP FUNC_CALL FUNC_CALL VAR FUNC_CALL VAR VAR VAR STRING FUNC_CALL FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER STRING NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR FUNC_CALL VAR NUMBER FUNC_CALL FUNC_CALL VAR FUNC_CALL VAR VAR VAR STRING VAR VAR EXPR FUNC_CALL VAR VAR
|
Chef has invited Alice for his birthday party. Now, Alice is thinking about what to give Chef as a present. She should obviously choose a sequence β what could possibly be a better birthday gift than a sequence!
After some thinking, Alice chose a sequence of integers $A_1, A_2, \ldots, A_N$. However, she does not want to simply give this sequence to Chef. Instead, she decided to give Chef a sequence $B_1, B_2, \ldots, B_N$, where $B_i = \bigvee_{j=1}^i A_j$ for each valid $i$ and $\bigvee$ denotes the bitwise OR operation. Chef can try to generate a sequence $A$ from $B$, but there could be more than one such possible sequence.
Now, Alice is wondering how many sequences $A$ correspond to the given sequence $B$. Since this number could be very large, compute it modulo $10^9 + 7$. Note that it is not guaranteed that the given sequence $B$ was generated from some sequence $A$.
-----Input-----
- The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows.
- The first line of each test case contains a single integer $N$.
- The second line contains $N$ space-separated integers $B_1, B_2, \ldots, B_N$.
-----Output-----
For each test case, print a single line containing one integer β the number of possible sequences $A$ modulo $10^9 + 7$.
-----Constraints-----
- $1 \le T \le 25$
- $1 \le N \le 5 \cdot 10^4$
- $0 \le B_i < 2^{30}$ for each valid $i$
-----Example Input-----
2
2
2 3
4
2 6 7 7
-----Example Output-----
2
64
-----Explanation-----
Example case 1: There are two possible options for $A$: $(2, 1)$ and $(2, 3)$.
|
m = 10**9
m += 7
def calc(i):
a = 0
while i > 0:
q = i % 2
a += q
i = i // 2
return a
for tst in range(int(input())):
n = int(input())
a = [int(x) for x in input().split()]
ans = 1
for k in range(n - 1):
if a[k] & a[k + 1] == a[k]:
kk = calc(a[k])
ans = ans * 2**kk % m
else:
ans = 0
break
print(ans)
|
ASSIGN VAR BIN_OP NUMBER NUMBER VAR NUMBER FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP NUMBER VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Chef has invited Alice for his birthday party. Now, Alice is thinking about what to give Chef as a present. She should obviously choose a sequence β what could possibly be a better birthday gift than a sequence!
After some thinking, Alice chose a sequence of integers $A_1, A_2, \ldots, A_N$. However, she does not want to simply give this sequence to Chef. Instead, she decided to give Chef a sequence $B_1, B_2, \ldots, B_N$, where $B_i = \bigvee_{j=1}^i A_j$ for each valid $i$ and $\bigvee$ denotes the bitwise OR operation. Chef can try to generate a sequence $A$ from $B$, but there could be more than one such possible sequence.
Now, Alice is wondering how many sequences $A$ correspond to the given sequence $B$. Since this number could be very large, compute it modulo $10^9 + 7$. Note that it is not guaranteed that the given sequence $B$ was generated from some sequence $A$.
-----Input-----
- The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows.
- The first line of each test case contains a single integer $N$.
- The second line contains $N$ space-separated integers $B_1, B_2, \ldots, B_N$.
-----Output-----
For each test case, print a single line containing one integer β the number of possible sequences $A$ modulo $10^9 + 7$.
-----Constraints-----
- $1 \le T \le 25$
- $1 \le N \le 5 \cdot 10^4$
- $0 \le B_i < 2^{30}$ for each valid $i$
-----Example Input-----
2
2
2 3
4
2 6 7 7
-----Example Output-----
2
64
-----Explanation-----
Example case 1: There are two possible options for $A$: $(2, 1)$ and $(2, 3)$.
|
mod = 10**9 + 7
def pow2(x):
p, n = 1, 2
while x:
if x & 1:
p = p % mod * (n % mod) % mod
n = n % mod * (n % mod) % mod
x //= 2
return p
def count_bit(val):
bit = 0
for i in range(30):
if val >> i & 1:
bit += 1
return bit
def answer():
val = b[0]
po2 = 0
for i in range(1, len(b)):
if val > b[i]:
return 0
po2 += count_bit(val & b[i])
val = b[i]
return pow2(po2) % mod
for T in range(int(input())):
n = int(input())
b = list(map(int, input().split()))
print(answer())
|
ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER FUNC_DEF ASSIGN VAR VAR NUMBER NUMBER WHILE VAR IF BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR VAR VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR VAR RETURN NUMBER VAR FUNC_CALL VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR RETURN BIN_OP FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR
|
Chef has invited Alice for his birthday party. Now, Alice is thinking about what to give Chef as a present. She should obviously choose a sequence β what could possibly be a better birthday gift than a sequence!
After some thinking, Alice chose a sequence of integers $A_1, A_2, \ldots, A_N$. However, she does not want to simply give this sequence to Chef. Instead, she decided to give Chef a sequence $B_1, B_2, \ldots, B_N$, where $B_i = \bigvee_{j=1}^i A_j$ for each valid $i$ and $\bigvee$ denotes the bitwise OR operation. Chef can try to generate a sequence $A$ from $B$, but there could be more than one such possible sequence.
Now, Alice is wondering how many sequences $A$ correspond to the given sequence $B$. Since this number could be very large, compute it modulo $10^9 + 7$. Note that it is not guaranteed that the given sequence $B$ was generated from some sequence $A$.
-----Input-----
- The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows.
- The first line of each test case contains a single integer $N$.
- The second line contains $N$ space-separated integers $B_1, B_2, \ldots, B_N$.
-----Output-----
For each test case, print a single line containing one integer β the number of possible sequences $A$ modulo $10^9 + 7$.
-----Constraints-----
- $1 \le T \le 25$
- $1 \le N \le 5 \cdot 10^4$
- $0 \le B_i < 2^{30}$ for each valid $i$
-----Example Input-----
2
2
2 3
4
2 6 7 7
-----Example Output-----
2
64
-----Explanation-----
Example case 1: There are two possible options for $A$: $(2, 1)$ and $(2, 3)$.
|
M = 1000000007
T = int(input())
for _ in range(T):
n = int(input())
l = [int(i) for i in input().split()]
count1 = 0
for i in range(1, n):
if l[i - 1] & l[i] != l[i - 1]:
count1 = 0
break
else:
count1 += bin(l[i - 1] & l[i]).count("1")
if count1 == 0:
print(count1)
else:
print(2**count1 % M)
|
ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR VAR
|
Chef has invited Alice for his birthday party. Now, Alice is thinking about what to give Chef as a present. She should obviously choose a sequence β what could possibly be a better birthday gift than a sequence!
After some thinking, Alice chose a sequence of integers $A_1, A_2, \ldots, A_N$. However, she does not want to simply give this sequence to Chef. Instead, she decided to give Chef a sequence $B_1, B_2, \ldots, B_N$, where $B_i = \bigvee_{j=1}^i A_j$ for each valid $i$ and $\bigvee$ denotes the bitwise OR operation. Chef can try to generate a sequence $A$ from $B$, but there could be more than one such possible sequence.
Now, Alice is wondering how many sequences $A$ correspond to the given sequence $B$. Since this number could be very large, compute it modulo $10^9 + 7$. Note that it is not guaranteed that the given sequence $B$ was generated from some sequence $A$.
-----Input-----
- The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows.
- The first line of each test case contains a single integer $N$.
- The second line contains $N$ space-separated integers $B_1, B_2, \ldots, B_N$.
-----Output-----
For each test case, print a single line containing one integer β the number of possible sequences $A$ modulo $10^9 + 7$.
-----Constraints-----
- $1 \le T \le 25$
- $1 \le N \le 5 \cdot 10^4$
- $0 \le B_i < 2^{30}$ for each valid $i$
-----Example Input-----
2
2
2 3
4
2 6 7 7
-----Example Output-----
2
64
-----Explanation-----
Example case 1: There are two possible options for $A$: $(2, 1)$ and $(2, 3)$.
|
def countSetBits(n):
total = 0
while n:
total += n & 1
n = n >> 1
return total
def totalWays(bArr, n):
valid = True
for i in range(1, len(bArr)):
if bArr[i] & bArr[i - 1] != bArr[i - 1]:
valid = False
if not valid:
return 0
mod = int(1000000000.0 + 7)
total_ways = 1
for i in range(1, len(bArr)):
setbits = countSetBits(bArr[i - 1])
total_ways *= pow(2, setbits, mod)
total_ways %= mod
return total_ways % mod
def main():
t = int(input())
while t:
n = int(input())
bArr = [int(x) for x in input().split()]
print(totalWays(bArr, n))
t -= 1
main()
|
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR NUMBER VAR VAR VAR VAR RETURN BIN_OP VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR
|
Chef has invited Alice for his birthday party. Now, Alice is thinking about what to give Chef as a present. She should obviously choose a sequence β what could possibly be a better birthday gift than a sequence!
After some thinking, Alice chose a sequence of integers $A_1, A_2, \ldots, A_N$. However, she does not want to simply give this sequence to Chef. Instead, she decided to give Chef a sequence $B_1, B_2, \ldots, B_N$, where $B_i = \bigvee_{j=1}^i A_j$ for each valid $i$ and $\bigvee$ denotes the bitwise OR operation. Chef can try to generate a sequence $A$ from $B$, but there could be more than one such possible sequence.
Now, Alice is wondering how many sequences $A$ correspond to the given sequence $B$. Since this number could be very large, compute it modulo $10^9 + 7$. Note that it is not guaranteed that the given sequence $B$ was generated from some sequence $A$.
-----Input-----
- The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows.
- The first line of each test case contains a single integer $N$.
- The second line contains $N$ space-separated integers $B_1, B_2, \ldots, B_N$.
-----Output-----
For each test case, print a single line containing one integer β the number of possible sequences $A$ modulo $10^9 + 7$.
-----Constraints-----
- $1 \le T \le 25$
- $1 \le N \le 5 \cdot 10^4$
- $0 \le B_i < 2^{30}$ for each valid $i$
-----Example Input-----
2
2
2 3
4
2 6 7 7
-----Example Output-----
2
64
-----Explanation-----
Example case 1: There are two possible options for $A$: $(2, 1)$ and $(2, 3)$.
|
import sys
readline = lambda: map(int, sys.stdin.readline().split(" "))
(T,) = readline()
for _ in range(T):
(N,) = readline()
B = list(readline())
A0 = B[0]
B1 = None
setbits = 0
no = False
for j in range(1, N):
B1 = B[j]
if A0 & ~B1 > 0:
print(0)
no = True
break
else:
setbits += bin(A0 & B1).count("1")
A0 = B[j]
if no:
pass
else:
print((1 << setbits) % 1000000007)
|
IMPORT ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NONE ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL FUNC_CALL VAR BIN_OP VAR VAR STRING ASSIGN VAR VAR VAR IF VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER
|
Chef has invited Alice for his birthday party. Now, Alice is thinking about what to give Chef as a present. She should obviously choose a sequence β what could possibly be a better birthday gift than a sequence!
After some thinking, Alice chose a sequence of integers $A_1, A_2, \ldots, A_N$. However, she does not want to simply give this sequence to Chef. Instead, she decided to give Chef a sequence $B_1, B_2, \ldots, B_N$, where $B_i = \bigvee_{j=1}^i A_j$ for each valid $i$ and $\bigvee$ denotes the bitwise OR operation. Chef can try to generate a sequence $A$ from $B$, but there could be more than one such possible sequence.
Now, Alice is wondering how many sequences $A$ correspond to the given sequence $B$. Since this number could be very large, compute it modulo $10^9 + 7$. Note that it is not guaranteed that the given sequence $B$ was generated from some sequence $A$.
-----Input-----
- The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows.
- The first line of each test case contains a single integer $N$.
- The second line contains $N$ space-separated integers $B_1, B_2, \ldots, B_N$.
-----Output-----
For each test case, print a single line containing one integer β the number of possible sequences $A$ modulo $10^9 + 7$.
-----Constraints-----
- $1 \le T \le 25$
- $1 \le N \le 5 \cdot 10^4$
- $0 \le B_i < 2^{30}$ for each valid $i$
-----Example Input-----
2
2
2 3
4
2 6 7 7
-----Example Output-----
2
64
-----Explanation-----
Example case 1: There are two possible options for $A$: $(2, 1)$ and $(2, 3)$.
|
def get_num_of_ones(x):
c = 0
while x:
x &= x - 1
c += 1
return c
mod = 10**9 + 7
twopow = {x: (pow(2, x) % mod) for x in range(35)}
for _ in range(int(input())):
n = int(input())
b = list(map(int, input().split()))
ones_in_prev = 0
ones_in_current = 0
ans = 1
flag = True
ones_in_current = get_num_of_ones(b[0])
ones_in_prev = ones_in_current
for i in range(1, n):
ans *= twopow[ones_in_prev]
ans %= mod
ones_in_current = get_num_of_ones(b[i])
ones_in_prev = ones_in_current
if b[i] < b[i - 1]:
flag = False
break
if flag:
print(ans % mod)
else:
print(0)
|
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR VAR BIN_OP FUNC_CALL VAR NUMBER VAR VAR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER
|
Chef has invited Alice for his birthday party. Now, Alice is thinking about what to give Chef as a present. She should obviously choose a sequence β what could possibly be a better birthday gift than a sequence!
After some thinking, Alice chose a sequence of integers $A_1, A_2, \ldots, A_N$. However, she does not want to simply give this sequence to Chef. Instead, she decided to give Chef a sequence $B_1, B_2, \ldots, B_N$, where $B_i = \bigvee_{j=1}^i A_j$ for each valid $i$ and $\bigvee$ denotes the bitwise OR operation. Chef can try to generate a sequence $A$ from $B$, but there could be more than one such possible sequence.
Now, Alice is wondering how many sequences $A$ correspond to the given sequence $B$. Since this number could be very large, compute it modulo $10^9 + 7$. Note that it is not guaranteed that the given sequence $B$ was generated from some sequence $A$.
-----Input-----
- The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows.
- The first line of each test case contains a single integer $N$.
- The second line contains $N$ space-separated integers $B_1, B_2, \ldots, B_N$.
-----Output-----
For each test case, print a single line containing one integer β the number of possible sequences $A$ modulo $10^9 + 7$.
-----Constraints-----
- $1 \le T \le 25$
- $1 \le N \le 5 \cdot 10^4$
- $0 \le B_i < 2^{30}$ for each valid $i$
-----Example Input-----
2
2
2 3
4
2 6 7 7
-----Example Output-----
2
64
-----Explanation-----
Example case 1: There are two possible options for $A$: $(2, 1)$ and $(2, 3)$.
|
t = int(input())
for i in range(t):
n = int(input())
a = list([int(j) for j in input().split()])
count = 1
res = 1
if n > 1:
for j in range(n - 1):
if a[j + 1] | a[j] > a[j + 1]:
res = 0
break
x = str(bin(a[j + 1])[2:]).count("1")
y = str(bin(a[j + 1] - a[j])[2:]).count("1")
count *= pow(2, x - y, 1000000007)
count %= 1000000007
if res == 0:
print(0 % 1000000007)
else:
print(count % 1000000007)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER STRING ASSIGN VAR FUNC_CALL FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER STRING VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
|
Chef has invited Alice for his birthday party. Now, Alice is thinking about what to give Chef as a present. She should obviously choose a sequence β what could possibly be a better birthday gift than a sequence!
After some thinking, Alice chose a sequence of integers $A_1, A_2, \ldots, A_N$. However, she does not want to simply give this sequence to Chef. Instead, she decided to give Chef a sequence $B_1, B_2, \ldots, B_N$, where $B_i = \bigvee_{j=1}^i A_j$ for each valid $i$ and $\bigvee$ denotes the bitwise OR operation. Chef can try to generate a sequence $A$ from $B$, but there could be more than one such possible sequence.
Now, Alice is wondering how many sequences $A$ correspond to the given sequence $B$. Since this number could be very large, compute it modulo $10^9 + 7$. Note that it is not guaranteed that the given sequence $B$ was generated from some sequence $A$.
-----Input-----
- The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows.
- The first line of each test case contains a single integer $N$.
- The second line contains $N$ space-separated integers $B_1, B_2, \ldots, B_N$.
-----Output-----
For each test case, print a single line containing one integer β the number of possible sequences $A$ modulo $10^9 + 7$.
-----Constraints-----
- $1 \le T \le 25$
- $1 \le N \le 5 \cdot 10^4$
- $0 \le B_i < 2^{30}$ for each valid $i$
-----Example Input-----
2
2
2 3
4
2 6 7 7
-----Example Output-----
2
64
-----Explanation-----
Example case 1: There are two possible options for $A$: $(2, 1)$ and $(2, 3)$.
|
def cb(n):
c = 0
while n:
if n & 1:
c += 1
n >>= 1
return c
for _ in range(int(input())):
n = int(input())
l = list(map(int, input().split()))
ans = 1
d = 0
for i in range(n - 1):
if l[i] & l[i + 1] != l[i]:
print(0)
d = 1
break
if d == 1:
continue
c = 0
for i in l:
c += cb(i)
c -= cb(l[n - 1])
print(2**c % 1000000007)
|
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR IF BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
def main():
N, X = map(int, input().split())
L = 2**N - 1
if X <= L:
P = [0]
checked = [False] * (L + 1)
checked[0] = True
for n in range(1, L + 1):
inv = n ^ X
if not checked[inv]:
P.append(n)
checked[n] = True
checked[inv] = True
else:
P = [0]
for n in range(1, L + 1):
P.append(n)
ans = []
for i in range(len(P) - 1):
ans.append(P[i + 1] ^ P[i])
if not ans:
print(0)
else:
print(len(ans))
print(" ".join([str(a) for a in ans]))
main()
|
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR LIST NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR IF VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
import sys
input = sys.stdin.readline
n, x = map(int, input().split())
b = [0]
for i in range(1, 2**n):
if i ^ x > i:
b.append(i)
a = [(b[i] ^ b[i - 1]) for i in range(1, len(b))]
print(len(a))
print(*a)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP NUMBER VAR IF BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
n, x = map(int, input().split())
if x >= 2**n:
print(2**n - 1)
print(*([1] + [(i ^ i + 1) for i in range(1, 2**n - 1)]))
else:
print(2 ** (n - 1) - 1)
if n == 1:
exit()
a = []
bad = [0] * 2**n
bad[0], bad[x] = 1, 1
for i in range(2**n):
if bad[i] == 0:
a.append(i)
bad[i] = 1
bad[i ^ x] = 1
print(*([a[0]] + [(a[i] ^ a[i + 1]) for i in range(len(a) - 1)]))
|
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP LIST NUMBER BIN_OP VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR BIN_OP LIST NUMBER BIN_OP NUMBER VAR ASSIGN VAR NUMBER VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP NUMBER VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP LIST VAR NUMBER BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
N, X = map(int, input().split())
ex = [False] * 2**18
ex[0] = True
ans = [0]
for i in range(1, 2**N):
if ex[i ^ X]:
continue
else:
ans.append(i)
ex[i] = True
print(len(ans) - 1)
for i in range(1, len(ans)):
print(ans[i] ^ ans[i - 1], end=" ")
|
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP NUMBER NUMBER ASSIGN VAR NUMBER NUMBER ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP NUMBER VAR IF VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER STRING
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
n, x = map(int, input().split())
if x >= 2**n:
prefix_array = []
for i in range(1, 2**n):
prefix_array.append(i)
else:
prefix_array = []
compl = {}
for i in range(1, 2**n):
if i == x:
continue
try:
if compl[i]:
pass
except:
prefix_array.append(i)
compl[i ^ x] = True
if prefix_array == []:
print(0)
else:
res = [prefix_array[0]]
for i in range(len(prefix_array) - 1):
res.append(prefix_array[i] ^ prefix_array[i + 1])
print(len(res))
for i in res:
print(i, end=" ")
print()
|
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR BIN_OP NUMBER VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER BIN_OP NUMBER VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR DICT FOR VAR FUNC_CALL VAR NUMBER BIN_OP NUMBER VAR IF VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER IF VAR LIST EXPR FUNC_CALL VAR NUMBER ASSIGN VAR LIST VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
def main():
buf = input()
buflist = buf.split()
n = int(buflist[0])
x = int(buflist[1])
npow2 = int(2**n)
if n == 1:
if x == 1:
print(0)
else:
print(1)
print(1)
return
mask = x
if x >= npow2:
mask = 0
available = set()
for i in range(1, npow2):
if i != x:
available.add(i)
a = []
while available:
new_elem = available.pop()
new_elem = new_elem ^ mask
a.append(new_elem)
if x < npow2:
elem_to_remove = new_elem ^ x
available.remove(elem_to_remove ^ mask)
mask = mask ^ new_elem
print(len(a))
print(" ".join(list(map(str, a))))
def __starting_point():
main()
__starting_point()
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP NUMBER VAR IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR VAR IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST WHILE VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_DEF EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
n, x = list(map(int, input().split()))
a = []
d = {(0): True}
d1 = [0]
if x < 1 << n:
for t in range(1, 1 << n):
if not d.get(t ^ x, False):
a.append(t ^ d1[-1])
d[t] = True
d1.append(t)
print(len(a))
print(" ".join(map(str, a)))
else:
for t in range(1, 1 << n):
a.append(t ^ t - 1)
print(len(a))
print(" ".join(map(str, a)))
|
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR LIST NUMBER IF VAR BIN_OP NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP NUMBER VAR IF FUNC_CALL VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
n, x = [int(x) for x in input().split(" ")]
b = []
if x >= 2**n:
b = list(range(0, 2**n, 1))
else:
forb = {}
for i in range(2**n):
if i not in forb:
b.append(i)
forb[i ^ x] = 1
a = [(b[i] ^ b[i - 1]) for i in range(1, len(b))]
print(len(a))
print(" ".join([str(x) for x in a]))
|
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR LIST IF VAR BIN_OP NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP NUMBER VAR NUMBER ASSIGN VAR DICT FOR VAR FUNC_CALL VAR BIN_OP NUMBER VAR IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
n, x = list(map(int, input().split()))
mark = [(0) for x in range(1 << 18 + 1)]
mark[x] = 1
cur = 0
MAXN = 1 << n
ans = []
for i in range(1, MAXN):
if i != x:
res = i ^ x
if mark[i] == 0:
ans.append(i ^ cur)
mark[res] = 1
mark[i] = 1
cur = i
print(len(ans))
print(*ans)
|
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP NUMBER BIN_OP NUMBER NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
n, x = list(map(int, input().split()))
n = 1 << n
ans = (n >> (x < n)) - 1
print(ans)
q, t = 0, 0
a = [0] * n
for i in range(1, n):
if i < i ^ x:
a[t] = i ^ q
q, t = i, t + 1
print(*a[:t])
|
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR BIN_OP VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
n, x = map(int, input().split())
flag = [True] * (1 << n)
flag[0] = False
if x <= (1 << n) - 1:
flag[x] = False
for S in range(1 << n):
if not flag[S]:
continue
flag[S ^ x] = False
xor = [0]
for S in range(1 << n):
if flag[S]:
xor.append(S)
ans = []
for i in range(len(xor) - 1):
ans.append(xor[i] ^ xor[i + 1])
print(len(ans))
print(*ans)
|
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP NUMBER VAR ASSIGN VAR NUMBER NUMBER IF VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP NUMBER VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR BIN_OP NUMBER VAR IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
n, x = map(int, input().split())
d = {}
for i in range(2**n):
if not d.get(i, False):
d[i ^ x] = 1
k = 0
print(len(d) - 1)
for i in range(1, 2**n):
if i not in d:
print(i ^ k, end=" ")
k = i
|
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR BIN_OP NUMBER VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP NUMBER VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR STRING ASSIGN VAR VAR
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
v = [0]
n, x = map(int, input().split())
e = [0] * (1 << 18)
e[0] = 1
for i in range(1, 1 << n):
if e[x ^ i] == 1:
continue
e[i] = 1
v.append(i)
print(len(v) - 1)
print(*[(v[i] ^ v[i - 1]) for i in range(1, len(v))])
|
ASSIGN VAR LIST NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP NUMBER NUMBER ASSIGN VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP NUMBER VAR IF VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
n, x = map(int, input().split())
if x >= 2**n:
print(2**n - 1)
print(*[(t ^ t + 1) for t in range(2**n - 1)])
else:
used = [False] * 2**n
r = [0]
used[0] = True
used[x] = True
for i in range(1, 2**n):
if not used[i]:
used[i] = used[i ^ x] = True
r.append(i)
print(len(r) - 1)
for i in range(len(r) - 1):
print(r[i] ^ r[i + 1], end=" ")
|
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP NUMBER VAR ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP NUMBER VAR IF VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER STRING
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
n, x = map(int, input().split())
ans = []
total = 1 << n
vis = [0] * (1 << 18)
for i in range(total):
if vis[i] == 0:
ans.append(i)
vis[i] = 1
vis[i ^ x] = 1
print(len(ans) - 1)
for i in range(1, len(ans)):
print(ans[i] ^ ans[i - 1], end=" ")
|
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER STRING
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
import sys
input = sys.stdin.readline
n, x = list(map(int, input().split()))
if n == x == 1:
print(0)
return
ANS = []
for i in range(n):
if i + 1 == x.bit_length():
continue
ANS = ANS + [1 << i] + ANS
print(len(ANS))
print(*ANS)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR LIST BIN_OP NUMBER VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
n, x = map(int, input().split())
t = 2**n
ans = [0]
if x >= t:
ans = [*range(t)]
else:
c = set([0])
for i in range(1, t):
if i ^ x in c:
continue
ans.append(i)
c.add(i)
print(len(ans) - 1)
print(*[(ans[i] ^ ans[i - 1]) for i in range(1, len(ans))])
|
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP NUMBER VAR ASSIGN VAR LIST NUMBER IF VAR VAR ASSIGN VAR LIST FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR LIST NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
from sys import stdin
input = stdin.readline
n, x = map(int, input().split())
x = 1 << len(bin(x)) - 3
a = [i for i in range(1, 1 << n) if i >> len(bin(x)) - 3 & 1 == 0] + [0]
b = [(a[i] ^ a[i - 1]) for i in range(len(a) - 1)]
print(len(b), *b)
|
ASSIGN VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP NUMBER BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR FUNC_CALL VAR NUMBER BIN_OP NUMBER VAR BIN_OP BIN_OP VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER NUMBER NUMBER LIST NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
n, x = map(int, input().split())
def creat(n, x):
if x > 2**n:
arr = [i for i in range(1, 2**n)]
return arr
used = {i: (False) for i in range(1, 2**n)}
arr = []
for i in range(1, 2**n):
if i == x:
continue
if used[i] == True:
continue
used[i] = True
used[i ^ x] = True
arr.append(i)
return arr
a = creat(n, x)
if len(a) == 0:
print(0)
else:
a_ = [a[0]]
a_.extend([(u ^ v) for u, v in zip(a[1:], a[:-1])])
print(len(a_))
print(" ".join([str(i) for i in a_]))
|
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF IF VAR BIN_OP NUMBER VAR ASSIGN VAR VAR VAR FUNC_CALL VAR NUMBER BIN_OP NUMBER VAR RETURN VAR ASSIGN VAR VAR NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP NUMBER VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER BIN_OP NUMBER VAR IF VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR LIST VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
from sys import stdout
n, x = list(map(int, input().split()))
t = pow(2, n)
if x >= t:
print(t - 1)
for i in range(1, t):
stdout.write(str(i ^ i - 1) + " ")
exit(0)
ans = [0] * pow(2, n)
ans[x] = -1
for i in range(1, len(ans)):
if ans[i] != -1:
ans[x ^ i] = -1
last = 0
print(pow(2, n - 1) - 1)
for i in range(1, len(ans)):
if ans[i] == 0:
stdout.write(str(i ^ last) + " ")
last = i
|
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER STRING EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR STRING ASSIGN VAR VAR
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
n, x = list(map(int, input().split()))
a = []
lst = 0
for i in range(1, 1 << n):
if i ^ x > i:
a.append(i ^ lst)
lst = i
print(len(a))
print(" ".join(str(i) for i in a))
|
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP NUMBER VAR IF BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
n, x = map(int, input().split())
mark = [(0) for x in range(1 << 18 + 1)]
mark[x] = 1
curent = 0
maxA = 1 << n
ans = []
for i in range(1, maxA):
if i != x:
result = i ^ x
if mark[i] == 0:
ans.append(i ^ curent)
mark[result] = 1
mark[i] = 1
curent = i
elif mark[result] == 0 and result < maxA:
ans.append(curent ^ result)
mark[result] = 1
curent = result
print(len(ans))
print(*ans)
|
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP NUMBER BIN_OP NUMBER NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR IF VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
n, x = map(int, input().split())
d = {}
N = 2**n
d[0] = 1
b = [0]
for i in range(1, N):
if i ^ x in d:
continue
else:
d[i] = 1
b.append(i)
ans = []
for i in range(1, len(b)):
ans.append(b[i] ^ b[i - 1])
print(len(ans))
print(*ans)
|
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR BIN_OP NUMBER VAR ASSIGN VAR NUMBER NUMBER ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR VAR ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
n, x = map(int, input().split())
res = []
s = {x}
prev = 0
for i in range(1, 1 << n):
curr = prev ^ i
if curr in s:
continue
res.append(curr)
prev = i
s.add(x ^ i)
print(len(res))
print(*res)
|
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
n, x = map(int, input().split())
d = []
for i in range(2**n):
if i < i ^ x:
d.append(i)
print(len(d) - 1)
for i in range(1, len(d)):
print(d[i] ^ d[i - 1], end=" ")
|
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP NUMBER VAR IF VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER STRING
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
def main():
n, x = list(map(int, input().split()))
f = []
n = 1 << n
cx = [(0) for _ in range(n + 299)]
for i in range(n):
if Find_x(int(x ^ i), f) == False:
f.append(i)
print(len(f) - 1)
for i in range(len(f) - 1):
print(f[i] ^ f[i + 1], end=" ")
def Find_x(x, a):
l = 0
r = len(a) - 1
while l <= r:
m = int((l + r) / 2)
if a[m] == x:
return True
if a[m] > x:
r = m - 1
else:
l = m + 1
return False
def __starting_point():
main()
__starting_point()
|
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR BIN_OP NUMBER VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER STRING FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR RETURN NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN NUMBER FUNC_DEF EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
n, x = map(int, input().split())
markings = [(0) for i in range(2**n - 1)]
for i in range(1, 2**n):
if markings[i - 1] == 0 and x ^ i < 2**n and i != x:
markings[(x ^ i) - 1] = 1
if x < 2**n:
markings[x - 1] = 1
arr = []
for i in range(2**n - 1):
if markings[i] == 0:
arr.append(i + 1)
print(len(arr))
if len(arr) > 0:
print(arr[0], end=" ")
for i in range(1, len(arr)):
print(arr[i] ^ arr[i - 1], end=" ")
print("")
|
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP NUMBER VAR IF VAR BIN_OP VAR NUMBER NUMBER BIN_OP VAR VAR BIN_OP NUMBER VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER IF VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER IF VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER STRING FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER STRING EXPR FUNC_CALL VAR STRING
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
N, X = map(int, input().split())
if X == 0 or X >= 2**N:
A = [a for a in range(N)]
else:
for i in range(N):
if 1 << i & X:
A = [a for a in range(N) if a != i]
break
def calc(B):
if B:
b = B[-1]
t = calc(B[:-1])
return t + [1 << b] + t
return []
ca = calc(A)
print(len(ca))
if len(ca):
print(*ca)
|
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER VAR BIN_OP NUMBER VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF BIN_OP BIN_OP NUMBER VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR VAR FUNC_DEF IF VAR ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER RETURN BIN_OP BIN_OP VAR LIST BIN_OP NUMBER VAR VAR RETURN LIST ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
def gns():
return [int(x) for x in input().split()]
n, x = gns()
if n == 1:
if x == 1:
print(0)
quit()
print(1)
print(1)
quit()
b = len(bin(x)) - 2
if x != 1:
ans = [1]
else:
ans = [2]
cur = 1
for i in range(n - 2):
if cur == b - 1:
cur += 1
ans = ans + [1 << cur] + ans
cur += 1
if x >= 1 << n:
ans = ans + [1 << cur] + ans
y = x
print(len(ans))
print(" ".join(map(str, ans)))
|
FUNC_DEF RETURN FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR LIST NUMBER ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR LIST BIN_OP NUMBER VAR VAR VAR NUMBER IF VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR LIST BIN_OP NUMBER VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
n, x = map(int, input().split())
vis = set([0])
res = []
cur = 0
for c in range(1, 1 << n):
v = c ^ x
if c in vis or v in vis:
continue
vis.add(c)
res.append(c ^ cur)
cur = c
print(len(res))
if res:
print(" ".join(map(str, res)))
|
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR LIST NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
d = dict()
def solve(n):
if n == 0:
return []
if n == 1:
d[1] = [1]
return d[1]
if n in d:
return d[n]
else:
d[n] = solve(n - 1) + [2**n - 1] + solve(n - 1)
return d[n]
def solve2(n, x):
if 2 ** (n - 1) <= x:
return solve(n - 1)
else:
L = solve2(n - 1, x)
return L + [2 ** (n - 1)] + L
solve(18)
n, x = map(int, input().split())
if x >= 2**n:
L = solve(n)
print(len(L))
for i in L:
print(i, end=" ")
else:
L = solve2(n, x)
print(len(L))
for i in L:
print(i, end=" ")
|
ASSIGN VAR FUNC_CALL VAR FUNC_DEF IF VAR NUMBER RETURN LIST IF VAR NUMBER ASSIGN VAR NUMBER LIST NUMBER RETURN VAR NUMBER IF VAR VAR RETURN VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER LIST BIN_OP BIN_OP NUMBER VAR NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER RETURN VAR VAR FUNC_DEF IF BIN_OP NUMBER BIN_OP VAR NUMBER VAR RETURN FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR RETURN BIN_OP BIN_OP VAR LIST BIN_OP NUMBER BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR BIN_OP NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
n, x = list(map(int, input().split()))
k, b = 1 << n, []
if x >= k:
print(k - 1)
b = list(range(1, k))
else:
print(k - 2 >> 1)
_b, b = set(range(1, k)), set()
for bi in _b:
b.add(bi)
if x ^ bi in b:
b.remove(x ^ bi)
if x in b:
b.remove(x)
if b:
b = list(b)
a = [b[0]] + [(b[i] ^ b[i + 1]) for i in range(len(b) - 1)]
print(*a)
|
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR BIN_OP NUMBER VAR LIST IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER VAR FUNC_CALL VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR IF VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST VAR NUMBER BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
n, x = map(int, input().split())
nn = 2**n
if x >= nn:
x = 0
ans = []
for i in range(n):
oks = [True] * nn
oks[x] = False
cur = 0
for j in ans[::-1]:
cur ^= j
oks[cur] = False
oks[cur ^ x] = False
try:
a = next(j for j, ok in enumerate(oks[1:], 1) if ok)
except StopIteration:
break
ans = [*ans, a, *ans]
print(len(ans))
if ans:
print(" ".join(map(str, ans)))
|
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP NUMBER VAR IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR NUMBER VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR NUMBER NUMBER VAR VAR ASSIGN VAR LIST VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
l = input().split()
n = int(l[0])
x = int(l[1])
hashi = dict()
for i in range(1, 2**n):
hashi[i] = 1
pref = [0]
for i in range(1, 2**n):
if i in hashi and i != x:
pref.append(i)
curr = x ^ i
if curr in hashi:
del hashi[curr]
if pref == [0]:
print(0)
else:
fina = []
for i in range(1, len(pref)):
fina.append(pref[i] ^ pref[i - 1])
print(len(fina))
for i in fina:
print(i, end=" ")
print()
|
ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP NUMBER VAR ASSIGN VAR VAR NUMBER ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP NUMBER VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR VAR VAR IF VAR LIST NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
n, x = [int(x) for x in input().split()]
ans = []
vis = [0] * (2**18 + 1)
lmt = 2**n
xor = 0
vis[0], vis[x] = 1, 1
for i in range(1, lmt):
if vis[i]:
continue
ans.append(xor ^ i)
xor = i
vis[i] = 1
vis[i ^ x] = 1
print(len(ans))
print(*ans)
|
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR BIN_OP LIST NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
n, x = map(int, input().split())
r = []
d = set()
for a in range(1, 2**n):
tmp = x ^ a
if tmp not in d and a not in d and a not in (0, x):
r.append(a)
d.add(a)
if not r:
print(0)
else:
res = [r[0]]
for i in range(1, len(r)):
res.append(r[i - 1] ^ r[i])
print(len(res))
print(" ".join(map(str, res)))
|
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR VAR VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR IF VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR LIST VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR
|
Given two integers $n$ and $x$, construct an array that satisfies the following conditions: for any element $a_i$ in the array, $1 \le a_i<2^n$; there is no non-empty subsegment with bitwise XOR equal to $0$ or $x$, its length $l$ should be maximized.
A sequence $b$ is a subsegment of a sequence $a$ if $b$ can be obtained from $a$ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.
-----Input-----
The only line contains two integers $n$ and $x$ ($1 \le n \le 18$, $1 \le x<2^{18}$).
-----Output-----
The first line should contain the length of the array $l$.
If $l$ is positive, the second line should contain $l$ space-separated integers $a_1$, $a_2$, $\dots$, $a_l$ ($1 \le a_i < 2^n$)Β β the elements of the array $a$.
If there are multiple solutions, print any of them.
-----Examples-----
Input
3 5
Output
3
6 1 3
Input
2 4
Output
3
1 3 1
Input
1 1
Output
0
-----Note-----
In the first example, the bitwise XOR of the subsegments are $\{6,7,4,1,2,3\}$.
|
n, x = map(int, input().split())
a = [(True) for i in range(pow(2, n))]
check = []
if x < pow(2, n):
a[x] = False
for i in range(1, pow(2, n)):
if a[i] == True:
check.append(i)
if x ^ i < pow(2, n):
a[x ^ i] = False
print(len(check))
if len(check) == 1:
print(check[0])
elif len(check) > 1:
print(check[0], end=" ")
for i in range(1, len(check)):
print(check[i - 1] ^ check[i], end=" ")
|
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR LIST IF VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR NUMBER VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF BIN_OP VAR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER STRING FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR STRING
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
I = input
k, s, t = int(I()), I(), I()
answer = [""] * k
res = ord(s[-1]) + ord(t[-1]) - 194
for j in range(k - 2, -1, -1):
res += 26 * (ord(s[j]) + ord(t[j]) - 194)
answer[j + 1] = chr(res // 2 % 26 + 97)
res //= 26
answer[0] = chr(res // 2 % 26 + 97)
print("".join(answer))
|
ASSIGN VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST STRING VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR BIN_OP NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER NUMBER NUMBER VAR NUMBER ASSIGN VAR NUMBER FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
n = int(input())
s = input()
t = input()
suma = [(ord(s[i]) + ord(t[i]) - 194) for i in range(n)]
for i in range(n - 1):
j = n - 1 - i
if suma[j] > 25:
suma[j] -= 26
suma[j - 1] += 1
chuj = 0
if suma[0] == 26:
chuj = 1
suma[0] = 0
print(chr(110), end="")
for i in range(chuj == 1, n):
print(chr(suma[i] // 2 + 97), end="")
if suma[i] % 2 != 0 and i < n - 1:
suma[i + 1] += 26
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR IF VAR VAR NUMBER VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER IF VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR NUMBER STRING FOR VAR FUNC_CALL VAR VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER STRING IF BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
def add(a, b):
c = []
z = 0
for i in range(k - 1, -1, -1):
x = ord(a[i]) - ord("a")
y = ord(b[i]) - ord("a")
if x + y + z >= 26:
c.append(x + y + z - 26)
z = 1
else:
c.append(x + y + z)
z = 0
if z:
c.append(z)
return c[::-1]
def div2(a):
c = []
z = 0
for x in a:
x += 26 * z
c.append(chr(ord("a") + x // 2))
z = x % 2
return c
k = int(input())
a = input()
b = input()
d = div2(add(a, b))
if len(d) > k:
d = d[len(d) - k :]
print("".join(d))
|
FUNC_DEF ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING IF BIN_OP BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR VAR RETURN VAR NUMBER FUNC_DEF ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR VAR VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR STRING BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
n = int(input())
s = input()
t = input()
dic = [
"a",
"b",
"c",
"d",
"e",
"f",
"g",
"h",
"i",
"j",
"k",
"l",
"m",
"n",
"o",
"p",
"q",
"r",
"s",
"t",
"u",
"v",
"w",
"x",
"y",
"z",
]
slis = []
tlis = []
for i in s:
slis.append(dic.index(i))
for i in t:
tlis.append(dic.index(i))
sumlis = []
cout = 0
for j in range(n - 1, -1, -1):
res = slis[j] + tlis[j] + cout
if j != 0:
if res >= 26:
res = res % 26
cout = 1
else:
cout = 0
sumlis.append(res)
total = sumlis[::-1]
for i in range(n):
if total[i] % 2 == 1:
total[i] //= 2
total[i + 1] += 26
else:
total[i] //= 2
result = []
for i in total:
result.append(dic[i])
print("".join(result))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR IF VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER NUMBER VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
k = int(input())
ALPHABET = "abcdefghijklmnopqrstuvwxyz"
SIZE = len(ALPHABET)
ALPHABET_TO_NUMBER = dict(zip(ALPHABET, range(len(ALPHABET))))
big_sum = [
(ALPHABET_TO_NUMBER[l] + ALPHABET_TO_NUMBER[u]) for l, u in zip(input(), input())
]
additional = 0
for index in range(k - 1, 0, -1):
big_sum[index] += additional
additional = big_sum[index] // SIZE
if big_sum[index] >= SIZE:
big_sum[index] %= SIZE
big_sum[0] += additional
for index in range(k):
if big_sum[index] % 2 == 1:
big_sum[index + 1] += 26
big_sum[index] //= 2
print("".join([ALPHABET[number] for number in big_sum]))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR IF VAR VAR VAR VAR VAR VAR VAR NUMBER VAR FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING VAR VAR VAR VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
import sys
class Main:
def __init__(self):
self.buff = None
self.index = 0
def next(self):
if self.buff is None or self.index == len(self.buff):
self.buff = sys.stdin.readline().split()
self.index = 0
val = self.buff[self.index]
self.index += 1
return val
def next_int(self):
return int(self.next())
def solve(self):
n = self.next_int()
a = [(ord(x) - ord("a")) for x in self.next()]
b = [(ord(x) - ord("a")) for x in self.next()]
c = [(a[i] + b[i]) for i in range(0, n)]
for i in range(n - 1, 0, -1):
c[i - 1] += c[i] // 26
c[i] %= 26
for i in range(0, n):
if c[i] % 2 == 1 and i < n - 1:
c[i + 1] += 26
c[i] //= 2
print("".join(map(lambda x: chr(x + ord("a")), c)))
Main().solve()
|
IMPORT CLASS_DEF FUNC_DEF ASSIGN VAR NONE ASSIGN VAR NUMBER FUNC_DEF IF VAR NONE VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER RETURN VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR VAR FUNC_CALL VAR NUMBER VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR STRING VAR EXPR FUNC_CALL FUNC_CALL VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
BASE = 26
def str2num(s):
return [(ord(x) - ord("a")) for x in reversed(s)]
def num2str(number):
return "".join(chr(x + ord("a")) for x in number)
def add(x, y):
k = len(x)
result = [0] * (k + 1)
memory = 0
for i in range(k):
memory, result[i] = divmod(x[i] + y[i] + memory, BASE)
result[-1] = memory
return result
def div(x):
k = len(x)
result = [0] * k
carry = 0
for i in range(k - 1, -1, -1):
current = x[i] + carry * BASE
result[i], carry = divmod(current, 2)
return result[::-1][1:]
def main():
_ = int(input())
x = str2num(input())
y = str2num(input())
print(num2str(div(add(x, y))))
main()
|
ASSIGN VAR NUMBER FUNC_DEF RETURN BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING VAR FUNC_CALL VAR VAR FUNC_DEF RETURN FUNC_CALL STRING FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR STRING VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR ASSIGN VAR NUMBER VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR NUMBER RETURN VAR NUMBER NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
n = int(input())
ss = input()
s = ss[::-1]
t = input()[::-1]
tt = [0] * n
for i in range(n):
c = ord(s[i]) - ord("a")
tt[i] = ord(t[i]) - ord("a")
tt[i] -= c
for i in range(n - 1):
if tt[i] < 0:
tt[i] += 26
tt[i + 1] -= 1
tt = tt[::-1]
rem = 0
for i in range(n):
rem = rem * 26 + tt[i]
tt[i] = rem // 2
rem = rem % 2
res = [x for x in ss]
for i in range(n - 1, -1, -1):
c = tt[i] + ord(res[i]) - ord("a")
tt[i] = c % 26
if i > 0:
tt[i - 1] += c // 26
res[i] = chr(tt[i] + ord("a"))
print("".join(res))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING ASSIGN VAR VAR BIN_OP VAR NUMBER IF VAR NUMBER VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
f = lambda s: [(ord(c) - ord("a")) for c in s]
n = int(input())
a = f(input())
b = f(input())
c = [0]
for i in range(n - 1, -1, -1):
c[-1] += a[i] + b[i]
m = c[-1] // 26
c[-1] %= 26
c.append(m)
c.reverse()
for i in range(n + 1):
if c[i] & 1:
c[i + 1] += 26
c[i] >>= 1
print("".join(chr(ord("a") + c[i]) for i in range(1, n + 1)))
|
ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR NUMBER BIN_OP VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR BIN_OP FUNC_CALL VAR STRING VAR VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
def plus(a, b):
c = ""
i = len(a) - 1
arg = 0
while i >= 0:
k = (arg + ord(a[i]) + ord(b[i])) % 26
if arg + ord(a[i]) + ord(b[i]) < 26:
arg = 0
else:
arg = 1
i -= 1
c = chr(k) + c
if arg:
c = chr(1) + c
return c
def minus(a):
c = ""
i = 0
arg = 0
while i < len(a):
c += chr((arg * 26 + ord(a[i])) // 2)
arg = ord(a[i]) % 2
i += 1
if arg:
c = c[: len(c) - 1] + chr(ord(c[len(c) - 1]) + 1)
return c
n = int(input())
a = input()
b = input()
ai = 0
bi = 0
a1 = ""
b1 = ""
i = 0
while i < n:
a1 += chr(ord(a[i]) - ord("a"))
b1 += chr(ord(b[i]) - ord("a"))
i += 1
c = plus(a1, b1)
c = minus(c)
i = 0
c1 = ""
while i < len(c):
c1 += chr(ord(c[i]) + ord("a"))
i += 1
print(c1[len(c1) - n :])
|
FUNC_DEF ASSIGN VAR STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER IF BIN_OP BIN_OP VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR IF VAR ASSIGN VAR BIN_OP FUNC_CALL VAR NUMBER VAR RETURN VAR FUNC_DEF ASSIGN VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER IF VAR ASSIGN VAR BIN_OP VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR NUMBER WHILE VAR VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR STRING WHILE VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
BASE = 26
def convertToNum(s):
n = len(s)
ret = [-1] * n
for i in range(n - 1, -1, -1):
ret[i] = ord(s[i]) - ord("a")
return ret
def substract(a, b):
n = len(a)
ret = [-1] * n
for i in range(n - 1, -1, -1):
if b[i] > a[i]:
a[i] += BASE
a[i - 1] -= 1
ret[i] = a[i] - b[i]
return ret
def add(a, b):
n = len(a)
ret = [0] * n
for i in range(n - 1, -1, -1):
ret[i] += a[i] + b[i]
if ret[i] > BASE - 1:
ret[i] %= BASE
ret[i - 1] = 1
return ret
def divBy2(num):
for i in range(len(num)):
if num[i] & 1 == 1:
num[i + 1] += BASE
num[i] >>= 1
return num
def convertToStr(num):
return "".join([chr(c + ord("a")) for c in num])
n = int(input())
start = input()
end = input()
a, b = convertToNum(start), convertToNum(end)
print(convertToStr(add(a, divBy2(substract(b, a)))))
|
ASSIGN VAR NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR VAR VAR VAR VAR VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR VAR VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR VAR BIN_OP VAR VAR VAR VAR IF VAR VAR BIN_OP VAR NUMBER VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER NUMBER RETURN VAR FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER RETURN VAR FUNC_DEF RETURN FUNC_CALL STRING FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR STRING VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
n = int(input())
a = list(input())
b = list(input())
num_a = [(ord(i) - 97) for i in a]
num_b = [(ord(i) - 97) for i in b]
num = [(0) for i in range(n)]
carry = 0
for i in range(n - 1, -1, -1):
if i == 0:
num[i] = num_a[i] + num_b[i] + carry
continue
add = num_a[i] + num_b[i] + carry
carry = add // 26
num[i] = add % 26
carry = 0
for i in range(n):
num[i] += carry
carry = num[i] % 2 * 26
num[i] //= 2
print(chr(num[i] + 97), end="")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER STRING
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
n = int(input())
s, t = input(), input()
a = [(ord(i) - ord("a")) for i in s]
b = [(ord(i) - ord("a")) for i in t]
a, b, c = a[::-1], b[::-1], [0] * (n + 1)
for i in range(n):
c[i] = c[i] + a[i] + b[i]
c[i + 1] = c[i] // 26
c[i] = c[i] % 26
c = c[::-1]
if c[0] == 0:
c = c[1:]
ans = []
ost = 0
for digit in c:
ost = ost * 26 + digit
t = ost // 2
ans.append(t)
ost = digit % 2
if ans[0] == 0 and len(ans) > n:
ans = ans[1:]
ans = "".join([chr(i + ord("a")) for i in ans])
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING VAR VAR ASSIGN VAR VAR VAR VAR NUMBER VAR NUMBER BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER NUMBER FUNC_CALL VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL STRING FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR STRING VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
k = int(input())
s = input()
t = input()
num = [0] * k
num2 = [0] * k
alth = "abcdefghijklmnopqrstuvwxyz"
for i in range(k):
num[i] = alth.find(s[i])
num2[i] = alth.find(t[i])
num3 = [0] * k
rem = 0
for i in range(k - 1, -1, -1):
num3[i] = num2[i] - num[i] - rem
if num3[i] < 0:
num3[i] += 26
rem = 1
else:
rem = 0
rem = 0
j = 0
while j < k:
rem2 = (num3[j] + rem) % 2
num3[j] = (num3[j] + rem) // 2
rem = 26 * rem2
j += 1
rem = 0
for i in range(k - 1, -1, -1):
num[i] += num3[i] + rem
if num[i] > 25:
num[i] -= 26
rem = 1
else:
rem = 0
for i in num:
print(alth[i], end="")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR IF VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR VAR BIN_OP VAR VAR VAR IF VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
n = int(input())
a = [(ord(c) - 97) for c in input()]
b = [(ord(c) - 97) for c in input()]
ans = []
p = n - 1
bemp = b[p] + a[p]
while p > 0:
p -= 1
bemp += (b[p] + a[p]) * 26
ans.append(chr(int(bemp / 2) % 26 + 97))
bemp //= 26
ans.append(chr(int(bemp / 2) % 26 + 97))
p = n
while p:
p -= 1
print(ans[p], end="")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR VAR WHILE VAR NUMBER VAR NUMBER VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR WHILE VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR STRING
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
k = int(input())
A = list(input())[::-1]
B = list(input())[::-1]
C = []
pivot = (ord("z") - ord("a") + 1) // 2
for i in range(k):
a, b = ord(A[i]), ord(B[i])
if (b - a) % 2 == 0:
C += [chr((a + b) // 2)]
elif ord(C[-1]) - ord("a") >= pivot:
C[-1] = chr(ord(C[-1]) - pivot)
C += [chr((a + b + 1) // 2)]
else:
C[-1] = chr(ord(C[-1]) + pivot)
C += [chr((a + b - 1) // 2)]
print("".join(C[::-1]))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR LIST ASSIGN VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR STRING FUNC_CALL VAR STRING NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR LIST FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR STRING VAR ASSIGN VAR NUMBER FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR LIST FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR LIST FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING VAR NUMBER
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
letters = [
"a",
"b",
"c",
"d",
"e",
"f",
"g",
"h",
"i",
"j",
"k",
"l",
"m",
"n",
"o",
"p",
"q",
"r",
"s",
"t",
"u",
"v",
"w",
"x",
"y",
"z",
]
k = int(input())
s = input()
t = input()
med = [(0) for i in range(k)]
for i in range(k):
tem = (letters.index(t[k - 1 - i]) + letters.index(s[k - 1 - i])) / 2
med[k - 1 - i] = med[k - 1 - i] + int(tem)
if tem > int(tem):
med[k - 1 - i + 1] = med[k - 1 - i + 1] + 13
if med[k - 1 - i + 1] > 25:
med[k - 1 - i + 1] -= 26
med[k - 1 - i] += 1
if med[k - 1 - i] > 25:
med[k - 1 - i] -= 26
med[k - 1 - i - 1] += 1
printout = ""
for i in range(k):
printout += letters[med[i]]
print(printout)
|
ASSIGN VAR LIST STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR BIN_OP BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP VAR BIN_OP BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER IF VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER IF VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
k = int(input())
s = list(map(lambda x: ord(x) - ord("a"), input()))
t = list(map(lambda x: ord(x) - ord("a"), input()))
sum_ = []
old = 0
for i in reversed(range(k)):
s_ = s[i] + t[i] + old
new = s_ % 26
sum_.append(new)
old = s_ // 26
sum_.append(old)
sum_ = list(reversed(sum_))
for i in range(k + 1):
r = sum_[i] % 2
sum_[i] //= 2
if i + 1 <= k:
sum_[i + 1] += 26 * r
print("".join(map(lambda x: chr(x + ord("a")), sum_[1:])))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER BIN_OP NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR STRING VAR NUMBER
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
n = int(input())
a = [(ord(c) - 97) for c in input()]
b = [(ord(c) - 97) for c in input()]
ans = []
for i in range(n):
sum = a[i] + b[i]
if i + 1 < n:
a[i + 1] += sum % 2 * 26
sum //= 2
ans.append(sum)
for i in range(n - 1, -1, -1):
if i - 1 > -1:
ans[i - 1] += ans[i] // 26
ans[i] %= 26
ans = [chr(x + 97) for x in ans]
print("".join(ans))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR IF BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
n = int(input())
a = list(input())
b = list(input())
dic = {}
dic2 = {}
ans = [(0) for _ in range(n)]
for i in range(26):
text = chr(97 + i)
dic[text] = i
dic2[str(i)] = text
for i in range(n - 1, -1, -1):
down = dic[a[i]]
if ord(b[i]) < 97:
up = 25
b[i - 1] = chr(ord(b[i - 1]) - 1)
ans[i] = up - down
else:
up = dic.get(b[i])
if up >= down:
ans[i] = up - down
else:
b[i - 1] = chr(ord(b[i - 1]) - 1)
ans[i] = 26 + up - down
left = 0
add = 0
for i in range(n):
l = (left * 26 + ans[i]) % 2
ans[i] = (left * 26 + ans[i]) // 2
left = l
for i in range(n - 1, -1, -1):
num = dic.get(a[i]) + ans[i] + add
if num > 25:
num %= 26
add = 1
else:
add = 0
a[i] = dic2.get(str(num))
print("".join(a))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR DICT ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP NUMBER VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR VAR VAR IF FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP BIN_OP NUMBER VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR VAR VAR VAR IF VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
dic = {}
dic2 = {}
for i in range(97, 123):
dic[chr(i)] = i
dic2[i] = chr(i)
k = int(input())
word1 = input()
word2 = input()
ords = []
carry = 0
for i in range(k):
c = dic[word1[i]] + dic[word2[i]] + carry
carry = 0
if c % 2 == 1:
carry = 26
ords.append(c // 2)
for i in range(k - 1, -1, -1):
if ords[i] > 122:
ords[i - 1] += 1
ords[i] = dic2[ords[i] - 26]
else:
ords[i] = dic2[ords[i]]
p = ""
for o in ords:
p += o
print(p)
|
ASSIGN VAR DICT ASSIGN VAR DICT FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR NUMBER IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR ASSIGN VAR STRING FOR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
k = int(input())
def f(s):
r = [0] * k
for i, c in enumerate(s):
r[i] = ord(c) - ord("a")
return r
s = input()
t = input()
sr = f(s)
st = f(t)
for i in range(k - 1, -1, -1):
sr[i] += st[i]
if i > 0:
sr[i - 1] += sr[i] // 26
sr[i] %= 26
for i in range(k):
r = sr[i] % 2
sr[i] = sr[i] // 2
if i < k - 1:
sr[i + 1] += r * 26
for i in range(k):
sr[i] = chr(ord("a") + sr[i])
print("".join(sr))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING RETURN VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR VAR VAR VAR IF VAR NUMBER VAR BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR STRING VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
import sys
sys.setrecursionlimit(10**9)
input = sys.stdin.readline
N = int(input())
S = [(ord(c) - ord("a")) for c in input()[:-1]]
T = [(ord(c) - ord("a")) for c in input()[:-1]]
ans = []
p = N - 1
bemp = S[p] + T[p]
while p > 0:
p -= 1
bemp += (S[p] + T[p]) * 26
ans.append(chr(bemp // 2 % 26 + ord("a")))
bemp //= 26
ans.append(chr(bemp // 2 % 26 + ord("a")))
print("".join(map(str, reversed(ans))))
|
IMPORT EXPR FUNC_CALL VAR BIN_OP NUMBER NUMBER ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING VAR FUNC_CALL VAR NUMBER ASSIGN VAR LIST ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR VAR WHILE VAR NUMBER VAR NUMBER VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER NUMBER FUNC_CALL VAR STRING VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER NUMBER FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR FUNC_CALL VAR VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
def main():
n = int(input())
s = input()
k = input()
arr = [0] + [(ord(s[i]) + ord(k[i]) - 2 * ord("a")) for i in range(n)]
for i in range(n, -1, -1):
if arr[i] >= 26:
arr[i] -= 26
arr[i - 1] += 1
for i in range(n, -1, -1):
if arr[i] % 2:
arr[i + 1] += 13
arr[i] //= 2
for i in range(n + 1):
arr[i] = chr(arr[i] + ord("a"))
print("".join(arr[1:]))
return 0
main()
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR BIN_OP NUMBER FUNC_CALL VAR STRING VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER IF VAR VAR NUMBER VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER IF BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING VAR NUMBER RETURN NUMBER EXPR FUNC_CALL VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
n = int(input())
s1 = input()
s2 = input()
m = ord("z") - ord("a") + 1
s1 = list(reversed(s1))
s2 = list(reversed(s2))
s3 = []
c = 0
for i in range(n):
t = ord(s1[i]) + ord(s2[i]) - 2 * ord("a") + c
s3.append(chr(t % m + ord("a")))
c = t // m
if c != 0:
s3.append(chr(c + ord("a")))
s3 = list(reversed(s3))
c = 0
ans = []
for i in s3:
t = c * m + (ord(i) - ord("a"))
c = t % 2
ans.append(chr(ord("a") + t // 2))
if len(ans) > n:
ans = ans[len(ans) - n :]
print("".join(ans))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR STRING FUNC_CALL VAR STRING NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR BIN_OP NUMBER FUNC_CALL VAR STRING VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR STRING BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
from sys import stdin
def ip():
return [int(i) for i in stdin.readline().split()]
def sp():
return [str(i) for i in stdin.readline().split()]
def pp(A):
for i in A:
print(i)
def solve():
n = int(input())
s = [0] + list(str(input()))
t = [0] + list(str(input()))
for i in range(1, n + 1):
s[i] = ord(s[i]) - 97
t[i] = ord(t[i]) - 97
for i in range(len(s) - 1, -1, -1):
s[i] += t[i]
if i != 0:
s[i - 1] += s[i] // 26
s[i] %= 26
for i in range(n + 1):
r = s[i] % 2
s[i] /= 2
if i != n:
s[i + 1] += r * 26
if i == 0:
continue
print(chr(int(s[i] + 97)), end="")
return 0
solve()
|
FUNC_DEF RETURN FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF FOR VAR VAR EXPR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER VAR VAR VAR VAR IF VAR NUMBER VAR BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER STRING RETURN NUMBER EXPR FUNC_CALL VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
import sys
input = sys.stdin.readline
k = int(input())
s = input().rstrip()
t = input().rstrip()
ss = [(ord(s[i]) - ord("a")) for i in range(k)]
tt = [(ord(t[i]) - ord("a")) for i in range(k)]
z = [(ss[i] + tt[i]) for i in range(k)]
for i in range(1, k)[::-1]:
if z[i] // 26:
z[i] %= 26
z[i - 1] += 1
ans = []
for i in range(k):
if z[i] % 2:
z[i + 1] += 26
z[i] -= 1
z[i] //= 2
ans.append(chr(z[i] + ord("a")))
print("".join(ans))
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR NUMBER IF BIN_OP VAR VAR NUMBER VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
n = int(input())
s = input()
t = input()
c = ord("a")
l = [(0) for i in range(n)]
for i in range(n):
l[-1 - i] += ord(s[i]) - c + 1
l[-1 - i] += ord(t[i]) - c + 1
for i in range(n - 1, -1, -1):
if l[i] % 2 and i != 0:
l[i - 1] += 26
l[i] = l[i] // 2
for i in range(0, n):
if l[i] > 26:
l[i] -= 26
l[i + 1] += 1
ans = ""
for i in range(n - 1, -1, -1):
ans += chr(ord("a") + l[i] - 1)
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR VAR BIN_OP NUMBER VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR VAR NUMBER VAR BIN_OP NUMBER VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF BIN_OP VAR VAR NUMBER VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR NUMBER VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR STRING VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
def b26sub(a, b, n, c):
for i in range(n - 1, -1, -1):
if a[i] > b[i]:
b[i] += 26
b[i - 1] -= 1
c[i] = b[i] - a[i]
def b26add(a, b, n, c):
car = 0
for i in range(n - 1, -1, -1):
x = a[i] + b[i] + car
car = x // 26
c[i] = x % 26
def b26div2(a, n, c):
rem = 0
for i in range(n):
cur = rem * 26 + a[i]
c[i] = cur // 2
rem = cur % 2
n = int(input())
s = input()
t = input()
a = []
b = []
c = []
d = []
e = []
for i in range(n):
c.append(0)
d.append(0)
e.append(0)
a.append(ord(s[i]) - ord("a"))
b.append(ord(t[i]) - ord("a"))
b26sub(a, b, n, c)
b26div2(c, n, d)
b26add(a, d, n, e)
l = ""
for i in range(n):
l += chr(e[i] + ord("a"))
print(l)
|
FUNC_DEF FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR VAR VAR VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR VAR VAR VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
n = int(input(""))
a = input("")
b = input("")
c = [(0) for _ in range(n + 1)]
for i in range(n - 1, -1, -1):
aa = ord(a[i]) - ord("a")
bb = ord(b[i]) - ord("a")
c[i + 1] += aa + bb
if c[i + 1] >= 26:
c[i] += c[i + 1] // 26
c[i + 1] %= 26
def show_str(l):
out = ""
for item in l:
out += item
print(out)
carry_over = False
for i in range(0, n + 1):
if carry_over:
c[i] += 26
carry_over = c[i] % 2 == 1
c[i] = c[i] // 2
c[i] = chr(ord("a") + c[i])
show_str(c[1:])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING VAR BIN_OP VAR NUMBER BIN_OP VAR VAR IF VAR BIN_OP VAR NUMBER NUMBER VAR VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER FUNC_DEF ASSIGN VAR STRING FOR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR STRING VAR VAR EXPR FUNC_CALL VAR VAR NUMBER
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
k = int(input())
s = input()
t = input()
val = [(0) for i in range(0, k)]
nval = [(0) for i in range(0, k)]
for i in range(0, k):
val[i] = ord(s[i]) - ord("a") + ord(t[i]) - ord("a")
ans = ["a" for i in range(0, k)]
carry = 0
for i in range(0, k):
ncarry = 0
t = val[i] // 2 + carry
if val[i] % 2 == 1:
ncarry += 13
nval[i] = t
carry = ncarry
for i in range(k - 1, -1, -1):
if nval[i] >= 26:
nval[i - 1] += nval[i] // 26
nval[i] %= 26
ans[i] = chr(ord("a") + nval[i])
print("".join(x for x in ans))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING ASSIGN VAR STRING VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR IF BIN_OP VAR VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR STRING VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR VAR VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
def divide_2(a, m):
r = 0
q = []
for x in a:
cur = r * m + x
q.append(cur // 2)
r = cur % 2
return q
def add(s, t, m):
r = 0
a = []
for x, y in zip(s[::-1], t[::-1]):
cur = r + x + y
a.append(cur % m)
r = cur // m
if r != 0:
a.append(r)
return a[::-1]
def to_num(s):
a = []
for x in s:
a.append(ord(x) - ord("a"))
return a
def to_char(s, k):
a = []
for x in s[-k:]:
a.append(chr(x + ord("a")))
return "".join(a)
k = int(input())
x = to_num(input())
y = to_num(input())
print(to_char(divide_2(add(x, y, 26), 26), k))
|
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR RETURN VAR NUMBER FUNC_DEF ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING RETURN VAR FUNC_DEF ASSIGN VAR LIST FOR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR STRING RETURN FUNC_CALL STRING VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER NUMBER VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
from sys import stdin
class base:
def __init__(self, s, base):
self.num, self.base = [0] + s, base
def __add__(self, other):
out = base([0] * (max(len(other.num), len(self.num)) - 1), self.base)
carry = 0
for i in range(len(self.num) - 1, -1, -1):
su = self.num[i] + other.num[i] + carry
if su < self.base:
out.num[i], carry = su, 0
else:
out.num[i], carry = su % self.base, 1
return out
def __truediv__(self, other):
carry = 0
for i in range(len(self.num)):
cur = self.num[i] + carry * self.base
self.num[i], carry = divmod(cur, other)
return self
letters = "0123456789ABCDEFGHIJKLMNOP"
rstr = lambda: [(ord(x) - 97) for x in stdin.readline().strip()]
n, s1, t1 = int(input()), base(rstr(), 26), base(rstr(), 26)
s1 += t1
s1 = s1 / 2
print("".join([chr(i + 97) for i in s1.num[1:]]))
|
CLASS_DEF FUNC_DEF ASSIGN VAR VAR BIN_OP LIST NUMBER VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR BIN_OP LIST NUMBER BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR RETURN VAR ASSIGN VAR STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR NUMBER
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
k = int(input())
a = reversed(input())
b = reversed(input())
aa = [0] * (k + 1)
bb = [0] * (k + 1)
for i, x in enumerate(a):
aa[i] = ord(x) - 97
for i, x in enumerate(b):
bb[i] = ord(x) - 97
carry = 0
cc = [0] * (k + 1)
for i in range(k + 1):
cc[i] = aa[i] + bb[i] + carry
if cc[i] >= 26:
carry = 1
cc[i] -= 26
else:
carry = 0
carry = 0
for i in reversed(range(k + 1)):
value = carry * 26 + cc[i]
carry = value % 2
cc[i] = value // 2
answer = ""
for x in reversed(cc[:-1]):
answer += chr(x + 97)
print(answer)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR IF VAR VAR NUMBER ASSIGN VAR NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
dicti = {}
for i in range(26):
dicti[chr(97 + i)] = i + 1
k = int(input())
str1 = list(input())
str2 = list(input())
delta = []
for i in range(k):
str1[i] = dicti[str1[i]]
str2[i] = dicti[str2[i]]
delta.append(str2[i] - str1[i])
for i in range(k - 1, 0, -1):
if delta[i] < 0:
delta[i - 1] -= 1
delta[i] += 26
divide = []
for i in range(k - 1):
divide.append(delta[i])
if delta[i] % 2 != 0:
divide[i] = delta[i] // 2
delta[i + 1] += 26
else:
divide[i] = delta[i] // 2
divide.append(delta[-1] // 2)
ans = [(0) for i in range(k)]
for i in range(k - 1, -1, -1):
sumi = str1[i] + divide[i]
if sumi > 26:
sumi -= 26
if i != 0:
divide[i - 1] += 1
ans[i] = chr(96 + sumi)
print(*ans, sep="")
|
ASSIGN VAR DICT FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR IF BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR VAR VAR IF VAR NUMBER VAR NUMBER IF VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR VAR STRING
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
length = int(input())
start = input()
slist = [(ord(char) - 97) for char in start]
end = input()
elist = [(ord(char) - 97) for char in end]
result = []
weirdnumber = 0
for i in range(0, length, 1):
dif = (elist[i] + slist[i]) / 2 + weirdnumber
weirdnumber = 0
if int(dif) != dif:
result.append(int(dif))
weirdnumber = 13
else:
result.append(int(dif))
for i in range(length - 1, -1, -1):
if result[i] >= 26:
r = result[i] // 26
result[i] -= r * 26
result[i - 1] += r
actualresult = ""
for char in result:
thing = chr(97 + char)
if thing == "{":
actualresult += "a"
else:
actualresult += chr(97 + char)
print(actualresult)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR NUMBER VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR ASSIGN VAR STRING FOR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP NUMBER VAR IF VAR STRING VAR STRING VAR FUNC_CALL VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
n = int(input())
s1 = [(ord(x) - 97) for x in input()]
s2 = [(ord(x) - 97) for x in input()]
s12s = s1[n - 1] + s2[n - 1]
res = []
ni = n - 1
while ni > 0:
ni -= 1
s12s += (s1[ni] + s2[ni]) * 26
res.append(chr(s12s // 2 % 26 + 97))
s12s = s12s // 26
res.append(chr(s12s // 2 % 26 + 97))
ni = n
while ni > 0:
ni -= 1
print(res[ni], end="")
print()
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR LIST ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER VAR NUMBER VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR WHILE VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
def to_cc26(s):
result = [(ord(v) - ord("a")) for v in s]
result.reverse()
return result
def to_number(a):
result = 0
mult = 1
for v in a:
result += v * mult
mult *= 26
return result
def minus(b, a):
index = 0
result = []
additional = 0
while index < len(b):
if b[index] >= a[index] + additional:
result.append(b[index] - a[index] - additional)
additional = 0
else:
result.append(b[index] + 26 - a[index] - additional)
additional = 1
index += 1
return result
def plus(a, b):
index = 0
result = []
additional = 0
while index < len(a):
if b[index] + a[index] + additional < 26:
result.append(b[index] + a[index] + additional)
additional = 0
else:
result.append(b[index] + a[index] + additional - 26)
additional = 1
index += 1
return result
def to_str(a):
a.reverse()
return "".join(chr(v + ord("a")) for v in a)
def divide_2(a):
a.reverse()
result = []
index = 0
value = 0
while index < len(a):
value = value * 26 + a[index]
result.append(value // 2)
value %= 2
index += 1
result.reverse()
return result
def solve(s, t):
b = to_cc26(t)
a = to_cc26(s)
diff_26 = minus(b, a)
half_diff = divide_2(diff_26)
result_26 = plus(a, half_diff)
return to_str(result_26)
def main() -> None:
n = int(input())
s = input()
t = input()
print(solve(s, t))
main()
|
FUNC_DEF ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING VAR VAR EXPR FUNC_CALL VAR RETURN VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR BIN_OP VAR VAR VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR ASSIGN VAR NUMBER VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF BIN_OP BIN_OP VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER RETURN VAR FUNC_DEF EXPR FUNC_CALL VAR RETURN FUNC_CALL STRING FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR STRING VAR VAR FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR NONE EXPR FUNC_CALL VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
def main():
k = int(input())
s = list(reversed(input()))
t = list(reversed(input()))
st = [0] * (k + 1)
carry = 0
for pos in range(0, k):
s_pos = ord(s[pos]) - ord("a")
t_pos = ord(t[pos]) - ord("a")
total = s_pos + t_pos + carry
carry = total // 26
total %= 26
st[pos] = total
st[k] = carry
st = list(reversed(st))
for pos in range(0, len(st)):
rem = st[pos] % 2
st[pos] //= 2
if pos < len(st) - 1:
st[pos + 1] += rem * 26
else:
assert rem == 0
print("".join([chr(st[pos] + ord("a")) for pos in range(1, len(st))]))
main()
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR STRING VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
N = int(input())
s = input()
t = input()
def stoi(s):
return ord(s) - 97
def itos(i):
return chr(97 + i)
def stoL(s):
L = []
for ss in s:
L.append(stoi(ss))
return L
A = stoL(s)
B = stoL(t)
C = [(A[i] + B[i]) for i in range(N)]
for i in range(1, N)[::-1]:
if C[i] >= 26:
C[i] -= 26
C[i - 1] += 1
t = 0
for i in range(N):
if C[i] % 2:
C[i] = (C[i] + t - 1) // 2
t = 26
else:
C[i] = (C[i] + t) // 2
t = 0
u = ""
for c in C:
u += itos(c)
print(u)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_DEF RETURN BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_DEF RETURN FUNC_CALL VAR BIN_OP NUMBER VAR FUNC_DEF ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR NUMBER IF VAR VAR NUMBER VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR STRING FOR VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
from itertools import accumulate
n, s, t = int(input()), input(), input()
a = [0] + [(ord(s[i]) + ord(t[i]) - (ord("a") << 1)) for i in range(n)]
for i in range(n, -1, -1):
if a[i] >= 26:
a[i] -= 26
a[i - 1] += 1
for i in range(n, -1, -1):
if a[i] & 1:
a[i + 1] += 13
a[i] >>= 1
print("".join(map(lambda _: chr(ord("a") + _), a[1:])))
|
ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR STRING NUMBER VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER IF VAR VAR NUMBER VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER IF BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR STRING VAR VAR NUMBER
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
def array_of(f, *dim):
return [array_of(f, *dim[1:]) for _ in range(dim[0])] if dim else f()
def atoi(c):
return ord(c) - ord("a")
def itoa(i):
return chr(i + ord("a"))
n = int(input())
s, t = input(), input()
s = list(map(atoi, reversed(s)))
t = list(map(atoi, reversed(t)))
ss = array_of(int, n + 1)
for i in range(n):
x = s[i] + t[i]
if ss[i] + x >= 26:
ss[i] += x - 26
ss[i + 1] += 1
else:
ss[i] += x
for i in range(n + 1 - 1, -1, -1):
if ss[i] % 2 == 1:
ss[i - 1] += 26
ss[i] //= 2
out = []
for i in range(n - 1, -1, -1):
out.append(itoa(ss[i]))
print("".join(out))
|
FUNC_DEF RETURN VAR FUNC_CALL VAR VAR VAR NUMBER VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR FUNC_DEF RETURN BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING FUNC_DEF RETURN FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR IF BIN_OP VAR VAR VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER NUMBER NUMBER IF BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
n = int(input())
s = input()
t = input()
def f(x):
return ord(x) - ord("a")
def g(x):
return chr(x + ord("a"))
A = []
for i in range(n):
A.append(f(s[i]) + f(t[i]))
for i in range(n - 1, 0, -1):
if A[i] // 26:
A[i - 1] += 1
A[i] %= 26
for i in range(n):
if A[i] % 2:
A[i + 1] += 26
A[i] -= 1
A[i] //= 2
for i in A:
print(g(i), end="")
print()
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_DEF RETURN BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING FUNC_DEF RETURN FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR STRING ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER VAR VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
input()
a = input()
b = input()
x = []
y = []
for c in a:
x.append(ord(c) - 97)
for c in b:
y.append(ord(c) - 97)
result = [(u + v) for u, v in zip(x, y)]
for i in range(len(result) - 1, 0, -1):
result[i - 1] += result[i] // 26
result[i] %= 26
for i, r in enumerate(result):
if r % 2 == 1:
result[i + 1] += 26
result[i] //= 2
r = "".join(chr(c + 97) for c in result)
print(r)
|
EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER VAR BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER VAR VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL STRING FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
def decto26(n):
a = []
while n > 0:
a.insert(0, n % 26)
n //= 26
return a
def f26todec(a):
n = 0
l = len(a) - 1
for i in a:
n += i * 26**l
l -= 1
return n
def sum26(a, b, n):
q = 0
c = []
for i in range(n + 1):
c.append(0)
for i in range(n, 0, -1):
c[i] = (a[i - 1] + b[i - 1] + q) % 26
q = (a[i - 1] + b[i - 1] + q) // 26
c[0] += q
return c
def del26(a):
n = len(a)
q = a[0]
c = []
for i in range(n):
c.append(0)
for i in range(n - 1):
c[i] += a[i] // 2
if a[i] % 2 == 1:
a[i + 1] += 26
c[-1] = a[-1] // 2
if q <= 1:
c.pop(0)
return c
abc = "abcdefghijklmnopqrstuvwxyz"
k = int(input())
s = input()
a = []
for i in s:
a.append(abc.index(i))
sm = a
t = input()
a = []
for i in t:
a.append(abc.index(i))
tm = a
a = del26(sum26(sm, tm, k))
b = ""
for i in a:
b += abc[i]
print(b)
|
FUNC_DEF ASSIGN VAR LIST WHILE VAR NUMBER EXPR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR VAR VAR BIN_OP VAR BIN_OP NUMBER VAR VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER BIN_OP VAR NUMBER NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN VAR ASSIGN VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR STRING FOR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
You are given two strings $s$ and $t$, both consisting of exactly $k$ lowercase Latin letters, $s$ is lexicographically less than $t$.
Let's consider list of all strings consisting of exactly $k$ lowercase Latin letters, lexicographically not less than $s$ and not greater than $t$ (including $s$ and $t$) in lexicographical order. For example, for $k=2$, $s=$"az" and $t=$"bf" the list will be ["az", "ba", "bb", "bc", "bd", "be", "bf"].
Your task is to print the median (the middle element) of this list. For the example above this will be "bc".
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Input-----
The first line of the input contains one integer $k$ ($1 \le k \le 2 \cdot 10^5$) β the length of strings.
The second line of the input contains one string $s$ consisting of exactly $k$ lowercase Latin letters.
The third line of the input contains one string $t$ consisting of exactly $k$ lowercase Latin letters.
It is guaranteed that $s$ is lexicographically less than $t$.
It is guaranteed that there is an odd number of strings lexicographically not less than $s$ and not greater than $t$.
-----Output-----
Print one string consisting exactly of $k$ lowercase Latin letters β the median (the middle element) of list of strings of length $k$ lexicographically not less than $s$ and not greater than $t$.
-----Examples-----
Input
2
az
bf
Output
bc
Input
5
afogk
asdji
Output
alvuw
Input
6
nijfvj
tvqhwp
Output
qoztvz
|
orda = ord("a")
ord0 = ord("z") - orda + 1
n = int(input())
s = input()
t = input()
sv = [(ord(si) - orda) for si in s]
tv = [(ord(ti) - orda) for ti in t]
medv = [(ord(si) - orda) for si in s]
for i in range(n - 1, -1, -1):
medv[i] += tv[i]
if i > 0 and medv[i] >= ord0:
medv[i] -= ord0
medv[i - 1] += 1
for i in range(n):
if i < n - 1 and medv[i] % 2 == 1:
medv[i + 1] += ord0
medv[i] //= 2
ans = "".join([chr(medvi + orda) for medvi in medv])
print(ans)
|
ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR STRING VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR VAR VAR VAR IF VAR NUMBER VAR VAR VAR VAR VAR VAR VAR BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL STRING FUNC_CALL VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.