description
stringlengths
171
4k
code
stringlengths
94
3.98k
normalized_code
stringlengths
57
4.99k
You are given an integer N. Find the number of distinct XORs it is possible to make using two positive integers no larger than N. Formally, let S be the set S = \{x\oplus y \mid 1 ≤ x, y ≤ N\} where \oplus denotes the [bitwise XOR] operation. Find |S| (where |S| denotes the size of set S. Note that a set, by definition, has no repeated elements). The answer might be large, so output it modulo 10^{9} + 7. ------ Input Format ------ - The first line of input contains a single integer T, denoting the number of test cases. The description of T test cases follows. - Each test case consists of a single line of input, which contains one integer N. ------ Output Format ------ For each test case, output a single line containing the answer, modulo 10^{9} + 7. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $1 ≤ N ≤ 10^{12}$ ----- Sample Input 1 ------ 3 1 3 7 ----- Sample Output 1 ------ 1 4 8 ----- explanation 1 ------ Test Case 1: $N = 1$, so the only XOR we can possibly make is $1 \oplus 1 = 0$. Thus, the answer is $1$. Test Case 2: $N = 3$, which gives us $S = \{0, 1, 2, 3\}$ as the set of possible XORs. Thus, the answer is $|S| = 4$.
t = int(input()) for _ in range(t): n = int(input()) dig = 0 ones = 0 while n: if n & 1 == 1: ones += 1 dig += 1 n = n // 2 sol = 2**dig % 1000000007 if ones == 1: sol -= 1 if dig == 2: sol -= 1 print(sol)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR IF BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER VAR NUMBER IF VAR NUMBER VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an integer N. Find the number of distinct XORs it is possible to make using two positive integers no larger than N. Formally, let S be the set S = \{x\oplus y \mid 1 ≤ x, y ≤ N\} where \oplus denotes the [bitwise XOR] operation. Find |S| (where |S| denotes the size of set S. Note that a set, by definition, has no repeated elements). The answer might be large, so output it modulo 10^{9} + 7. ------ Input Format ------ - The first line of input contains a single integer T, denoting the number of test cases. The description of T test cases follows. - Each test case consists of a single line of input, which contains one integer N. ------ Output Format ------ For each test case, output a single line containing the answer, modulo 10^{9} + 7. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $1 ≤ N ≤ 10^{12}$ ----- Sample Input 1 ------ 3 1 3 7 ----- Sample Output 1 ------ 1 4 8 ----- explanation 1 ------ Test Case 1: $N = 1$, so the only XOR we can possibly make is $1 \oplus 1 = 0$. Thus, the answer is $1$. Test Case 2: $N = 3$, which gives us $S = \{0, 1, 2, 3\}$ as the set of possible XORs. Thus, the answer is $|S| = 4$.
for _ in range(int(input())): n = int(input()) mod = int(1000000000.0 + 7) if n == 1 or n == 2: print(n) else: binn = bin(n)[2:] ans = 2 ** len(binn) % mod if binn.count("1") == 1: ans -= 1 print(ans % mod)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP NUMBER NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR STRING NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given an integer N. Find the number of distinct XORs it is possible to make using two positive integers no larger than N. Formally, let S be the set S = \{x\oplus y \mid 1 ≤ x, y ≤ N\} where \oplus denotes the [bitwise XOR] operation. Find |S| (where |S| denotes the size of set S. Note that a set, by definition, has no repeated elements). The answer might be large, so output it modulo 10^{9} + 7. ------ Input Format ------ - The first line of input contains a single integer T, denoting the number of test cases. The description of T test cases follows. - Each test case consists of a single line of input, which contains one integer N. ------ Output Format ------ For each test case, output a single line containing the answer, modulo 10^{9} + 7. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $1 ≤ N ≤ 10^{12}$ ----- Sample Input 1 ------ 3 1 3 7 ----- Sample Output 1 ------ 1 4 8 ----- explanation 1 ------ Test Case 1: $N = 1$, so the only XOR we can possibly make is $1 \oplus 1 = 0$. Thus, the answer is $1$. Test Case 2: $N = 3$, which gives us $S = \{0, 1, 2, 3\}$ as the set of possible XORs. Thus, the answer is $|S| = 4$.
t = int(input()) for _ in range(t): n = int(input()) digits = 0 x = n while x != 0: x >>= 1 digits += 1 largest = (1 << digits) - 1 check = 1 << digits - 1 if check != n: largest += 1 if n == 2: print(2) else: divider = pow(10, 9) + 7 ans = largest % divider print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR BIN_OP NUMBER BIN_OP VAR NUMBER IF VAR VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given an integer N. Find the number of distinct XORs it is possible to make using two positive integers no larger than N. Formally, let S be the set S = \{x\oplus y \mid 1 ≤ x, y ≤ N\} where \oplus denotes the [bitwise XOR] operation. Find |S| (where |S| denotes the size of set S. Note that a set, by definition, has no repeated elements). The answer might be large, so output it modulo 10^{9} + 7. ------ Input Format ------ - The first line of input contains a single integer T, denoting the number of test cases. The description of T test cases follows. - Each test case consists of a single line of input, which contains one integer N. ------ Output Format ------ For each test case, output a single line containing the answer, modulo 10^{9} + 7. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $1 ≤ N ≤ 10^{12}$ ----- Sample Input 1 ------ 3 1 3 7 ----- Sample Output 1 ------ 1 4 8 ----- explanation 1 ------ Test Case 1: $N = 1$, so the only XOR we can possibly make is $1 \oplus 1 = 0$. Thus, the answer is $1$. Test Case 2: $N = 3$, which gives us $S = \{0, 1, 2, 3\}$ as the set of possible XORs. Thus, the answer is $|S| = 4$.
for _ in range(int(input())): n = int(input()) mod = int(1000000000.0 + 7) if n == 1 or n == 2: print(n) else: ans = 1 while ans < n: ans *= 2 if n & n - 1 == 0: ans = ans * 2 - 1 print(ans % mod)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP NUMBER NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR VAR NUMBER IF BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given an integer N. Find the number of distinct XORs it is possible to make using two positive integers no larger than N. Formally, let S be the set S = \{x\oplus y \mid 1 ≤ x, y ≤ N\} where \oplus denotes the [bitwise XOR] operation. Find |S| (where |S| denotes the size of set S. Note that a set, by definition, has no repeated elements). The answer might be large, so output it modulo 10^{9} + 7. ------ Input Format ------ - The first line of input contains a single integer T, denoting the number of test cases. The description of T test cases follows. - Each test case consists of a single line of input, which contains one integer N. ------ Output Format ------ For each test case, output a single line containing the answer, modulo 10^{9} + 7. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $1 ≤ N ≤ 10^{12}$ ----- Sample Input 1 ------ 3 1 3 7 ----- Sample Output 1 ------ 1 4 8 ----- explanation 1 ------ Test Case 1: $N = 1$, so the only XOR we can possibly make is $1 \oplus 1 = 0$. Thus, the answer is $1$. Test Case 2: $N = 3$, which gives us $S = \{0, 1, 2, 3\}$ as the set of possible XORs. Thus, the answer is $|S| = 4$.
M = 1000000007 t = int(input()) for _ in range(t): n = int(input()) num = len(bin(n)) - 2 if n <= 2: print(n) elif bin(n).count("1") == 1: print((2**num - 1) % M) else: print(2**num % M)
ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR IF FUNC_CALL FUNC_CALL VAR VAR STRING NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR VAR
You are given an integer N. Find the number of distinct XORs it is possible to make using two positive integers no larger than N. Formally, let S be the set S = \{x\oplus y \mid 1 ≤ x, y ≤ N\} where \oplus denotes the [bitwise XOR] operation. Find |S| (where |S| denotes the size of set S. Note that a set, by definition, has no repeated elements). The answer might be large, so output it modulo 10^{9} + 7. ------ Input Format ------ - The first line of input contains a single integer T, denoting the number of test cases. The description of T test cases follows. - Each test case consists of a single line of input, which contains one integer N. ------ Output Format ------ For each test case, output a single line containing the answer, modulo 10^{9} + 7. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $1 ≤ N ≤ 10^{12}$ ----- Sample Input 1 ------ 3 1 3 7 ----- Sample Output 1 ------ 1 4 8 ----- explanation 1 ------ Test Case 1: $N = 1$, so the only XOR we can possibly make is $1 \oplus 1 = 0$. Thus, the answer is $1$. Test Case 2: $N = 3$, which gives us $S = \{0, 1, 2, 3\}$ as the set of possible XORs. Thus, the answer is $|S| = 4$.
import sys input = sys.stdin.readline def inp(): return int(input()) def st(): return input().rstrip("\n") def lis(): return list(map(int, input().split())) def ma(): return map(int, input().split()) t = inp() p = 10**9 + 7 while t: t -= 1 n = inp() if n <= 2: print(n) else: x = bin(n)[2:] res = pow(2, len(x), p) if x.count("1") == 1: res -= 1 print(res % p)
IMPORT ASSIGN VAR VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR STRING FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER WHILE VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR STRING NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given an integer N. Find the number of distinct XORs it is possible to make using two positive integers no larger than N. Formally, let S be the set S = \{x\oplus y \mid 1 ≤ x, y ≤ N\} where \oplus denotes the [bitwise XOR] operation. Find |S| (where |S| denotes the size of set S. Note that a set, by definition, has no repeated elements). The answer might be large, so output it modulo 10^{9} + 7. ------ Input Format ------ - The first line of input contains a single integer T, denoting the number of test cases. The description of T test cases follows. - Each test case consists of a single line of input, which contains one integer N. ------ Output Format ------ For each test case, output a single line containing the answer, modulo 10^{9} + 7. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $1 ≤ N ≤ 10^{12}$ ----- Sample Input 1 ------ 3 1 3 7 ----- Sample Output 1 ------ 1 4 8 ----- explanation 1 ------ Test Case 1: $N = 1$, so the only XOR we can possibly make is $1 \oplus 1 = 0$. Thus, the answer is $1$. Test Case 2: $N = 3$, which gives us $S = \{0, 1, 2, 3\}$ as the set of possible XORs. Thus, the answer is $|S| = 4$.
mod = 10**9 + 7 for _ in range(int(input())): n = int(input()) if n == 1: print(1) continue if n == 2: print(2) continue if n & n + 1 == 0: print((n + 1) % mod) elif n & n - 1 == 0: print((n * 2 - 1) % mod) else: print(int("1" + "0" * len(bin(n)[2:]), 2) % mod)
ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF BIN_OP VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER VAR IF BIN_OP VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER NUMBER VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR BIN_OP STRING BIN_OP STRING FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER NUMBER VAR
You are given an integer N. Find the number of distinct XORs it is possible to make using two positive integers no larger than N. Formally, let S be the set S = \{x\oplus y \mid 1 ≤ x, y ≤ N\} where \oplus denotes the [bitwise XOR] operation. Find |S| (where |S| denotes the size of set S. Note that a set, by definition, has no repeated elements). The answer might be large, so output it modulo 10^{9} + 7. ------ Input Format ------ - The first line of input contains a single integer T, denoting the number of test cases. The description of T test cases follows. - Each test case consists of a single line of input, which contains one integer N. ------ Output Format ------ For each test case, output a single line containing the answer, modulo 10^{9} + 7. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $1 ≤ N ≤ 10^{12}$ ----- Sample Input 1 ------ 3 1 3 7 ----- Sample Output 1 ------ 1 4 8 ----- explanation 1 ------ Test Case 1: $N = 1$, so the only XOR we can possibly make is $1 \oplus 1 = 0$. Thus, the answer is $1$. Test Case 2: $N = 3$, which gives us $S = \{0, 1, 2, 3\}$ as the set of possible XORs. Thus, the answer is $|S| = 4$.
t = int(input()) for _ in range(t): n = int(input()) temp = n c = 0 ans = 0 mo = int(1000000000.0) + 7 count = 0 while n > 0: if n % 2 != 0: count += 1 n //= 2 c += 1 for po in range(c): ans += 2**po ans = (ans + 1) % mo if temp == 2: ans = 2 elif count == 1: ans = 2 * temp - 1 print(ans % mo)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR IF VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
You are given an integer N. Find the number of distinct XORs it is possible to make using two positive integers no larger than N. Formally, let S be the set S = \{x\oplus y \mid 1 ≤ x, y ≤ N\} where \oplus denotes the [bitwise XOR] operation. Find |S| (where |S| denotes the size of set S. Note that a set, by definition, has no repeated elements). The answer might be large, so output it modulo 10^{9} + 7. ------ Input Format ------ - The first line of input contains a single integer T, denoting the number of test cases. The description of T test cases follows. - Each test case consists of a single line of input, which contains one integer N. ------ Output Format ------ For each test case, output a single line containing the answer, modulo 10^{9} + 7. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $1 ≤ N ≤ 10^{12}$ ----- Sample Input 1 ------ 3 1 3 7 ----- Sample Output 1 ------ 1 4 8 ----- explanation 1 ------ Test Case 1: $N = 1$, so the only XOR we can possibly make is $1 \oplus 1 = 0$. Thus, the answer is $1$. Test Case 2: $N = 3$, which gives us $S = \{0, 1, 2, 3\}$ as the set of possible XORs. Thus, the answer is $|S| = 4$.
def nextPowerOf2(n): count = 0 if n and not n & n - 1: return n while n != 0: n >>= 1 count += 1 return 1 << count for _ in range(int(input())): n = int(input()) if n == 1 or n == 2: print(n) elif n & n - 1 == 0: print((2 * n - 1) % (10**9 + 7)) else: print(nextPowerOf2(n + 1) % (10**9 + 7))
FUNC_DEF ASSIGN VAR NUMBER IF VAR BIN_OP VAR BIN_OP VAR NUMBER RETURN VAR WHILE VAR NUMBER VAR NUMBER VAR NUMBER RETURN BIN_OP NUMBER VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR IF BIN_OP VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER
You are given an integer N. Find the number of distinct XORs it is possible to make using two positive integers no larger than N. Formally, let S be the set S = \{x\oplus y \mid 1 ≤ x, y ≤ N\} where \oplus denotes the [bitwise XOR] operation. Find |S| (where |S| denotes the size of set S. Note that a set, by definition, has no repeated elements). The answer might be large, so output it modulo 10^{9} + 7. ------ Input Format ------ - The first line of input contains a single integer T, denoting the number of test cases. The description of T test cases follows. - Each test case consists of a single line of input, which contains one integer N. ------ Output Format ------ For each test case, output a single line containing the answer, modulo 10^{9} + 7. ------ Constraints ------ $1 ≤ T ≤ 10^{5}$ $1 ≤ N ≤ 10^{12}$ ----- Sample Input 1 ------ 3 1 3 7 ----- Sample Output 1 ------ 1 4 8 ----- explanation 1 ------ Test Case 1: $N = 1$, so the only XOR we can possibly make is $1 \oplus 1 = 0$. Thus, the answer is $1$. Test Case 2: $N = 3$, which gives us $S = \{0, 1, 2, 3\}$ as the set of possible XORs. Thus, the answer is $|S| = 4$.
MOD = 10**9 + 7 def solve(): n = int(input()) if n == 1: return print(1) if n == 2: return print(2) bit = 1 while bit <= n: bit <<= 1 if bit == n * 2: bit = bit - 1 print(bit % MOD) t = int(input()) for _ in range(t): solve()
ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF VAR NUMBER RETURN FUNC_CALL VAR NUMBER IF VAR NUMBER RETURN FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Petya and his friend, robot Petya++, like to solve exciting math problems. One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation . Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds. Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer. Can you solve this difficult problem? -----Input----- Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows. The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$). -----Output----- For every test case, output the smallest possible value of $m$ such that equality holds. If the equality does not hold for any $m$, print $-1$ instead. We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$. -----Examples----- Input 5 10 8 10 10 10 42 20 16 1000000000000000000 0 Output 12 10 -1 24 1152921504606846976 -----Note----- In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$. In the second example, $10 = 10$, so the answer is $10$. In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.
for i in range(int(input())): n, x = map(int, input().split()) a, b, p = n, n, False while a > 0: if a == x: p = True print(b) break b += b & -b a &= b if x == 0: print(b) elif p == False: print(-1)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR NUMBER WHILE VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER
Petya and his friend, robot Petya++, like to solve exciting math problems. One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation . Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds. Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer. Can you solve this difficult problem? -----Input----- Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows. The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$). -----Output----- For every test case, output the smallest possible value of $m$ such that equality holds. If the equality does not hold for any $m$, print $-1$ instead. We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$. -----Examples----- Input 5 10 8 10 10 10 42 20 16 1000000000000000000 0 Output 12 10 -1 24 1152921504606846976 -----Note----- In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$. In the second example, $10 = 10$, so the answer is $10$. In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.
def get_bigger_pow_2(n): p = 1 i = 0 while p <= n: p *= 2 i += 1 return p, i def main(): t = int(input()) for _ in range(t): n, x = list(map(int, input().split(" "))) if n | x != n: print(-1) continue xor = n ^ x p, i = get_bigger_pow_2(xor) m = n >> i << i if (m & 1 << i + 1) >> i == 1: print(-1) continue if p != 1: m += p if m & n == x: print(m) else: print(-1) main()
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR NUMBER VAR NUMBER RETURN VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING IF BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR IF BIN_OP BIN_OP VAR BIN_OP NUMBER BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR VAR IF BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR
Petya and his friend, robot Petya++, like to solve exciting math problems. One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation . Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds. Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer. Can you solve this difficult problem? -----Input----- Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows. The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$). -----Output----- For every test case, output the smallest possible value of $m$ such that equality holds. If the equality does not hold for any $m$, print $-1$ instead. We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$. -----Examples----- Input 5 10 8 10 10 10 42 20 16 1000000000000000000 0 Output 12 10 -1 24 1152921504606846976 -----Note----- In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$. In the second example, $10 = 10$, so the answer is $10$. In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.
def mapped_read(cast): return map(cast, input().split()) def read_list(cast): return list(mapped_read(cast)) def count(a): ans = 0 while a > 0: a //= 2 ans += 1 return ans def f(x): cnt = 0 while x % 4 == 0: x //= 2 cnt += 1 return cnt def solve(): n, x = mapped_read(int) if n == x: print(n) return if x == 0: print(2 ** count(n)) return cnt = f(x) if (2 ** count(n) - 1 ^ 2**cnt - 1) & n != x: print(-1) return print(n + 2 ** count(n & 2**cnt - 1) - (n & 2**cnt - 1)) (n,) = mapped_read(int) for _ in range(n): solve()
FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR NUMBER VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER WHILE BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR RETURN IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP NUMBER FUNC_CALL VAR VAR RETURN ASSIGN VAR FUNC_CALL VAR VAR IF BIN_OP BIN_OP BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER RETURN EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP NUMBER FUNC_CALL VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Petya and his friend, robot Petya++, like to solve exciting math problems. One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation . Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds. Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer. Can you solve this difficult problem? -----Input----- Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows. The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$). -----Output----- For every test case, output the smallest possible value of $m$ such that equality holds. If the equality does not hold for any $m$, print $-1$ instead. We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$. -----Examples----- Input 5 10 8 10 10 10 42 20 16 1000000000000000000 0 Output 12 10 -1 24 1152921504606846976 -----Note----- In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$. In the second example, $10 = 10$, so the answer is $10$. In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.
import sys input = sys.stdin.readline for _ in range(int(input())): n, x = map(int, input().split()) nn, xx = n, x flag = 0 if n < x: print(-1) elif n == x: print(n) else: cnt = 0 a, b = str(bin(n))[2:], str(bin(x))[2:] b = "0" * (len(a) - len(b)) + b cnt = len(a) flag = 0 ans = "" for i in range(len(a)): if a[i] == b[i] and flag == 0: ans += a[i] else: flag = 1 ans += "1" ans = int(ans, 2) + 1 if xx <= ans & ans - 1: print(ans) else: print(-1)
IMPORT ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP STRING BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR NUMBER VAR VAR VAR ASSIGN VAR NUMBER VAR STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER IF VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
Petya and his friend, robot Petya++, like to solve exciting math problems. One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation . Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds. Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer. Can you solve this difficult problem? -----Input----- Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows. The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$). -----Output----- For every test case, output the smallest possible value of $m$ such that equality holds. If the equality does not hold for any $m$, print $-1$ instead. We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$. -----Examples----- Input 5 10 8 10 10 10 42 20 16 1000000000000000000 0 Output 12 10 -1 24 1152921504606846976 -----Note----- In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$. In the second example, $10 = 10$, so the answer is $10$. In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.
t = int(input()) for _ in range(t): n, goal = map(int, input().split()) bin_n = bin(n) length_n = len(bin_n) - 2 bin_goal = bin(goal) length_goal = len(bin_goal) - 2 if n == goal: print(n) elif goal == 0: print(2**length_n) elif n < goal or length_goal != length_n: print(-1) else: bin_goal = bin(goal) length_goal = len(bin_goal) - 2 m = 0 possible = True is_1 = [0, False] if bin_goal[-1] == "1": print(-1) continue for i in range(2, length_goal + 1): if bin_goal[-i] == "1": index = i break if bin_goal[: -index + 1] != bin_n[: -index + 1]: print(-1) continue m += goal for i in range(1, index): if bin_n[-i] == "1": is_1[1] = True elif is_1[1]: is_1 = [i - 1, False] if not possible or is_1[1]: print(-1) elif is_1[0]: print(m + 2 ** is_1[0]) else: print(m)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP NUMBER VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST NUMBER NUMBER IF VAR NUMBER STRING EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR STRING ASSIGN VAR VAR IF VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR STRING ASSIGN VAR NUMBER NUMBER IF VAR NUMBER ASSIGN VAR LIST BIN_OP VAR NUMBER NUMBER IF VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
Petya and his friend, robot Petya++, like to solve exciting math problems. One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation . Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds. Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer. Can you solve this difficult problem? -----Input----- Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows. The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$). -----Output----- For every test case, output the smallest possible value of $m$ such that equality holds. If the equality does not hold for any $m$, print $-1$ instead. We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$. -----Examples----- Input 5 10 8 10 10 10 42 20 16 1000000000000000000 0 Output 12 10 -1 24 1152921504606846976 -----Note----- In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$. In the second example, $10 = 10$, so the answer is $10$. In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.
t = int(input()) def solve(): s = input() n = int(s.split(" ")[0]) x = int(s.split(" ")[1]) if n == x: print(n) return for i in range(70, -1, -1): if n >> i & 1 != x >> i & 1: if n >> i & 1 == 0: print(-1) return else: if n >> i + 1 & 1 == 0 and x & (1 << i + 1) - 1 == 0: ans = (n >> i + 2 << i + 2) + (1 << i + 1) if ans > 5000000000000000000: print(ans) return print(ans) return print(-1) return while t: t -= 1 solve()
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR STRING NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR STRING NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR RETURN FOR VAR FUNC_CALL VAR NUMBER NUMBER NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER RETURN IF BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER NUMBER BIN_OP VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER BIN_OP NUMBER BIN_OP VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR RETURN EXPR FUNC_CALL VAR VAR RETURN EXPR FUNC_CALL VAR NUMBER RETURN WHILE VAR VAR NUMBER EXPR FUNC_CALL VAR
Petya and his friend, robot Petya++, like to solve exciting math problems. One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation . Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds. Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer. Can you solve this difficult problem? -----Input----- Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows. The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$). -----Output----- For every test case, output the smallest possible value of $m$ such that equality holds. If the equality does not hold for any $m$, print $-1$ instead. We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$. -----Examples----- Input 5 10 8 10 10 10 42 20 16 1000000000000000000 0 Output 12 10 -1 24 1152921504606846976 -----Note----- In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$. In the second example, $10 = 10$, so the answer is $10$. In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.
t = int(input()) for i in range(t): n, x = map(int, input().split(" ")) if n < x: print(-1) continue m = n current_bit = 0 current_num = n while current_num != x and m < 1e19: m += 1 << current_bit if (m >> current_bit) % 2 == 0: current_bit += 1 current_num &= m if m >= 1e19: print(-1) else: print(m)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR VAR NUMBER VAR BIN_OP NUMBER VAR IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR NUMBER VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
Petya and his friend, robot Petya++, like to solve exciting math problems. One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation . Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds. Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer. Can you solve this difficult problem? -----Input----- Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows. The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$). -----Output----- For every test case, output the smallest possible value of $m$ such that equality holds. If the equality does not hold for any $m$, print $-1$ instead. We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$. -----Examples----- Input 5 10 8 10 10 10 42 20 16 1000000000000000000 0 Output 12 10 -1 24 1152921504606846976 -----Note----- In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$. In the second example, $10 = 10$, so the answer is $10$. In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.
def read_test(): nums = input().split(" ") return int(nums[0]), int(nums[1]) def read_input(): test_num = int(input()) tests = [] for _ in range(test_num): tests.append(read_test()) return tests def solve(test): n = test[0] x = test[1] if n == x: return n n_binary = format(n, "b") x_binary = format(x, "b") if len(x_binary) < len(n_binary): x_binary = "0" * (len(n_binary) - len(x_binary)) + x_binary if len(n_binary) < len(x_binary): n_binary = "0" * (len(x_binary) - len(n_binary)) + n_binary diff_idx = 0 while n_binary[diff_idx] == x_binary[diff_idx]: diff_idx += 1 if x_binary[diff_idx] == "1": return -1 if "1" in x_binary[diff_idx:]: return -1 if diff_idx == 0: return int("1" + "0" * len(n_binary), 2) if n_binary[diff_idx - 1] != "0": return -1 return int(n_binary[: diff_idx - 1] + "1" + "0" * (len(n_binary) - diff_idx), 2) def main(): tests = read_input() for test in tests: print(solve(test)) main()
FUNC_DEF ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING RETURN FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR RETURN VAR FUNC_DEF ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR STRING IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP STRING BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP STRING BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR VAR NUMBER IF VAR VAR STRING RETURN NUMBER IF STRING VAR VAR RETURN NUMBER IF VAR NUMBER RETURN FUNC_CALL VAR BIN_OP STRING BIN_OP STRING FUNC_CALL VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER STRING RETURN NUMBER RETURN FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER STRING BIN_OP STRING BIN_OP FUNC_CALL VAR VAR VAR NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Petya and his friend, robot Petya++, like to solve exciting math problems. One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation . Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds. Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer. Can you solve this difficult problem? -----Input----- Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows. The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$). -----Output----- For every test case, output the smallest possible value of $m$ such that equality holds. If the equality does not hold for any $m$, print $-1$ instead. We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$. -----Examples----- Input 5 10 8 10 10 10 42 20 16 1000000000000000000 0 Output 12 10 -1 24 1152921504606846976 -----Note----- In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$. In the second example, $10 = 10$, so the answer is $10$. In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.
for _ in range(int(input())): n, x = map(int, input().split()) if len(bin(x)) > len(bin(n)): print(-1) continue bin_n = bin(n) bin_x = bin(x) if len(bin_x) < len(bin_n): if x: print(-1) continue bin_x = "0b" + "0" * (len(bin_n) - len(bin_x)) + bin_x[2:] i = len(bin_x) - 1 while i >= 2 and bin_x[i] == "0": i -= 1 p = len(bin_x) - i - 1 i = 2 while i < len(bin_n): if bin_n[i] == "1" and bin_x[i] == "0": if p >= len(bin_n) - i: if i == 2 or bin_x[i - 1] != "1": s = bin_n[i:] print(n + 2 ** len(s) - int(s, 2)) else: print(-1) else: print(-1) break elif bin_n[i] == "0" and bin_x[i] == "1": print(-1) break i += 1 else: print(n)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP STRING BIN_OP STRING BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR NUMBER VAR VAR STRING VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR VAR STRING IF VAR BIN_OP FUNC_CALL VAR VAR VAR IF VAR NUMBER VAR BIN_OP VAR NUMBER STRING ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP NUMBER FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR STRING VAR VAR STRING EXPR FUNC_CALL VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
Petya and his friend, robot Petya++, like to solve exciting math problems. One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation . Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds. Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer. Can you solve this difficult problem? -----Input----- Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows. The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$). -----Output----- For every test case, output the smallest possible value of $m$ such that equality holds. If the equality does not hold for any $m$, print $-1$ instead. We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$. -----Examples----- Input 5 10 8 10 10 10 42 20 16 1000000000000000000 0 Output 12 10 -1 24 1152921504606846976 -----Note----- In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$. In the second example, $10 = 10$, so the answer is $10$. In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.
for j in range(int(input())): b, c = [int(j) for j in input().split()] bc = bin(b)[2:] cc = bin(c)[2:] y = b z = b found = False while y > 0: if y == c: found = True print(z) break z += z & -z y &= z if c == 0: print(z) elif not found: print(-1)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR EXPR FUNC_CALL VAR NUMBER
Petya and his friend, robot Petya++, like to solve exciting math problems. One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation . Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds. Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer. Can you solve this difficult problem? -----Input----- Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows. The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$). -----Output----- For every test case, output the smallest possible value of $m$ such that equality holds. If the equality does not hold for any $m$, print $-1$ instead. We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$. -----Examples----- Input 5 10 8 10 10 10 42 20 16 1000000000000000000 0 Output 12 10 -1 24 1152921504606846976 -----Note----- In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$. In the second example, $10 = 10$, so the answer is $10$. In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.
for _ in range(int(input())): a, b = input().split() a = int(a) b = int(b) if b > a: print(-1) continue if b == a: print(a) continue n = str(bin(a))[2:] c = str(bin(b))[2:] if b == 0: print(2 ** len(n)) continue if len(c) != len(n): print(-1) continue possible = True spot = 0 thing2 = False ans = 0 for r in range(len(n)): if thing2 and c[r] == "1": possible = False break if n[r] != c[r]: if c[r] != "0" or c[r - 1] != "0": possible = False break elif not thing2: thing2 = True spot = len(n) - r ans += 2**spot if not thing2: ans += 2 ** (len(n) - r - 1) * int(n[r]) if not possible: print(-1) else: print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP NUMBER FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR STRING ASSIGN VAR NUMBER IF VAR VAR VAR VAR IF VAR VAR STRING VAR BIN_OP VAR NUMBER STRING ASSIGN VAR NUMBER IF VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR VAR BIN_OP NUMBER VAR IF VAR VAR BIN_OP BIN_OP NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER FUNC_CALL VAR VAR VAR IF VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
Petya and his friend, robot Petya++, like to solve exciting math problems. One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation . Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds. Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer. Can you solve this difficult problem? -----Input----- Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows. The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$). -----Output----- For every test case, output the smallest possible value of $m$ such that equality holds. If the equality does not hold for any $m$, print $-1$ instead. We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$. -----Examples----- Input 5 10 8 10 10 10 42 20 16 1000000000000000000 0 Output 12 10 -1 24 1152921504606846976 -----Note----- In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$. In the second example, $10 = 10$, so the answer is $10$. In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.
for _ in range(int(input())): m, x = map(int, input().split()) dicM = {} dicX = {} ok = True pos = -1 A = -1 ans = 0 for i in range(63): if 1 << i & x != 0: dicX[i] = 1 else: dicX[i] = 0 if 1 << i & m != 0: dicM[i] = 1 else: dicM[i] = 0 if dicM[i] != dicX[i]: if dicM[i] == 1: pos = i + 1 else: ok = False elif dicX[i] == 1 and dicX[i] == dicM[i]: ans += 1 << i A = i if A != -1 and pos != -1 and pos >= A: ok = False if pos != -1: ans += 1 << pos print(ans) if ok else print("-1")
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF BIN_OP BIN_OP NUMBER VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF BIN_OP BIN_OP NUMBER VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR VAR VAR IF VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR NUMBER VAR VAR VAR VAR VAR BIN_OP NUMBER VAR ASSIGN VAR VAR IF VAR NUMBER VAR NUMBER VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER VAR BIN_OP NUMBER VAR EXPR VAR FUNC_CALL VAR VAR FUNC_CALL VAR STRING
Petya and his friend, robot Petya++, like to solve exciting math problems. One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation . Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds. Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer. Can you solve this difficult problem? -----Input----- Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows. The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$). -----Output----- For every test case, output the smallest possible value of $m$ such that equality holds. If the equality does not hold for any $m$, print $-1$ instead. We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$. -----Examples----- Input 5 10 8 10 10 10 42 20 16 1000000000000000000 0 Output 12 10 -1 24 1152921504606846976 -----Note----- In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$. In the second example, $10 = 10$, so the answer is $10$. In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.
t = int(input()) for _ in range(t): n, x = [int(i) for i in input().split()] if n == x: print(n) continue if x > n: print(-1) else: x_b = bin(x)[2:] n_b = bin(n)[2:] le = max(len(x_b), len(n_b)) x_b = "0" * (le - len(x_b)) + x_b n_b = "0" * (le - len(n_b)) + n_b chislo = "" add = "" f = 0 for i in range(le): if f and x_b[i] == "1": print(-1) break elif f: chislo = chislo + "0" elif x_b[i] == n_b[i] == "1": chislo = chislo + "1" elif x_b[i] == "0" and n_b[i] == "1": if chislo and chislo[-1] == "1": print(-1) break chislo = chislo[:-1] + "10" f = 1 elif x_b[i] == "1" and n_b[i] == "0": print(-1) break else: chislo = chislo + "0" else: print(int(chislo, 2))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP STRING BIN_OP VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP STRING BIN_OP VAR FUNC_CALL VAR VAR VAR ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR STRING EXPR FUNC_CALL VAR NUMBER IF VAR ASSIGN VAR BIN_OP VAR STRING IF VAR VAR VAR VAR STRING ASSIGN VAR BIN_OP VAR STRING IF VAR VAR STRING VAR VAR STRING IF VAR VAR NUMBER STRING EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER STRING ASSIGN VAR NUMBER IF VAR VAR STRING VAR VAR STRING EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER
Petya and his friend, robot Petya++, like to solve exciting math problems. One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation . Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds. Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer. Can you solve this difficult problem? -----Input----- Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows. The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$). -----Output----- For every test case, output the smallest possible value of $m$ such that equality holds. If the equality does not hold for any $m$, print $-1$ instead. We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$. -----Examples----- Input 5 10 8 10 10 10 42 20 16 1000000000000000000 0 Output 12 10 -1 24 1152921504606846976 -----Note----- In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$. In the second example, $10 = 10$, so the answer is $10$. In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.
def bin_to_dec(x): y = 0 for i in x: y *= 2 y += int(i) return y t = int(input()) for _ in range(t): n, x = map(int, input().split()) a = bin(n) b = bin(x) if n == x: print(n) continue if x == 0: print(1 << len(a) - 2) continue if n < x: print(-1) continue a = a[2:] b = b[2:] if len(a) != len(b): print(-1) continue i = 0 while i < len(a): if a[i] != b[i]: break i += 1 k = i ans = 1 while k < len(b): if b[k] != "0": ans = 0 k += 1 if not ans: print(-1) continue if a[i - 1] == "1": print(-1) continue else: l = [] j = 0 while j < i - 1: l.append(a[j]) j += 1 l.append("1") for w in range(len(a) - i): l.append("0") s = "" for char in l: s = s + char print(bin_to_dec(s))
FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR VAR NUMBER VAR FUNC_CALL VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR NUMBER VAR NUMBER IF VAR EXPR FUNC_CALL VAR NUMBER IF VAR BIN_OP VAR NUMBER STRING EXPR FUNC_CALL VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR STRING FOR VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
Petya and his friend, robot Petya++, like to solve exciting math problems. One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation . Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds. Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer. Can you solve this difficult problem? -----Input----- Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows. The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$). -----Output----- For every test case, output the smallest possible value of $m$ such that equality holds. If the equality does not hold for any $m$, print $-1$ instead. We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$. -----Examples----- Input 5 10 8 10 10 10 42 20 16 1000000000000000000 0 Output 12 10 -1 24 1152921504606846976 -----Note----- In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$. In the second example, $10 = 10$, so the answer is $10$. In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.
t = int(input()) for tc in range(t): n, x = map(int, input().split()) if n == x: print(x) continue sn = bin(n)[2:] ln = len(sn) sx = bin(x)[2:] lx = len(sx) if x == 0: print(1 << ln) continue if ln != lx: print(-1) continue i = 0 while sn[i] == sx[i]: i += 1 if "1" in sx[i + 1 :]: print(-1) continue if sn[i] == "1": if i > 0 and sn[i - 1] == "1": print(-1) else: tmp = sn[: i - 1] + "1" + "0" * (ln - i) print(int(tmp, base=2)) else: print(-1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP NUMBER VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR VAR NUMBER IF STRING VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR STRING IF VAR NUMBER VAR BIN_OP VAR NUMBER STRING EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER STRING BIN_OP STRING BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER
Petya and his friend, robot Petya++, like to solve exciting math problems. One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation . Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds. Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer. Can you solve this difficult problem? -----Input----- Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows. The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$). -----Output----- For every test case, output the smallest possible value of $m$ such that equality holds. If the equality does not hold for any $m$, print $-1$ instead. We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$. -----Examples----- Input 5 10 8 10 10 10 42 20 16 1000000000000000000 0 Output 12 10 -1 24 1152921504606846976 -----Note----- In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$. In the second example, $10 = 10$, so the answer is $10$. In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.
def ii(num=False): i = input().split() if num: return int(i[0]) try: return list(map(int, i)) except Exception: return i def gcd(a, b): if a == 0: return b return gcd(b % a, a) for _ in range(ii(1)): max_bit = 63 n, x = ii() if n == x: print(n) continue if n < x: print(-1) continue arr_n = [0] * max_bit arr_x = [0] * max_bit for i in range(max_bit): arr_n[max_bit - i - 1] = n >> i & 1 arr_x[max_bit - i - 1] = x >> i & 1 left = 0 flag = True while left < max_bit: if arr_n[left] == arr_x[left]: left += 1 elif arr_n[left] > arr_x[left]: break else: flag = False break if flag: bit = max_bit - left m = (n >> bit) + 1 << bit if m & n != x: flag = False else: print(m) if not flag: print(-1)
FUNC_DEF NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR IF VAR RETURN FUNC_CALL VAR VAR NUMBER RETURN FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR RETURN VAR FUNC_DEF IF VAR NUMBER RETURN VAR RETURN FUNC_CALL VAR BIN_OP VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR VAR ASSIGN VAR NUMBER IF VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR IF BIN_OP VAR VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR EXPR FUNC_CALL VAR NUMBER
Petya and his friend, robot Petya++, like to solve exciting math problems. One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation . Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds. Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer. Can you solve this difficult problem? -----Input----- Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows. The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$). -----Output----- For every test case, output the smallest possible value of $m$ such that equality holds. If the equality does not hold for any $m$, print $-1$ instead. We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$. -----Examples----- Input 5 10 8 10 10 10 42 20 16 1000000000000000000 0 Output 12 10 -1 24 1152921504606846976 -----Note----- In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$. In the second example, $10 = 10$, so the answer is $10$. In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.
def solve(): n, x = map(int, input().split()) if x > n: print(-1) return n = bin(n)[2:] x = bin(x)[2:] ln = len(n) lx = len(x) ans = [] if x == "0": if n == "0": print(0) return myans = "1" + "0" * ln print(int(myans, 2)) return if lx < ln: print(-1) return for i in range(lx): ans.append(x[i]) if n[i] == "0" and x[i] == "1": print(-1) return la = len(ans) for i in range(la): if n[i] < ans[i]: myans = "".join(ans) print(int(myans, 2)) return elif n[i] > ans[i]: for j in range(i - 1, -1, -1): if ans[j] == "0": ans[j] = "1" for k in range(j + 1, la): if x[k] != "0": print(-1) return myans = "".join(ans) print(int(myans, 2)) return print(-1) return myans = "".join(ans) print(int(myans, 2)) return for _ in range(int(input())): solve()
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST IF VAR STRING IF VAR STRING EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR BIN_OP STRING BIN_OP STRING VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER RETURN IF VAR VAR EXPR FUNC_CALL VAR NUMBER RETURN FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR IF VAR VAR STRING VAR VAR STRING EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR ASSIGN VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER RETURN IF VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR STRING ASSIGN VAR VAR STRING FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR STRING EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER RETURN EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER RETURN FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
Petya and his friend, robot Petya++, like to solve exciting math problems. One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation . Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds. Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer. Can you solve this difficult problem? -----Input----- Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows. The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$). -----Output----- For every test case, output the smallest possible value of $m$ such that equality holds. If the equality does not hold for any $m$, print $-1$ instead. We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$. -----Examples----- Input 5 10 8 10 10 10 42 20 16 1000000000000000000 0 Output 12 10 -1 24 1152921504606846976 -----Note----- In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$. In the second example, $10 = 10$, so the answer is $10$. In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.
for _ in range(int(input())): n, x = map(int, input().split()) f = 0 for i in range(64): if n >> i & 1 and x >> i & 1: f = 1 if f == 1 and n >> i & 1 and x >> i & 1 == 0: f = 2 break if n >> i & 1 == 0 and x >> i & 1: f = 2 break if f == 2: print(-1) continue ans = 0 for i in range(64, -1, -1): if n >> i & 1 and x >> i & 1 == 0: ans = 1 << i + 1 r = 0 for j in range(i + 1): if n >> j & 1: r += 1 << j ans -= r break n += ans f = 0 for i in range(64): if n >> i & 1 == 0 and x >> i & 1: f = 1 break if f: print(-1) else: print(n)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP NUMBER VAR VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
Petya and his friend, robot Petya++, like to solve exciting math problems. One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation . Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds. Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer. Can you solve this difficult problem? -----Input----- Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows. The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$). -----Output----- For every test case, output the smallest possible value of $m$ such that equality holds. If the equality does not hold for any $m$, print $-1$ instead. We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$. -----Examples----- Input 5 10 8 10 10 10 42 20 16 1000000000000000000 0 Output 12 10 -1 24 1152921504606846976 -----Note----- In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$. In the second example, $10 = 10$, so the answer is $10$. In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.
def find_m(n, x): f = [0] * 60 for i in range(60): if ~n >> i & 1: f[i] = n else: f[i] = (n & ~((1 << i) - 1)) + (1 << i) m = n for i in range(60): if ~x >> i & 1: m = max(m, f[i]) for i in range(60): if x >> i & 1: if m >= f[i]: return -1 return m def main(): t = int(input()) for i in range(t): n, x = map(int, input().split()) result = find_m(n, x) print(result) main()
FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP NUMBER VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR RETURN NUMBER RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Petya and his friend, robot Petya++, like to solve exciting math problems. One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation . Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds. Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer. Can you solve this difficult problem? -----Input----- Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows. The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$). -----Output----- For every test case, output the smallest possible value of $m$ such that equality holds. If the equality does not hold for any $m$, print $-1$ instead. We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$. -----Examples----- Input 5 10 8 10 10 10 42 20 16 1000000000000000000 0 Output 12 10 -1 24 1152921504606846976 -----Note----- In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$. In the second example, $10 = 10$, so the answer is $10$. In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.
t = int(input()) for _ in range(t): n, x = map(int, input().split()) N = [0] * 62 X = [0] * 62 f = True for i in range(62): if n & 1 << i: N[i] += 1 if x & 1 << i: X[i] += 1 if X[i] and not N[i]: f = False break if not f: print(-1) continue i = 0 a = 0 p = 0 while i < 62: if N[i] and not X[i]: a += 2**i N[i] = 0 if p != 0: a -= 2**p p = 0 j = i + 1 while j < 62: if N[j] and not X[j]: N[j] = 0 j += 1 elif N[j] and X[j]: f = False break else: break i = j p = j elif N[i] == X[i] == 1: break else: i += 1 if not f: print(-1) continue for i in range(62): if N[i] != X[i]: f = False break if not f: print(-1) continue print(a + n)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF BIN_OP VAR BIN_OP NUMBER VAR VAR VAR NUMBER IF BIN_OP VAR BIN_OP NUMBER VAR VAR VAR NUMBER IF VAR VAR VAR VAR ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER IF VAR VAR VAR VAR VAR BIN_OP NUMBER VAR ASSIGN VAR VAR NUMBER IF VAR NUMBER VAR BIN_OP NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER IF VAR VAR VAR VAR ASSIGN VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR IF VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR VAR VAR ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
Petya and his friend, robot Petya++, like to solve exciting math problems. One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation . Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds. Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer. Can you solve this difficult problem? -----Input----- Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows. The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$). -----Output----- For every test case, output the smallest possible value of $m$ such that equality holds. If the equality does not hold for any $m$, print $-1$ instead. We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$. -----Examples----- Input 5 10 8 10 10 10 42 20 16 1000000000000000000 0 Output 12 10 -1 24 1152921504606846976 -----Note----- In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$. In the second example, $10 = 10$, so the answer is $10$. In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.
T = int(input()) def b(a, b): return a >> b & 1 for t in range(T): n, x = map(int, input().split()) low, high = n, 10**20 ac = 0 for i in range(max(x.bit_length(), n.bit_length())): if not b(n, i) and not b(x, i): pass elif not b(n, i) and b(x, i): low = -1 break elif b(n, i) and not b(x, i): low = n + ac + 1 else: high = n + ac if not b(n, i): ac += 2**i if low > high: low = -1 break print(low)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR BIN_OP NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF FUNC_CALL VAR VAR VAR VAR BIN_OP NUMBER VAR IF VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
Petya and his friend, robot Petya++, like to solve exciting math problems. One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation . Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds. Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer. Can you solve this difficult problem? -----Input----- Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows. The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$). -----Output----- For every test case, output the smallest possible value of $m$ such that equality holds. If the equality does not hold for any $m$, print $-1$ instead. We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$. -----Examples----- Input 5 10 8 10 10 10 42 20 16 1000000000000000000 0 Output 12 10 -1 24 1152921504606846976 -----Note----- In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$. In the second example, $10 = 10$, so the answer is $10$. In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.
for _ in range(int(input())): [n, x] = list(map(int, input().split())) orin, orix = n, x if n == x: print(n) continue if n < x: print(-1) continue maxi = 0 power = 0 yes = 1 while n or x: if x % 2 == 1 and n % 2 == 0: print(-1) yes = 0 break if x % 2 == 1 and n % 2 == 1: if n != x: print(-1) yes = 0 break elif power == maxi + 1: print(-1) yes = 0 break else: print(orix + 2 ** (maxi + 1)) yes = 0 break if x % 2 == 0 and n % 2 == 1: maxi = power n, x = n // 2, x // 2 power += 1 if yes == 1: print(2 ** (maxi + 1))
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN LIST VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER IF VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP NUMBER BIN_OP VAR NUMBER
Petya and his friend, robot Petya++, like to solve exciting math problems. One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation . Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds. Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer. Can you solve this difficult problem? -----Input----- Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows. The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$). -----Output----- For every test case, output the smallest possible value of $m$ such that equality holds. If the equality does not hold for any $m$, print $-1$ instead. We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$. -----Examples----- Input 5 10 8 10 10 10 42 20 16 1000000000000000000 0 Output 12 10 -1 24 1152921504606846976 -----Note----- In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$. In the second example, $10 = 10$, so the answer is $10$. In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.
t = int(input()) for i in range(t): n, x = map(int, input().split()) st, st1 = bin(n)[2:], bin(x)[2:] if n & x != x: print(-1) elif n == x: print(x) else: while len(st) != 64: st = "0" + st while len(st1) != 64: st1 = "0" + st1 vsp = [0] * 64 vsp[63] = int(st1[63]) for i in range(62, -1, -1): vsp[i] = vsp[i + 1] + int(st1[i]) ind = -1 i = 0 while st[i] == st1[i]: if vsp[i] == 0: ind = i i += 1 if ind == -1: print(-1) else: res = st1[:ind] + "1" + "0" * (64 - ind - 1) print(int(res, 2))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR WHILE FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP STRING VAR WHILE FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP STRING VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR NUMBER FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR STRING BIN_OP STRING BIN_OP BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER
Petya and his friend, robot Petya++, like to solve exciting math problems. One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation . Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds. Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer. Can you solve this difficult problem? -----Input----- Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows. The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$). -----Output----- For every test case, output the smallest possible value of $m$ such that equality holds. If the equality does not hold for any $m$, print $-1$ instead. We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$. -----Examples----- Input 5 10 8 10 10 10 42 20 16 1000000000000000000 0 Output 12 10 -1 24 1152921504606846976 -----Note----- In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$. In the second example, $10 = 10$, so the answer is $10$. In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.
for j in range(int(input())): n, x = map(int, input().split()) if n == x: print(n) continue if x > n: print("-1") continue a = list(bin(n)[2:]) b = list(bin(x)[2:]) t = len(b) s = len(a) - t b1 = ["0"] * s b = b1 + b f = 0 r = len(a) j = r - 1 t = 0 while True: if j == -1: break if b[j] == "1" and a[j] == "0": t = 1 print("-1") break if b[j] == "1" and a[j] == "1": f = 1 if a[j] == "1" and b[j] == "0" and f == 1: print("-1") t = 1 break j -= 1 if t == 1: continue flg = 0 req = 0 for j in range(r): if a[j] == "1" and b[j] == "0": req = j break if req != 0: reqs = "".join(a[0 : req - 1]) else: reqs = "" reqs = reqs + "1" rem = "".join(["0"] * (r - req)) reqs = reqs + rem if int(reqs, 2) < n: print(-1) continue print(int(reqs, 2))
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP LIST STRING VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER IF VAR NUMBER IF VAR VAR STRING VAR VAR STRING ASSIGN VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR VAR STRING VAR VAR STRING ASSIGN VAR NUMBER IF VAR VAR STRING VAR VAR STRING VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR VAR STRING ASSIGN VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL STRING VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR STRING ASSIGN VAR BIN_OP VAR STRING ASSIGN VAR FUNC_CALL STRING BIN_OP LIST STRING BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF FUNC_CALL VAR VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER
Petya and his friend, robot Petya++, like to solve exciting math problems. One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation . Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds. Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer. Can you solve this difficult problem? -----Input----- Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows. The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$). -----Output----- For every test case, output the smallest possible value of $m$ such that equality holds. If the equality does not hold for any $m$, print $-1$ instead. We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$. -----Examples----- Input 5 10 8 10 10 10 42 20 16 1000000000000000000 0 Output 12 10 -1 24 1152921504606846976 -----Note----- In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$. In the second example, $10 = 10$, so the answer is $10$. In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.
def solve(n, x): if n < x: print(-1) return if n == x: print(n) return bn = bin(n)[2:][::-1] bx = bin(x)[2:][::-1] bm = bn[:] if x == 0: print(2 ** len(bn)) return if len(bx) != len(bn): print(-1) return last1 = -1 no_more = False for i in range(len(bn)): if bn[i] == "0" and bx[i] == "1": print(-1) return if bn[i] == "1": if bx[i] == "1": no_more = True else: if no_more: print(-1) return last1 = i bm = bm[:i] + "0" + bm[i + 1 :] if bx[last1 + 1] == "1": print(-1) return bm = bm[: last1 + 1] + "1" + bm[last1 + 2 :] print(int(bm[::-1], 2)) t = int(input()) for i in range(t): s = input() n, x = int(s.split()[0]), int(s.split()[1]) solve(n, x)
FUNC_DEF IF VAR VAR EXPR FUNC_CALL VAR NUMBER RETURN IF VAR VAR EXPR FUNC_CALL VAR VAR RETURN ASSIGN VAR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP NUMBER FUNC_CALL VAR VAR RETURN IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR VAR STRING EXPR FUNC_CALL VAR NUMBER RETURN IF VAR VAR STRING IF VAR VAR STRING ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR STRING VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER STRING EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER STRING VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR VAR
Petya and his friend, robot Petya++, like to solve exciting math problems. One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation . Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds. Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer. Can you solve this difficult problem? -----Input----- Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows. The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$). -----Output----- For every test case, output the smallest possible value of $m$ such that equality holds. If the equality does not hold for any $m$, print $-1$ instead. We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$. -----Examples----- Input 5 10 8 10 10 10 42 20 16 1000000000000000000 0 Output 12 10 -1 24 1152921504606846976 -----Note----- In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$. In the second example, $10 = 10$, so the answer is $10$. In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.
def func(): a, b = map(int, input().split()) if b > a: print(-1) return if b == a: print(a) return c = a - b d = a ld = [] lc = [] cnt = 0 while d != 0: if d % 2 != 0: ld.append(cnt) d = d // 2 cnt = cnt + 1 cnt = 0 while c != 0: if c % 2 != 0: lc.append(cnt) c = c // 2 cnt = cnt + 1 if cnt in ld: print(-1) return ans = a + pow(2, cnt) for i in range(len(lc)): if lc[i] not in ld or lc[i] != ld[i]: print(-1) return ans = ans - pow(2, lc[i]) print(ans) for i in range(int(input())): func()
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER RETURN IF VAR VAR EXPR FUNC_CALL VAR VAR RETURN ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER WHILE VAR NUMBER IF BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER IF BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR BIN_OP VAR FUNC_CALL VAR NUMBER VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR BIN_OP VAR FUNC_CALL VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
Petya and his friend, robot Petya++, like to solve exciting math problems. One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation . Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds. Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer. Can you solve this difficult problem? -----Input----- Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows. The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$). -----Output----- For every test case, output the smallest possible value of $m$ such that equality holds. If the equality does not hold for any $m$, print $-1$ instead. We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$. -----Examples----- Input 5 10 8 10 10 10 42 20 16 1000000000000000000 0 Output 12 10 -1 24 1152921504606846976 -----Note----- In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$. In the second example, $10 = 10$, so the answer is $10$. In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.
def ii(num=False): i = input().split() if num: return int(i[0]) try: return list(map(int, i)) except Exception: return i def gcd(a, b): if a == 0: return b return gcd(b % a, a) for _ in range(ii(1)): max_bit = 63 n, x = ii() xor = n ^ x left = 0 if xor == 0: print(n) continue while left < 63 and xor >> max_bit - left & 1 == 0: left += 1 bit = max_bit - left m = (n >> bit) + 1 << bit if m & n != x: print(-1) else: print(m)
FUNC_DEF NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR IF VAR RETURN FUNC_CALL VAR VAR NUMBER RETURN FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR RETURN VAR FUNC_DEF IF VAR NUMBER RETURN VAR RETURN FUNC_CALL VAR BIN_OP VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR WHILE VAR NUMBER BIN_OP BIN_OP VAR BIN_OP VAR VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR IF BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
Petya and his friend, robot Petya++, like to solve exciting math problems. One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation . Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds. Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer. Can you solve this difficult problem? -----Input----- Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows. The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$). -----Output----- For every test case, output the smallest possible value of $m$ such that equality holds. If the equality does not hold for any $m$, print $-1$ instead. We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$. -----Examples----- Input 5 10 8 10 10 10 42 20 16 1000000000000000000 0 Output 12 10 -1 24 1152921504606846976 -----Note----- In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$. In the second example, $10 = 10$, so the answer is $10$. In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.
t = int(input()) for i in range(t): arr = list(map(int, input().split())) n = arr[0] x = arr[1] t1 = n temp = n fnd = 0 while t1 > 0: if t1 == x: fnd = 1 break temp = temp + (temp & -temp) t1 = t1 & temp if fnd != 0 or x == 0: print(temp) elif fnd == 0: print("-1")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR STRING
Petya and his friend, robot Petya++, like to solve exciting math problems. One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation . Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds. Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer. Can you solve this difficult problem? -----Input----- Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows. The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$). -----Output----- For every test case, output the smallest possible value of $m$ such that equality holds. If the equality does not hold for any $m$, print $-1$ instead. We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$. -----Examples----- Input 5 10 8 10 10 10 42 20 16 1000000000000000000 0 Output 12 10 -1 24 1152921504606846976 -----Note----- In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$. In the second example, $10 = 10$, so the answer is $10$. In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.
import sys input = sys.stdin.readline MAX = int(1e18) def solve(): N, X = list(map(int, input().split())) if N == X: print(N) elif X == 0: A = 1 while A <= N: A <<= 1 print(A) else: A = list(bin(N)[2:]) N1 = len(A) D = {} for i in range(N1 - 1, 0, -1): if A[i - 1] + A[i] == "01": A[i] = "0" A[i - 1] = "1" t = eval("0b" + "".join(A)) A[i - 1] = "0" x = eval("0b" + "".join(A)) D[x] = min(D.get(x, MAX), t) elif A[i] == "1": A[i] = "0" if X in D: print(D[X]) else: print(-1) for _ in range(int(input())): solve()
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF BIN_OP VAR BIN_OP VAR NUMBER VAR VAR STRING ASSIGN VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR BIN_OP STRING FUNC_CALL STRING VAR ASSIGN VAR BIN_OP VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR BIN_OP STRING FUNC_CALL STRING VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR IF VAR VAR STRING ASSIGN VAR VAR STRING IF VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
Petya and his friend, robot Petya++, like to solve exciting math problems. One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation . Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds. Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer. Can you solve this difficult problem? -----Input----- Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows. The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$). -----Output----- For every test case, output the smallest possible value of $m$ such that equality holds. If the equality does not hold for any $m$, print $-1$ instead. We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$. -----Examples----- Input 5 10 8 10 10 10 42 20 16 1000000000000000000 0 Output 12 10 -1 24 1152921504606846976 -----Note----- In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$. In the second example, $10 = 10$, so the answer is $10$. In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.
t = int(input("")) for _ in range(t): n, x = [int(x) for x in input("").split(" ")] if x > n: print(-1) continue if x & n != x: print(-1) continue if x == n: print(n) continue s1 = bin(n)[2:] s2 = bin(x)[2:] s2 = "0" * (len(s1) - len(s2)) + s2 l = len(s1) left10 = -1 right11 = l + 1 for i in range(l): if s1[i] == "1" and s2[i] == "0": left10 = l - 1 - i break for i in range(l - 1, -1, -1): if s1[i] == "1" and s2[i] == "1": right11 = l - 1 - i break if left10 == -1: print(n) continue if right11 <= left10 + 1: print(-1) continue z = 1 << left10 + 1 print((n & -z) + z)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING STRING IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP STRING BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR STRING VAR VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR
Petya and his friend, robot Petya++, like to solve exciting math problems. One day Petya++ came up with the numbers $n$ and $x$ and wrote the following equality on the board: $$n\ \&\ (n+1)\ \&\ \dots\ \&\ m = x,$$ where $\&$ denotes the bitwise AND operation . Then he suggested his friend Petya find such a minimal $m$ ($m \ge n$) that the equality on the board holds. Unfortunately, Petya couldn't solve this problem in his head and decided to ask for computer help. He quickly wrote a program and found the answer. Can you solve this difficult problem? -----Input----- Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 2000$). The description of the test cases follows. The only line of each test case contains two integers $n$, $x$ ($0\le n, x \le 10^{18}$). -----Output----- For every test case, output the smallest possible value of $m$ such that equality holds. If the equality does not hold for any $m$, print $-1$ instead. We can show that if the required $m$ exists, it does not exceed $5 \cdot 10^{18}$. -----Examples----- Input 5 10 8 10 10 10 42 20 16 1000000000000000000 0 Output 12 10 -1 24 1152921504606846976 -----Note----- In the first example, $10\ \&\ 11 = 10$, but $10\ \&\ 11\ \&\ 12 = 8$, so the answer is $12$. In the second example, $10 = 10$, so the answer is $10$. In the third example, we can see that the required $m$ does not exist, so we have to print $-1$.
def solve(): n, x = map(int, input().split()) if n == x: print(n) return for bitOff in range(70): bit = 1 << bitOff if not n & bit: continue tmpN = n for smallOff in range(bitOff - 1, -1, -1): smallBit = 1 << smallOff if tmpN & smallBit: tmpN ^= smallBit tmpN += bit result = n & tmpN for smallOff in range(bitOff, -1, -1): smallBit = 1 << smallOff if result & smallBit: result ^= smallBit if result == x: print(tmpN) return print(-1) def main(): cases = int(input()) for _ in range(cases): solve() main()
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR VAR RETURN FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR IF BIN_OP VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP NUMBER VAR IF BIN_OP VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP NUMBER VAR IF BIN_OP VAR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR RETURN EXPR FUNC_CALL VAR NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR
Fox Ciel wants to write a task for a programming contest. The task is: "You are given a simple undirected graph with n vertexes. Each its edge has unit length. You should calculate the number of shortest paths between vertex 1 and vertex 2." Same with some writers, she wants to make an example with some certain output: for example, her birthday or the number of her boyfriend. Can you help her to make a test case with answer equal exactly to k? -----Input----- The first line contains a single integer k (1 ≤ k ≤ 10^9). -----Output----- You should output a graph G with n vertexes (2 ≤ n ≤ 1000). There must be exactly k shortest paths between vertex 1 and vertex 2 of the graph. The first line must contain an integer n. Then adjacency matrix G with n rows and n columns must follow. Each element of the matrix must be 'N' or 'Y'. If G_{ij} is 'Y', then graph G has a edge connecting vertex i and vertex j. Consider the graph vertexes are numbered from 1 to n. The graph must be undirected and simple: G_{ii} = 'N' and G_{ij} = G_{ji} must hold. And there must be at least one path between vertex 1 and vertex 2. It's guaranteed that the answer exists. If there multiple correct answers, you can output any of them. -----Examples----- Input 2 Output 4 NNYY NNYY YYNN YYNN Input 9 Output 8 NNYYYNNN NNNNNYYY YNNNNYYY YNNNNYYY YNNNNYYY NYYYYNNN NYYYYNNN NYYYYNNN Input 1 Output 2 NY YN -----Note----- In first example, there are 2 shortest paths: 1-3-2 and 1-4-2. In second example, there are 9 shortest paths: 1-3-6-2, 1-3-7-2, 1-3-8-2, 1-4-6-2, 1-4-7-2, 1-4-8-2, 1-5-6-2, 1-5-7-2, 1-5-8-2.
k = int(input()) edges = [["N" for i in range(1010)] for j in range(1010)] vertices = 2 def add_edge(a, b): nonlocal edges edges[a][b] = edges[b][a] = "Y" for i in range(1, 29 + 1): vertices += 3 add_edge(i * 3, i * 3 - 1) add_edge(i * 3, i * 3 + 2) add_edge(i * 3 + 1, i * 3 - 1) add_edge(i * 3 + 1, i * 3 + 2) for bit in range(30): if 1 << bit & k: lst = 1 for i in range((29 - bit) * 2): vertices += 1 add_edge(lst, vertices) lst = vertices add_edge(lst, 3 * bit + 2) print(vertices) if 0: for i in range(1, vertices + 1): print(i, ":", "\n\t", end="") for j in range(1, vertices + 1): if edges[i][j] == "Y": print(j, end=" ") print("") else: print( "\n".join(map(lambda x: "".join(x[1 : vertices + 1]), edges[1 : vertices + 1])) )
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR STRING VAR FUNC_CALL VAR NUMBER VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FUNC_DEF ASSIGN VAR VAR VAR VAR VAR VAR STRING FOR VAR FUNC_CALL VAR NUMBER BIN_OP NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER BIN_OP BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER BIN_OP BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER IF BIN_OP BIN_OP NUMBER VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR IF NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR STRING STRING STRING FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR VAR STRING EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR FUNC_CALL STRING VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
a, b = map(lambda s: bin(int(s))[2:], input().split()) a0, a1 = a + "1", a.rstrip("0") if a == b or __import__("re").fullmatch(f"1*({a0}|{a1}|{a0[::-1]}|{a1[::-1]})1*", b): print("YES") else: print("NO")
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR STRING FUNC_CALL VAR STRING IF VAR VAR FUNC_CALL FUNC_CALL VAR STRING STRING VAR STRING VAR STRING VAR NUMBER STRING VAR NUMBER STRING VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
def check(a, b): if a not in b: return False left = b[: b.find(a)] right = b[b.find(a) + len(a) :] if "0" in left or "0" in right: return False return True x, y = map(int, input().split()) a = bin(x)[2:] b = bin(y)[2:] if a == b: print("YES") exit() if check(a + "1", b) or check(a.strip("0"), b): print("YES") elif check((a + "1")[::-1], b) or check(a.strip("0")[::-1], b): print("YES") else: print("NO")
FUNC_DEF IF VAR VAR RETURN NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF STRING VAR STRING VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR IF FUNC_CALL VAR BIN_OP VAR STRING VAR FUNC_CALL VAR FUNC_CALL VAR STRING VAR EXPR FUNC_CALL VAR STRING IF FUNC_CALL VAR BIN_OP VAR STRING NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR STRING NUMBER VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
x, y = [int(i) for i in input().split(" ")] ans = "NO" if x == y: print("YES") exit(0) bin_x, bin_y = str(bin(x))[2:], str(bin(y))[2:] try: i1 = bin_y.index(bin_x + "1") re = set(bin_y[:i1] + bin_y[i1 + len(bin_x) + 1 :]) if len(re) == 0 or len(re) == 1 and "1" in re: ans = "YES" except: pass try: i2 = bin_y.index((bin_x + "1")[::-1]) re = set(bin_y[:i2] + bin_y[i2 + len(bin_x) + 1 :]) if len(re) == 0 or len(re) == 1 and "1" in re: ans = "YES" except: pass bin_x = bin_x.strip("0") try: i3 = bin_y.index(bin_x) re = set(bin_y[:i3] + bin_y[i3 + len(bin_x) :]) if len(re) == 0 or len(re) == 1 and "1" in re: ans = "YES" except: pass try: i4 = bin_y.index(bin_x[::-1]) re = set(bin_y[:i4] + bin_y[i4 + len(bin_x) :]) if len(re) == 0 or len(re) == 1 and "1" in re: ans = "YES" except: pass print(ans)
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR STRING IF VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR STRING ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER STRING VAR ASSIGN VAR STRING ASSIGN VAR FUNC_CALL VAR BIN_OP VAR STRING NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER STRING VAR ASSIGN VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER STRING VAR ASSIGN VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER STRING VAR ASSIGN VAR STRING EXPR FUNC_CALL VAR VAR
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
def reverse(string): string = string[::-1] return string def b(n): return bin(n).replace("0b", "") def z(a): zeroes = 0 for i in a: if i == "0": zeroes += 1 return zeroes x, y = map(int, input().split()) x, y = b(x), b(y) if len(x) == len(y) and x in y: print("YES") elif x in y and z(x) == z(y) and (x[-1] == "0" and y[-1] == "0") == 0: print("YES") else: x1, x2, x3, cnt = reverse(x), reverse(x + "1"), "", 0 for i in x1: if i == "0": cnt += 1 else: break x1 = x1[cnt:] x3 = reverse(x1) if len(x1) == len(y) and x1 in y: print("YES") elif len(x2) == len(y) and x2 in y: print("YES") elif len(x3) == len(y) and x3 in y: print("YES") elif x3 in y and z(x3) == z(y) and (x3[-1] == "0" and y[-1] == "0") == 0: print("YES") elif x1 in y and z(x1) == z(y) and (x1[-1] == "0" and y[-1] == "0") == 0: print("YES") elif x2 in y and z(x2) == z(y) and (x2[-1] == "0" and y[-1] == "0") == 0: print("YES") else: print("NO")
FUNC_DEF ASSIGN VAR VAR NUMBER RETURN VAR FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR VAR STRING STRING FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING VAR NUMBER RETURN VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING IF VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR NUMBER STRING VAR NUMBER STRING NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR STRING STRING NUMBER FOR VAR VAR IF VAR STRING VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING IF VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR NUMBER STRING VAR NUMBER STRING NUMBER EXPR FUNC_CALL VAR STRING IF VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR NUMBER STRING VAR NUMBER STRING NUMBER EXPR FUNC_CALL VAR STRING IF VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR NUMBER STRING VAR NUMBER STRING NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
a, b = map(int, input().split()) s = bin(b)[2:] t = bin(a)[2:] if s == t: print("YES") exit(0) for q in [t + "1", t.strip("0")]: for l in range(len(s) - len(q) + 1): r = len(s) - len(q) - l if "1" * l + q + "1" * r == s or "1" * l + q[::-1] + "1" * r == s: print("YES") exit(0) print("NO")
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER FOR VAR LIST BIN_OP VAR STRING FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR IF BIN_OP BIN_OP BIN_OP STRING VAR VAR BIN_OP STRING VAR VAR BIN_OP BIN_OP BIN_OP STRING VAR VAR NUMBER BIN_OP STRING VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR STRING
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
def debin(s): ret = 0 mn = 1 for i in range(len(s) - 1, -1, -1): ret += int(s[i]) * mn mn *= 2 return ret st = set() def ch(x, y, deep): if x in st: return 0 st.add(x) if x == y: return 1 if deep == 150: return 0 s = bin(x)[2:] if ch(debin(s[::-1]), y, deep + 1) or ch(debin("1" + s[::-1]), y, deep + 1): return 1 return 0 x, y = map(int, input().split()) if ch(x, y, 0): print("YES") else: print("NO")
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER VAR BIN_OP FUNC_CALL VAR VAR VAR VAR VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_DEF IF VAR VAR RETURN NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR RETURN NUMBER IF VAR NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR BIN_OP STRING VAR NUMBER VAR BIN_OP VAR NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
x, y = [str(bin(int(i)))[2:] for i in input().split()] if x == y: print("YES") elif y[-1] == "0": print("NO") else: x += "1" if (y.find(x) != -1 or y.find(x[::-1]) != -1) and y.count("1") - x.count( "1" ) == len(y) - len(x): print("YES") else: x = x[:-1] while x[-1] == "0": x = x[:-1] ( print("YES") if (y.find(x) != -1 or y.find(x[::-1]) != -1) and y.count("1") - x.count("1") == len(y) - len(x) else print("NO") )
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR STRING IF VAR NUMBER STRING EXPR FUNC_CALL VAR STRING VAR STRING IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER BIN_OP FUNC_CALL VAR STRING FUNC_CALL VAR STRING BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR VAR NUMBER WHILE VAR NUMBER STRING ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER BIN_OP FUNC_CALL VAR STRING FUNC_CALL VAR STRING BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR STRING FUNC_CALL VAR STRING
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
import sys v = set() def bfs(n): if n in v: return v.add(n) if len(n) == len(bb): if n == bb: print("YES") sys.exit(0) elif n[0] == "1" and n[-1] == "1": bfs(n[::-1]) return elif len(n) > len(bb): if n[0] == "1" and n[-1] == "1": return p1, p2 = n + "1", n + "0" bfs(p1[::-1]) bfs(p2[::-1].lstrip("0")) a, b = map(int, input().split()) if a == b: print("YES") else: ba = bin(a)[2:] bb = bin(b)[2:] bfs(ba) print("NO")
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_DEF IF VAR VAR RETURN EXPR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER STRING VAR NUMBER STRING EXPR FUNC_CALL VAR VAR NUMBER RETURN IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER STRING VAR NUMBER STRING RETURN ASSIGN VAR VAR BIN_OP VAR STRING BIN_OP VAR STRING EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR NUMBER STRING ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
def check(s, t): idx = t.find(s) if idx != -1: lft = t[:idx] rght = t[idx + len(s) :] if lft.count("0") + rght.count("0") == 0: return True else: return False else: return False n, m = map(int, input().split()) sn = bin(n)[2:] sm = bin(m)[2:] if sn == sm: print("YES") exit() if sn[-1] != "0": sn_d = sn if check(sn_d, sm): print("YES") exit() sn_d = sn[::-1] if check(sn_d, sm): print("YES") exit() sn_d = sn + "1" if check(sn_d, sm): print("YES") exit() sn_d = "1" + sn[::-1] if check(sn_d, sm): print("YES") exit() sn_d = sn.rstrip("0") if check(sn_d, sm): print("YES") exit() sn_d = sn.rstrip("0")[::-1] if check(sn_d, sm): print("YES") exit() print("NO")
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR FUNC_CALL VAR VAR IF BIN_OP FUNC_CALL VAR STRING FUNC_CALL VAR STRING NUMBER RETURN NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR IF VAR NUMBER STRING ASSIGN VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR STRING IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP STRING VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR STRING
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
x, y = [int(i) for i in input().split(" ")] def solve(): if x == y: return True a = bin(x)[2:] b = bin(y)[2:] if x == 0: if b.count("0") == 1 and b[-1] != 0: return True else: return False n = len(a) for i in range(n - 1, -1, -1): if a[i] != "0": c = a[: i + 1] break p = [a, "1" + a[::-1], c, c[::-1]] def ck(aa, bb): mm, nn = len(aa), len(bb) if mm > nn: return False if mm == nn: return aa == bb if bb[-1] == "0": return False for i in range(nn - mm + 1): if bb[i] == "0": return False if bb[i : i + mm] == aa: if set(bb[i + mm :]) == set("1") or set(bb[i + mm :]) == set(): return True return False for i in p: if ck(i, b): return True return False if solve(): print("YES") else: print("NO")
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING FUNC_DEF IF VAR VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER IF FUNC_CALL VAR STRING NUMBER VAR NUMBER NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR STRING ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR LIST VAR BIN_OP STRING VAR NUMBER VAR VAR NUMBER FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR RETURN NUMBER IF VAR VAR RETURN VAR VAR IF VAR NUMBER STRING RETURN NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR STRING RETURN NUMBER IF VAR VAR BIN_OP VAR VAR VAR IF FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_CALL VAR STRING FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_CALL VAR RETURN NUMBER RETURN NUMBER FOR VAR VAR IF FUNC_CALL VAR VAR VAR RETURN NUMBER RETURN NUMBER IF FUNC_CALL VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
import sys inpu = sys.stdin.readline prin = sys.stdout.write x, y = map(int, inpu().split()) if y == x: print("YES") exit() x = bin(x)[2:] y = bin(y)[2:] ind = 0 for i in range(len(x)): if x[i] == "1": ind = i use = x[: ind + 1] if use in y: ind = y.index(use) if "0" not in y[:ind] and "0" not in y[ind + len(use) :]: print("YES") exit() use = use[::-1] if use in y: ind = y.index(use) if "0" not in y[:ind] and "0" not in y[ind + len(use) :]: print("YES") exit() use = x + "1" if use in y: ind = y.index(use) if "0" not in y[:ind] and "0" not in y[ind + len(use) :]: print("YES") exit() use = use[::-1] if use in y: ind = y.index(use) if "0" not in y[:ind] and "0" not in y[ind + len(use) :]: print("YES") exit() print("NO")
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF STRING VAR VAR STRING VAR BIN_OP VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF STRING VAR VAR STRING VAR BIN_OP VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR STRING IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF STRING VAR VAR STRING VAR BIN_OP VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF STRING VAR VAR STRING VAR BIN_OP VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR STRING
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
def work(a, b, l, r): for i in range(max(0, r - len(a)), min(l + 1, len(b) - len(a)) + 1): if a == b[i : i + len(a)]: print("YES") exit(0) [x, y] = map(int, input().split()) a, b, c = [1], [], [] while x: a.append(x % 2) c.append(x % 2) x //= 2 while y: b.append(y % 2) y //= 2 if c == b: print("YES") exit(0) c.reverse() while c[-1] == 0: c.pop() l = -1 r = len(b) while l + 1 < len(b) and b[l + 1] == 1: l += 1 while r - 1 >= 0 and b[r - 1] == 1: r -= 1 work(a, b, l, r) a.reverse() work(a, b, l, r) work(c, b, l, r) c.reverse() work(c, b, l, r) print("NO")
FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER ASSIGN LIST VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR LIST NUMBER LIST LIST WHILE VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER WHILE VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR WHILE VAR NUMBER NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER WHILE BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
L = input().split(" ") s1 = str(bin(int(L[0])))[2:] s2 = str(bin(int(L[1])))[2:] n1 = 0 n2 = 0 for i in range(len(s1)): if s1[i] == "0": n1 += 1 for i in range(len(s2)): if s2[i] == "0": n2 += 1 if s1 == s2: print("YES") else: if s1[-1] == "0": if n1 == n2: s1 += "1" else: while s1[-1] == "0": n1 -= 1 s1 = s1[:-1] if n1 != n2: print("NO") elif s2.find(s1) != -1 or s2.find(s1[::-1]) != -1: print("YES") else: print("NO")
ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR STRING IF VAR NUMBER STRING IF VAR VAR VAR STRING WHILE VAR NUMBER STRING VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR STRING IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
a, b = map(int, input().split()) sus = bin(int(bin(a)[2:][::-1], 2))[2:] sussy = (bin(a)[2:] + "1")[::-1] bb = bin(b)[2:] realsus = sus[::-1] realsussy = sussy[::-1] amogus = bin(b)[2:] great = True pos = -1 leng = 0 for i in [sus, sussy, realsus, realsussy]: lmao = False pos = amogus.find(i) leng = len(i) if pos == -1: lmao = True if pos != -1: c = bb[0:pos] + bb[pos + leng :] for i in range(len(c)): if c[i] != "1": lmao = True if lmao == False: great = False print("YES" if not great or a == b else "NO")
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER STRING NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR LIST VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR STRING STRING
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
def contain(a, b): if not "0" in b: if not "0" in a: if len(a) <= len(b): return True return False return False if not "0" in a: return False listA = list(a) listB = list(b) Aleft = 0 Aright = 0 Bleft = 0 Bright = 0 while listA[0] == "1": listA.remove("1") Aleft += 1 while listA[-1] == "1": listA.pop() Aright += 1 while listB[0] == "1": listB.remove("1") Bleft += 1 while listB[-1] == "1": listB.pop() Bright += 1 reA = listA.copy() reA.reverse() return ( listA == listB and Aleft <= Bleft and Aright <= Bright or reA == listB and Aright <= Bleft and Aleft <= Bright ) def find(x, y): a = bin(x)[2:] b = bin(y)[2:] if a == b: return True if a[-1] == "1": return contain(a, b) temp = list(a) while temp[-1] == "0": temp.pop() aa = "".join(temp) aaa = a + "1" return contain(aa, b) or contain(aaa, b) line = input().split() x = int(line[0]) y = int(line[1]) if find(x, y): print("YES") else: print("NO")
FUNC_DEF IF STRING VAR IF STRING VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR RETURN NUMBER RETURN NUMBER RETURN NUMBER IF STRING VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER STRING EXPR FUNC_CALL VAR STRING VAR NUMBER WHILE VAR NUMBER STRING EXPR FUNC_CALL VAR VAR NUMBER WHILE VAR NUMBER STRING EXPR FUNC_CALL VAR STRING VAR NUMBER WHILE VAR NUMBER STRING EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR RETURN VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR VAR RETURN NUMBER IF VAR NUMBER STRING RETURN FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR NUMBER STRING EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL STRING VAR ASSIGN VAR BIN_OP VAR STRING RETURN FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
x, y = map(int, input().split()) used = set() s = [x] f = False for _ in range(10000): if len(s) == 0: break a = s[0] del s[0] if a == y: f = True break b = bin(a).lstrip("0b") y1 = int("0b" + (b + "0")[::-1], 2) y2 = int("0b" + (b + "1")[::-1], 2) if y1 == y or y2 == y: f = True break if y1 not in used: used.add(y1) s.append(y1) if y2 not in used: used.add(y2) s.append(y2) if f: print("YES") else: print("NO")
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR VAR STRING ASSIGN VAR FUNC_CALL VAR BIN_OP STRING BIN_OP VAR STRING NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP STRING BIN_OP VAR STRING NUMBER NUMBER IF VAR VAR VAR VAR ASSIGN VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
import sys input = sys.stdin.readline x, y = map(int, input().split()) if x == y: ans = "YES" print(ans) exit() x = list(bin(x)[2:]) y = list(bin(y)[2:]) x.append("1") lx, ly = len(x), len(y) ans = "NO" for _ in range(2): for i in range(max(0, ly - lx + 1)): ok = 1 for j in range(lx): if not x[j] == y[i + j]: ok = 0 break if not ok: continue for j in range(i): if y[j] == "0": ok = 0 for j in range(i + lx, ly): if y[j] == "0": ok = 0 if ok: ans = "YES" x.reverse() x.pop() while x[-1] == "0": x.pop() lx = len(x) for _ in range(2): for i in range(max(0, ly - lx + 1)): ok = 1 for j in range(lx): if not x[j] == y[i + j]: ok = 0 break if not ok: continue for j in range(i): if y[j] == "0": ok = 0 for j in range(i + lx, ly): if y[j] == "0": ok = 0 if ok: ans = "YES" x.reverse() print(ans)
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR ASSIGN VAR STRING EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR STRING FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR NUMBER IF VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR IF VAR VAR STRING ASSIGN VAR NUMBER IF VAR ASSIGN VAR STRING EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR WHILE VAR NUMBER STRING EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR NUMBER IF VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR IF VAR VAR STRING ASSIGN VAR NUMBER IF VAR ASSIGN VAR STRING EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
from sys import stdin, stdout x, y = [int(z) for z in stdin.readline().split()] answer = "NO" if x == y: answer = "YES" x_reduced = x while x_reduced % 2 == 0: x_reduced = x_reduced // 2 y_bin = str(bin(y))[2:] x_reduced_bin = str(bin(x_reduced))[2:] if len(x_reduced_bin) <= len(y_bin): delta = len(y_bin) - len(x_reduced_bin) for i in range(delta + 1): candidate = "1" * i + x_reduced_bin + "1" * (delta - i) if candidate == y_bin: answer = "YES" x_reduced_bin = x_reduced_bin[::-1] if len(x_reduced_bin) <= len(y_bin): delta = len(y_bin) - len(x_reduced_bin) for i in range(delta + 1): candidate = "1" * i + x_reduced_bin + "1" * (delta - i) if candidate == y_bin: answer = "YES" x_reduced_bin = str(bin(x))[2:] + "1" if len(x_reduced_bin) <= len(y_bin): delta = len(y_bin) - len(x_reduced_bin) for i in range(delta + 1): candidate = "1" * i + x_reduced_bin + "1" * (delta - i) if candidate == y_bin: answer = "YES" x_reduced_bin = x_reduced_bin[::-1] if len(x_reduced_bin) <= len(y_bin): delta = len(y_bin) - len(x_reduced_bin) for i in range(delta + 1): candidate = "1" * i + x_reduced_bin + "1" * (delta - i) if candidate == y_bin: answer = "YES" stdout.write(answer + "\n")
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR STRING IF VAR VAR ASSIGN VAR STRING ASSIGN VAR VAR WHILE BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP STRING VAR VAR BIN_OP STRING BIN_OP VAR VAR IF VAR VAR ASSIGN VAR STRING ASSIGN VAR VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP STRING VAR VAR BIN_OP STRING BIN_OP VAR VAR IF VAR VAR ASSIGN VAR STRING ASSIGN VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER STRING IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP STRING VAR VAR BIN_OP STRING BIN_OP VAR VAR IF VAR VAR ASSIGN VAR STRING ASSIGN VAR VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP STRING VAR VAR BIN_OP STRING BIN_OP VAR VAR IF VAR VAR ASSIGN VAR STRING EXPR FUNC_CALL VAR BIN_OP VAR STRING
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
a, b = [int(i) for i in input().split(" ")] a = bin(a)[2:] b = bin(b)[2:] good = lambda a, b: b.replace(a, "", 1) == (len(b) - len(a)) * "1" check = a == b check = check or good(a + "1", b) check = check or good((a + "1")[::-1], b) while a[-1] == "0": a = a[:-1] check = check or good(a, b) check = check or good(a[::-1], b) if check: print("YES") else: print("NO")
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR STRING NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR STRING ASSIGN VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR BIN_OP VAR STRING VAR ASSIGN VAR VAR FUNC_CALL VAR BIN_OP VAR STRING NUMBER VAR WHILE VAR NUMBER STRING ASSIGN VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER VAR IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
a, b = map(int, input().split()) st = bin(a)[2:] ed = bin(b)[2:] if st == ed: print("YES") exit(0) s1 = st + "1" s2 = st.strip("0") for s in [s1, s2, s1[::-1], s2[::-1]]: for l in range(len(ed)): r = len(ed) - len(s) - l if r < 0: continue if "1" * l + s + "1" * r == ed: print("YES") exit(0) print("NO") exit(0)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR STRING ASSIGN VAR FUNC_CALL VAR STRING FOR VAR LIST VAR VAR VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER IF BIN_OP BIN_OP BIN_OP STRING VAR VAR BIN_OP STRING VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
x, y = map(int, input().split()) if x == y: print("YES") exit(0) s1, s2 = list(bin(x)[2:]), bin(y)[2:] s3 = bin(x)[2:] r_s3 = s3[::-1] while s1[-1] == "0": s1.pop() s1 = "".join(s1) r_s1 = s1[::-1] for i in range(len(s2) - len(s1) + 1): if ( s2[i : i + len(s1)] == s1 and s2[:i].count("0") == 0 and s2[i + len(s1) :].count("0") == 0 ): print("YES") exit(0) if ( s2[i : i + len(s1)] == r_s1 and s2[:i].count("0") == 0 and s2[i + len(s1) :].count("0") == 0 ): print("YES") exit(0) if s3 != s1: for i in range(len(s2) - len(s3) + 1): if ( s2[i : i + len(s3)] == s3 and s2[:i].count("0") == 0 and s2[i + len(s3) :].count("0") == 0 ): if s2[i + len(s3) :].count("1") != 0: print("YES") exit(0) if ( s2[i : i + len(s3)] == r_s3 and s2[:i].count("0") == 0 and s2[i + len(s3) :].count("0") == 0 ): print("YES") exit(0) print("NO")
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR NUMBER WHILE VAR NUMBER STRING EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL STRING VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER IF VAR VAR BIN_OP VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR STRING NUMBER FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR STRING NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER IF VAR VAR BIN_OP VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR STRING NUMBER FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR STRING NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER IF VAR VAR FOR VAR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER IF VAR VAR BIN_OP VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR STRING NUMBER FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR STRING NUMBER IF FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR STRING NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER IF VAR VAR BIN_OP VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR STRING NUMBER FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR STRING NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR STRING
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
x, y = map(int, input().split()) def check(x, y): b1, b2 = bin(x)[2:], bin(y)[2:] n = len(b2) if y == x: return True c1 = (b1 + "1")[::-1] c2 = b1[::-1].lstrip("0") c3 = c1[::-1] c4 = c2[::-1] for cand in [c1, c2, c3, c4]: m = len(cand) if m > n: continue for i in range(n - m + 1): if ( b2[i : i + m] == cand and b2[:i].count("0") == 0 and b2[i + m :].count("0") == 0 ): return True return False ans = check(x, y) if ans: print("YES") else: print("NO")
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR RETURN NUMBER ASSIGN VAR BIN_OP VAR STRING NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER STRING ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR LIST VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR BIN_OP VAR VAR VAR FUNC_CALL VAR VAR STRING NUMBER FUNC_CALL VAR BIN_OP VAR VAR STRING NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
x, y = map(int, input().split()) s = set() s.add(x) a = [x] for u in a: if u > 10**20: continue k = 2 * u + 0 b = bin(k)[2:][::-1] v = int(b, 2) if v not in s: s.add(v) a.append(v) k = 2 * u + 1 b = bin(k)[2:][::-1] v = int(b, 2) if v not in s: s.add(v) a.append(v) print("YES" if y in s else "NO")
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST VAR FOR VAR VAR IF VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING STRING
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
def solver(): first_num, second_num = map(int, input().split()) if first_num == second_num: print("YES") return 0 base_2_first_num_rev = "" base_2_second_num_rev = "" def div_mod2(a): return a // 2, a % 2 while first_num > 0: first_num, coef = div_mod2(first_num) base_2_first_num_rev += str(coef) while second_num > 0: second_num, coef = div_mod2(second_num) base_2_second_num_rev += str(coef) base_2_first_num, base_2_second_num = ( base_2_first_num_rev[::-1], base_2_second_num_rev[::-1], ) if base_2_second_num[-1] == "0": print("NO") return 0 n = len(base_2_first_num) n_1 = len(base_2_second_num) - n for i in range(n_1 + 1): check = base_2_second_num[i : i + n] not_until_now = base_2_second_num[i + n :] until_now = base_2_second_num[:i] if check == base_2_first_num_rev or check == base_2_first_num: if not ("0" in until_now or "0" in not_until_now): print("YES") return 0 while base_2_first_num[-1] == "0": base_2_first_num = base_2_first_num[:-1] base_2_first_num_rev = base_2_first_num_rev[1:] n = len(base_2_first_num) n_1 = len(base_2_second_num) - n for i in range(n_1 + 1): check = base_2_second_num[i : i + n] not_until_now = base_2_second_num[i + n :] until_now = base_2_second_num[:i] if check == base_2_first_num_rev or check == base_2_first_num: if not ("0" in until_now or "0" in not_until_now): print("YES") return 0 print("NO") return 0 solver()
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR STRING RETURN NUMBER ASSIGN VAR STRING ASSIGN VAR STRING FUNC_DEF RETURN BIN_OP VAR NUMBER BIN_OP VAR NUMBER WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER VAR NUMBER IF VAR NUMBER STRING EXPR FUNC_CALL VAR STRING RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR IF VAR VAR VAR VAR IF STRING VAR STRING VAR EXPR FUNC_CALL VAR STRING RETURN NUMBER WHILE VAR NUMBER STRING ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR IF VAR VAR VAR VAR IF STRING VAR STRING VAR EXPR FUNC_CALL VAR STRING RETURN NUMBER EXPR FUNC_CALL VAR STRING RETURN NUMBER EXPR FUNC_CALL VAR
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
a, b = list(map(int, input().strip().split())) a_str = "{0:b}".format(a) b_str = "{0:b}".format(b) a_str_1 = a_str + "1" a_str_rev = a_str[::-1].strip("0") a_str_rev_1 = a_str_1[::-1].strip("0") a_strs = [a_str.strip("0"), a_str_1, a_str_rev, a_str_rev_1] ans = a_str == b_str for string in a_strs: pos = b_str.find(string) if pos == -1: continue b = b_str[:pos] + b_str[pos + len(string) :] if b == "1" * len(b): ans = True break print("YES" if ans else "NO")
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL STRING VAR ASSIGN VAR FUNC_CALL STRING VAR ASSIGN VAR BIN_OP VAR STRING ASSIGN VAR FUNC_CALL VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR NUMBER STRING ASSIGN VAR LIST FUNC_CALL VAR STRING VAR VAR VAR ASSIGN VAR VAR VAR FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR FUNC_CALL VAR VAR IF VAR BIN_OP STRING FUNC_CALL VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR STRING STRING
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
import sys input = sys.stdin.readline def removeLeadingZeors(x): index = len(x) for i in range(len(x)): if x[i] == "1": index = i break return x[index:] def reverse(x): return x[::-1] def sumString(x): ans = 0 for i in x: ans += int(i) return ans def solve(x, y): if x == y: return True x = removeLeadingZeors(bin(x)[2:]) y = bin(y)[2:] test = set() temp = removeLeadingZeors(reverse(x)) test.add(temp) test.add(reverse(temp)) temp = reverse(x + "1") test.add(temp) test.add(reverse(temp)) lengthY = len(y) for i in test: temp = y.find(i) if temp != -1: length = len(i) if lengthY - length == sumString(y[:temp]) + sumString(y[temp + length :]): return True return False x, y = map(int, input().split()) if solve(x, y): print("YES") else: print("NO")
IMPORT ASSIGN VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR VAR RETURN VAR VAR FUNC_DEF RETURN VAR NUMBER FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR RETURN VAR FUNC_DEF IF VAR VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR STRING EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
def check_candidate(y, candidate): if candidate in y: a = set(list(y.replace(candidate, "", 1))) if len(a) == 1 and "1" in a: return True return False def slv(x, y): if x == y: return "YES" candidates = set() candidates.add(x + "1") candidates.add(x.rstrip("0")) if y in candidates or y[::-1] in candidates: return "YES" for candidate in candidates: if check_candidate(y, candidate): return "YES" if check_candidate(y, candidate[::-1]): return "YES" return "NO" x, y = [int(_) for _ in input().rstrip().split(" ")] y = bin(y)[2:] x = bin(x)[2:] print(slv(x, y))
FUNC_DEF IF VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR STRING NUMBER IF FUNC_CALL VAR VAR NUMBER STRING VAR RETURN NUMBER RETURN NUMBER FUNC_DEF IF VAR VAR RETURN STRING ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR STRING IF VAR VAR VAR NUMBER VAR RETURN STRING FOR VAR VAR IF FUNC_CALL VAR VAR VAR RETURN STRING IF FUNC_CALL VAR VAR VAR NUMBER RETURN STRING RETURN STRING ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
def solve(current, target): queue = [current] visited = set() while len(queue): currentNode = queue.pop(0) currentIdx = 0 while currentNode[currentIdx] == "0": currentIdx += 1 currentNode = currentNode[currentIdx:] if currentNode in visited: continue visited.add(currentNode) if currentNode == target: return "YES" newStringOne, newStringTwo = currentNode, currentNode + "1" if len(currentNode) <= len(target): queue.append(newStringTwo[::-1]) queue.append(newStringOne[::-1]) return "NO" x, y = map(int, input().split()) result = solve("{0:b}".format(x), "{0:b}".format(y)) print(result)
FUNC_DEF ASSIGN VAR LIST VAR ASSIGN VAR FUNC_CALL VAR WHILE FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR STRING VAR NUMBER ASSIGN VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR IF VAR VAR RETURN STRING ASSIGN VAR VAR VAR BIN_OP VAR STRING IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER RETURN STRING ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL STRING VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR VAR
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
def check(s1, s2): index = s2.find(s1) return ( False if index == -1 else s2 == "1" * index + s1 + "1" * (len(s2) - index - len(s1)) ) x, y = map(int, input().split()) if y % 2 == 0: print("YES" if y == x else "NO") elif x % 2: print( "YES" if check(bin(x)[2:], bin(y)[2:]) or check(bin(x)[2:][::-1], bin(y)[2:]) else "NO" ) else: a = check(bin(x)[2:] + "1", bin(y)[2:]) or check( (bin(x)[2:] + "1")[::-1], bin(y)[2:] ) xb = bin(x)[2:] while xb[-1] == "0": xb = xb[:-1] b = check(xb, bin(y)[2:]) or check(xb[::-1], bin(y)[2:]) print("YES" if a or b else "NO")
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR RETURN VAR NUMBER NUMBER VAR BIN_OP BIN_OP BIN_OP STRING VAR VAR BIN_OP STRING BIN_OP BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR STRING STRING IF BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER NUMBER FUNC_CALL VAR VAR NUMBER STRING STRING ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER STRING FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER STRING NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER WHILE VAR NUMBER STRING ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR STRING STRING
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
x, y = [int(x) for x in input().split()] if x == y: print("YES") exit() a, b = bin(x), bin(y) a = a.replace("0b", "") b = b.replace("0b", "") if b[-1] == "0": print("NO") exit() if a in b and a.count("0") == b.count("0"): print("YES") exit() b = b[::-1] if a in b and a.count("0") == b.count("0"): print("YES") exit() while a[-1] == "0": a = a[: len(a) - 1] if a in b and a.count("0") == b.count("0"): print("YES") exit() b = b[::-1] if a in b and a.count("0") == b.count("0"): print("YES") else: print("NO")
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR STRING STRING ASSIGN VAR FUNC_CALL VAR STRING STRING IF VAR NUMBER STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR IF VAR VAR FUNC_CALL VAR STRING FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER IF VAR VAR FUNC_CALL VAR STRING FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR WHILE VAR NUMBER STRING ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR FUNC_CALL VAR STRING FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER IF VAR VAR FUNC_CALL VAR STRING FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
def sol(t, s): pos = t.find(s) while pos != -1: x = t[:pos] y = t[pos + len(s) :] if "0" not in x and "0" not in y: return True pos = t.find(s, pos + 1) return False def solve(): [x, y] = [int(a) for a in input().split()] if x == y: print("YES") return s = list(bin(x)[2:]) t = bin(y)[2:] s1 = list(bin(x)[2:]) while s1[-1] == "0": s1.pop() s2 = None if s[-1] == "0": s2 = s s2.append("1") if sol(t, "".join(s1)): print("YES") return if s2 is not None and sol(t, "".join(s2)): print("YES") return s3 = [x for x in s1] s3.reverse() if s2 is not None: s4 = [x for x in s2] else: s4 = None if sol(t, "".join(s3)): print("YES") return if s4 is not None: s4.reverse() if s4 is not None and sol(t, "".join(s4)): print("YES") return print("NO") solve()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR FUNC_CALL VAR VAR IF STRING VAR STRING VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER RETURN NUMBER FUNC_DEF ASSIGN LIST VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR STRING RETURN ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER WHILE VAR NUMBER STRING EXPR FUNC_CALL VAR ASSIGN VAR NONE IF VAR NUMBER STRING ASSIGN VAR VAR EXPR FUNC_CALL VAR STRING IF FUNC_CALL VAR VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR STRING RETURN IF VAR NONE FUNC_CALL VAR VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR STRING RETURN ASSIGN VAR VAR VAR VAR EXPR FUNC_CALL VAR IF VAR NONE ASSIGN VAR VAR VAR VAR ASSIGN VAR NONE IF FUNC_CALL VAR VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR STRING RETURN IF VAR NONE EXPR FUNC_CALL VAR IF VAR NONE FUNC_CALL VAR VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR STRING RETURN EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
def check(a, b): if a[-1] == "0": return False rev = a[::-1] for i in range(len(b) - len(a) + 1): if rev == b[i : i + len(a)] or a == b[i : i + len(a)]: j, k, valid = i, i + len(a), True while j >= 0: if b[j] == "0": valid = False break j -= 1 while k < len(b): if b[k] == "0": valid = False break k += 1 if valid: return True return False a, b = map(int, input().split()) a, b = bin(a)[2:], bin(b)[2:] if a == b or a + "1" == b or check(a, b) or check(a + "1", b) or check(a.strip("0"), b): print("YES") else: print("NO")
FUNC_DEF IF VAR NUMBER STRING RETURN NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR BIN_OP VAR FUNC_CALL VAR VAR NUMBER WHILE VAR NUMBER IF VAR VAR STRING ASSIGN VAR NUMBER VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR NUMBER VAR NUMBER IF VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER IF VAR VAR BIN_OP VAR STRING VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR BIN_OP VAR STRING VAR FUNC_CALL VAR FUNC_CALL VAR STRING VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
def f(s, y): if s in y: i = y.index(s) for j in range(0, i): if y[j] != "1": return False for j in range(i + len(s), len(y)): if y[j] != "1": return False return True return False x, y = map(int, input().split()) x = bin(x)[2:] y = bin(y)[2:] i = 0 j = x.rfind("1") s = x[i : j + 1] s1 = s[::-1] s3 = x + "1" s4 = s3[::-1] if x == y or f(s, y) or f(s1, y) or f(s3, y) or f(s4, y): print("YES") else: print("NO")
FUNC_DEF IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR STRING RETURN NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR STRING RETURN NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR STRING ASSIGN VAR VAR NUMBER IF VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
x, y = map(int, input().split()) x = str(bin(x))[2:] y = str(bin(y))[2:] x1, x2 = x.rstrip("0"), x + "1" if x == y or __import__("re").fullmatch(f"1*({x1}|{x2}|{x1[::-1]}|{x2[::-1]})1*", y): print("YES") else: print("NO")
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR STRING BIN_OP VAR STRING IF VAR VAR FUNC_CALL FUNC_CALL VAR STRING STRING VAR STRING VAR STRING VAR NUMBER STRING VAR NUMBER STRING VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
def check(first, second): idx = second.find(first) if idx == -1: return False return "0" not in second[:idx] and "0" not in second[idx + len(first) :] def solve(x, y): if x == y: return True x_bin = bin(x)[2:] y_bin = bin(y)[2:] first = "1" + x_bin[::-1] second = x_bin[: x_bin.rfind("1") + 1] return any(check(s, y_bin) for s in [first, first[::-1], second, second[::-1]]) x, y = map(int, input().split()) print("YES" if solve(x, y) else "NO")
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER RETURN NUMBER RETURN STRING VAR VAR STRING VAR BIN_OP VAR FUNC_CALL VAR VAR FUNC_DEF IF VAR VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP STRING VAR NUMBER ASSIGN VAR VAR BIN_OP FUNC_CALL VAR STRING NUMBER RETURN FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR LIST VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR STRING STRING
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
a, b = map(int, input().split()) a = str(bin(a)[2:]) b = str(bin(b)[2:]) if b[-1] == "0" and a != b: print("NO") exit() elif a == b: print("YES") exit() x1 = "" flag = False for el in a[::-1]: if el == "1": flag = True x1 += el if el == "0": if flag: x1 += el x2 = "1" + a[::-1] if x1 in b: y1 = b[: b.find(x1)] + b[b.find(x1) + len(x1) :] if y1.count("0") == 0: print("YES") exit() x1 = x1[::-1] if x1 in b: y1 = b[: b.find(x1)] + b[b.find(x1) + len(x1) :] if y1.count("0") == 0: print("YES") exit() x1 = x2 if x1 in b: y1 = b[: b.find(x1)] + b[b.find(x1) + len(x1) :] if y1.count("0") == 0: print("YES") exit() x1 = x1[::-1] if x1 in b: y1 = b[: b.find(x1)] + b[b.find(x1) + len(x1) :] if y1.count("0") == 0: print("YES") exit() print("NO")
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER STRING VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR VAR NUMBER IF VAR STRING ASSIGN VAR NUMBER VAR VAR IF VAR STRING IF VAR VAR VAR ASSIGN VAR BIN_OP STRING VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR STRING NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR STRING NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR STRING NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR STRING NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR STRING
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
a, b = map(int, input().split()) x = bin(a)[2:] y = bin(b)[2:] def add0(s): while s[-1] == "0": s = s[0 : len(s) - 1] return s[::-1] def add1(s): s += "1" return s[::-1] v = [] check = [] v.append(x) check.append(x) ans = False while len(v) > 0: t = v[0] del v[0] if t == y: ans = True break else: q = add0(t) if len(q) < 65 and q not in check: v.append(q) check.append(q) q = add1(t) if len(q) < 65 and q not in check: v.append(q) check.append(q) if ans: print("YES") else: print("NO")
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER FUNC_DEF WHILE VAR NUMBER STRING ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER RETURN VAR NUMBER FUNC_DEF VAR STRING RETURN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
def check(s: str, t: str): index = s.find(t) return ( False if index == -1 else s == "1" * index + t + "1" * (len(s) - index - len(t)) ) def CF_760(x, y): if x == y: return True if y % 2 == 0: return False binX = bin(x)[2:] binY = bin(y)[2:] if x % 2: return check(binY, binX) or check(binY, binX[::-1]) binXbina0 = binX[: binX.rfind("1") + 1] return ( check(binY, binX) or check(binY, binX[::-1]) or check(binY, binXbina0) or check(binY, binXbina0[::-1]) ) print("YES" if CF_760(*map(int, input().split())) else "NO")
FUNC_DEF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR RETURN VAR NUMBER NUMBER VAR BIN_OP BIN_OP BIN_OP STRING VAR VAR BIN_OP STRING BIN_OP BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FUNC_DEF IF VAR VAR RETURN NUMBER IF BIN_OP VAR NUMBER NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR NUMBER RETURN FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP FUNC_CALL VAR STRING NUMBER RETURN FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING STRING
You are given two positive integers $x$ and $y$. You can perform the following operation with $x$: write it in its binary form without leading zeros, add $0$ or $1$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $x$. For example: $34$ can be turned into $81$ via one operation: the binary form of $34$ is $100010$, if you add $1$, reverse it and remove leading zeros, you will get $1010001$, which is the binary form of $81$. $34$ can be turned into $17$ via one operation: the binary form of $34$ is $100010$, if you add $0$, reverse it and remove leading zeros, you will get $10001$, which is the binary form of $17$. $81$ can be turned into $69$ via one operation: the binary form of $81$ is $1010001$, if you add $0$, reverse it and remove leading zeros, you will get $1000101$, which is the binary form of $69$. $34$ can be turned into $69$ via two operations: first you turn $34$ into $81$ and then $81$ into $69$. Your task is to find out whether $x$ can be turned into $y$ after a certain number of operations (possibly zero). -----Input----- The only line of the input contains two integers $x$ and $y$ ($1 \le x, y \le 10^{18}$). -----Output----- Print YES if you can make $x$ equal to $y$ and NO if you can't. -----Examples----- Input 3 3 Output YES Input 7 4 Output NO Input 2 8 Output NO Input 34 69 Output YES Input 8935891487501725 71487131900013807 Output YES -----Note----- In the first example, you don't even need to do anything. The fourth example is described in the statement.
def prov(z, x): l = len(x) m = len(z) e = 0 for i in range(l - m + 1): if z == x[i : m + i]: e = 1 x = x[:i] + x[m + i :] break if e == 1: for i in x: if i == "0": e = -1 break return e a = [] x, y = map(int, input().split()) z = str(bin(x))[2:] zz = z + "1" while z[-1] == "0": z = z[:-1] a.append(z) a.append(zz) a.append(zz[::-1]) a.append(z[::-1]) v = str(bin(y))[2:] t = 0 for i in a: if prov(i, v) == 1: t = 1 break if x == y: print("YES") elif t == 1: print("YES") else: print("NO")
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR IF VAR NUMBER FOR VAR VAR IF VAR STRING ASSIGN VAR NUMBER RETURN VAR ASSIGN VAR LIST ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR STRING WHILE VAR NUMBER STRING ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
Let a and b be binary numbers of length n (MSB to the left). The following commands may be performed: set_a idx x: Set $a[i dx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $a[i dx]$ is $\text{id}x^{\text{th}}$ least significant bit of $a$. set_b idx x: Set $b[idx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $b[idx]$ is $\text{id}x^{\text{th}}$ least significant bit of $\boldsymbol{b}$. get_c idx: Print $c[idx]$, where $c[idx]=a[idx]+b[idx]$ and $0\leq idx\leq n+1$. Given $a,b$, and a list of commands, create a string made of the results of each $\text{get_c}$ call, the only command that produces output. For example, $\boldsymbol{a}=\boldsymbol{000}$ and $b=111$ so the length of the numbers is $n=3$. Print an answer string that contains the results of all commands on one line. A series of commands and their results follow: Starting ans = '' (empty string) a b 000 111 set_a 1 1 010 111 set_b 0 1 010 111 get_c 3 a + b = 1001 ans = '1' 010 111 get_c 4 a + b = 01001 ans = '10' Note: When the command is get_c 4, $\textbf{C}$ had to be padded to the left with a $0$ to be long enough to return a value. Function Description Complete the changeBits function in the editor below. For each get_c command, it should print either a 0 or a 1 without a newline until all commands have been processed. At that point, add a newline. changeBits has the following parameters: - a, b: two integers represented as binary strings - queries[queries[0]-queries[n-1]]: an array of query strings in the format described Input Format The first line of input contains two space-separated integers, $n$ and $\textit{q}$, the length of the binary representations of $a$ and $\boldsymbol{b}$, and the number of commands, respectively. The second and third lines each contain a string representation of $a$ and $\boldsymbol{b}$. The following $\textit{q}$ lines each contain a command string $\textit{queries}[i]$ as described above. Constraints $1\leq n\leq1000000$ $1\leq q\leq5000000$ Output Format For each query of the type $\text{get_c}$, output a single digit 0 or 1. Output must be placed on a single line. Sample Input 0 5 5 00000 11111 set_a 0 1 get_c 5 get_c 1 set_b 2 0 get_c 5 Sample Output 0 100 Explanation 0 set_a 0 1 sets 00000 to 00001 C = A + B = 00001 + 11111 = 100000, so get_c[5] = 1 from the above computation get_c[1] = 0 set_b 2 0 sets 11111 to 11011 C = A + B = 00001 + 11011 = 011100, so get_c[5] = 0 The output is hence concatenation of 1, 0 and 0 = 100
N, Q = [int(x) for x in input().strip().split(" ")] A = int(input(), 2) B = int(input(), 2) s = "" for q in range(0, Q): a = input().split(" ") if a[0] == "set_a": mask = 1 << int(a[1]) if a[2] == "1": A |= mask else: A &= ~mask elif a[0] == "set_b": mask = 1 << int(a[1]) if a[2] == "1": B |= mask else: B &= ~mask else: mask = 1 << int(a[1]) if A + B & mask: s += "1" else: s += "0" print(s)
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING IF VAR NUMBER STRING ASSIGN VAR BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER IF VAR NUMBER STRING VAR VAR VAR VAR IF VAR NUMBER STRING ASSIGN VAR BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER IF VAR NUMBER STRING VAR VAR VAR VAR ASSIGN VAR BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER IF BIN_OP BIN_OP VAR VAR VAR VAR STRING VAR STRING EXPR FUNC_CALL VAR VAR
Let a and b be binary numbers of length n (MSB to the left). The following commands may be performed: set_a idx x: Set $a[i dx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $a[i dx]$ is $\text{id}x^{\text{th}}$ least significant bit of $a$. set_b idx x: Set $b[idx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $b[idx]$ is $\text{id}x^{\text{th}}$ least significant bit of $\boldsymbol{b}$. get_c idx: Print $c[idx]$, where $c[idx]=a[idx]+b[idx]$ and $0\leq idx\leq n+1$. Given $a,b$, and a list of commands, create a string made of the results of each $\text{get_c}$ call, the only command that produces output. For example, $\boldsymbol{a}=\boldsymbol{000}$ and $b=111$ so the length of the numbers is $n=3$. Print an answer string that contains the results of all commands on one line. A series of commands and their results follow: Starting ans = '' (empty string) a b 000 111 set_a 1 1 010 111 set_b 0 1 010 111 get_c 3 a + b = 1001 ans = '1' 010 111 get_c 4 a + b = 01001 ans = '10' Note: When the command is get_c 4, $\textbf{C}$ had to be padded to the left with a $0$ to be long enough to return a value. Function Description Complete the changeBits function in the editor below. For each get_c command, it should print either a 0 or a 1 without a newline until all commands have been processed. At that point, add a newline. changeBits has the following parameters: - a, b: two integers represented as binary strings - queries[queries[0]-queries[n-1]]: an array of query strings in the format described Input Format The first line of input contains two space-separated integers, $n$ and $\textit{q}$, the length of the binary representations of $a$ and $\boldsymbol{b}$, and the number of commands, respectively. The second and third lines each contain a string representation of $a$ and $\boldsymbol{b}$. The following $\textit{q}$ lines each contain a command string $\textit{queries}[i]$ as described above. Constraints $1\leq n\leq1000000$ $1\leq q\leq5000000$ Output Format For each query of the type $\text{get_c}$, output a single digit 0 or 1. Output must be placed on a single line. Sample Input 0 5 5 00000 11111 set_a 0 1 get_c 5 get_c 1 set_b 2 0 get_c 5 Sample Output 0 100 Explanation 0 set_a 0 1 sets 00000 to 00001 C = A + B = 00001 + 11111 = 100000, so get_c[5] = 1 from the above computation get_c[1] = 0 set_b 2 0 sets 11111 to 11011 C = A + B = 00001 + 11011 = 011100, so get_c[5] = 0 The output is hence concatenation of 1, 0 and 0 = 100
length, queries = input().strip().split(" ") length = int(length) a = int(input().strip(), 2) b = int(input().strip(), 2) output = "" for i in range(int(queries)): line = input().split(" ") q = line[0] index = int(line[1]) if q == "set_a": bit = int(line[2]) val = 1 << index a = a | val if bit else a & ~val elif q == "set_b": bit = int(line[2]) val = 1 << index b = b | val if bit else b & ~val else: c = a + b output += "1" if c & 1 << index else "0" print(output)
ASSIGN VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR ASSIGN VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR IF VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR ASSIGN VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR BIN_OP NUMBER VAR STRING STRING EXPR FUNC_CALL VAR VAR
Let a and b be binary numbers of length n (MSB to the left). The following commands may be performed: set_a idx x: Set $a[i dx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $a[i dx]$ is $\text{id}x^{\text{th}}$ least significant bit of $a$. set_b idx x: Set $b[idx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $b[idx]$ is $\text{id}x^{\text{th}}$ least significant bit of $\boldsymbol{b}$. get_c idx: Print $c[idx]$, where $c[idx]=a[idx]+b[idx]$ and $0\leq idx\leq n+1$. Given $a,b$, and a list of commands, create a string made of the results of each $\text{get_c}$ call, the only command that produces output. For example, $\boldsymbol{a}=\boldsymbol{000}$ and $b=111$ so the length of the numbers is $n=3$. Print an answer string that contains the results of all commands on one line. A series of commands and their results follow: Starting ans = '' (empty string) a b 000 111 set_a 1 1 010 111 set_b 0 1 010 111 get_c 3 a + b = 1001 ans = '1' 010 111 get_c 4 a + b = 01001 ans = '10' Note: When the command is get_c 4, $\textbf{C}$ had to be padded to the left with a $0$ to be long enough to return a value. Function Description Complete the changeBits function in the editor below. For each get_c command, it should print either a 0 or a 1 without a newline until all commands have been processed. At that point, add a newline. changeBits has the following parameters: - a, b: two integers represented as binary strings - queries[queries[0]-queries[n-1]]: an array of query strings in the format described Input Format The first line of input contains two space-separated integers, $n$ and $\textit{q}$, the length of the binary representations of $a$ and $\boldsymbol{b}$, and the number of commands, respectively. The second and third lines each contain a string representation of $a$ and $\boldsymbol{b}$. The following $\textit{q}$ lines each contain a command string $\textit{queries}[i]$ as described above. Constraints $1\leq n\leq1000000$ $1\leq q\leq5000000$ Output Format For each query of the type $\text{get_c}$, output a single digit 0 or 1. Output must be placed on a single line. Sample Input 0 5 5 00000 11111 set_a 0 1 get_c 5 get_c 1 set_b 2 0 get_c 5 Sample Output 0 100 Explanation 0 set_a 0 1 sets 00000 to 00001 C = A + B = 00001 + 11111 = 100000, so get_c[5] = 1 from the above computation get_c[1] = 0 set_b 2 0 sets 11111 to 11011 C = A + B = 00001 + 11011 = 011100, so get_c[5] = 0 The output is hence concatenation of 1, 0 and 0 = 100
n, q = input().split() n, q = int(n), int(q) result = "" if n >= 1 and n <= 100000 and q >= 1 and q <= 500000: a = input() if len(a) == n: b = input() if len(b) == n: a = int(a, 2) b = int(b, 2) for i in range(q): command = input().split() if command[0] == "set_a": num = 1 << int(command[1]) if int(command[2]): a = a | num else: a = a & ~num elif command[0] == "set_b": num = 1 << int(command[1]) if int(command[2]): b = b | num else: b = b & ~num else: c = a + b result += str(int(bool(c & 1 << int(command[1])))) print(result)
ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR STRING IF VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER STRING ASSIGN VAR BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER STRING ASSIGN VAR BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
Let a and b be binary numbers of length n (MSB to the left). The following commands may be performed: set_a idx x: Set $a[i dx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $a[i dx]$ is $\text{id}x^{\text{th}}$ least significant bit of $a$. set_b idx x: Set $b[idx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $b[idx]$ is $\text{id}x^{\text{th}}$ least significant bit of $\boldsymbol{b}$. get_c idx: Print $c[idx]$, where $c[idx]=a[idx]+b[idx]$ and $0\leq idx\leq n+1$. Given $a,b$, and a list of commands, create a string made of the results of each $\text{get_c}$ call, the only command that produces output. For example, $\boldsymbol{a}=\boldsymbol{000}$ and $b=111$ so the length of the numbers is $n=3$. Print an answer string that contains the results of all commands on one line. A series of commands and their results follow: Starting ans = '' (empty string) a b 000 111 set_a 1 1 010 111 set_b 0 1 010 111 get_c 3 a + b = 1001 ans = '1' 010 111 get_c 4 a + b = 01001 ans = '10' Note: When the command is get_c 4, $\textbf{C}$ had to be padded to the left with a $0$ to be long enough to return a value. Function Description Complete the changeBits function in the editor below. For each get_c command, it should print either a 0 or a 1 without a newline until all commands have been processed. At that point, add a newline. changeBits has the following parameters: - a, b: two integers represented as binary strings - queries[queries[0]-queries[n-1]]: an array of query strings in the format described Input Format The first line of input contains two space-separated integers, $n$ and $\textit{q}$, the length of the binary representations of $a$ and $\boldsymbol{b}$, and the number of commands, respectively. The second and third lines each contain a string representation of $a$ and $\boldsymbol{b}$. The following $\textit{q}$ lines each contain a command string $\textit{queries}[i]$ as described above. Constraints $1\leq n\leq1000000$ $1\leq q\leq5000000$ Output Format For each query of the type $\text{get_c}$, output a single digit 0 or 1. Output must be placed on a single line. Sample Input 0 5 5 00000 11111 set_a 0 1 get_c 5 get_c 1 set_b 2 0 get_c 5 Sample Output 0 100 Explanation 0 set_a 0 1 sets 00000 to 00001 C = A + B = 00001 + 11111 = 100000, so get_c[5] = 1 from the above computation get_c[1] = 0 set_b 2 0 sets 11111 to 11011 C = A + B = 00001 + 11011 = 011100, so get_c[5] = 0 The output is hence concatenation of 1, 0 and 0 = 100
import sys def main(): parameters = input().split() bitLength = int(parameters[0]) numQueries = int(parameters[1]) numA = int(input(), 2) numB = int(input(), 2) for queryNum in range(numQueries): query = input().split() command = query[0] index = int(query[1]) if command == "set_a": set = query[2] if set == "1": numA = setBit(numA, index) else: numA = clearBit(numA, index) elif command == "set_b": set = query[2] if set == "1": numB = setBit(numB, index) else: numB = clearBit(numB, index) elif command == "get_c": bit = testBit(numA + numB, index) sys.stdout.write(bit) def testBit(number, offset): mask = 1 << offset if number & mask: return "1" else: return "0" def setBit(number, offset): mask = 1 << offset return number | mask def clearBit(number, offset): mask = ~(1 << offset) return number & mask main()
IMPORT FUNC_DEF ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR STRING ASSIGN VAR VAR NUMBER IF VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR STRING ASSIGN VAR VAR NUMBER IF VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR STRING ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR BIN_OP NUMBER VAR IF BIN_OP VAR VAR RETURN STRING RETURN STRING FUNC_DEF ASSIGN VAR BIN_OP NUMBER VAR RETURN BIN_OP VAR VAR FUNC_DEF ASSIGN VAR BIN_OP NUMBER VAR RETURN BIN_OP VAR VAR EXPR FUNC_CALL VAR
Let a and b be binary numbers of length n (MSB to the left). The following commands may be performed: set_a idx x: Set $a[i dx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $a[i dx]$ is $\text{id}x^{\text{th}}$ least significant bit of $a$. set_b idx x: Set $b[idx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $b[idx]$ is $\text{id}x^{\text{th}}$ least significant bit of $\boldsymbol{b}$. get_c idx: Print $c[idx]$, where $c[idx]=a[idx]+b[idx]$ and $0\leq idx\leq n+1$. Given $a,b$, and a list of commands, create a string made of the results of each $\text{get_c}$ call, the only command that produces output. For example, $\boldsymbol{a}=\boldsymbol{000}$ and $b=111$ so the length of the numbers is $n=3$. Print an answer string that contains the results of all commands on one line. A series of commands and their results follow: Starting ans = '' (empty string) a b 000 111 set_a 1 1 010 111 set_b 0 1 010 111 get_c 3 a + b = 1001 ans = '1' 010 111 get_c 4 a + b = 01001 ans = '10' Note: When the command is get_c 4, $\textbf{C}$ had to be padded to the left with a $0$ to be long enough to return a value. Function Description Complete the changeBits function in the editor below. For each get_c command, it should print either a 0 or a 1 without a newline until all commands have been processed. At that point, add a newline. changeBits has the following parameters: - a, b: two integers represented as binary strings - queries[queries[0]-queries[n-1]]: an array of query strings in the format described Input Format The first line of input contains two space-separated integers, $n$ and $\textit{q}$, the length of the binary representations of $a$ and $\boldsymbol{b}$, and the number of commands, respectively. The second and third lines each contain a string representation of $a$ and $\boldsymbol{b}$. The following $\textit{q}$ lines each contain a command string $\textit{queries}[i]$ as described above. Constraints $1\leq n\leq1000000$ $1\leq q\leq5000000$ Output Format For each query of the type $\text{get_c}$, output a single digit 0 or 1. Output must be placed on a single line. Sample Input 0 5 5 00000 11111 set_a 0 1 get_c 5 get_c 1 set_b 2 0 get_c 5 Sample Output 0 100 Explanation 0 set_a 0 1 sets 00000 to 00001 C = A + B = 00001 + 11111 = 100000, so get_c[5] = 1 from the above computation get_c[1] = 0 set_b 2 0 sets 11111 to 11011 C = A + B = 00001 + 11011 = 011100, so get_c[5] = 0 The output is hence concatenation of 1, 0 and 0 = 100
n, q = [int(x) for x in input().strip().split(" ")] a = int(input().strip(), 2) b = int(input().strip(), 2) def set_bit(num, idx, val): mask = 1 << idx return num | mask if val else num & ~mask for i in range(q): line = input().strip().split(" ") idx = int(line[1]) if len(line) == 2: print(a + b >> idx & 1, end="") else: val = int(line[2]) if line[0] == "set_a": a = set_bit(a, idx, val) else: b = set_bit(b, idx, val)
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR NUMBER FUNC_DEF ASSIGN VAR BIN_OP NUMBER VAR RETURN VAR BIN_OP VAR VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR
Let a and b be binary numbers of length n (MSB to the left). The following commands may be performed: set_a idx x: Set $a[i dx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $a[i dx]$ is $\text{id}x^{\text{th}}$ least significant bit of $a$. set_b idx x: Set $b[idx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $b[idx]$ is $\text{id}x^{\text{th}}$ least significant bit of $\boldsymbol{b}$. get_c idx: Print $c[idx]$, where $c[idx]=a[idx]+b[idx]$ and $0\leq idx\leq n+1$. Given $a,b$, and a list of commands, create a string made of the results of each $\text{get_c}$ call, the only command that produces output. For example, $\boldsymbol{a}=\boldsymbol{000}$ and $b=111$ so the length of the numbers is $n=3$. Print an answer string that contains the results of all commands on one line. A series of commands and their results follow: Starting ans = '' (empty string) a b 000 111 set_a 1 1 010 111 set_b 0 1 010 111 get_c 3 a + b = 1001 ans = '1' 010 111 get_c 4 a + b = 01001 ans = '10' Note: When the command is get_c 4, $\textbf{C}$ had to be padded to the left with a $0$ to be long enough to return a value. Function Description Complete the changeBits function in the editor below. For each get_c command, it should print either a 0 or a 1 without a newline until all commands have been processed. At that point, add a newline. changeBits has the following parameters: - a, b: two integers represented as binary strings - queries[queries[0]-queries[n-1]]: an array of query strings in the format described Input Format The first line of input contains two space-separated integers, $n$ and $\textit{q}$, the length of the binary representations of $a$ and $\boldsymbol{b}$, and the number of commands, respectively. The second and third lines each contain a string representation of $a$ and $\boldsymbol{b}$. The following $\textit{q}$ lines each contain a command string $\textit{queries}[i]$ as described above. Constraints $1\leq n\leq1000000$ $1\leq q\leq5000000$ Output Format For each query of the type $\text{get_c}$, output a single digit 0 or 1. Output must be placed on a single line. Sample Input 0 5 5 00000 11111 set_a 0 1 get_c 5 get_c 1 set_b 2 0 get_c 5 Sample Output 0 100 Explanation 0 set_a 0 1 sets 00000 to 00001 C = A + B = 00001 + 11111 = 100000, so get_c[5] = 1 from the above computation get_c[1] = 0 set_b 2 0 sets 11111 to 11011 C = A + B = 00001 + 11011 = 011100, so get_c[5] = 0 The output is hence concatenation of 1, 0 and 0 = 100
N, Q = list(map(int, input().split())) A = int(input(), 2) B = int(input(), 2) result = [] all_ones = 2**N - 1 def get_c(x): C = A + B return ["0", "1"][C >> int(x) & 1] temp = "" for i in range(Q): s = input().split() if s[0] == "set_a": idx, bit = int(s[1]), int(s[2]) if bit: A |= 1 << idx else: A &= ~(1 << idx) elif s[0] == "set_b": idx, bit = int(s[1]), int(s[2]) if bit: B |= 1 << idx else: B &= ~(1 << idx) elif s[0] == "get_c": result.append(get_c(s[1])) print("".join(result))
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR LIST ASSIGN VAR BIN_OP BIN_OP NUMBER VAR NUMBER FUNC_DEF ASSIGN VAR BIN_OP VAR VAR RETURN LIST STRING STRING BIN_OP BIN_OP VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER STRING ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER IF VAR VAR BIN_OP NUMBER VAR VAR BIN_OP NUMBER VAR IF VAR NUMBER STRING ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER IF VAR VAR BIN_OP NUMBER VAR VAR BIN_OP NUMBER VAR IF VAR NUMBER STRING EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
Let a and b be binary numbers of length n (MSB to the left). The following commands may be performed: set_a idx x: Set $a[i dx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $a[i dx]$ is $\text{id}x^{\text{th}}$ least significant bit of $a$. set_b idx x: Set $b[idx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $b[idx]$ is $\text{id}x^{\text{th}}$ least significant bit of $\boldsymbol{b}$. get_c idx: Print $c[idx]$, where $c[idx]=a[idx]+b[idx]$ and $0\leq idx\leq n+1$. Given $a,b$, and a list of commands, create a string made of the results of each $\text{get_c}$ call, the only command that produces output. For example, $\boldsymbol{a}=\boldsymbol{000}$ and $b=111$ so the length of the numbers is $n=3$. Print an answer string that contains the results of all commands on one line. A series of commands and their results follow: Starting ans = '' (empty string) a b 000 111 set_a 1 1 010 111 set_b 0 1 010 111 get_c 3 a + b = 1001 ans = '1' 010 111 get_c 4 a + b = 01001 ans = '10' Note: When the command is get_c 4, $\textbf{C}$ had to be padded to the left with a $0$ to be long enough to return a value. Function Description Complete the changeBits function in the editor below. For each get_c command, it should print either a 0 or a 1 without a newline until all commands have been processed. At that point, add a newline. changeBits has the following parameters: - a, b: two integers represented as binary strings - queries[queries[0]-queries[n-1]]: an array of query strings in the format described Input Format The first line of input contains two space-separated integers, $n$ and $\textit{q}$, the length of the binary representations of $a$ and $\boldsymbol{b}$, and the number of commands, respectively. The second and third lines each contain a string representation of $a$ and $\boldsymbol{b}$. The following $\textit{q}$ lines each contain a command string $\textit{queries}[i]$ as described above. Constraints $1\leq n\leq1000000$ $1\leq q\leq5000000$ Output Format For each query of the type $\text{get_c}$, output a single digit 0 or 1. Output must be placed on a single line. Sample Input 0 5 5 00000 11111 set_a 0 1 get_c 5 get_c 1 set_b 2 0 get_c 5 Sample Output 0 100 Explanation 0 set_a 0 1 sets 00000 to 00001 C = A + B = 00001 + 11111 = 100000, so get_c[5] = 1 from the above computation get_c[1] = 0 set_b 2 0 sets 11111 to 11011 C = A + B = 00001 + 11011 = 011100, so get_c[5] = 0 The output is hence concatenation of 1, 0 and 0 = 100
import sys n, q = list(map(int, input().split())) a = input() b = input() c = int(a, 2) + int(b, 2) a = list(reversed(a)) b = list(reversed(b)) for i in range(q): s = input().split() idx = int(s[1]) if len(s) == 2: bl = 1 << idx sys.stdout.write(c & bl and "1" or "0") else: p = s[0][4] nb = s[2] if p == "a": cb = a[idx] if cb != nb: a[idx] = nb if nb == "1": c += 1 << idx else: c -= 1 << idx else: cb = b[idx] if cb != nb: b[idx] = nb if nb == "1": c += 1 << idx else: c -= 1 << idx
IMPORT ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR STRING STRING ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER IF VAR STRING ASSIGN VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR IF VAR STRING VAR BIN_OP NUMBER VAR VAR BIN_OP NUMBER VAR ASSIGN VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR IF VAR STRING VAR BIN_OP NUMBER VAR VAR BIN_OP NUMBER VAR
Let a and b be binary numbers of length n (MSB to the left). The following commands may be performed: set_a idx x: Set $a[i dx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $a[i dx]$ is $\text{id}x^{\text{th}}$ least significant bit of $a$. set_b idx x: Set $b[idx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $b[idx]$ is $\text{id}x^{\text{th}}$ least significant bit of $\boldsymbol{b}$. get_c idx: Print $c[idx]$, where $c[idx]=a[idx]+b[idx]$ and $0\leq idx\leq n+1$. Given $a,b$, and a list of commands, create a string made of the results of each $\text{get_c}$ call, the only command that produces output. For example, $\boldsymbol{a}=\boldsymbol{000}$ and $b=111$ so the length of the numbers is $n=3$. Print an answer string that contains the results of all commands on one line. A series of commands and their results follow: Starting ans = '' (empty string) a b 000 111 set_a 1 1 010 111 set_b 0 1 010 111 get_c 3 a + b = 1001 ans = '1' 010 111 get_c 4 a + b = 01001 ans = '10' Note: When the command is get_c 4, $\textbf{C}$ had to be padded to the left with a $0$ to be long enough to return a value. Function Description Complete the changeBits function in the editor below. For each get_c command, it should print either a 0 or a 1 without a newline until all commands have been processed. At that point, add a newline. changeBits has the following parameters: - a, b: two integers represented as binary strings - queries[queries[0]-queries[n-1]]: an array of query strings in the format described Input Format The first line of input contains two space-separated integers, $n$ and $\textit{q}$, the length of the binary representations of $a$ and $\boldsymbol{b}$, and the number of commands, respectively. The second and third lines each contain a string representation of $a$ and $\boldsymbol{b}$. The following $\textit{q}$ lines each contain a command string $\textit{queries}[i]$ as described above. Constraints $1\leq n\leq1000000$ $1\leq q\leq5000000$ Output Format For each query of the type $\text{get_c}$, output a single digit 0 or 1. Output must be placed on a single line. Sample Input 0 5 5 00000 11111 set_a 0 1 get_c 5 get_c 1 set_b 2 0 get_c 5 Sample Output 0 100 Explanation 0 set_a 0 1 sets 00000 to 00001 C = A + B = 00001 + 11111 = 100000, so get_c[5] = 1 from the above computation get_c[1] = 0 set_b 2 0 sets 11111 to 11011 C = A + B = 00001 + 11011 = 011100, so get_c[5] = 0 The output is hence concatenation of 1, 0 and 0 = 100
def setbit(val, i, bit): num = 1 << i if bit: return val | num return val & ~num n, q = map(int, input().strip().split(" ")) a = int(input().strip(), 2) b = int(input().strip(), 2) out = "" for i in range(q): cmd = input().strip().split(" ") inx = int(cmd[1]) cmd.append(7) bit = int(cmd[2]) if cmd[0] == "set_a": a = setbit(a, inx, bit) elif cmd[0] == "set_b": b = setbit(b, inx, bit) else: cdec = a + b cbit = not not cdec & 1 << inx out += str(int(cbit)) print(out)
FUNC_DEF ASSIGN VAR BIN_OP NUMBER VAR IF VAR RETURN BIN_OP VAR VAR RETURN BIN_OP VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP NUMBER VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
Let a and b be binary numbers of length n (MSB to the left). The following commands may be performed: set_a idx x: Set $a[i dx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $a[i dx]$ is $\text{id}x^{\text{th}}$ least significant bit of $a$. set_b idx x: Set $b[idx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $b[idx]$ is $\text{id}x^{\text{th}}$ least significant bit of $\boldsymbol{b}$. get_c idx: Print $c[idx]$, where $c[idx]=a[idx]+b[idx]$ and $0\leq idx\leq n+1$. Given $a,b$, and a list of commands, create a string made of the results of each $\text{get_c}$ call, the only command that produces output. For example, $\boldsymbol{a}=\boldsymbol{000}$ and $b=111$ so the length of the numbers is $n=3$. Print an answer string that contains the results of all commands on one line. A series of commands and their results follow: Starting ans = '' (empty string) a b 000 111 set_a 1 1 010 111 set_b 0 1 010 111 get_c 3 a + b = 1001 ans = '1' 010 111 get_c 4 a + b = 01001 ans = '10' Note: When the command is get_c 4, $\textbf{C}$ had to be padded to the left with a $0$ to be long enough to return a value. Function Description Complete the changeBits function in the editor below. For each get_c command, it should print either a 0 or a 1 without a newline until all commands have been processed. At that point, add a newline. changeBits has the following parameters: - a, b: two integers represented as binary strings - queries[queries[0]-queries[n-1]]: an array of query strings in the format described Input Format The first line of input contains two space-separated integers, $n$ and $\textit{q}$, the length of the binary representations of $a$ and $\boldsymbol{b}$, and the number of commands, respectively. The second and third lines each contain a string representation of $a$ and $\boldsymbol{b}$. The following $\textit{q}$ lines each contain a command string $\textit{queries}[i]$ as described above. Constraints $1\leq n\leq1000000$ $1\leq q\leq5000000$ Output Format For each query of the type $\text{get_c}$, output a single digit 0 or 1. Output must be placed on a single line. Sample Input 0 5 5 00000 11111 set_a 0 1 get_c 5 get_c 1 set_b 2 0 get_c 5 Sample Output 0 100 Explanation 0 set_a 0 1 sets 00000 to 00001 C = A + B = 00001 + 11111 = 100000, so get_c[5] = 1 from the above computation get_c[1] = 0 set_b 2 0 sets 11111 to 11011 C = A + B = 00001 + 11011 = 011100, so get_c[5] = 0 The output is hence concatenation of 1, 0 and 0 = 100
test = tuple(map(int, input().strip().split(" "))) def setbit(a, b, c): n = 1 << int(b) if c == "1": return a | n return a & ~n a = int(input().strip(), 2) b = int(input().strip(), 2) s = "" for t in range(test[1]): r = input().strip().split(" ") if r[0] == "set_a": a = setbit(a, r[1], r[2]) elif r[0] == "set_b": b = setbit(b, r[1], r[2]) else: c = a + b cbit = int(bool(c & 1 << int(r[1]))) s = s + str(cbit) print(s)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING FUNC_DEF ASSIGN VAR BIN_OP NUMBER FUNC_CALL VAR VAR IF VAR STRING RETURN BIN_OP VAR VAR RETURN BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING IF VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER IF VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
Let a and b be binary numbers of length n (MSB to the left). The following commands may be performed: set_a idx x: Set $a[i dx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $a[i dx]$ is $\text{id}x^{\text{th}}$ least significant bit of $a$. set_b idx x: Set $b[idx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $b[idx]$ is $\text{id}x^{\text{th}}$ least significant bit of $\boldsymbol{b}$. get_c idx: Print $c[idx]$, where $c[idx]=a[idx]+b[idx]$ and $0\leq idx\leq n+1$. Given $a,b$, and a list of commands, create a string made of the results of each $\text{get_c}$ call, the only command that produces output. For example, $\boldsymbol{a}=\boldsymbol{000}$ and $b=111$ so the length of the numbers is $n=3$. Print an answer string that contains the results of all commands on one line. A series of commands and their results follow: Starting ans = '' (empty string) a b 000 111 set_a 1 1 010 111 set_b 0 1 010 111 get_c 3 a + b = 1001 ans = '1' 010 111 get_c 4 a + b = 01001 ans = '10' Note: When the command is get_c 4, $\textbf{C}$ had to be padded to the left with a $0$ to be long enough to return a value. Function Description Complete the changeBits function in the editor below. For each get_c command, it should print either a 0 or a 1 without a newline until all commands have been processed. At that point, add a newline. changeBits has the following parameters: - a, b: two integers represented as binary strings - queries[queries[0]-queries[n-1]]: an array of query strings in the format described Input Format The first line of input contains two space-separated integers, $n$ and $\textit{q}$, the length of the binary representations of $a$ and $\boldsymbol{b}$, and the number of commands, respectively. The second and third lines each contain a string representation of $a$ and $\boldsymbol{b}$. The following $\textit{q}$ lines each contain a command string $\textit{queries}[i]$ as described above. Constraints $1\leq n\leq1000000$ $1\leq q\leq5000000$ Output Format For each query of the type $\text{get_c}$, output a single digit 0 or 1. Output must be placed on a single line. Sample Input 0 5 5 00000 11111 set_a 0 1 get_c 5 get_c 1 set_b 2 0 get_c 5 Sample Output 0 100 Explanation 0 set_a 0 1 sets 00000 to 00001 C = A + B = 00001 + 11111 = 100000, so get_c[5] = 1 from the above computation get_c[1] = 0 set_b 2 0 sets 11111 to 11011 C = A + B = 00001 + 11011 = 011100, so get_c[5] = 0 The output is hence concatenation of 1, 0 and 0 = 100
n, q = map(int, input().split()) a = int(input(), 2) b = int(input(), 2) def set_bit(v, index, on): b = 1 << index return v | b if on else v & ~b for _ in range(q): k, *args = input().split() args = list(map(int, args)) if k == "set_a": a = set_bit(a, *args) elif k == "set_b": b = set_bit(b, *args) elif k == "get_c": print(a + b >> args[0] & 1, end="") print("")
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER FUNC_DEF ASSIGN VAR BIN_OP NUMBER VAR RETURN VAR BIN_OP VAR VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR IF VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER NUMBER STRING EXPR FUNC_CALL VAR STRING
Let a and b be binary numbers of length n (MSB to the left). The following commands may be performed: set_a idx x: Set $a[i dx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $a[i dx]$ is $\text{id}x^{\text{th}}$ least significant bit of $a$. set_b idx x: Set $b[idx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $b[idx]$ is $\text{id}x^{\text{th}}$ least significant bit of $\boldsymbol{b}$. get_c idx: Print $c[idx]$, where $c[idx]=a[idx]+b[idx]$ and $0\leq idx\leq n+1$. Given $a,b$, and a list of commands, create a string made of the results of each $\text{get_c}$ call, the only command that produces output. For example, $\boldsymbol{a}=\boldsymbol{000}$ and $b=111$ so the length of the numbers is $n=3$. Print an answer string that contains the results of all commands on one line. A series of commands and their results follow: Starting ans = '' (empty string) a b 000 111 set_a 1 1 010 111 set_b 0 1 010 111 get_c 3 a + b = 1001 ans = '1' 010 111 get_c 4 a + b = 01001 ans = '10' Note: When the command is get_c 4, $\textbf{C}$ had to be padded to the left with a $0$ to be long enough to return a value. Function Description Complete the changeBits function in the editor below. For each get_c command, it should print either a 0 or a 1 without a newline until all commands have been processed. At that point, add a newline. changeBits has the following parameters: - a, b: two integers represented as binary strings - queries[queries[0]-queries[n-1]]: an array of query strings in the format described Input Format The first line of input contains two space-separated integers, $n$ and $\textit{q}$, the length of the binary representations of $a$ and $\boldsymbol{b}$, and the number of commands, respectively. The second and third lines each contain a string representation of $a$ and $\boldsymbol{b}$. The following $\textit{q}$ lines each contain a command string $\textit{queries}[i]$ as described above. Constraints $1\leq n\leq1000000$ $1\leq q\leq5000000$ Output Format For each query of the type $\text{get_c}$, output a single digit 0 or 1. Output must be placed on a single line. Sample Input 0 5 5 00000 11111 set_a 0 1 get_c 5 get_c 1 set_b 2 0 get_c 5 Sample Output 0 100 Explanation 0 set_a 0 1 sets 00000 to 00001 C = A + B = 00001 + 11111 = 100000, so get_c[5] = 1 from the above computation get_c[1] = 0 set_b 2 0 sets 11111 to 11011 C = A + B = 00001 + 11011 = 011100, so get_c[5] = 0 The output is hence concatenation of 1, 0 and 0 = 100
def set_bit(n, offset): mask = 1 << offset return n | mask def clear_bit(n, offset): mask = ~(1 << offset) return n & mask def get_bit(n, i): mask = 1 << i return 1 if n & mask else 0 line = input("").split(" ") N, Q = int(line[0]), int(line[1]) A = int(input(""), 2) B = int(input(""), 2) output = [] for __ in range(Q): line = input("").split(" ") if line[0] == "set_a": idx, x = int(line[1]), int(line[2]) A = set_bit(A, idx) if x else clear_bit(A, idx) elif line[0] == "set_b": idx, x = int(line[1]), int(line[2]) B = set_bit(B, idx) if x else clear_bit(B, idx) else: idx = int(line[1]) output.append(get_bit(A + B, idx)) print("".join(str(b) for b in output))
FUNC_DEF ASSIGN VAR BIN_OP NUMBER VAR RETURN BIN_OP VAR VAR FUNC_DEF ASSIGN VAR BIN_OP NUMBER VAR RETURN BIN_OP VAR VAR FUNC_DEF ASSIGN VAR BIN_OP NUMBER VAR RETURN BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING STRING ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR STRING NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR STRING NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING STRING IF VAR NUMBER STRING ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER STRING ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR
Let a and b be binary numbers of length n (MSB to the left). The following commands may be performed: set_a idx x: Set $a[i dx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $a[i dx]$ is $\text{id}x^{\text{th}}$ least significant bit of $a$. set_b idx x: Set $b[idx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $b[idx]$ is $\text{id}x^{\text{th}}$ least significant bit of $\boldsymbol{b}$. get_c idx: Print $c[idx]$, where $c[idx]=a[idx]+b[idx]$ and $0\leq idx\leq n+1$. Given $a,b$, and a list of commands, create a string made of the results of each $\text{get_c}$ call, the only command that produces output. For example, $\boldsymbol{a}=\boldsymbol{000}$ and $b=111$ so the length of the numbers is $n=3$. Print an answer string that contains the results of all commands on one line. A series of commands and their results follow: Starting ans = '' (empty string) a b 000 111 set_a 1 1 010 111 set_b 0 1 010 111 get_c 3 a + b = 1001 ans = '1' 010 111 get_c 4 a + b = 01001 ans = '10' Note: When the command is get_c 4, $\textbf{C}$ had to be padded to the left with a $0$ to be long enough to return a value. Function Description Complete the changeBits function in the editor below. For each get_c command, it should print either a 0 or a 1 without a newline until all commands have been processed. At that point, add a newline. changeBits has the following parameters: - a, b: two integers represented as binary strings - queries[queries[0]-queries[n-1]]: an array of query strings in the format described Input Format The first line of input contains two space-separated integers, $n$ and $\textit{q}$, the length of the binary representations of $a$ and $\boldsymbol{b}$, and the number of commands, respectively. The second and third lines each contain a string representation of $a$ and $\boldsymbol{b}$. The following $\textit{q}$ lines each contain a command string $\textit{queries}[i]$ as described above. Constraints $1\leq n\leq1000000$ $1\leq q\leq5000000$ Output Format For each query of the type $\text{get_c}$, output a single digit 0 or 1. Output must be placed on a single line. Sample Input 0 5 5 00000 11111 set_a 0 1 get_c 5 get_c 1 set_b 2 0 get_c 5 Sample Output 0 100 Explanation 0 set_a 0 1 sets 00000 to 00001 C = A + B = 00001 + 11111 = 100000, so get_c[5] = 1 from the above computation get_c[1] = 0 set_b 2 0 sets 11111 to 11011 C = A + B = 00001 + 11011 = 011100, so get_c[5] = 0 The output is hence concatenation of 1, 0 and 0 = 100
n_bit, line_count = [int(i) for i in input().split()] a = int(input(), 2) b = int(input(), 2) for i in range(line_count): inp = input().split() x = int(inp[1]) if inp[0] == "get_c": print((a + b & 1 << x) >> x, end="") elif inp[0] == "set_a": if inp[2] == "1": a = a | 1 << x else: a = a & ~(1 << x) elif inp[2] == "1": b = b | 1 << x else: b = b & ~(1 << x)
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP NUMBER VAR VAR STRING IF VAR NUMBER STRING IF VAR NUMBER STRING ASSIGN VAR BIN_OP VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR BIN_OP NUMBER VAR IF VAR NUMBER STRING ASSIGN VAR BIN_OP VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR BIN_OP NUMBER VAR
Let a and b be binary numbers of length n (MSB to the left). The following commands may be performed: set_a idx x: Set $a[i dx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $a[i dx]$ is $\text{id}x^{\text{th}}$ least significant bit of $a$. set_b idx x: Set $b[idx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $b[idx]$ is $\text{id}x^{\text{th}}$ least significant bit of $\boldsymbol{b}$. get_c idx: Print $c[idx]$, where $c[idx]=a[idx]+b[idx]$ and $0\leq idx\leq n+1$. Given $a,b$, and a list of commands, create a string made of the results of each $\text{get_c}$ call, the only command that produces output. For example, $\boldsymbol{a}=\boldsymbol{000}$ and $b=111$ so the length of the numbers is $n=3$. Print an answer string that contains the results of all commands on one line. A series of commands and their results follow: Starting ans = '' (empty string) a b 000 111 set_a 1 1 010 111 set_b 0 1 010 111 get_c 3 a + b = 1001 ans = '1' 010 111 get_c 4 a + b = 01001 ans = '10' Note: When the command is get_c 4, $\textbf{C}$ had to be padded to the left with a $0$ to be long enough to return a value. Function Description Complete the changeBits function in the editor below. For each get_c command, it should print either a 0 or a 1 without a newline until all commands have been processed. At that point, add a newline. changeBits has the following parameters: - a, b: two integers represented as binary strings - queries[queries[0]-queries[n-1]]: an array of query strings in the format described Input Format The first line of input contains two space-separated integers, $n$ and $\textit{q}$, the length of the binary representations of $a$ and $\boldsymbol{b}$, and the number of commands, respectively. The second and third lines each contain a string representation of $a$ and $\boldsymbol{b}$. The following $\textit{q}$ lines each contain a command string $\textit{queries}[i]$ as described above. Constraints $1\leq n\leq1000000$ $1\leq q\leq5000000$ Output Format For each query of the type $\text{get_c}$, output a single digit 0 or 1. Output must be placed on a single line. Sample Input 0 5 5 00000 11111 set_a 0 1 get_c 5 get_c 1 set_b 2 0 get_c 5 Sample Output 0 100 Explanation 0 set_a 0 1 sets 00000 to 00001 C = A + B = 00001 + 11111 = 100000, so get_c[5] = 1 from the above computation get_c[1] = 0 set_b 2 0 sets 11111 to 11011 C = A + B = 00001 + 11011 = 011100, so get_c[5] = 0 The output is hence concatenation of 1, 0 and 0 = 100
N, Q = [int(s) for s in input().split(" ")] A = int(input(), 2) B = int(input(), 2) C = None for _ in range(Q): line = input().split() if line[0] == "get_c": if C is None: C = A + B idx = int(line[1]) print(C >> idx & 1, end="") else: C = None idx, x = [int(s) for s in line[1:]] V = B if line[0] == "set_a": V = A bit = 1 << idx if x == 1: V |= bit else: V = ~(~V | bit) if line[0] == "set_a": A = V else: B = V print()
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR NONE FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER STRING IF VAR NONE ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER STRING ASSIGN VAR NONE ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR VAR IF VAR NUMBER STRING ASSIGN VAR VAR ASSIGN VAR BIN_OP NUMBER VAR IF VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER STRING ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR
Let a and b be binary numbers of length n (MSB to the left). The following commands may be performed: set_a idx x: Set $a[i dx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $a[i dx]$ is $\text{id}x^{\text{th}}$ least significant bit of $a$. set_b idx x: Set $b[idx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $b[idx]$ is $\text{id}x^{\text{th}}$ least significant bit of $\boldsymbol{b}$. get_c idx: Print $c[idx]$, where $c[idx]=a[idx]+b[idx]$ and $0\leq idx\leq n+1$. Given $a,b$, and a list of commands, create a string made of the results of each $\text{get_c}$ call, the only command that produces output. For example, $\boldsymbol{a}=\boldsymbol{000}$ and $b=111$ so the length of the numbers is $n=3$. Print an answer string that contains the results of all commands on one line. A series of commands and their results follow: Starting ans = '' (empty string) a b 000 111 set_a 1 1 010 111 set_b 0 1 010 111 get_c 3 a + b = 1001 ans = '1' 010 111 get_c 4 a + b = 01001 ans = '10' Note: When the command is get_c 4, $\textbf{C}$ had to be padded to the left with a $0$ to be long enough to return a value. Function Description Complete the changeBits function in the editor below. For each get_c command, it should print either a 0 or a 1 without a newline until all commands have been processed. At that point, add a newline. changeBits has the following parameters: - a, b: two integers represented as binary strings - queries[queries[0]-queries[n-1]]: an array of query strings in the format described Input Format The first line of input contains two space-separated integers, $n$ and $\textit{q}$, the length of the binary representations of $a$ and $\boldsymbol{b}$, and the number of commands, respectively. The second and third lines each contain a string representation of $a$ and $\boldsymbol{b}$. The following $\textit{q}$ lines each contain a command string $\textit{queries}[i]$ as described above. Constraints $1\leq n\leq1000000$ $1\leq q\leq5000000$ Output Format For each query of the type $\text{get_c}$, output a single digit 0 or 1. Output must be placed on a single line. Sample Input 0 5 5 00000 11111 set_a 0 1 get_c 5 get_c 1 set_b 2 0 get_c 5 Sample Output 0 100 Explanation 0 set_a 0 1 sets 00000 to 00001 C = A + B = 00001 + 11111 = 100000, so get_c[5] = 1 from the above computation get_c[1] = 0 set_b 2 0 sets 11111 to 11011 C = A + B = 00001 + 11011 = 011100, so get_c[5] = 0 The output is hence concatenation of 1, 0 and 0 = 100
N, Q = [int(x) for x in input().strip().split()] A = int(input().strip(), 2) B = int(input().strip(), 2) Output = [] for dummyQ in range(Q): QueryFields = input().strip().split() if QueryFields[0] == "set_a": idx, x = [int(x) for x in QueryFields[1:]] Target = A >> idx & 1 if Target != x: A ^= 1 << idx if QueryFields[0] == "set_b": idx, x = [int(x) for x in QueryFields[1:]] Target = B >> idx & 1 if Target != x: B ^= 1 << idx if QueryFields[0] == "get_c": idx = int(QueryFields[1]) Value = A + B >> idx & 1 Output.append(str(Value)) print("".join(Output))
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR IF VAR NUMBER STRING ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR BIN_OP NUMBER VAR IF VAR NUMBER STRING ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR BIN_OP NUMBER VAR IF VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
Let a and b be binary numbers of length n (MSB to the left). The following commands may be performed: set_a idx x: Set $a[i dx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $a[i dx]$ is $\text{id}x^{\text{th}}$ least significant bit of $a$. set_b idx x: Set $b[idx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $b[idx]$ is $\text{id}x^{\text{th}}$ least significant bit of $\boldsymbol{b}$. get_c idx: Print $c[idx]$, where $c[idx]=a[idx]+b[idx]$ and $0\leq idx\leq n+1$. Given $a,b$, and a list of commands, create a string made of the results of each $\text{get_c}$ call, the only command that produces output. For example, $\boldsymbol{a}=\boldsymbol{000}$ and $b=111$ so the length of the numbers is $n=3$. Print an answer string that contains the results of all commands on one line. A series of commands and their results follow: Starting ans = '' (empty string) a b 000 111 set_a 1 1 010 111 set_b 0 1 010 111 get_c 3 a + b = 1001 ans = '1' 010 111 get_c 4 a + b = 01001 ans = '10' Note: When the command is get_c 4, $\textbf{C}$ had to be padded to the left with a $0$ to be long enough to return a value. Function Description Complete the changeBits function in the editor below. For each get_c command, it should print either a 0 or a 1 without a newline until all commands have been processed. At that point, add a newline. changeBits has the following parameters: - a, b: two integers represented as binary strings - queries[queries[0]-queries[n-1]]: an array of query strings in the format described Input Format The first line of input contains two space-separated integers, $n$ and $\textit{q}$, the length of the binary representations of $a$ and $\boldsymbol{b}$, and the number of commands, respectively. The second and third lines each contain a string representation of $a$ and $\boldsymbol{b}$. The following $\textit{q}$ lines each contain a command string $\textit{queries}[i]$ as described above. Constraints $1\leq n\leq1000000$ $1\leq q\leq5000000$ Output Format For each query of the type $\text{get_c}$, output a single digit 0 or 1. Output must be placed on a single line. Sample Input 0 5 5 00000 11111 set_a 0 1 get_c 5 get_c 1 set_b 2 0 get_c 5 Sample Output 0 100 Explanation 0 set_a 0 1 sets 00000 to 00001 C = A + B = 00001 + 11111 = 100000, so get_c[5] = 1 from the above computation get_c[1] = 0 set_b 2 0 sets 11111 to 11011 C = A + B = 00001 + 11011 = 011100, so get_c[5] = 0 The output is hence concatenation of 1, 0 and 0 = 100
def find_base(N): M = 2 while M < N: M <<= 1 return M def build(X): XC = ["0"] * (2 * M) MM = M >> 1 XC[M : M + N] = X for i in range(M - 1, 0, -1): if i < M and i >= MM: XC[i] = int(XC[i << 1]) + int(XC[i << 1 | 1]) else: XC[i] = XC[i << 1] + XC[i << 1 | 1] return XC def modify_xi(XC, idx): l = M + N - 1 - idx XC[l] = str(int(XC[l]) ^ 1) q = l l >>= 1 XC[l] = int(XC[q]) + int(XC[q ^ 1]) while l > 1: q = l l >>= 1 XC[l] = XC[q] + XC[q ^ 1] return XC def inter_of(l): ln2 = l << 1 | 1 ln1 = ln2 ^ 1 while ln1 < M: ln1 <<= 1 ln2 = ln2 << 1 | 1 bigInt = int("".join([item for item in segt_A[ln1 : ln2 + 1]]), 2) bigInt += int("".join([item for item in segt_B[ln1 : ln2 + 1]]), 2) bigL = 1 << ln2 - ln1 + 1 if bigInt >= bigL: return 1 elif bigInt < bigL - 1: return 0 else: return 2 def query_of(pos): l, num = pos, 1 while l > 0: p = min(num, N) if num == 1: a = int(segt_A[l]) b = int(segt_B[l]) else: a = segt_A[l] b = segt_B[l] val = a + b if (a == p or b == p) and val > p: return 1 if a * b == 0 and val < p: return 0 if a * b == 0 and val == p: pass elif a > 0 and b > 0 and p > 1: big = inter_of(l) if big < 2: return big if l in [1, 3]: return 0 if num == limBig or l > l ^ 1: l += 1 else: l >>= 1 num <<= 1 return 0 def getC(idx): if idx > N or idx < 0: return 0 pos = M + N - 1 - idx carry = 0 if idx > 0: carry = query_of(pos + 1) if idx < N: val = int(segt_A[pos]) + int(segt_B[pos]) + carry else: val = carry return str(val % 2) N, Q = [int(t) for t in input().split()] A = [c for c in input().strip()] B = [c for c in input().strip()] ans, limBig, M = "", 2048, find_base(N) segt_A, segt_B = build(A), build(B) for i in range(Q): lin1 = input().split() idx = int(lin1[1]) if lin1[0][0] == "s": bit = lin1[2] if lin1[0][4] == "a" and bit != A[N - 1 - idx]: modify_xi(segt_A, idx) A[N - 1 - idx] = bit elif lin1[0][4] == "b" and bit != B[N - 1 - idx]: modify_xi(segt_B, idx) B[N - 1 - idx] = bit else: ans += getC(idx) print(ans)
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR BIN_OP LIST STRING BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER NUMBER RETURN VAR FUNC_DEF ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER WHILE VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL STRING VAR VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR FUNC_CALL VAR FUNC_CALL STRING VAR VAR VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP NUMBER BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR RETURN NUMBER IF VAR BIN_OP VAR NUMBER RETURN NUMBER RETURN NUMBER FUNC_DEF ASSIGN VAR VAR VAR NUMBER WHILE VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR VAR VAR VAR VAR RETURN NUMBER IF BIN_OP VAR VAR NUMBER VAR VAR RETURN NUMBER IF BIN_OP VAR VAR NUMBER VAR VAR IF VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER RETURN VAR IF VAR LIST NUMBER NUMBER RETURN NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER RETURN NUMBER FUNC_DEF IF VAR VAR VAR NUMBER RETURN NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR RETURN FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR STRING NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER NUMBER STRING ASSIGN VAR VAR NUMBER IF VAR NUMBER NUMBER STRING VAR VAR BIN_OP BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR VAR IF VAR NUMBER NUMBER STRING VAR VAR BIN_OP BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
Let a and b be binary numbers of length n (MSB to the left). The following commands may be performed: set_a idx x: Set $a[i dx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $a[i dx]$ is $\text{id}x^{\text{th}}$ least significant bit of $a$. set_b idx x: Set $b[idx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $b[idx]$ is $\text{id}x^{\text{th}}$ least significant bit of $\boldsymbol{b}$. get_c idx: Print $c[idx]$, where $c[idx]=a[idx]+b[idx]$ and $0\leq idx\leq n+1$. Given $a,b$, and a list of commands, create a string made of the results of each $\text{get_c}$ call, the only command that produces output. For example, $\boldsymbol{a}=\boldsymbol{000}$ and $b=111$ so the length of the numbers is $n=3$. Print an answer string that contains the results of all commands on one line. A series of commands and their results follow: Starting ans = '' (empty string) a b 000 111 set_a 1 1 010 111 set_b 0 1 010 111 get_c 3 a + b = 1001 ans = '1' 010 111 get_c 4 a + b = 01001 ans = '10' Note: When the command is get_c 4, $\textbf{C}$ had to be padded to the left with a $0$ to be long enough to return a value. Function Description Complete the changeBits function in the editor below. For each get_c command, it should print either a 0 or a 1 without a newline until all commands have been processed. At that point, add a newline. changeBits has the following parameters: - a, b: two integers represented as binary strings - queries[queries[0]-queries[n-1]]: an array of query strings in the format described Input Format The first line of input contains two space-separated integers, $n$ and $\textit{q}$, the length of the binary representations of $a$ and $\boldsymbol{b}$, and the number of commands, respectively. The second and third lines each contain a string representation of $a$ and $\boldsymbol{b}$. The following $\textit{q}$ lines each contain a command string $\textit{queries}[i]$ as described above. Constraints $1\leq n\leq1000000$ $1\leq q\leq5000000$ Output Format For each query of the type $\text{get_c}$, output a single digit 0 or 1. Output must be placed on a single line. Sample Input 0 5 5 00000 11111 set_a 0 1 get_c 5 get_c 1 set_b 2 0 get_c 5 Sample Output 0 100 Explanation 0 set_a 0 1 sets 00000 to 00001 C = A + B = 00001 + 11111 = 100000, so get_c[5] = 1 from the above computation get_c[1] = 0 set_b 2 0 sets 11111 to 11011 C = A + B = 00001 + 11011 = 011100, so get_c[5] = 0 The output is hence concatenation of 1, 0 and 0 = 100
import sys n = [int(number) for number in input().split()] a = int(input(), 2) b = int(input(), 2) for i in range(n[1]): query = input().split() if query[0] == "set_a": if query[2] == "0": a &= ~(1 << int(query[1])) elif query[2] == "1": a |= 1 << int(query[1]) elif query[0] == "set_b": if query[2] == "0": b &= ~(1 << int(query[1])) elif query[2] == "1": b |= 1 << int(query[1]) elif query[0] == "get_c": x = a + b & 1 << int(query[1]) print(x >> int(query[1]), end="", sep="")
IMPORT ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER STRING IF VAR NUMBER STRING VAR BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER IF VAR NUMBER STRING VAR BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER IF VAR NUMBER STRING IF VAR NUMBER STRING VAR BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER IF VAR NUMBER STRING VAR BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER IF VAR NUMBER STRING ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR NUMBER STRING STRING
Let a and b be binary numbers of length n (MSB to the left). The following commands may be performed: set_a idx x: Set $a[i dx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $a[i dx]$ is $\text{id}x^{\text{th}}$ least significant bit of $a$. set_b idx x: Set $b[idx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $b[idx]$ is $\text{id}x^{\text{th}}$ least significant bit of $\boldsymbol{b}$. get_c idx: Print $c[idx]$, where $c[idx]=a[idx]+b[idx]$ and $0\leq idx\leq n+1$. Given $a,b$, and a list of commands, create a string made of the results of each $\text{get_c}$ call, the only command that produces output. For example, $\boldsymbol{a}=\boldsymbol{000}$ and $b=111$ so the length of the numbers is $n=3$. Print an answer string that contains the results of all commands on one line. A series of commands and their results follow: Starting ans = '' (empty string) a b 000 111 set_a 1 1 010 111 set_b 0 1 010 111 get_c 3 a + b = 1001 ans = '1' 010 111 get_c 4 a + b = 01001 ans = '10' Note: When the command is get_c 4, $\textbf{C}$ had to be padded to the left with a $0$ to be long enough to return a value. Function Description Complete the changeBits function in the editor below. For each get_c command, it should print either a 0 or a 1 without a newline until all commands have been processed. At that point, add a newline. changeBits has the following parameters: - a, b: two integers represented as binary strings - queries[queries[0]-queries[n-1]]: an array of query strings in the format described Input Format The first line of input contains two space-separated integers, $n$ and $\textit{q}$, the length of the binary representations of $a$ and $\boldsymbol{b}$, and the number of commands, respectively. The second and third lines each contain a string representation of $a$ and $\boldsymbol{b}$. The following $\textit{q}$ lines each contain a command string $\textit{queries}[i]$ as described above. Constraints $1\leq n\leq1000000$ $1\leq q\leq5000000$ Output Format For each query of the type $\text{get_c}$, output a single digit 0 or 1. Output must be placed on a single line. Sample Input 0 5 5 00000 11111 set_a 0 1 get_c 5 get_c 1 set_b 2 0 get_c 5 Sample Output 0 100 Explanation 0 set_a 0 1 sets 00000 to 00001 C = A + B = 00001 + 11111 = 100000, so get_c[5] = 1 from the above computation get_c[1] = 0 set_b 2 0 sets 11111 to 11011 C = A + B = 00001 + 11011 = 011100, so get_c[5] = 0 The output is hence concatenation of 1, 0 and 0 = 100
raw = input().split() n = int(raw[0]) q = int(raw[1]) a = int(input(), 2) b = int(input(), 2) c = a + b for i in range(q): qraw = input().split() if qraw[0] == "set_a": idx = int(qraw[1]) x = int(qraw[2]) if a >> idx & 1 != x: if x == 1: a = a | 1 << idx else: a = a & ~(1 << idx) c = a + b elif qraw[0] == "set_b": idx = int(qraw[1]) x = int(qraw[2]) if b >> idx & 1 != x: if x == 1: b = b | 1 << idx else: b = b & ~(1 << idx) c = a + b else: idx = int(qraw[1]) d = c >> idx & 1 print(d, end="")
ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR STRING
Let a and b be binary numbers of length n (MSB to the left). The following commands may be performed: set_a idx x: Set $a[i dx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $a[i dx]$ is $\text{id}x^{\text{th}}$ least significant bit of $a$. set_b idx x: Set $b[idx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $b[idx]$ is $\text{id}x^{\text{th}}$ least significant bit of $\boldsymbol{b}$. get_c idx: Print $c[idx]$, where $c[idx]=a[idx]+b[idx]$ and $0\leq idx\leq n+1$. Given $a,b$, and a list of commands, create a string made of the results of each $\text{get_c}$ call, the only command that produces output. For example, $\boldsymbol{a}=\boldsymbol{000}$ and $b=111$ so the length of the numbers is $n=3$. Print an answer string that contains the results of all commands on one line. A series of commands and their results follow: Starting ans = '' (empty string) a b 000 111 set_a 1 1 010 111 set_b 0 1 010 111 get_c 3 a + b = 1001 ans = '1' 010 111 get_c 4 a + b = 01001 ans = '10' Note: When the command is get_c 4, $\textbf{C}$ had to be padded to the left with a $0$ to be long enough to return a value. Function Description Complete the changeBits function in the editor below. For each get_c command, it should print either a 0 or a 1 without a newline until all commands have been processed. At that point, add a newline. changeBits has the following parameters: - a, b: two integers represented as binary strings - queries[queries[0]-queries[n-1]]: an array of query strings in the format described Input Format The first line of input contains two space-separated integers, $n$ and $\textit{q}$, the length of the binary representations of $a$ and $\boldsymbol{b}$, and the number of commands, respectively. The second and third lines each contain a string representation of $a$ and $\boldsymbol{b}$. The following $\textit{q}$ lines each contain a command string $\textit{queries}[i]$ as described above. Constraints $1\leq n\leq1000000$ $1\leq q\leq5000000$ Output Format For each query of the type $\text{get_c}$, output a single digit 0 or 1. Output must be placed on a single line. Sample Input 0 5 5 00000 11111 set_a 0 1 get_c 5 get_c 1 set_b 2 0 get_c 5 Sample Output 0 100 Explanation 0 set_a 0 1 sets 00000 to 00001 C = A + B = 00001 + 11111 = 100000, so get_c[5] = 1 from the above computation get_c[1] = 0 set_b 2 0 sets 11111 to 11011 C = A + B = 00001 + 11011 = 011100, so get_c[5] = 0 The output is hence concatenation of 1, 0 and 0 = 100
def clearBit(n, pos): return n & ~(1 << pos) def setBit(n, pos): return n | 1 << pos def getBit(n, pos): return 0 if n & 1 << pos == 0 else 1 n, q = input().split() n, q = int(n), int(q) a = int(input(), 2) b = int(input(), 2) buf = [] for _ in range(q): cmd = input().split() pos = int(cmd[1]) if cmd[0] == "set_a": a = clearBit(a, pos) if cmd[2] == "0" else setBit(a, pos) elif cmd[0] == "set_b": b = clearBit(b, pos) if cmd[2] == "0" else setBit(b, pos) else: c = a + b buf.append(getBit(c, pos)) print("".join([str(x) for x in buf]))
FUNC_DEF RETURN BIN_OP VAR BIN_OP NUMBER VAR FUNC_DEF RETURN BIN_OP VAR BIN_OP NUMBER VAR FUNC_DEF RETURN BIN_OP VAR BIN_OP NUMBER VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER STRING ASSIGN VAR VAR NUMBER STRING FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER STRING ASSIGN VAR VAR NUMBER STRING FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR
Let a and b be binary numbers of length n (MSB to the left). The following commands may be performed: set_a idx x: Set $a[i dx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $a[i dx]$ is $\text{id}x^{\text{th}}$ least significant bit of $a$. set_b idx x: Set $b[idx]$ to $\boldsymbol{x}$, where $0\leq idx<n$ and $b[idx]$ is $\text{id}x^{\text{th}}$ least significant bit of $\boldsymbol{b}$. get_c idx: Print $c[idx]$, where $c[idx]=a[idx]+b[idx]$ and $0\leq idx\leq n+1$. Given $a,b$, and a list of commands, create a string made of the results of each $\text{get_c}$ call, the only command that produces output. For example, $\boldsymbol{a}=\boldsymbol{000}$ and $b=111$ so the length of the numbers is $n=3$. Print an answer string that contains the results of all commands on one line. A series of commands and their results follow: Starting ans = '' (empty string) a b 000 111 set_a 1 1 010 111 set_b 0 1 010 111 get_c 3 a + b = 1001 ans = '1' 010 111 get_c 4 a + b = 01001 ans = '10' Note: When the command is get_c 4, $\textbf{C}$ had to be padded to the left with a $0$ to be long enough to return a value. Function Description Complete the changeBits function in the editor below. For each get_c command, it should print either a 0 or a 1 without a newline until all commands have been processed. At that point, add a newline. changeBits has the following parameters: - a, b: two integers represented as binary strings - queries[queries[0]-queries[n-1]]: an array of query strings in the format described Input Format The first line of input contains two space-separated integers, $n$ and $\textit{q}$, the length of the binary representations of $a$ and $\boldsymbol{b}$, and the number of commands, respectively. The second and third lines each contain a string representation of $a$ and $\boldsymbol{b}$. The following $\textit{q}$ lines each contain a command string $\textit{queries}[i]$ as described above. Constraints $1\leq n\leq1000000$ $1\leq q\leq5000000$ Output Format For each query of the type $\text{get_c}$, output a single digit 0 or 1. Output must be placed on a single line. Sample Input 0 5 5 00000 11111 set_a 0 1 get_c 5 get_c 1 set_b 2 0 get_c 5 Sample Output 0 100 Explanation 0 set_a 0 1 sets 00000 to 00001 C = A + B = 00001 + 11111 = 100000, so get_c[5] = 1 from the above computation get_c[1] = 0 set_b 2 0 sets 11111 to 11011 C = A + B = 00001 + 11011 = 011100, so get_c[5] = 0 The output is hence concatenation of 1, 0 and 0 = 100
T = list(map(int, input().split())) A = int(input(), 2) B = int(input(), 2) for _ in range(T[1]): temp = input() if temp[4] == "a": if temp[-1] == "1": A = A | 1 << int(temp[5:-2]) else: A = A & ~(1 << int(temp[5:-2])) elif temp[4] == "b": if temp[-1] == "1": B = B | 1 << int(temp[5:-2]) else: B = B & ~(1 << int(temp[5:-2])) else: print((A + B & 1 << int(temp[5:])) >> int(temp[5:]), end="")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR IF VAR NUMBER STRING IF VAR NUMBER STRING ASSIGN VAR BIN_OP VAR BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER NUMBER IF VAR NUMBER STRING IF VAR NUMBER STRING ASSIGN VAR BIN_OP VAR BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER STRING