description
stringlengths
171
4k
code
stringlengths
94
3.98k
normalized_code
stringlengths
57
4.99k
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
n = int(input()) a = list(map(int, input().split())) m = 0 stack = [] for i in a: while stack: m = max(m, stack[-1] ^ i) if stack[-1] > i: break else: stack.pop() stack.append(i) print(m)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR VAR WHILE VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR IF VAR NUMBER VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
import sys def input(): return sys.stdin.readline().strip() Stack = [] N = int(input()) A = list(map(int, input().split(" "))) Ans = 0 for i in A: while len(Stack) != 0: if i > Stack[-1]: Ans = max(Ans, i ^ Stack[-1]) Stack.pop() else: Ans = max(Ans, Stack[-1] ^ i) break Stack.append(i) print(Ans)
IMPORT FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR NUMBER FOR VAR VAR WHILE FUNC_CALL VAR VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
n = int(input()) s = list(map(int, input().split())) stack = [] ans = 0 for i in s: while stack and stack[-1] < i: t = stack.pop() ans = max(ans, t ^ i) stack.append(i) if stack[0] != stack[-1]: ans = max(ans, stack[-1] ^ stack[-2]) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR VAR WHILE VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR IF VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
n = int(input()) a = [int(k) for k in input().split()] if len(a) == 1: print(a[0]) else: d = [a[0], a[1]] c = a[0] ^ a[1] for i in range(n): while len(d) > 0 and a[i] > d[-1]: d.pop() d.append(a[i]) if len(d) > 1: c = max(c, d[-1] ^ d[-2]) d = [a[-1], a[-2]] e = max(c, a[-1] ^ a[-2]) for i in range(n - 3, -1, -1): while len(d) > 0 and a[i] > d[-1]: d.pop() d.append(a[i]) if len(d) > 1: e = max(e, d[-1] ^ d[-2]) print(e)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE FUNC_CALL VAR VAR NUMBER VAR VAR VAR NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR LIST VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE FUNC_CALL VAR VAR NUMBER VAR VAR VAR NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
RI = lambda: [int(x) for x in input().split()] rw = lambda: [input().strip()] n = int(input()) l = RI() stack = [] index_stack = -1 maxo = 0 i = 0 while i < n: if index_stack == -1 or stack[index_stack] > l[i]: stack.append(l[i]) index_stack += 1 i += 1 else: maxo = max(stack[index_stack] ^ l[i], maxo) temp = stack[index_stack] stack.pop() index_stack -= 1 if len(stack) != 0: maxo = max(temp ^ stack[index_stack], maxo) while len(stack) != 1: temp = stack[index_stack] stack.pop() index_stack -= 1 maxo = max(temp ^ stack[index_stack], maxo) print(maxo)
ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR NUMBER VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR WHILE FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
import sys n = int(input()) a = list(map(int, input().split())) b = [a[0]] m = 0 for i in range(1, n): if len(b) > 0: m = max(m, b[-1] ^ a[i]) while len(b) > 0 and a[i] > b[-1]: m = max(m, b[-1] ^ a[i]) b.pop() if len(b) > 0: m = max(m, b[-1] ^ a[i]) b.append(a[i]) print(m)
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR WHILE FUNC_CALL VAR VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
n = int(input()) arr = [int(s) for s in input().split()] stck = [] ans = 0 for i in arr: if not stck: stck.append(i) else: while stck and i > stck[len(stck) - 1]: ans = max(ans, i ^ stck[len(stck) - 1]) stck.pop(len(stck) - 1) if stck: ans = max(ans, i ^ stck[len(stck) - 1]) stck.append(i) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR VAR IF VAR EXPR FUNC_CALL VAR VAR WHILE VAR VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
size = int(input()) array = list(map(int, input().split())) mystack = [] score = None maxim = 0 index = 0 while index < size: if not mystack or array[mystack[-1]] > array[index]: mystack.append(index) index += 1 else: while mystack and array[mystack[-1]] < array[index]: top = mystack.pop() score = int(array[top] ^ array[index]) maxim = max(score, maxim) mystack.append(index) index += 1 mystack.clear() index = size - 1 while index >= 0: if not mystack or array[mystack[-1]] > array[index]: mystack.append(index) index -= 1 else: while mystack and array[mystack[-1]] < array[index]: top = mystack.pop() score = int(array[top] ^ array[index]) maxim = max(score, maxim) mystack.append(index) index -= 1 print(maxim)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NONE ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER WHILE VAR VAR VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER IF VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER WHILE VAR VAR VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
n = int(input()) a = [int(n) for n in input().split()] stack = [] maxx = 0 i = 0 while i < n: if not stack or a[i] < stack[-1]: stack.append(a[i]) i += 1 else: maxx = max(stack[-1] ^ a[i], maxx) temp = stack.pop() if stack: maxx = max(stack[-1] ^ temp, maxx) while len(stack) != 1: temp = stack.pop() maxx = max(temp ^ stack[-1], maxx) print(maxx)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR VAR ASSIGN VAR FUNC_CALL VAR IF VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR WHILE FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
def get_max_xor(num_list): stack = [] max_xor = num_list[0] ^ num_list[1] for i in range(len(num_list)): while stack and stack[-1] < num_list[i]: stack.pop() stack.append(num_list[i]) if len(stack) > 1: max_xor = max(max_xor, stack[-1] ^ stack[-2]) return max_xor list_len = int(input()) num_list = list(map(int, input().split())) print(max(get_max_xor(num_list), get_max_xor(num_list[::-1])))
FUNC_DEF ASSIGN VAR LIST ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR WHILE VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
n = int(input()) ls = list(map(int, input().split())) st = list() Max = 0 for i in range(n): while len(st) > 0: temp = st[len(st) - 1] Max = max(Max, temp ^ ls[i]) if temp > ls[i]: break st.pop() st.append(ls[i]) print(Max)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
from sys import stdin lines, line_index = stdin.readlines(), -1 def get_line(): global lines, line_index line_index += 1 return lines[line_index] def main(): n = int(get_line()) seq = [int(x) for x in get_line().split()] stack = [] ans = 0 for val in seq: while stack: if stack[-1] < val: ans = max(ans, stack[-1] ^ val) stack.pop() else: ans = max(ans, stack[-1] ^ val) break stack.append(val) print(ans) main()
ASSIGN VAR VAR FUNC_CALL VAR NUMBER FUNC_DEF VAR NUMBER RETURN VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR VAR WHILE VAR IF VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
import sys inp = sys.stdin.readlines() n = int(inp[0]) arr = list(map(int, inp[1].split())) maxglobal = -1 top = -1 stack = [0] * n for i in range(n): while top != -1: maxglobal = max(maxglobal, stack[top] ^ arr[i]) if stack[top] < arr[i]: top -= 1 else: break stack[top + 1] = arr[i] top += 1 print(maxglobal)
IMPORT ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR WHILE VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR IF VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
import sys n = int(input()) a = [int(x) for x in input().strip().split(" ")] st = [a[0]] max1 = -sys.maxsize for i in range(1, n): while len(st) > 0: if a[i] < st[len(st) - 1]: max1 = max(max1, a[i] ^ st[len(st) - 1]) break else: max1 = max(max1, a[i] ^ st[len(st) - 1]) st.pop() st.append(a[i]) print(max1)
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR LIST VAR NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR WHILE FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
n = int(input()) sn = list(map(int, input().split())) ans = 0 stack = [] for i in range(n): while len(stack) and sn[i] > sn[stack[-1]]: l = stack.pop() ans = max(ans, sn[l] ^ sn[i]) if len(stack): ans = max(ans, sn[i] ^ sn[stack[-1]]) stack.append(i) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR WHILE FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR IF FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
def xor(a, b): return a ^ b def solve(l): ans = xor(l[0], l[1]) st = [l[0], l[1]] for i in range(2, n): while len(st) > 0 and st[-1] < l[i]: st.pop() st.append(l[i]) if len(st) >= 2: ans = max(ans, xor(st[-1], st[-2])) return ans n = int(input()) l = input() l = [int(i) for i in l.split()] ans = solve(l) l.reverse() ans = max(ans, solve(l)) print(ans)
FUNC_DEF RETURN BIN_OP VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR LIST VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR WHILE FUNC_CALL VAR VAR NUMBER VAR NUMBER VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
n = int(input()) li = [int(x) for x in input().split()] monD = [] ans = 0 for i, j in zip(li, range(0, len(li))): if j == 0: monD.append(i) else: fl = 1 if monD[-1] > i: ans = max(ans, i ^ monD[-1]) monD.append(i) else: while monD[-1] < i: ans = max(ans, i ^ monD[-1]) _ = monD.pop() if len(monD) == 0: fl = 0 break if fl != 0: ans = max(ans, i ^ monD[-1]) monD.append(i) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR WHILE VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
n = int(input()) a = list(map(int, input().split())) stack = [] xor = 0 for i in range(n): while stack != [] and stack[-1] < a[i]: xor = max(xor, a[i] ^ stack[-1]) stack.pop() if stack != []: xor = max(xor, a[i] ^ stack[-1]) stack.append(a[i]) print(xor)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE VAR LIST VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR IF VAR LIST ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
import sys input = sys.stdin.readline n = int(input()) a = list(map(int, input().split())) ans = 0 d = [] for i in a: while len(d) and d[-1] < i: ans = max(ans, d[-1] ^ i) d.pop() if len(d): ans = max(ans, d[-1] ^ i) d.append(i) d = [] print(ans)
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR VAR WHILE FUNC_CALL VAR VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR IF FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST EXPR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
def maximum_xor_secondary(sequence): stack, answer = [], 0 for x in sequence: while stack: answer = max(answer, stack[-1] ^ x) if stack[-1] > x: break else: stack.pop() stack.append(x) return answer size, num = input(), [int(x) for x in input().split()] print(maximum_xor_secondary(num))
FUNC_DEF ASSIGN VAR VAR LIST NUMBER FOR VAR VAR WHILE VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR IF VAR NUMBER VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR RETURN VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
def fun(numbers): le = len(numbers) stack = [] ans = 0 i = 1 for i in numbers: while stack: ans = max(ans, stack[-1] ^ i) if stack[-1] > i: break else: stack.pop() stack.append(i) return ans n = input() user_input = input().split(" ") numbers = [int(x.strip()) for x in user_input] print(fun(numbers))
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR WHILE VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR IF VAR NUMBER VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
def max_ex(nums): maximum = float("-inf") stack = [] for i in range(len(nums)): if not stack: stack.append(nums[i]) else: while stack and stack[-1] < nums[i]: maximum = max(maximum, stack[-1] ^ nums[i]) stack.pop() if stack: maximum = max(maximum, stack[-1] ^ nums[i]) stack.append(nums[i]) if stack: temp = stack.pop() while stack: maximum = max(maximum, temp ^ stack[-1]) temp = stack.pop() return maximum n = int(input()) arr = [int(i) for i in input().split()] print(max_ex(arr))
FUNC_DEF ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR EXPR FUNC_CALL VAR VAR VAR WHILE VAR VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR VAR IF VAR ASSIGN VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
n = int(input()) a = list(map(int, input().strip().split())) stack = [] max_xor = 0 for k in range(n): if not stack: stack.append(a[k]) elif a[k] < stack[-1]: max_xor = max(max_xor, a[k] ^ stack[-1]) stack.append(a[k]) elif a[k] > stack[-1]: while stack and a[k] > stack[-1]: popped = stack.pop() max_xor = max(max_xor, a[k] ^ popped) if stack: max_xor = max(max_xor, a[k] ^ stack[-1]) stack.append(a[k]) print(max_xor)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR EXPR FUNC_CALL VAR VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR IF VAR VAR VAR NUMBER WHILE VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR IF VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
n = int(input()) [first_value, *sn] = list(map(int, input().strip().split())) ans = 0 stack = [None] * n top = 0 stack[top] = first_value for s in sn: if s > stack[top]: while top > -1 and s > stack[top]: ans = max(ans, s ^ stack[top]) top -= 1 if top > -1: ans = max(ans, s ^ stack[top]) top += 1 stack[top] = s else: ans = max(ans, s ^ stack[top]) top += 1 stack[top] = s print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN LIST VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NONE VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR FOR VAR VAR IF VAR VAR VAR WHILE VAR NUMBER VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
n = int(input()) li = [int(x) for x in input().split()] stack = [] large = 0 for i in range(0, n): while len(stack) != 0: if stack[-1] < li[i]: large = max(large, stack[-1] ^ li[i]) stack.pop() else: large = max(large, stack[-1] ^ li[i]) break stack.append(li[i]) print(large)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR WHILE FUNC_CALL VAR VAR NUMBER IF VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
N = int(input()) W = list(map(int, input().split())) def func(W): st, ans = [W[0]], 0 for i in W[1:]: while len(st) and st[-1] < i: st.pop() ans = max(ans, st[-1] ^ i) if len(st) else ans st.append(i) return ans print(max(func(W), func(W[::-1])))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR LIST VAR NUMBER NUMBER FOR VAR VAR NUMBER WHILE FUNC_CALL VAR VAR VAR NUMBER VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR RETURN VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
l = int(input()) arr = [int(i) for i in input().split()] stack = [arr[0]] maxa = 0 x = 0 for i in range(1, len(arr)): while len(stack) != 0 and arr[i] > stack[-1]: x = arr[i] ^ stack[-1] maxa = max(maxa, x) stack.pop() if len(stack) != 0: x = arr[i] ^ stack[-1] maxa = max(maxa, x) stack.append(arr[i]) print(maxa)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR WHILE FUNC_CALL VAR VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
def maxxor(a, b, ans): t = a ^ b if t > ans: return t else: return ans n = int(input().strip()) arr = list(map(int, input().strip().split())) s = list() s.append(arr[0]) s.append(arr[1]) ans = maxxor(arr[0], arr[1], 0) index = 2 while index < n: if arr[index] > s[-1]: while arr[index] > s[-1]: t = s.pop() ans = maxxor(arr[index], t, ans) if len(s) == 0: break if len(s) != 0: ans = maxxor(arr[index], s[-1], ans) s.append(arr[index]) index += 1 print(ans)
FUNC_DEF ASSIGN VAR BIN_OP VAR VAR IF VAR VAR RETURN VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR NUMBER WHILE VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
n = int(input().strip()) l = list(map(int, input().strip().split(" "))) stk = [] maxVal = 0 stk.append(l[0]) stk.append(l[1]) maxVal = stk[-1] ^ stk[-2] for i in l[2:]: while len(stk) and stk[-1] < i: stk.pop() stk.append(i) if len(stk) >= 2: maxVal = max(maxVal, stk[-1] ^ stk[-2]) l = l[::-1] stk = [] stk.append(l[0]) stk.append(l[1]) maxVal = max(maxVal, stk[-1] ^ stk[-2]) for i in l[2:]: while len(stk) and stk[-1] < i: stk.pop() stk.append(i) if len(stk) >= 2: maxVal = max(maxVal, stk[-1] ^ stk[-2]) print(maxVal)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR LIST ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER FOR VAR VAR NUMBER WHILE FUNC_CALL VAR VAR VAR NUMBER VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR LIST EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR NUMBER FOR VAR VAR NUMBER WHILE FUNC_CALL VAR VAR VAR NUMBER VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
n = int(input()) a = list(map(int, input().split())) s = list() ans = 0 s.append(a[0]) for i in range(1, n): while s and a[i] > s[-1]: ans = max(ans, a[i] ^ s.pop()) if s: ans = max(ans, a[i] ^ s[-1]) s.append(a[i]) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR WHILE VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_CALL VAR IF VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
n = int(input()) nl = [int(x) for x in input().split()] st = [] ans = 0 for x in nl: if st and st[-1] > x: ans = max(ans, st[-1] ^ x) elif st: while st and st[-1] < x: ans = max(ans, st.pop() ^ x) if st: ans = max(ans, st[-1] ^ x) st.append(x) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR IF VAR WHILE VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR IF VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
from sys import stdin ip = stdin.readline n = int(ip()) a = list(map(int, ip().split())) stk = [a[0]] ans = 0 for i in range(1, n): val = a[i] ans = max(ans, val ^ a[i - 1]) while stk and stk[-1] < val: ans = max(ans, val ^ stk.pop()) if stk: ans = max(ans, stk[-1] ^ val) stk.append(val) print(ans)
ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR NUMBER WHILE VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR FUNC_CALL VAR IF VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
t = input() a = list(map(int, input().split())) m = 0 l = [] for i in range(0, len(a)): b = a[i] if len(l) == 0: l.append(b) elif l[-1] > b: if l[-1] ^ b > m: m = l[-1] ^ b l.append(b) else: while len(l) > 0 and l[-1] < b: if l[-1] ^ b > m: m = l[-1] ^ b del l[-1] l.append(b) if len(l) > 1: if l[-1] ^ l[-2] > m: m = l[-1] ^ l[-2] print(m)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR NUMBER VAR IF BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR WHILE FUNC_CALL VAR VAR NUMBER VAR NUMBER VAR IF BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
def f(a): stack = [] ans = -1 for i in range(0, len(a)): while stack and a[i] >= stack[-1]: ans = max(ans, a[i] ^ stack[-1]) stack.pop(-1) stack.append(a[i]) return ans a = map(int, input().strip().split()) l = list(map(int, input().strip().split())) an = -1 an = max(f(l), f(l[::-1])) print(an)
FUNC_DEF ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR WHILE VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
def empty(l): return len(l) == 0 def lucky_number(arr): st = [] l = 0 for d in arr: while not empty(st) and st[-1] < d: l = max(l, st.pop() ^ d) if not empty(st): l = max(l, st[-1] ^ d) st.append(d) d = 0 if not empty(st): d = st.pop() while not empty(st): l = max(l, d ^ st[-1]) d = st.pop() return l N = int(input()) arr = list(map(int, input().split())) print(lucky_number(arr))
FUNC_DEF RETURN FUNC_CALL VAR VAR NUMBER FUNC_DEF ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR VAR WHILE FUNC_CALL VAR VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR WHILE FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
Bike loves looking for the second maximum element in the sequence. The second maximum element in the sequence of distinct numbers x_1, x_2, ..., x_{k} (k > 1) is such maximum element x_{j}, that the following inequality holds: $x_{j} \neq \operatorname{max}_{i = 1}^{k} x_{i}$. The lucky number of the sequence of distinct positive integers x_1, x_2, ..., x_{k} (k > 1) is the number that is equal to the bitwise excluding OR of the maximum element of the sequence and the second maximum element of the sequence. You've got a sequence of distinct positive integers s_1, s_2, ..., s_{n} (n > 1). Let's denote sequence s_{l}, s_{l} + 1, ..., s_{r} as s[l..r] (1 ≤ l < r ≤ n). Your task is to find the maximum number among all lucky numbers of sequences s[l..r]. Note that as all numbers in sequence s are distinct, all the given definitions make sence. -----Input----- The first line contains integer n (1 < n ≤ 10^5). The second line contains n distinct integers s_1, s_2, ..., s_{n} (1 ≤ s_{i} ≤ 10^9). -----Output----- Print a single integer — the maximum lucky number among all lucky numbers of sequences s[l..r]. -----Examples----- Input 5 5 2 1 4 3 Output 7 Input 5 9 8 3 5 7 Output 15 -----Note----- For the first sample you can choose s[4..5] = {4, 3} and its lucky number is (4 xor 3) = 7. You can also choose s[1..2]. For the second sample you must choose s[2..5] = {8, 3, 5, 7}.
n = int(input()) a = list(map(int, input().split())) st = a[:2] mx = a[0] ^ a[1] for i in a[2:]: while st and st[-1] < i: st.pop() st.append(i) l = st.pop() if st: mx = max(mx, st[-1] ^ l) st.append(l) st = a[: n - 3 : -1] mx = max(mx, a[n - 1] ^ a[n - 2]) for i in a[n - 3 :: -1]: while st and st[-1] < i: st.pop() st.append(i) l = st.pop() if st: mx = max(mx, st[-1] ^ l) st.append(l) print(mx)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER FOR VAR VAR NUMBER WHILE VAR VAR NUMBER VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR IF VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER FOR VAR VAR BIN_OP VAR NUMBER NUMBER WHILE VAR VAR NUMBER VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR IF VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
Due to the rise of covid-19 cases in India, this year BCCI decided to organize knock-out matches in IPL rather than a league. Today is matchday 2 and it is between the most loved team Chennai Super Kings and the most underrated team - Punjab Kings. Stephen Fleming, the head coach of CSK, analyzing the batting stats of Punjab. He has stats of runs scored by all N players in the previous season and he wants to find the maximum score for each and every contiguous sub-list of size K to strategize for the game. Example 1: Input: N = 9, K = 3 arr[] = 1 2 3 1 4 5 2 3 6 Output: 3 3 4 5 5 5 6 Explanation: 1st contiguous subarray = {1 2 3} Max = 3 2nd contiguous subarray = {2 3 1} Max = 3 3rd contiguous subarray = {3 1 4} Max = 4 4th contiguous subarray = {1 4 5} Max = 5 5th contiguous subarray = {4 5 2} Max = 5 6th contiguous subarray = {5 2 3} Max = 5 7th contiguous subarray = {2 3 6} Max = 6 Example 2: Input: N = 10, K = 4 arr[] = 8 5 10 7 9 4 15 12 90 13 Output: 10 10 10 15 15 90 90 Explanation: 1st contiguous subarray = {8 5 10 7}, Max = 10 2nd contiguous subarray = {5 10 7 9}, Max = 10 3rd contiguous subarray = {10 7 9 4}, Max = 10 4th contiguous subarray = {7 9 4 15}, Max = 15 5th contiguous subarray = {9 4 15 12}, Max = 15 6th contiguous subarray = {4 15 12 90}, Max = 90 7th contiguous subarray = {15 12 90 13}, Max = 90 Your Task: You don't need to read input or print anything. Complete the function max_of_subarrays() which takes the array, N, and K as input parameters and returns a list of integers denoting the maximum of every contiguous subarray of size K. Constraints: 1 ≤ N ≤ 10^{6} 1 ≤ K ≤ N 0 ≤ arr[i] ≤ 10^{6}
def next_greater_element_index(input_arr: [], n): output_arr = [float("inf")] * n data_stack = [] for i in reversed(range(n)): element = input_arr[i] while len(data_stack) > 0 and element >= input_arr[data_stack[-1]]: data_stack.pop(-1) if len(data_stack) > 0: output_arr[i] = data_stack[-1] data_stack.append(i) else: data_stack.append(i) return output_arr def max_sub_array_sum_size_k(input_arr: [], n: int, k: int): next_greater_element_index_arr = next_greater_element_index(input_arr, n) i = 0 j = 0 end = k - 1 output_arr = [] while end < n: if j < i: j = i ans = j while next_greater_element_index_arr[j] <= end: ans = j j = next_greater_element_index_arr[j] output_arr.append(input_arr[j]) i = i + 1 end = end + 1 return output_arr class Solution: def max_of_subarrays(self, arr, n, k): return max_sub_array_sum_size_k(arr, n, k)
FUNC_DEF LIST ASSIGN VAR BIN_OP LIST FUNC_CALL VAR STRING VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR WHILE FUNC_CALL VAR VAR NUMBER VAR VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR RETURN VAR FUNC_DEF LIST VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR LIST WHILE VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR WHILE VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR CLASS_DEF FUNC_DEF RETURN FUNC_CALL VAR VAR VAR VAR
Due to the rise of covid-19 cases in India, this year BCCI decided to organize knock-out matches in IPL rather than a league. Today is matchday 2 and it is between the most loved team Chennai Super Kings and the most underrated team - Punjab Kings. Stephen Fleming, the head coach of CSK, analyzing the batting stats of Punjab. He has stats of runs scored by all N players in the previous season and he wants to find the maximum score for each and every contiguous sub-list of size K to strategize for the game. Example 1: Input: N = 9, K = 3 arr[] = 1 2 3 1 4 5 2 3 6 Output: 3 3 4 5 5 5 6 Explanation: 1st contiguous subarray = {1 2 3} Max = 3 2nd contiguous subarray = {2 3 1} Max = 3 3rd contiguous subarray = {3 1 4} Max = 4 4th contiguous subarray = {1 4 5} Max = 5 5th contiguous subarray = {4 5 2} Max = 5 6th contiguous subarray = {5 2 3} Max = 5 7th contiguous subarray = {2 3 6} Max = 6 Example 2: Input: N = 10, K = 4 arr[] = 8 5 10 7 9 4 15 12 90 13 Output: 10 10 10 15 15 90 90 Explanation: 1st contiguous subarray = {8 5 10 7}, Max = 10 2nd contiguous subarray = {5 10 7 9}, Max = 10 3rd contiguous subarray = {10 7 9 4}, Max = 10 4th contiguous subarray = {7 9 4 15}, Max = 15 5th contiguous subarray = {9 4 15 12}, Max = 15 6th contiguous subarray = {4 15 12 90}, Max = 90 7th contiguous subarray = {15 12 90 13}, Max = 90 Your Task: You don't need to read input or print anything. Complete the function max_of_subarrays() which takes the array, N, and K as input parameters and returns a list of integers denoting the maximum of every contiguous subarray of size K. Constraints: 1 ≤ N ≤ 10^{6} 1 ≤ K ≤ N 0 ≤ arr[i] ≤ 10^{6}
class Solution: def max_of_subarrays(self, arr, n, k): if k == 1 or n == 1: return arr sta = [] ans = [] l = 0 i = 0 while i < n: if i < k - 1: while l > 0 and sta[-1][0] < arr[i]: sta.pop() l -= 1 sta.append([arr[i], i]) l += 1 else: if sta[0][1] <= i - k: sta.remove(sta[0]) l -= 1 while l > 0 and sta[-1][0] < arr[i]: sta.pop() l -= 1 sta.append([arr[i], i]) l += 1 ans.append(sta[0][0]) i += 1 return ans
CLASS_DEF FUNC_DEF IF VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR BIN_OP VAR NUMBER WHILE VAR NUMBER VAR NUMBER NUMBER VAR VAR EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR LIST VAR VAR VAR VAR NUMBER IF VAR NUMBER NUMBER BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER WHILE VAR NUMBER VAR NUMBER NUMBER VAR VAR EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR LIST VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER NUMBER VAR NUMBER RETURN VAR
Due to the rise of covid-19 cases in India, this year BCCI decided to organize knock-out matches in IPL rather than a league. Today is matchday 2 and it is between the most loved team Chennai Super Kings and the most underrated team - Punjab Kings. Stephen Fleming, the head coach of CSK, analyzing the batting stats of Punjab. He has stats of runs scored by all N players in the previous season and he wants to find the maximum score for each and every contiguous sub-list of size K to strategize for the game. Example 1: Input: N = 9, K = 3 arr[] = 1 2 3 1 4 5 2 3 6 Output: 3 3 4 5 5 5 6 Explanation: 1st contiguous subarray = {1 2 3} Max = 3 2nd contiguous subarray = {2 3 1} Max = 3 3rd contiguous subarray = {3 1 4} Max = 4 4th contiguous subarray = {1 4 5} Max = 5 5th contiguous subarray = {4 5 2} Max = 5 6th contiguous subarray = {5 2 3} Max = 5 7th contiguous subarray = {2 3 6} Max = 6 Example 2: Input: N = 10, K = 4 arr[] = 8 5 10 7 9 4 15 12 90 13 Output: 10 10 10 15 15 90 90 Explanation: 1st contiguous subarray = {8 5 10 7}, Max = 10 2nd contiguous subarray = {5 10 7 9}, Max = 10 3rd contiguous subarray = {10 7 9 4}, Max = 10 4th contiguous subarray = {7 9 4 15}, Max = 15 5th contiguous subarray = {9 4 15 12}, Max = 15 6th contiguous subarray = {4 15 12 90}, Max = 90 7th contiguous subarray = {15 12 90 13}, Max = 90 Your Task: You don't need to read input or print anything. Complete the function max_of_subarrays() which takes the array, N, and K as input parameters and returns a list of integers denoting the maximum of every contiguous subarray of size K. Constraints: 1 ≤ N ≤ 10^{6} 1 ≤ K ≤ N 0 ≤ arr[i] ≤ 10^{6}
class Solution: def max_of_subarrays(self, arr, n, k): l = [] i = 0 j = 0 ans = [] while i < n: while len(l) > 0 and l[-1] < arr[i]: l.pop() l.append(arr[i]) if i - j + 1 == k: ans.append(l[0]) if l[0] == arr[j]: l.pop(0) i = i + 1 j = j + 1 else: i = i + 1 return ans
CLASS_DEF FUNC_DEF ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST WHILE VAR VAR WHILE FUNC_CALL VAR VAR NUMBER VAR NUMBER VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
Due to the rise of covid-19 cases in India, this year BCCI decided to organize knock-out matches in IPL rather than a league. Today is matchday 2 and it is between the most loved team Chennai Super Kings and the most underrated team - Punjab Kings. Stephen Fleming, the head coach of CSK, analyzing the batting stats of Punjab. He has stats of runs scored by all N players in the previous season and he wants to find the maximum score for each and every contiguous sub-list of size K to strategize for the game. Example 1: Input: N = 9, K = 3 arr[] = 1 2 3 1 4 5 2 3 6 Output: 3 3 4 5 5 5 6 Explanation: 1st contiguous subarray = {1 2 3} Max = 3 2nd contiguous subarray = {2 3 1} Max = 3 3rd contiguous subarray = {3 1 4} Max = 4 4th contiguous subarray = {1 4 5} Max = 5 5th contiguous subarray = {4 5 2} Max = 5 6th contiguous subarray = {5 2 3} Max = 5 7th contiguous subarray = {2 3 6} Max = 6 Example 2: Input: N = 10, K = 4 arr[] = 8 5 10 7 9 4 15 12 90 13 Output: 10 10 10 15 15 90 90 Explanation: 1st contiguous subarray = {8 5 10 7}, Max = 10 2nd contiguous subarray = {5 10 7 9}, Max = 10 3rd contiguous subarray = {10 7 9 4}, Max = 10 4th contiguous subarray = {7 9 4 15}, Max = 15 5th contiguous subarray = {9 4 15 12}, Max = 15 6th contiguous subarray = {4 15 12 90}, Max = 90 7th contiguous subarray = {15 12 90 13}, Max = 90 Your Task: You don't need to read input or print anything. Complete the function max_of_subarrays() which takes the array, N, and K as input parameters and returns a list of integers denoting the maximum of every contiguous subarray of size K. Constraints: 1 ≤ N ≤ 10^{6} 1 ≤ K ≤ N 0 ≤ arr[i] ≤ 10^{6}
class Solution: def max_of_subarrays(self, arr, n, k): A = arr list1 = deque() ans = [] l = r = 0 while r < len(A): while list1 and list1[-1] < A[r]: list1.pop() list1.append(A[r]) if r - l + 1 < k: r += 1 elif r - l + 1 == k: ans.append(list1[0]) if list1[0] == A[l]: list1.popleft() l += 1 r += 1 return ans
CLASS_DEF FUNC_DEF ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR VAR NUMBER WHILE VAR FUNC_CALL VAR VAR WHILE VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER RETURN VAR
Due to the rise of covid-19 cases in India, this year BCCI decided to organize knock-out matches in IPL rather than a league. Today is matchday 2 and it is between the most loved team Chennai Super Kings and the most underrated team - Punjab Kings. Stephen Fleming, the head coach of CSK, analyzing the batting stats of Punjab. He has stats of runs scored by all N players in the previous season and he wants to find the maximum score for each and every contiguous sub-list of size K to strategize for the game. Example 1: Input: N = 9, K = 3 arr[] = 1 2 3 1 4 5 2 3 6 Output: 3 3 4 5 5 5 6 Explanation: 1st contiguous subarray = {1 2 3} Max = 3 2nd contiguous subarray = {2 3 1} Max = 3 3rd contiguous subarray = {3 1 4} Max = 4 4th contiguous subarray = {1 4 5} Max = 5 5th contiguous subarray = {4 5 2} Max = 5 6th contiguous subarray = {5 2 3} Max = 5 7th contiguous subarray = {2 3 6} Max = 6 Example 2: Input: N = 10, K = 4 arr[] = 8 5 10 7 9 4 15 12 90 13 Output: 10 10 10 15 15 90 90 Explanation: 1st contiguous subarray = {8 5 10 7}, Max = 10 2nd contiguous subarray = {5 10 7 9}, Max = 10 3rd contiguous subarray = {10 7 9 4}, Max = 10 4th contiguous subarray = {7 9 4 15}, Max = 15 5th contiguous subarray = {9 4 15 12}, Max = 15 6th contiguous subarray = {4 15 12 90}, Max = 90 7th contiguous subarray = {15 12 90 13}, Max = 90 Your Task: You don't need to read input or print anything. Complete the function max_of_subarrays() which takes the array, N, and K as input parameters and returns a list of integers denoting the maximum of every contiguous subarray of size K. Constraints: 1 ≤ N ≤ 10^{6} 1 ≤ K ≤ N 0 ≤ arr[i] ≤ 10^{6}
class Solution: def max_of_subarrays(self, arr, n, k): l = [] st = [] i, j = 0, 0 while j < n: while st and st[-1] < arr[j]: st.pop(-1) st.append(arr[j]) if j - i + 1 < k: j += 1 elif j - i + 1 == k: l.append(st[0]) if arr[i] == st[0]: st.pop(0) i += 1 j += 1 return l
CLASS_DEF FUNC_DEF ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR VAR NUMBER NUMBER WHILE VAR VAR WHILE VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR NUMBER VAR NUMBER RETURN VAR
Due to the rise of covid-19 cases in India, this year BCCI decided to organize knock-out matches in IPL rather than a league. Today is matchday 2 and it is between the most loved team Chennai Super Kings and the most underrated team - Punjab Kings. Stephen Fleming, the head coach of CSK, analyzing the batting stats of Punjab. He has stats of runs scored by all N players in the previous season and he wants to find the maximum score for each and every contiguous sub-list of size K to strategize for the game. Example 1: Input: N = 9, K = 3 arr[] = 1 2 3 1 4 5 2 3 6 Output: 3 3 4 5 5 5 6 Explanation: 1st contiguous subarray = {1 2 3} Max = 3 2nd contiguous subarray = {2 3 1} Max = 3 3rd contiguous subarray = {3 1 4} Max = 4 4th contiguous subarray = {1 4 5} Max = 5 5th contiguous subarray = {4 5 2} Max = 5 6th contiguous subarray = {5 2 3} Max = 5 7th contiguous subarray = {2 3 6} Max = 6 Example 2: Input: N = 10, K = 4 arr[] = 8 5 10 7 9 4 15 12 90 13 Output: 10 10 10 15 15 90 90 Explanation: 1st contiguous subarray = {8 5 10 7}, Max = 10 2nd contiguous subarray = {5 10 7 9}, Max = 10 3rd contiguous subarray = {10 7 9 4}, Max = 10 4th contiguous subarray = {7 9 4 15}, Max = 15 5th contiguous subarray = {9 4 15 12}, Max = 15 6th contiguous subarray = {4 15 12 90}, Max = 90 7th contiguous subarray = {15 12 90 13}, Max = 90 Your Task: You don't need to read input or print anything. Complete the function max_of_subarrays() which takes the array, N, and K as input parameters and returns a list of integers denoting the maximum of every contiguous subarray of size K. Constraints: 1 ≤ N ≤ 10^{6} 1 ≤ K ≤ N 0 ≤ arr[i] ≤ 10^{6}
class Solution: def max_of_subarrays(self, arr, n, k): output = [] l, r = 0, 0 q = deque() while r < len(arr): while q and arr[q[-1]] <= arr[r]: q.pop() q.append(r) if l > q[0]: q.popleft() if r + 1 >= k: output.append(arr[q[0]]) l += 1 r += 1 return output
CLASS_DEF FUNC_DEF ASSIGN VAR LIST ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR WHILE VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR IF BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER RETURN VAR
Due to the rise of covid-19 cases in India, this year BCCI decided to organize knock-out matches in IPL rather than a league. Today is matchday 2 and it is between the most loved team Chennai Super Kings and the most underrated team - Punjab Kings. Stephen Fleming, the head coach of CSK, analyzing the batting stats of Punjab. He has stats of runs scored by all N players in the previous season and he wants to find the maximum score for each and every contiguous sub-list of size K to strategize for the game. Example 1: Input: N = 9, K = 3 arr[] = 1 2 3 1 4 5 2 3 6 Output: 3 3 4 5 5 5 6 Explanation: 1st contiguous subarray = {1 2 3} Max = 3 2nd contiguous subarray = {2 3 1} Max = 3 3rd contiguous subarray = {3 1 4} Max = 4 4th contiguous subarray = {1 4 5} Max = 5 5th contiguous subarray = {4 5 2} Max = 5 6th contiguous subarray = {5 2 3} Max = 5 7th contiguous subarray = {2 3 6} Max = 6 Example 2: Input: N = 10, K = 4 arr[] = 8 5 10 7 9 4 15 12 90 13 Output: 10 10 10 15 15 90 90 Explanation: 1st contiguous subarray = {8 5 10 7}, Max = 10 2nd contiguous subarray = {5 10 7 9}, Max = 10 3rd contiguous subarray = {10 7 9 4}, Max = 10 4th contiguous subarray = {7 9 4 15}, Max = 15 5th contiguous subarray = {9 4 15 12}, Max = 15 6th contiguous subarray = {4 15 12 90}, Max = 90 7th contiguous subarray = {15 12 90 13}, Max = 90 Your Task: You don't need to read input or print anything. Complete the function max_of_subarrays() which takes the array, N, and K as input parameters and returns a list of integers denoting the maximum of every contiguous subarray of size K. Constraints: 1 ≤ N ≤ 10^{6} 1 ≤ K ≤ N 0 ≤ arr[i] ≤ 10^{6}
class Solution: def max_of_subarrays(self, arr, n, k): l = [] ma = max(arr[:k]) pos = arr.index(ma) l.append(ma) for i in range(1, n - k + 1): if i <= pos: if ma < arr[i + k - 1]: ma = arr[i + k - 1] pos = i + k - 1 l.append(ma) else: ma = max(arr[i : i + k]) pos = i l.append(ma) return l
CLASS_DEF FUNC_DEF ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR IF VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR RETURN VAR
Due to the rise of covid-19 cases in India, this year BCCI decided to organize knock-out matches in IPL rather than a league. Today is matchday 2 and it is between the most loved team Chennai Super Kings and the most underrated team - Punjab Kings. Stephen Fleming, the head coach of CSK, analyzing the batting stats of Punjab. He has stats of runs scored by all N players in the previous season and he wants to find the maximum score for each and every contiguous sub-list of size K to strategize for the game. Example 1: Input: N = 9, K = 3 arr[] = 1 2 3 1 4 5 2 3 6 Output: 3 3 4 5 5 5 6 Explanation: 1st contiguous subarray = {1 2 3} Max = 3 2nd contiguous subarray = {2 3 1} Max = 3 3rd contiguous subarray = {3 1 4} Max = 4 4th contiguous subarray = {1 4 5} Max = 5 5th contiguous subarray = {4 5 2} Max = 5 6th contiguous subarray = {5 2 3} Max = 5 7th contiguous subarray = {2 3 6} Max = 6 Example 2: Input: N = 10, K = 4 arr[] = 8 5 10 7 9 4 15 12 90 13 Output: 10 10 10 15 15 90 90 Explanation: 1st contiguous subarray = {8 5 10 7}, Max = 10 2nd contiguous subarray = {5 10 7 9}, Max = 10 3rd contiguous subarray = {10 7 9 4}, Max = 10 4th contiguous subarray = {7 9 4 15}, Max = 15 5th contiguous subarray = {9 4 15 12}, Max = 15 6th contiguous subarray = {4 15 12 90}, Max = 90 7th contiguous subarray = {15 12 90 13}, Max = 90 Your Task: You don't need to read input or print anything. Complete the function max_of_subarrays() which takes the array, N, and K as input parameters and returns a list of integers denoting the maximum of every contiguous subarray of size K. Constraints: 1 ≤ N ≤ 10^{6} 1 ≤ K ≤ N 0 ≤ arr[i] ≤ 10^{6}
class Solution: def max_of_subarrays(self, arr, n, k): n = len(arr) max_val = max(arr[:k]) res = [max_val] for i in range(k, n): if arr[i - k] == max_val: max_val = max(arr[i - k + 1 : i + 1]) else: max_val = max(max_val, arr[i]) res.append(max_val) return res
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR LIST VAR FOR VAR FUNC_CALL VAR VAR VAR IF VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR RETURN VAR
Due to the rise of covid-19 cases in India, this year BCCI decided to organize knock-out matches in IPL rather than a league. Today is matchday 2 and it is between the most loved team Chennai Super Kings and the most underrated team - Punjab Kings. Stephen Fleming, the head coach of CSK, analyzing the batting stats of Punjab. He has stats of runs scored by all N players in the previous season and he wants to find the maximum score for each and every contiguous sub-list of size K to strategize for the game. Example 1: Input: N = 9, K = 3 arr[] = 1 2 3 1 4 5 2 3 6 Output: 3 3 4 5 5 5 6 Explanation: 1st contiguous subarray = {1 2 3} Max = 3 2nd contiguous subarray = {2 3 1} Max = 3 3rd contiguous subarray = {3 1 4} Max = 4 4th contiguous subarray = {1 4 5} Max = 5 5th contiguous subarray = {4 5 2} Max = 5 6th contiguous subarray = {5 2 3} Max = 5 7th contiguous subarray = {2 3 6} Max = 6 Example 2: Input: N = 10, K = 4 arr[] = 8 5 10 7 9 4 15 12 90 13 Output: 10 10 10 15 15 90 90 Explanation: 1st contiguous subarray = {8 5 10 7}, Max = 10 2nd contiguous subarray = {5 10 7 9}, Max = 10 3rd contiguous subarray = {10 7 9 4}, Max = 10 4th contiguous subarray = {7 9 4 15}, Max = 15 5th contiguous subarray = {9 4 15 12}, Max = 15 6th contiguous subarray = {4 15 12 90}, Max = 90 7th contiguous subarray = {15 12 90 13}, Max = 90 Your Task: You don't need to read input or print anything. Complete the function max_of_subarrays() which takes the array, N, and K as input parameters and returns a list of integers denoting the maximum of every contiguous subarray of size K. Constraints: 1 ≤ N ≤ 10^{6} 1 ≤ K ≤ N 0 ≤ arr[i] ≤ 10^{6}
class Solution: def max_of_subarrays(self, arr, n, k): stack = [] ans = [] for i in range(k): while len(stack) != 0 and arr[stack[-1]] < arr[i]: stack.pop() stack.append(i) ans.append(arr[stack[0]]) for i in range(k, n): if i - k >= stack[0]: stack.pop(0) while len(stack) != 0 and arr[stack[-1]] < arr[i]: stack.pop() stack.append(i) ans.append(arr[stack[0]]) return ans
CLASS_DEF FUNC_DEF ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR WHILE FUNC_CALL VAR VAR NUMBER VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR IF BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER WHILE FUNC_CALL VAR VAR NUMBER VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER RETURN VAR
Due to the rise of covid-19 cases in India, this year BCCI decided to organize knock-out matches in IPL rather than a league. Today is matchday 2 and it is between the most loved team Chennai Super Kings and the most underrated team - Punjab Kings. Stephen Fleming, the head coach of CSK, analyzing the batting stats of Punjab. He has stats of runs scored by all N players in the previous season and he wants to find the maximum score for each and every contiguous sub-list of size K to strategize for the game. Example 1: Input: N = 9, K = 3 arr[] = 1 2 3 1 4 5 2 3 6 Output: 3 3 4 5 5 5 6 Explanation: 1st contiguous subarray = {1 2 3} Max = 3 2nd contiguous subarray = {2 3 1} Max = 3 3rd contiguous subarray = {3 1 4} Max = 4 4th contiguous subarray = {1 4 5} Max = 5 5th contiguous subarray = {4 5 2} Max = 5 6th contiguous subarray = {5 2 3} Max = 5 7th contiguous subarray = {2 3 6} Max = 6 Example 2: Input: N = 10, K = 4 arr[] = 8 5 10 7 9 4 15 12 90 13 Output: 10 10 10 15 15 90 90 Explanation: 1st contiguous subarray = {8 5 10 7}, Max = 10 2nd contiguous subarray = {5 10 7 9}, Max = 10 3rd contiguous subarray = {10 7 9 4}, Max = 10 4th contiguous subarray = {7 9 4 15}, Max = 15 5th contiguous subarray = {9 4 15 12}, Max = 15 6th contiguous subarray = {4 15 12 90}, Max = 90 7th contiguous subarray = {15 12 90 13}, Max = 90 Your Task: You don't need to read input or print anything. Complete the function max_of_subarrays() which takes the array, N, and K as input parameters and returns a list of integers denoting the maximum of every contiguous subarray of size K. Constraints: 1 ≤ N ≤ 10^{6} 1 ≤ K ≤ N 0 ≤ arr[i] ≤ 10^{6}
class Solution: def max_of_subarrays(self, nums, n, k): max_vals = [] ans = [] i = j = 0 n = len(nums) while j < n: if len(max_vals) == 0: max_vals.append(nums[j]) else: while len(max_vals) != 0 and max_vals[-1] < nums[j]: max_vals.pop(-1) max_vals.append(nums[j]) if j - i + 1 < k: j = j + 1 elif j - i + 1: ans.append(max_vals[0]) if nums[i] == max_vals[0]: max_vals.pop(0) i = i + 1 j = j + 1 return ans
CLASS_DEF FUNC_DEF ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR WHILE FUNC_CALL VAR VAR NUMBER VAR NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
Due to the rise of covid-19 cases in India, this year BCCI decided to organize knock-out matches in IPL rather than a league. Today is matchday 2 and it is between the most loved team Chennai Super Kings and the most underrated team - Punjab Kings. Stephen Fleming, the head coach of CSK, analyzing the batting stats of Punjab. He has stats of runs scored by all N players in the previous season and he wants to find the maximum score for each and every contiguous sub-list of size K to strategize for the game. Example 1: Input: N = 9, K = 3 arr[] = 1 2 3 1 4 5 2 3 6 Output: 3 3 4 5 5 5 6 Explanation: 1st contiguous subarray = {1 2 3} Max = 3 2nd contiguous subarray = {2 3 1} Max = 3 3rd contiguous subarray = {3 1 4} Max = 4 4th contiguous subarray = {1 4 5} Max = 5 5th contiguous subarray = {4 5 2} Max = 5 6th contiguous subarray = {5 2 3} Max = 5 7th contiguous subarray = {2 3 6} Max = 6 Example 2: Input: N = 10, K = 4 arr[] = 8 5 10 7 9 4 15 12 90 13 Output: 10 10 10 15 15 90 90 Explanation: 1st contiguous subarray = {8 5 10 7}, Max = 10 2nd contiguous subarray = {5 10 7 9}, Max = 10 3rd contiguous subarray = {10 7 9 4}, Max = 10 4th contiguous subarray = {7 9 4 15}, Max = 15 5th contiguous subarray = {9 4 15 12}, Max = 15 6th contiguous subarray = {4 15 12 90}, Max = 90 7th contiguous subarray = {15 12 90 13}, Max = 90 Your Task: You don't need to read input or print anything. Complete the function max_of_subarrays() which takes the array, N, and K as input parameters and returns a list of integers denoting the maximum of every contiguous subarray of size K. Constraints: 1 ≤ N ≤ 10^{6} 1 ≤ K ≤ N 0 ≤ arr[i] ≤ 10^{6}
class Solution: def max_of_subarrays(self, arr, n, k): lst = [max(arr[:k])] for i in range(k, n): if arr[i - k] == lst[-1]: lst.append(max(arr[i - k + 1 : i + 1])) elif arr[i] > lst[-1]: lst.append(arr[i]) else: lst.append(lst[-1]) return lst
CLASS_DEF FUNC_DEF ASSIGN VAR LIST FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR IF VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR NUMBER RETURN VAR
Due to the rise of covid-19 cases in India, this year BCCI decided to organize knock-out matches in IPL rather than a league. Today is matchday 2 and it is between the most loved team Chennai Super Kings and the most underrated team - Punjab Kings. Stephen Fleming, the head coach of CSK, analyzing the batting stats of Punjab. He has stats of runs scored by all N players in the previous season and he wants to find the maximum score for each and every contiguous sub-list of size K to strategize for the game. Example 1: Input: N = 9, K = 3 arr[] = 1 2 3 1 4 5 2 3 6 Output: 3 3 4 5 5 5 6 Explanation: 1st contiguous subarray = {1 2 3} Max = 3 2nd contiguous subarray = {2 3 1} Max = 3 3rd contiguous subarray = {3 1 4} Max = 4 4th contiguous subarray = {1 4 5} Max = 5 5th contiguous subarray = {4 5 2} Max = 5 6th contiguous subarray = {5 2 3} Max = 5 7th contiguous subarray = {2 3 6} Max = 6 Example 2: Input: N = 10, K = 4 arr[] = 8 5 10 7 9 4 15 12 90 13 Output: 10 10 10 15 15 90 90 Explanation: 1st contiguous subarray = {8 5 10 7}, Max = 10 2nd contiguous subarray = {5 10 7 9}, Max = 10 3rd contiguous subarray = {10 7 9 4}, Max = 10 4th contiguous subarray = {7 9 4 15}, Max = 15 5th contiguous subarray = {9 4 15 12}, Max = 15 6th contiguous subarray = {4 15 12 90}, Max = 90 7th contiguous subarray = {15 12 90 13}, Max = 90 Your Task: You don't need to read input or print anything. Complete the function max_of_subarrays() which takes the array, N, and K as input parameters and returns a list of integers denoting the maximum of every contiguous subarray of size K. Constraints: 1 ≤ N ≤ 10^{6} 1 ≤ K ≤ N 0 ≤ arr[i] ≤ 10^{6}
class Solution: def max_of_subarrays(self, arr, n, k): if n == 1 or k == 1: return arr start = 0 end = 1 current_mx = 0 res = [] while end < n: if arr[end] > arr[current_mx] and current_mx >= start: current_mx = end elif current_mx < start: current_mx = start end = start if end - start >= k - 1: res.append(arr[current_mx]) start += 1 end += 1 return res
CLASS_DEF FUNC_DEF IF VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST WHILE VAR VAR IF VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF BIN_OP VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER RETURN VAR
Due to the rise of covid-19 cases in India, this year BCCI decided to organize knock-out matches in IPL rather than a league. Today is matchday 2 and it is between the most loved team Chennai Super Kings and the most underrated team - Punjab Kings. Stephen Fleming, the head coach of CSK, analyzing the batting stats of Punjab. He has stats of runs scored by all N players in the previous season and he wants to find the maximum score for each and every contiguous sub-list of size K to strategize for the game. Example 1: Input: N = 9, K = 3 arr[] = 1 2 3 1 4 5 2 3 6 Output: 3 3 4 5 5 5 6 Explanation: 1st contiguous subarray = {1 2 3} Max = 3 2nd contiguous subarray = {2 3 1} Max = 3 3rd contiguous subarray = {3 1 4} Max = 4 4th contiguous subarray = {1 4 5} Max = 5 5th contiguous subarray = {4 5 2} Max = 5 6th contiguous subarray = {5 2 3} Max = 5 7th contiguous subarray = {2 3 6} Max = 6 Example 2: Input: N = 10, K = 4 arr[] = 8 5 10 7 9 4 15 12 90 13 Output: 10 10 10 15 15 90 90 Explanation: 1st contiguous subarray = {8 5 10 7}, Max = 10 2nd contiguous subarray = {5 10 7 9}, Max = 10 3rd contiguous subarray = {10 7 9 4}, Max = 10 4th contiguous subarray = {7 9 4 15}, Max = 15 5th contiguous subarray = {9 4 15 12}, Max = 15 6th contiguous subarray = {4 15 12 90}, Max = 90 7th contiguous subarray = {15 12 90 13}, Max = 90 Your Task: You don't need to read input or print anything. Complete the function max_of_subarrays() which takes the array, N, and K as input parameters and returns a list of integers denoting the maximum of every contiguous subarray of size K. Constraints: 1 ≤ N ≤ 10^{6} 1 ≤ K ≤ N 0 ≤ arr[i] ≤ 10^{6}
class Solution: def max_of_subarrays(self, arr, n, k): i = 0 j = 0 li = [] ans = [] heap = [] while j < n: if j - i + 1 < k: while li and li[-1] < arr[j]: li.pop() else: li.append(arr[j]) j += 1 elif j - i + 1 == k: while li and li[-1] < arr[j]: li.pop() else: li.append(arr[j]) if arr[i] == li[0]: ans.append(li.pop(0)) else: ans.append(li[0]) i += 1 j += 1 return ans
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR LIST WHILE VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER VAR WHILE VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER VAR WHILE VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER VAR NUMBER RETURN VAR
Due to the rise of covid-19 cases in India, this year BCCI decided to organize knock-out matches in IPL rather than a league. Today is matchday 2 and it is between the most loved team Chennai Super Kings and the most underrated team - Punjab Kings. Stephen Fleming, the head coach of CSK, analyzing the batting stats of Punjab. He has stats of runs scored by all N players in the previous season and he wants to find the maximum score for each and every contiguous sub-list of size K to strategize for the game. Example 1: Input: N = 9, K = 3 arr[] = 1 2 3 1 4 5 2 3 6 Output: 3 3 4 5 5 5 6 Explanation: 1st contiguous subarray = {1 2 3} Max = 3 2nd contiguous subarray = {2 3 1} Max = 3 3rd contiguous subarray = {3 1 4} Max = 4 4th contiguous subarray = {1 4 5} Max = 5 5th contiguous subarray = {4 5 2} Max = 5 6th contiguous subarray = {5 2 3} Max = 5 7th contiguous subarray = {2 3 6} Max = 6 Example 2: Input: N = 10, K = 4 arr[] = 8 5 10 7 9 4 15 12 90 13 Output: 10 10 10 15 15 90 90 Explanation: 1st contiguous subarray = {8 5 10 7}, Max = 10 2nd contiguous subarray = {5 10 7 9}, Max = 10 3rd contiguous subarray = {10 7 9 4}, Max = 10 4th contiguous subarray = {7 9 4 15}, Max = 15 5th contiguous subarray = {9 4 15 12}, Max = 15 6th contiguous subarray = {4 15 12 90}, Max = 90 7th contiguous subarray = {15 12 90 13}, Max = 90 Your Task: You don't need to read input or print anything. Complete the function max_of_subarrays() which takes the array, N, and K as input parameters and returns a list of integers denoting the maximum of every contiguous subarray of size K. Constraints: 1 ≤ N ≤ 10^{6} 1 ≤ K ≤ N 0 ≤ arr[i] ≤ 10^{6}
class Solution: def max_of_subarrays(self, arr, n, k): q = [] res = [] for i in range(n): while len(q) >= 1 and q[-1][0] <= arr[i]: q.pop(-1) q.append([arr[i], i]) if i + 1 >= k: while len(q) > 1 and q[0][1] <= i - k: q.pop(0) res.append(q[0][0]) return res
CLASS_DEF FUNC_DEF ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR WHILE FUNC_CALL VAR VAR NUMBER VAR NUMBER NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR LIST VAR VAR VAR IF BIN_OP VAR NUMBER VAR WHILE FUNC_CALL VAR VAR NUMBER VAR NUMBER NUMBER BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER NUMBER RETURN VAR
Due to the rise of covid-19 cases in India, this year BCCI decided to organize knock-out matches in IPL rather than a league. Today is matchday 2 and it is between the most loved team Chennai Super Kings and the most underrated team - Punjab Kings. Stephen Fleming, the head coach of CSK, analyzing the batting stats of Punjab. He has stats of runs scored by all N players in the previous season and he wants to find the maximum score for each and every contiguous sub-list of size K to strategize for the game. Example 1: Input: N = 9, K = 3 arr[] = 1 2 3 1 4 5 2 3 6 Output: 3 3 4 5 5 5 6 Explanation: 1st contiguous subarray = {1 2 3} Max = 3 2nd contiguous subarray = {2 3 1} Max = 3 3rd contiguous subarray = {3 1 4} Max = 4 4th contiguous subarray = {1 4 5} Max = 5 5th contiguous subarray = {4 5 2} Max = 5 6th contiguous subarray = {5 2 3} Max = 5 7th contiguous subarray = {2 3 6} Max = 6 Example 2: Input: N = 10, K = 4 arr[] = 8 5 10 7 9 4 15 12 90 13 Output: 10 10 10 15 15 90 90 Explanation: 1st contiguous subarray = {8 5 10 7}, Max = 10 2nd contiguous subarray = {5 10 7 9}, Max = 10 3rd contiguous subarray = {10 7 9 4}, Max = 10 4th contiguous subarray = {7 9 4 15}, Max = 15 5th contiguous subarray = {9 4 15 12}, Max = 15 6th contiguous subarray = {4 15 12 90}, Max = 90 7th contiguous subarray = {15 12 90 13}, Max = 90 Your Task: You don't need to read input or print anything. Complete the function max_of_subarrays() which takes the array, N, and K as input parameters and returns a list of integers denoting the maximum of every contiguous subarray of size K. Constraints: 1 ≤ N ≤ 10^{6} 1 ≤ K ≤ N 0 ≤ arr[i] ≤ 10^{6}
class Solution: def max_of_subarrays(self, arr, n, k): i, j = 0, 0 mx = [] res = [] while j < n: if len(mx) > 0 and mx[-1] < arr[j]: while len(mx) > 0 and mx[-1] < arr[j]: mx.pop() mx.append(arr[j]) if j - i + 1 < k: j += 1 elif j - i + 1 == k: res.append(mx[0]) if mx[0] == arr[i]: mx.pop(0) j += 1 i += 1 return res
CLASS_DEF FUNC_DEF ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR LIST ASSIGN VAR LIST WHILE VAR VAR IF FUNC_CALL VAR VAR NUMBER VAR NUMBER VAR VAR WHILE FUNC_CALL VAR VAR NUMBER VAR NUMBER VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER VAR NUMBER VAR NUMBER RETURN VAR
Due to the rise of covid-19 cases in India, this year BCCI decided to organize knock-out matches in IPL rather than a league. Today is matchday 2 and it is between the most loved team Chennai Super Kings and the most underrated team - Punjab Kings. Stephen Fleming, the head coach of CSK, analyzing the batting stats of Punjab. He has stats of runs scored by all N players in the previous season and he wants to find the maximum score for each and every contiguous sub-list of size K to strategize for the game. Example 1: Input: N = 9, K = 3 arr[] = 1 2 3 1 4 5 2 3 6 Output: 3 3 4 5 5 5 6 Explanation: 1st contiguous subarray = {1 2 3} Max = 3 2nd contiguous subarray = {2 3 1} Max = 3 3rd contiguous subarray = {3 1 4} Max = 4 4th contiguous subarray = {1 4 5} Max = 5 5th contiguous subarray = {4 5 2} Max = 5 6th contiguous subarray = {5 2 3} Max = 5 7th contiguous subarray = {2 3 6} Max = 6 Example 2: Input: N = 10, K = 4 arr[] = 8 5 10 7 9 4 15 12 90 13 Output: 10 10 10 15 15 90 90 Explanation: 1st contiguous subarray = {8 5 10 7}, Max = 10 2nd contiguous subarray = {5 10 7 9}, Max = 10 3rd contiguous subarray = {10 7 9 4}, Max = 10 4th contiguous subarray = {7 9 4 15}, Max = 15 5th contiguous subarray = {9 4 15 12}, Max = 15 6th contiguous subarray = {4 15 12 90}, Max = 90 7th contiguous subarray = {15 12 90 13}, Max = 90 Your Task: You don't need to read input or print anything. Complete the function max_of_subarrays() which takes the array, N, and K as input parameters and returns a list of integers denoting the maximum of every contiguous subarray of size K. Constraints: 1 ≤ N ≤ 10^{6} 1 ≤ K ≤ N 0 ≤ arr[i] ≤ 10^{6}
class Solution: def max_of_subarrays(self, nums, n, k): dq = [] ans = [] for i in range(k): while dq and dq[-1] < nums[i]: dq.remove(dq[-1]) dq.append(nums[i]) ans.append(dq[0]) j = 0 for i in range(k, n): if arr[j] == dq[0]: dq.remove(dq[0]) j += 1 while dq and dq[-1] < nums[i]: dq.remove(dq[-1]) dq.append(arr[i]) ans.append(dq[0]) return ans
CLASS_DEF FUNC_DEF ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR WHILE VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER WHILE VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR NUMBER RETURN VAR
You are given an array a consisting of n positive integers. You pick two integer numbers l and r from 1 to n, inclusive (numbers are picked randomly, equiprobably and independently). If l > r, then you swap values of l and r. You have to calculate the expected value of the number of unique elements in segment of the array from index l to index r, inclusive (1-indexed). -----Input----- The first line contains one integer number n (1 ≤ n ≤ 10^6). The second line contains n integer numbers a_1, a_2, ... a_{n} (1 ≤ a_{i} ≤ 10^6) — elements of the array. -----Output----- Print one number — the expected number of unique elements in chosen segment. Your answer will be considered correct if its absolute or relative error doesn't exceed 10^{ - 4} — formally, the answer is correct if $\operatorname{min}(|x - y|, \frac{|x - y|}{x}) \leq 10^{-4}$, where x is jury's answer, and y is your answer. -----Examples----- Input 2 1 2 Output 1.500000 Input 2 2 2 Output 1.000000
n = int(input()) arr = [0] arr = arr + list(map(int, input().split(" "))) def getCounts(arr): last = {} ans = 0.0 prev = 0.0 res = 0.0 for i in range(1, len(arr)): if arr[i] not in last: ans = prev + i else: ans = prev + i - last[arr[i]] prev = ans res += ans last[arr[i]] = i return res ans = (2 * getCounts(arr) - n) / (n * n) print("%.6f" % ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST NUMBER ASSIGN VAR BIN_OP VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING FUNC_DEF ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR RETURN VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP STRING VAR
You are given an array a consisting of n positive integers. You pick two integer numbers l and r from 1 to n, inclusive (numbers are picked randomly, equiprobably and independently). If l > r, then you swap values of l and r. You have to calculate the expected value of the number of unique elements in segment of the array from index l to index r, inclusive (1-indexed). -----Input----- The first line contains one integer number n (1 ≤ n ≤ 10^6). The second line contains n integer numbers a_1, a_2, ... a_{n} (1 ≤ a_{i} ≤ 10^6) — elements of the array. -----Output----- Print one number — the expected number of unique elements in chosen segment. Your answer will be considered correct if its absolute or relative error doesn't exceed 10^{ - 4} — formally, the answer is correct if $\operatorname{min}(|x - y|, \frac{|x - y|}{x}) \leq 10^{-4}$, where x is jury's answer, and y is your answer. -----Examples----- Input 2 1 2 Output 1.500000 Input 2 2 2 Output 1.000000
n = int(input()) a = list(map(int, input().split())) lastocc = [0] * 1000006 ans = [0] * n ans[0] = 1 lastocc[a[0]] = 1 for i in range(1, n): ans[i] = ans[i - 1] + (i + 1 - lastocc[a[i]]) lastocc[a[i]] = i + 1 print((2 * sum(ans) - n) / (n * n))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR NUMBER VAR VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR VAR BIN_OP VAR VAR
You are given an array a consisting of n positive integers. You pick two integer numbers l and r from 1 to n, inclusive (numbers are picked randomly, equiprobably and independently). If l > r, then you swap values of l and r. You have to calculate the expected value of the number of unique elements in segment of the array from index l to index r, inclusive (1-indexed). -----Input----- The first line contains one integer number n (1 ≤ n ≤ 10^6). The second line contains n integer numbers a_1, a_2, ... a_{n} (1 ≤ a_{i} ≤ 10^6) — elements of the array. -----Output----- Print one number — the expected number of unique elements in chosen segment. Your answer will be considered correct if its absolute or relative error doesn't exceed 10^{ - 4} — formally, the answer is correct if $\operatorname{min}(|x - y|, \frac{|x - y|}{x}) \leq 10^{-4}$, where x is jury's answer, and y is your answer. -----Examples----- Input 2 1 2 Output 1.500000 Input 2 2 2 Output 1.000000
n = int(input()) a = list(map(int, input().split())) d = {} def push(d, x, i): if x not in d: d[x] = [] d[x].append(i) for i, x in enumerate(a): push(d, x, i) S = 0 for arr in d.values(): pre = -1 for i in arr: S += 2 * (i - pre) * (n - i) pre = i print((S - n) / (n * n))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FUNC_DEF IF VAR VAR ASSIGN VAR VAR LIST EXPR FUNC_CALL VAR VAR VAR FOR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR VAR VAR BIN_OP BIN_OP NUMBER BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR
You are given an array a consisting of n positive integers. You pick two integer numbers l and r from 1 to n, inclusive (numbers are picked randomly, equiprobably and independently). If l > r, then you swap values of l and r. You have to calculate the expected value of the number of unique elements in segment of the array from index l to index r, inclusive (1-indexed). -----Input----- The first line contains one integer number n (1 ≤ n ≤ 10^6). The second line contains n integer numbers a_1, a_2, ... a_{n} (1 ≤ a_{i} ≤ 10^6) — elements of the array. -----Output----- Print one number — the expected number of unique elements in chosen segment. Your answer will be considered correct if its absolute or relative error doesn't exceed 10^{ - 4} — formally, the answer is correct if $\operatorname{min}(|x - y|, \frac{|x - y|}{x}) \leq 10^{-4}$, where x is jury's answer, and y is your answer. -----Examples----- Input 2 1 2 Output 1.500000 Input 2 2 2 Output 1.000000
lim = 10**7 last_occ = [(0) for i in range(lim)] n = int(input()) ans = [(0) for i in range(n + 1)] arr = [int(i) for i in input().split()] arr.insert(0, 0) for i in range(1, n + 1): ans[i] = ans[i - 1] + (i - last_occ[arr[i]]) last_occ[arr[i]] = i total_sum = sum(ans) ans = round((2 * (total_sum - n) + n) / n**2, 6) print(format(ans, ".6f"))
ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP NUMBER BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR STRING
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
class Solution: def maxOfMin(self, arr, n): preMin = [0] * n postMin = [0] * n ans = [-float("INF")] * n stack = [] for i in range(n): while len(stack) > 0 and arr[i] <= arr[stack[-1]]: stack.pop() preMin[i] = i + 1 if len(stack) == 0 else i - stack[-1] stack.append(i) while len(stack) > 0: stack.pop() for i in range(n - 1, -1, -1): while len(stack) > 0 and arr[i] <= arr[stack[-1]]: stack.pop() postMin[i] = n - i if len(stack) == 0 else stack[-1] - i stack.append(i) for i in range(n): postMin[i] += preMin[i] - 1 for i in range(n): ans[postMin[i] - 1] = max(arr[i], ans[postMin[i] - 1]) for i in range(n - 2, 0, -1): ans[i] = max(ans[i], ans[i + 1]) return ans
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST FUNC_CALL VAR STRING VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR WHILE FUNC_CALL VAR VAR NUMBER VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR WHILE FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE FUNC_CALL VAR VAR NUMBER VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER BIN_OP VAR VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER FUNC_CALL VAR VAR VAR VAR BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
class Solution: def maxOfMin(self, arr, n): stack = [0] res = [-1] * (n + 1) for i in range(1, n): while stack and arr[stack[-1]] >= arr[i]: tp = stack.pop() w_size = i if not stack else i - stack[-1] - 1 res[w_size] = max(res[w_size], arr[tp]) stack.append(i) while stack: tp = stack.pop() w_size = n if not stack else n - stack[-1] - 1 res[w_size] = max(res[w_size], arr[tp]) for i in range(n - 1, -1, -1): res[i] = max(res[i], res[i + 1]) return res[1:]
CLASS_DEF FUNC_DEF ASSIGN VAR LIST NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR WHILE VAR VAR VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR WHILE VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR NUMBER
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
class Solution: def beforeLesserElement(self, arr, n): s = [] res = [0] * n for i in range(n): while s and arr[s[-1]] >= arr[i]: s.pop() if s == []: res[i] = -1 else: res[i] = s[-1] s.append(i) return res def nextLesserElement(self, arr, n): s = [] res = [0] * n for i in range(n - 1, -1, -1): while s and arr[s[-1]] >= arr[i]: s.pop() if s == []: res[i] = n else: res[i] = s[-1] s.append(i) return res def maxOfMin(self, arr, n): before = self.beforeLesserElement(arr, n) nextt = self.nextLesserElement(arr, n) res = [0] * (n + 1) for i in range(n): l = nextt[i] - before[i] - 1 res[l] = max(res[l], arr[i]) for i in range(n - 1, 0, -1): res[i] = max(res[i], res[i + 1]) return res[1:]
CLASS_DEF FUNC_DEF ASSIGN VAR LIST ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF VAR LIST ASSIGN VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR LIST ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF VAR LIST ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR NUMBER
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
class Solution: def maxOfMin(self, arr, n): s = [] left = [-1] * (n + 1) right = [n] * (n + 1) for i in range(n): while len(s) != 0 and arr[s[-1]] >= arr[i]: s.pop() if len(s) != 0: left[i] = s[-1] s.append(i) s = [] for i in range(n - 1, -1, -1): while len(s) != 0 and arr[s[-1]] >= arr[i]: s.pop() if len(s) != 0: right[i] = s[-1] s.append(i) res = [0] * (n + 1) for i in range(n): L = right[i] - left[i] - 1 res[L] = max(res[L], arr[i]) for i in range(n - 1, 0, -1): res[i] = max(res[i], res[i + 1]) return res[1:]
CLASS_DEF FUNC_DEF ASSIGN VAR LIST ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE FUNC_CALL VAR VAR NUMBER VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE FUNC_CALL VAR VAR NUMBER VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR NUMBER
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
class Solution: def maxOfMin(self, arr, n): def next_smaller(arr, n): res = [] stack = [] for i in range(n - 1, -1, -1): while stack and arr[stack[-1]] >= arr[i]: stack.pop() if stack: res.append(stack[-1]) else: res.append(n) stack.append(i) return res[::-1] def previous_smaller(arr, n): res = [] stack = [] for i in range(n): while stack and arr[stack[-1]] >= arr[i]: stack.pop() if stack: res.append(stack[-1]) else: res.append(-1) stack.append(i) return res left = previous_smaller(arr, n) right = next_smaller(arr, n) ans = [0] * (n + 1) for i in range(n): length = right[i] - left[i] - 1 ans[length] = max(ans[length], arr[i]) for i in range(n - 1, 0, -1): ans[i] = max(ans[i], ans[i + 1]) return ans[1:]
CLASS_DEF FUNC_DEF FUNC_DEF ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF VAR EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR RETURN VAR NUMBER FUNC_DEF ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF VAR EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR NUMBER
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
class Solution: def maxOfMin(self, arr, n): s = [] l = [(-1) for i in range(n + 1)] r = [n for j in range(n + 1)] for i in range(n): while s and arr[s[-1]] >= arr[i]: s.pop() if s: l[i] = s[-1] s.append(i) while s: s.pop() for i in range(n - 1, -1, -1): while s and arr[s[-1]] >= arr[i]: s.pop() if s: r[i] = s[-1] s.append(i) ans = [(0) for i in range(n + 1)] for i in range(n): x = r[i] - l[i] - 1 ans[x] = max(ans[x], arr[i]) for i in range(n - 1, 0, -1): ans[i] = max(ans[i], ans[i + 1]) ans.pop(0) return ans
CLASS_DEF FUNC_DEF ASSIGN VAR LIST ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF VAR ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR WHILE VAR EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF VAR ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN VAR
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
class Solution: def maxOfMin(self, arr, n): def nextSmallerLeft(arr, n): left = [(-1) for i in range(n)] stack = [] for i in range(n - 1, -1, -1): while len(stack) != 0 and arr[i] < arr[stack[-1]]: popped = stack.pop() left[popped] = i stack.append(i) return left def nextSmallerRight(arr, n): right = [n for i in range(n)] stack = [] for i in range(n): while len(stack) != 0 and arr[i] < arr[stack[-1]]: popped = stack.pop() right[popped] = i stack.append(i) return right left = nextSmallerLeft(arr, n) right = nextSmallerRight(arr, n) output = [(0) for i in range(n + 1)] for i in range(n): length = right[i] - left[i] - 1 output[length] = max(output[length], arr[i]) for i in range(n - 1, 0, -1): output[i] = max(output[i + 1], output[i]) return output[1:]
CLASS_DEF FUNC_DEF FUNC_DEF ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE FUNC_CALL VAR VAR NUMBER VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR WHILE FUNC_CALL VAR VAR NUMBER VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR RETURN VAR NUMBER
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
class Solution: def maxOfMin(self, arr, n): ple = [(-1) for _ in range(n)] stack = [] for idx in range(len(arr)): while stack and arr[stack[-1]] >= arr[idx]: stack.pop() if stack: ple[idx] = stack[-1] stack.append(idx) nle = [n for _ in range(n)] stack = [] for idx in reversed(range(len(arr))): while stack and arr[stack[-1]] >= arr[idx]: stack.pop() if stack: nle[idx] = stack[-1] stack.append(idx) res = [(0) for _ in range(n)] for idx in range(n): diff = nle[idx] - ple[idx] - 1 res[diff - 1] = max(res[diff - 1], arr[idx]) for idx in reversed(range(n - 1)): res[idx] = max(res[idx], res[idx + 1]) return res
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF VAR ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF VAR ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
class Solution: def maxOfMin(self, arr, n): def nse(arr): n = len(arr) stk = [] ans = [n] * n for i in range(n): while stk and arr[stk[-1]] > arr[i]: ans[stk.pop()] = i stk.append(i) return ans def pse(arr): n = len(arr) stk = [] ans = [-1] * n for i in range(n - 1, -1, -1): while stk and arr[stk[-1]] > arr[i]: ans[stk.pop()] = i stk.append(i) return ans ns = nse(arr) ps = pse(arr) ans = [float("-inf")] * n for i in range(n): l = ns[i] - ps[i] - 1 ans[l - 1] = max(ans[l - 1], arr[i]) for i in range(n - 2, -1, -1): ans[i] = max(ans[i], ans[i + 1]) return ans
CLASS_DEF FUNC_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR BIN_OP LIST VAR VAR FOR VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE VAR VAR VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST FUNC_CALL VAR STRING VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
class Solution: def maxOfMin(self, arr, n): def ns(A): n = len(A) ans = [n] * n s = [] for i in range(n): if len(s) and A[i] < A[s[-1]]: while len(s) and A[i] < A[s[-1]]: ans[s.pop()] = i s.append(i) return ans def ps(A): n = len(A) ans = [-1] * n s = [] for i in range(n - 1, -1, -1): if len(s) and A[i] < A[s[-1]]: while len(s) and A[i] < A[s[-1]]: ans[s.pop()] = i s.append(i) return ans nx = ns(arr) p = ps(arr) ans = [0] * (n + 1) for i in range(n): ln = nx[i] - p[i] - 1 ans[ln] = max(ans[ln], arr[i]) for i in range(n - 1, 0, -1): ans[i] = max(ans[i], ans[i + 1]) return ans[1:]
CLASS_DEF FUNC_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER WHILE FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER WHILE FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR NUMBER
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
class Solution: def maxOfMin(self, arr, n): stack = [] r = [n for i in range(n + 1)] for i in range(n - 1, -1, -1): while stack and arr[stack[-1]] >= arr[i]: stack.pop() if stack: r[i] = stack[-1] stack.append(i) stack = [] l = [(-1) for i in range(n + 1)] for i in range(n): while stack and arr[stack[-1]] >= arr[i]: stack.pop() if stack: l[i] = stack[-1] stack.append(i) ans = [(0) for i in range(n + 1)] for i in range(n): len = r[i] - l[i] - 1 ans[len] = max(ans[len], arr[i]) for i in range(n - 1, 0, -1): ans[i] = max(ans[i], ans[i + 1]) res = [ans[i] for i in range(1, n + 1)] return res
CLASS_DEF FUNC_DEF ASSIGN VAR LIST ASSIGN VAR VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF VAR ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF VAR ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER RETURN VAR
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
class Solution: def maxOfMin(self, nums, n): next_smaller = [n] * n stack = [] for i in range(n): while stack and nums[i] < nums[stack[-1]]: next_smaller[stack.pop()] = i stack.append(i) stack.clear() prev_smaller = [-1] * n for i in range(n - 1, -1, -1): while stack and nums[i] < nums[stack[-1]]: prev_smaller[stack.pop()] = i stack.append(i) res = [0] * n for i in range(n): l = prev_smaller[i] + 1 r = next_smaller[i] - 1 size = r - l + 1 res[size - 1] = max(res[size - 1], nums[i]) for i in range(n - 2, -1, -1): res[i] = max(res[i], res[i + 1]) return res
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP LIST VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE VAR VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
class Solution: def maxOfMin(self, arr, n): ans = [(0) for _ in range(len(arr))] stack = [] left = [(-1) for i in range(len(arr))] right = [len(arr) for i in range(len(arr))] for i in range(n): while stack and arr[stack[-1]] >= arr[i]: stack.pop() if stack != []: left[i] = stack[-1] stack.append(i) stack.clear() for i in range(n - 1, -1, -1): while stack and arr[stack[-1]] >= arr[i]: stack.pop() if stack != []: right[i] = stack[-1] stack.append(i) for i in range(len(arr)): leng = right[i] - left[i] - 1 ans[leng - 1] = max(ans[leng - 1], arr[i]) for i in range(n - 2, -1, -1): ans[i] = max(ans[i], ans[i + 1]) return ans
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF VAR LIST ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF VAR LIST ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
class Solution: def maxOfMin(self, a, n): ls = [-1] * n rs = [n] * n stack = [] for i in range(n): while stack and a[stack[-1]] > a[i]: rs[stack.pop()] = i stack.append(i) stack = [] for i in range(n - 1, -1, -1): while stack and a[stack[-1]] > a[i]: ls[stack.pop()] = i stack.append(i) ans = [0] * (n + 1) for i in range(n): subL = rs[i] - ls[i] - 1 ans[subL] = max(ans[subL], a[i]) for i in range(n - 1, 0, -1): ans[i] = max(ans[i], ans[i + 1]) return ans[1:]
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE VAR VAR VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR NUMBER
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
class Solution: def maxOfMin(self, arr, n): mi = min(arr) has = [0] * n has[n - 1] = mi pos = [0] * n stack = [] for i in range(0, n): if len(stack) and stack[len(stack) - 1][0] > arr[i]: while len(stack) > 0 and stack[len(stack) - 1][0] > arr[i]: t = stack.pop() pos[t[1]] = i - t[1] - 1 stack.append([arr[i], i]) while stack: t = stack.pop() pos[t[1]] = n - t[1] - 1 stack = [] for i in range(n - 1, -1, -1): if len(stack) and stack[len(stack) - 1][0] > arr[i]: while len(stack) > 0 and stack[len(stack) - 1][0] > arr[i]: t = stack.pop() pos[t[1]] += t[1] - i - 1 stack.append([arr[i], i]) while stack: t = stack.pop() pos[t[1]] += t[1] for i in range(0, n): if arr[i] > has[pos[i]]: has[pos[i]] = arr[i] for i in range(n - 1, 0, -1): if has[i - 1] <= has[i]: has[i - 1] = has[i] return has
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR IF FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER VAR VAR WHILE FUNC_CALL VAR VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR LIST VAR VAR VAR WHILE VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER VAR VAR WHILE FUNC_CALL VAR VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER BIN_OP BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR LIST VAR VAR VAR WHILE VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR VAR RETURN VAR
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
class Solution: def maxOfMin(self, arr, n): q = [] left = [-1] * n right = [n] * n for i in range(n): while q and arr[q[-1]] >= arr[i]: q.pop() if q: left[i] = q[-1] q.append(i) q = [] for i in range(n): while q and arr[q[-1]] > arr[i]: idx = q.pop() right[idx] = i q.append(i) del q ans = [0] * n for i in range(n): length = right[i] - left[i] - 1 ans[length - 1] = max(ans[length - 1], arr[i]) for i in range(n - 2, -1, -1): ans[i] = max(ans[i], ans[i + 1]) return ans
CLASS_DEF FUNC_DEF ASSIGN VAR LIST ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST VAR VAR FOR VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF VAR ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
class Solution: def nsr_fun(self, arr, n): stk = [] ans = [] i = n - 1 while i >= 0: if len(stk) == 0: ans.append(n) elif arr[stk[-1]] < arr[i]: ans.append(stk[-1]) else: while len(stk) > 0 and arr[stk[-1]] >= arr[i]: stk.pop() if len(stk) <= 0: ans.append(n) else: ans.append(stk[-1]) stk.append(i) i -= 1 ans.reverse() return ans def nsl_fun(self, arr, n): stk = [] ans = [] i = 0 while i < n: if len(stk) == 0: ans.append(-1) elif arr[stk[-1]] < arr[i]: ans.append(stk[-1]) else: while len(stk) > 0 and arr[stk[-1]] >= arr[i]: stk.pop() if len(stk) <= 0: ans.append(-1) else: ans.append(stk[-1]) stk.append(i) i += 1 return ans def maxOfMin(self, arr, n): max_ele = 0 nsl_arr = self.nsl_fun(arr, n) nsr_arr = self.nsr_fun(arr, n) ans_arr = [(0) for j in range(n)] for i in range(n): max_ele = max(arr[i], max_ele) lft_indx = nsl_arr[i] rht_indx = nsr_arr[i] indx = rht_indx - lft_indx - 2 ans_arr[indx] = max(arr[i], ans_arr[indx]) ans_arr[0] = max_ele i = n - 2 while i >= 0: ans_arr[i] = max(ans_arr[i], ans_arr[i + 1]) i -= 1 return ans_arr
CLASS_DEF FUNC_DEF ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR NUMBER WHILE FUNC_CALL VAR VAR NUMBER VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR RETURN VAR FUNC_DEF ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER WHILE VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR NUMBER WHILE FUNC_CALL VAR VAR NUMBER VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
class Solution: def maxOfMin(self, array, n): left = [-1] * n right = [n] * n stack1 = list() stack2 = list() for i in range(n): while stack1 and array[stack1[-1]] >= array[i]: stack1.pop() if stack1: left[i] = stack1[-1] stack1.append(i) for i in range(n - 1, -1, -1): while stack2 and array[stack2[-1]] >= array[i]: stack2.pop() if stack2: right[i] = stack2[-1] stack2.append(i) len_ = [0] * n for i in range(n): len_[right[i] - left[i] - 2] = max(len_[right[i] - left[i] - 2], array[i]) for i in range(n - 2, -1, -1): len_[i] = max(len_[i], len_[i + 1]) return len_
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF VAR ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF VAR ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
class Solution: def maxOfMin(self, arr, n): st, left, right, ans = [], [-1] * (n + 1), [n] * (n + 1), [0] * (n + 1) for i in range(n): while st and arr[st[-1]] >= arr[i]: st.pop() if st: left[i] = st[-1] st.append(i) while st: st.pop() for i in range(n - 1, -1, -1): while st and arr[st[-1]] >= arr[i]: st.pop() if st: right[i] = st[-1] st.append(i) for i in range(n): Len = right[i] - left[i] - 1 ans[Len] = max(ans[Len], arr[i]) for i in range(n - 1, 0, -1): ans[i] = max(ans[i], ans[i + 1]) return ans[1:]
CLASS_DEF FUNC_DEF ASSIGN VAR VAR VAR VAR LIST BIN_OP LIST NUMBER BIN_OP VAR NUMBER BIN_OP LIST VAR BIN_OP VAR NUMBER BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF VAR ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR WHILE VAR EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF VAR ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR NUMBER
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
class Solution: def maxOfMin(self, arr, n): nextsmallarr = self.nextSmaller(arr) prevsmallarr = self.prevSmaller(arr) ans = [0] * n for i in range(n): windowSize = nextsmallarr[i] - prevsmallarr[i] - 1 ans[windowSize - 1] = max(arr[i], ans[windowSize - 1]) for i in range(n - 2, -1, -1): ans[i] = max(ans[i], ans[i + 1]) return ans def nextSmaller(self, a): stack = [len(a) - 1] ans = [] for i in range(len(a) - 1, -1, -1): while stack and a[stack[-1]] >= a[i]: stack.pop() if not stack: ans.append(len(a)) else: ans.append(stack[-1]) stack.append(i) return ans[::-1] def prevSmaller(self, a): stack = [0] ans = [] for i in range(len(a)): while stack and a[stack[-1]] >= a[i]: stack.pop() if not stack: ans.append(-1) else: ans.append(stack[-1]) stack.append(i) return ans
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR LIST BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER WHILE VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR RETURN VAR NUMBER FUNC_DEF ASSIGN VAR LIST NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR RETURN VAR
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
class Solution: def maxOfMin(self, arr, n): arr1 = [(0) for i in range(n)] arr2 = [(0) for i in range(n)] stk = [] for i in range(n): if len(stk) == 0: arr1[i] = -1 else: while len(stk) > 0 and arr[stk[-1]] >= arr[i]: stk.pop() if len(stk) == 0: arr1[i] = -1 else: arr1[i] = stk[-1] stk.append(i) stk = [] for i in range(n - 1, -1, -1): if len(stk) == 0: arr2[i] = n else: while len(stk) > 0 and arr[stk[-1]] >= arr[i]: stk.pop() if len(stk) == 0: arr2[i] = n else: arr2[i] = stk[-1] stk.append(i) ans = [(0) for i in range(n + 1)] for i in range(n): ln = arr2[i] - arr1[i] - 1 ans[ln] = max(ans[ln], arr[i]) for i in range(n - 1, -1, -1): ans[i] = max(ans[i], ans[i + 1]) return ans[1 : n + 1]
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR NUMBER WHILE FUNC_CALL VAR VAR NUMBER VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR WHILE FUNC_CALL VAR VAR NUMBER VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR NUMBER BIN_OP VAR NUMBER
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
def nextSmallerElement(A): n = len(A) nse = [n] * n stack = [] for i in range(n - 1, -1, -1): while stack and A[stack[-1]] >= A[i]: stack.pop() if stack: nse[i] = stack[-1] stack.append(i) return nse class Solution: def maxOfMin(self, A, n): nse = nextSmallerElement(A) lse = nextSmallerElement(A[::-1])[::-1] lse = [(n - i - 1) for i in lse] ans = [-(10**9)] * n for i in range(n): ln = nse[i] - lse[i] - 2 ans[ln] = max(ans[ln], A[i]) for i in range(n - 2, -1, -1): ans[i] = max(ans[i], ans[i + 1]) return ans
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF VAR ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR RETURN VAR CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR ASSIGN VAR BIN_OP LIST BIN_OP NUMBER NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
class Solution: def maxOfMin(self, arr, n): left = [0] * n right = [0] * n ans = [float("-inf")] * n stack = [] for i in range(n): while stack != [] and stack[-1][0] >= arr[i]: stack.pop() if stack == []: left[i] = -1 else: left[i] = stack[-1][1] stack.append((arr[i], i)) stack = [] for i in range(n - 1, -1, -1): while stack != [] and stack[-1][0] >= arr[i]: stack.pop() if stack == []: right[i] = n else: right[i] = stack[-1][1] stack.append((arr[i], i)) for i in range(n): length = right[i] - left[i] - 1 if arr[i] > ans[length - 1]: ans[length - 1] = arr[i] for i in range(n - 2, -1, -1): ans[i] = max(ans[i], ans[i + 1]) return ans
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST FUNC_CALL VAR STRING VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR WHILE VAR LIST VAR NUMBER NUMBER VAR VAR EXPR FUNC_CALL VAR IF VAR LIST ASSIGN VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE VAR LIST VAR NUMBER NUMBER VAR VAR EXPR FUNC_CALL VAR IF VAR LIST ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
import sys class Solution: def prevSmaller(self, preMin, arr, n): stack = [] for i in range(n): while len(stack) > 0 and arr[i] <= arr[stack[-1]]: stack.pop() preMin[i] = i + 1 if len(stack) == 0 else i - stack[-1] stack.append(i) return def nextSmaller(self, postMin, arr, n): stack = [] for i in range(n - 1, -1, -1): while len(stack) > 0 and arr[i] <= arr[stack[-1]]: stack.pop() postMin[i] = n - i if len(stack) == 0 else stack[-1] - i stack.append(i) return def maxOfMin(self, arr, n): preMin = [0] * n postMin = [0] * n ans = [-sys.maxsize] * n self.prevSmaller(preMin, arr, n) self.nextSmaller(postMin, arr, n) for i in range(n): postMin[i] += preMin[i] - 1 for i in range(n): ans[postMin[i] - 1] = max(arr[i], ans[postMin[i] - 1]) for i in range(n - 2, 0, -1): ans[i] = max(ans[i], ans[i + 1]) return ans
IMPORT CLASS_DEF FUNC_DEF ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR WHILE FUNC_CALL VAR VAR NUMBER VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR RETURN FUNC_DEF ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE FUNC_CALL VAR VAR NUMBER VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER BIN_OP VAR VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR RETURN FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER FUNC_CALL VAR VAR VAR VAR BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
class Solution: def maxOfMin(self, arr, n): stack = [] right = [(-1) for i in range(n)] stack.append(n - 1) for i in range(n - 2, -1, -1): while stack and arr[stack[-1]] >= arr[i]: stack.pop() if stack: right[i] = stack[-1] stack.append(i) stack = [] left = [(-1) for i in range(n)] stack.append(0) for i in range(1, n): while stack and arr[stack[-1]] >= arr[i]: stack.pop() if stack: left[i] = stack[-1] stack.append(i) res = [(-(2**31)) for i in range(n)] for i in range(n): p = 0 if left[i] == -1: p = max(p, i + 1) else: p = max(p, i - left[i]) q = 0 if right[i] == -1: q = max(q, n - i) else: q = max(q, right[i] - i) maxi = p + q - 1 res[maxi - 1] = max(res[maxi - 1], arr[i]) for i in range(n - 2, -1, -1): res[i] = max(res[i], res[i + 1]) return res
CLASS_DEF FUNC_DEF ASSIGN VAR LIST ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF VAR ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR WHILE VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF VAR ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP NUMBER NUMBER VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
class Solution: def maxOfMin(self, histogram, n): prev_ele = [] new_ele = [] stack = [] for i in range(len(histogram)): while stack and histogram[stack[-1]] >= histogram[i]: stack.pop() if not stack: prev_ele.append(-1) if stack: prev_ele.append(stack[-1]) stack.append(i) stack = [] for i in range(len(histogram) - 1, -1, -1): while stack and histogram[stack[-1]] >= histogram[i]: stack.pop() if not stack: new_ele.append(len(histogram)) if stack: new_ele.append(stack[-1]) stack.append(i) new_ele = new_ele[::-1] check_arr = {} for i in range(n): if check_arr.get(new_ele[i] - prev_ele[i] - 1) == None: check_arr[new_ele[i] - prev_ele[i] - 1] = histogram[i] elif check_arr[new_ele[i] - prev_ele[i] - 1] < histogram[i]: check_arr[new_ele[i] - prev_ele[i] - 1] = histogram[i] op = [] for i in range(n, 0, -1): if check_arr.get(i) == None: op.append(val) elif i == n: val = check_arr[i] op.append(val) elif val > check_arr[i]: op.append(val) else: op.append(check_arr[i]) val = check_arr[i] return op[::-1]
CLASS_DEF FUNC_DEF ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF VAR EXPR FUNC_CALL VAR NUMBER IF VAR EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER WHILE VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER NONE ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER VAR VAR IF VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER IF FUNC_CALL VAR VAR NONE EXPR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR NUMBER
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
class Solution: def maxOfMin(self, arr, n): larr = [-1] * n rarr = [n] * n st = [] for i in range(0, n): if len(st) == 0: st.append(i) elif arr[st[-1]] < arr[i]: larr[i] = st[-1] st.append(i) else: while len(st) > 0 and arr[st[-1]] >= arr[i]: st.pop() if len(st) > 0: larr[i] = st[-1] st.append(i) st = [] for i in range(n - 1, -1, -1): if len(st) == 0: st.append(i) elif arr[st[-1]] < arr[i]: rarr[i] = st[-1] st.append(i) else: while len(st) > 0 and arr[st[-1]] >= arr[i]: st.pop() if len(st) > 0: rarr[i] = st[-1] st.append(i) res = [-9999] * (n + 1) x = [] for i in range(n): diff = rarr[i] - larr[i] - 1 res[diff] = max(res[diff], arr[i]) x = res[n] for i in range(n - 1, 0, -1): if res[i] < x: res[i] = x else: x = res[i] return res[1:]
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR VAR ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR WHILE FUNC_CALL VAR VAR NUMBER VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR VAR ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR WHILE FUNC_CALL VAR VAR NUMBER VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR NUMBER
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
class Solution: def maxOfMin(self, arr, n): res = [(0) for i in range(n + 1)] st = [] for i in range(n + 1): while st and (i == n or arr[st[-1]] > arr[i]): cur = st.pop() l = i - st[-1] - 1 if st else i res[l] = max(res[l], arr[cur]) st.append(i) for i in range(n - 1, -1, -1): res[i] = max(res[i + 1], res[i]) return res[1:]
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER WHILE VAR VAR VAR VAR VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR RETURN VAR NUMBER
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
class Solution: def maxOfMin(self, arr, n): res = [0] * (n + 1) for k in range(1, n + 1): maxOfMin = float("-inf") for i in range(n - k + 1): mini = arr[i] for j in range(k): if arr[i + j] < mini: mini = arr[i + j] if mini > maxOfMin: maxOfMin = mini res[k] = maxOfMin return res[1:] def maxOfMin(self, arr, n): s = [] left = [-1] * (n + 1) right = [n] * (n + 1) for i in range(n): while len(s) and arr[s[-1]] >= arr[i]: s.pop() if len(s): left[i] = s[-1] s.append(i) while len(s): s.pop() for i in range(n - 1, -1, -1): while len(s) and arr[s[-1]] >= arr[i]: s.pop() if len(s): right[i] = s[-1] s.append(i) res = [0] * (n + 1) for i in range(n + 1): res[i] = 0 for i in range(n): Len = right[i] - left[i] - 1 res[Len] = max(res[Len], arr[i]) for i in range(n - 1, 0, -1): res[i] = max(res[i], res[i + 1]) return res[1:]
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR RETURN VAR NUMBER FUNC_DEF ASSIGN VAR LIST ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE FUNC_CALL VAR VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR WHILE FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE FUNC_CALL VAR VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR NUMBER
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
class Solution: def nextSmaller(self, arr): ns = [None] * len(arr) stack = [] for i in range(len(arr) - 1, -1, -1): while stack and arr[stack[-1]] >= arr[i]: stack.pop() ns[i] = len(arr) if len(stack) == 0 else stack[-1] stack.append(i) return ns def prevSmaller(self, arr): ps = [None] * len(arr) stack = [] for i in range(len(arr)): while stack and arr[stack[-1]] >= arr[i]: stack.pop() ps[i] = -1 if len(stack) == 0 else stack[-1] stack.append(i) return ps def maxOfMin(self, arr, n): ns = self.nextSmaller(arr) ps = self.prevSmaller(arr) result = [0] * n for i in range(n): size = ns[i] - ps[i] - 1 result[size - 1] = max(result[size - 1], arr[i]) for i in range(n - 2, -1, -1): result[i] = max(result[i], result[i + 1]) return result
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP LIST NONE FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER WHILE VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR BIN_OP LIST NONE FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
def prevSmaller(arr): res = list() stack = list() for i in range(len(arr)): while len(stack) != 0 and arr[stack[-1]] >= arr[i]: stack.pop() if len(stack) == 0: res.append(-1) else: res.append(stack[-1]) stack.append(i) return res def nextSmaller(arr): res = [0] * len(arr) stack = list() for i in range(len(arr) - 1, -1, -1): while len(stack) != 0 and arr[stack[-1]] >= arr[i]: stack.pop() if len(stack) == 0: res[i] = -1 else: res[i] = stack[-1] stack.append(i) return res class Solution: def maxOfMin(self, arr, n): prev = prevSmaller(arr) next = nextSmaller(arr) ans = [0] * (n + 1) for i in range(n): length = next[i] - prev[i] - 1 ans[length] = max(ans[length], arr[i]) for i in range(n - 1, 0, -1): ans[i] = max(ans[i], ans[i + 1]) return ans[1:]
FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR WHILE FUNC_CALL VAR VAR NUMBER VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER WHILE FUNC_CALL VAR VAR NUMBER VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR RETURN VAR CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR NUMBER
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
def get_next_greater(arr, n): res = [len(arr)] stack = [n - 1] for i in range(n - 2, -1, -1): while len(stack) > 0 and arr[i] <= arr[stack[-1]]: stack.pop() if len(stack) == 0: res.append(len(arr)) else: res.append(stack[-1]) stack.append(i) return res[::-1] def get_prev_greater(arr, n): res = [-1] stack = [0] for i in range(1, n): while len(stack) > 0 and arr[i] <= arr[stack[-1]]: stack.pop() if len(stack) == 0: res.append(-1) else: res.append(stack[-1]) stack.append(i) return res class Solution: def maxOfMin(self, arr, n): ans = [0] * (n + 1) nxs = get_next_greater(arr, n) pvs = get_prev_greater(arr, n) for i in range(n): len = nxs[i] - pvs[i] - 1 ans[len] = max(ans[len], arr[i]) for i in range(n - 1, 0, -1): ans[i] = max(ans[i], ans[i + 1]) return ans[1:]
FUNC_DEF ASSIGN VAR LIST FUNC_CALL VAR VAR ASSIGN VAR LIST BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE FUNC_CALL VAR VAR NUMBER VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR RETURN VAR NUMBER FUNC_DEF ASSIGN VAR LIST NUMBER ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR WHILE FUNC_CALL VAR VAR NUMBER VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR RETURN VAR CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR NUMBER
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
class Solution: def maxOfMin(self, arr, n): ns = [n] * len(arr) ps = [-1] * len(arr) ans = [-1] * len(arr) stack = [] for i, val in enumerate(arr): while stack and stack[-1][1] >= val: ind, value = stack.pop() ns[ind] = i stack.append([i, val]) stack = [] for i in range(len(arr) - 1, -1, -1): while stack and stack[-1][1] > arr[i]: ps[stack[-1][0]] = i stack.pop() stack.append([i, arr[i]]) for i in range(len(arr)): try: ans[ns[i] - ps[i] - 2] = max(ans[ns[i] - ps[i] - 2], arr[i]) except: print("asdf", ns[i] - ps[i] - 2, i) for i in range(len(ans) - 2, -1, -1): ans[i] = max(ans[i], ans[i + 1]) return ans
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP LIST VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR VAR FUNC_CALL VAR VAR WHILE VAR VAR NUMBER NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR LIST VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER WHILE VAR VAR NUMBER NUMBER VAR VAR ASSIGN VAR VAR NUMBER NUMBER VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR LIST VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR STRING BIN_OP BIN_OP VAR VAR VAR VAR NUMBER VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR
Given an integer array. The task is to find the maximum of the minimum of every window size in the array. Note: Window size varies from 1 to the size of the Array. Example 1: Input: N = 7 arr[] = {10,20,30,50,10,70,30} Output: 70 30 20 10 10 10 10 Explanation: 1.First element in output indicates maximum of minimums of all windows of size 1. 2.Minimums of windows of size 1 are {10}, {20}, {30}, {50},{10}, {70} and {30}. Maximum of these minimums is 70. 3. Second element in output indicates maximum of minimums of all windows of size 2. 4. Minimums of windows of size 2 are {10}, {20}, {30}, {10}, {10}, and {30}. 5. Maximum of these minimums is 30 Third element in output indicates maximum of minimums of all windows of size 3. 6. Minimums of windows of size 3 are {10}, {20}, {10}, {10} and {10}. 7.Maximum of these minimums is 20. Similarly other elements of output are computed. Example 2: Input: N = 3 arr[] = {10,20,30} Output: 30 20 10 Explanation: First element in output indicates maximum of minimums of all windows of size 1.Minimums of windows of size 1 are {10} , {20} , {30}. Maximum of these minimums are 30 and similarly other outputs can be computed Your Task: The task is to complete the function maxOfMin() which takes the array arr[] and its size N as inputs and finds the maximum of minimum of every window size and returns an array containing the result. Expected Time Complxity : O(N) Expected Auxilliary Space : O(N) Constraints: 1 <= N <= 10^{5} 1 <= arr[i] <= 10^{6}
class Solution: def maxOfMin(self, arr, n): ans = [0] * n stack = [] arr.append(0) for i in range(n + 1): while stack and arr[stack[-1]] >= arr[i]: idx = stack.pop() left = stack[-1] if stack else -1 right = i window_size = right - left - 1 ans[window_size - 1] = max(ans[window_size - 1], arr[idx]) stack.append(i) for i in range(n - 2, -1, -1): if ans[i] == 0 or ans[i] < ans[i + 1]: ans[i] = ans[i + 1] return ans
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR LIST EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER WHILE VAR VAR VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR
You are given a permutation $p$ of $n$ integers $1$, $2$, ..., $n$ (a permutation is an array where each element from $1$ to $n$ occurs exactly once). Let's call some subsegment $p[l, r]$ of this permutation special if $p_l + p_r = \max \limits_{i = l}^{r} p_i$. Please calculate the number of special subsegments. -----Input----- The first line contains one integer $n$ ($3 \le n \le 2 \cdot 10^5$). The second line contains $n$ integers $p_1$, $p_2$, ..., $p_n$ ($1 \le p_i \le n$). All these integers are pairwise distinct. -----Output----- Print the number of special subsegments of the given permutation. -----Examples----- Input 5 3 4 1 5 2 Output 2 Input 3 1 3 2 Output 1 -----Note----- Special subsegments in the first example are $[1, 5]$ and $[1, 3]$. The only special subsegment in the second example is $[1, 3]$.
n = int(input()) a = [int(x) for x in input().split()] def Count_Segment(a, n): ans = 0 upto = [0] * (n + 1) for i in range(1, n - 1): if a[i] > a[i - 1] and a[i] > a[i + 1]: curr = a[i] j = i - 1 while j >= 0 and a[j] < curr: upto[a[j]] = curr j -= 1 j = i + 1 while j < n and a[j] < curr: if upto[curr - a[j]] == curr: ans += 1 j += 1 return ans print(Count_Segment(a, n))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR VAR VAR VAR IF VAR BIN_OP VAR VAR VAR VAR VAR NUMBER VAR NUMBER RETURN VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a permutation $p$ of $n$ integers $1$, $2$, ..., $n$ (a permutation is an array where each element from $1$ to $n$ occurs exactly once). Let's call some subsegment $p[l, r]$ of this permutation special if $p_l + p_r = \max \limits_{i = l}^{r} p_i$. Please calculate the number of special subsegments. -----Input----- The first line contains one integer $n$ ($3 \le n \le 2 \cdot 10^5$). The second line contains $n$ integers $p_1$, $p_2$, ..., $p_n$ ($1 \le p_i \le n$). All these integers are pairwise distinct. -----Output----- Print the number of special subsegments of the given permutation. -----Examples----- Input 5 3 4 1 5 2 Output 2 Input 3 1 3 2 Output 1 -----Note----- Special subsegments in the first example are $[1, 5]$ and $[1, 3]$. The only special subsegment in the second example is $[1, 3]$.
n = int(input()) a = list(map(int, input().split())) dc = {a[i]: i for i in range(n)} stack = [] mxr = [n] * (n + 1) mxl = [-1] * (n + 1) for i, x in enumerate(a): if i == 0: stack.append(x) continue while stack and stack[-1] < x: y = stack.pop() mxr[y] = i stack.append(x) stack = [] for i, x in enumerate(a[::-1]): i = n - 1 - i if i == n - 1: stack.append(x) continue while stack and stack[-1] < x: y = stack.pop() mxl[y] = i stack.append(x) ans = 0 for i in range(n, 0, -1): idx = dc[i] l = mxl[i] r = mxr[i] if idx - l - 1 > r - idx - 1: for j in range(idx + 1, r): if l < dc[i - a[j]] < idx: ans += 1 else: for j in range(idx - 1, l, -1): if idx < dc[i - a[j]] < r: ans += 1 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR BIN_OP LIST VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR WHILE VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR IF VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR WHILE VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR BIN_OP VAR VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR BIN_OP VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a permutation $p$ of $n$ integers $1$, $2$, ..., $n$ (a permutation is an array where each element from $1$ to $n$ occurs exactly once). Let's call some subsegment $p[l, r]$ of this permutation special if $p_l + p_r = \max \limits_{i = l}^{r} p_i$. Please calculate the number of special subsegments. -----Input----- The first line contains one integer $n$ ($3 \le n \le 2 \cdot 10^5$). The second line contains $n$ integers $p_1$, $p_2$, ..., $p_n$ ($1 \le p_i \le n$). All these integers are pairwise distinct. -----Output----- Print the number of special subsegments of the given permutation. -----Examples----- Input 5 3 4 1 5 2 Output 2 Input 3 1 3 2 Output 1 -----Note----- Special subsegments in the first example are $[1, 5]$ and $[1, 3]$. The only special subsegment in the second example is $[1, 3]$.
n = int(input()) ns = [int(x) for x in input().split()] maxx = max(ns) + 10 lst = [None] * n nxt = [None] * n tmp = [(-1, maxx)] mp = [False] * n wh = [None] * (n + 1) for i in range(n): c = ns[i] while tmp[-1][1] <= c: tmp.pop() lst[i] = tmp[-1][0] tmp.append((i, c)) tmp = [(n, maxx)] for i in range(n): i = n - i - 1 c = ns[i] while tmp[-1][1] <= c: tmp.pop() nxt[i] = tmp[-1][0] tmp.append((i, c)) lm = {} for i in range(n): lm[lst[i] + 1, nxt[i] - 1] = ns[i] for i in range(n): wh[ns[i]] = i def check(i, m, lm): f = ns[m] - ns[i] f = wh[f] if lm[0] <= f <= lm[1]: return True return False ans = 0 rec = [(0, n - 1)] def get(): if len(rec) == 0: return False l, r = rec.pop() if r - l + 1 <= 2: return True global ans x = lm[l, r] lc = wh[x] if lc < (l + r) // 2: for i in range(l, lc): c = ns[i] c = ns[lc] - c c = wh[c] if lc <= c <= r: ans += 1 else: for i in range(lc + 1, r + 1): c = ns[i] c = ns[lc] - c c = wh[c] if l <= c <= lc: ans += 1 rec.append((l, lc - 1)) rec.append((lc + 1, r)) while len(rec) > 0: get() print(ans) quit() get(0, n - 1) print(ans) quit() x = n while x >= 1: lc = wh[x] mp[lc] = True l, r = lc - 1, lc + 1 while l > lst[lc] and not mp[l]: l -= 1 while r < nxt[lc] and not mp[r]: r += 1 if lc - l < r - lc: for i in range(l + 1, lc): if check(i, lc, (lc + 1, r - 1)): ans += 1 else: for i in range(lc + 1, r): if check(i, lc, (l + 1, lc - 1)): ans += 1 x -= 1 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NONE VAR ASSIGN VAR BIN_OP LIST NONE VAR ASSIGN VAR LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NONE BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR WHILE VAR NUMBER NUMBER VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR LIST VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR WHILE VAR NUMBER NUMBER VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER BIN_OP VAR VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FUNC_DEF ASSIGN VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER VAR VAR NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST NUMBER BIN_OP VAR NUMBER FUNC_DEF IF FUNC_CALL VAR VAR NUMBER RETURN NUMBER ASSIGN VAR VAR FUNC_CALL VAR IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER RETURN NUMBER ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR IF VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR IF VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR IF VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR WHILE FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR WHILE VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER WHILE VAR VAR VAR VAR VAR VAR NUMBER WHILE VAR VAR VAR VAR VAR VAR NUMBER IF BIN_OP VAR VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a permutation $p$ of $n$ integers $1$, $2$, ..., $n$ (a permutation is an array where each element from $1$ to $n$ occurs exactly once). Let's call some subsegment $p[l, r]$ of this permutation special if $p_l + p_r = \max \limits_{i = l}^{r} p_i$. Please calculate the number of special subsegments. -----Input----- The first line contains one integer $n$ ($3 \le n \le 2 \cdot 10^5$). The second line contains $n$ integers $p_1$, $p_2$, ..., $p_n$ ($1 \le p_i \le n$). All these integers are pairwise distinct. -----Output----- Print the number of special subsegments of the given permutation. -----Examples----- Input 5 3 4 1 5 2 Output 2 Input 3 1 3 2 Output 1 -----Note----- Special subsegments in the first example are $[1, 5]$ and $[1, 3]$. The only special subsegment in the second example is $[1, 3]$.
def Count_Segment(a, n): ans = 0 upto = [False] * (n + 1) for i in range(1, n - 1): if a[i] > a[i - 1] and a[i] > a[i + 1]: curr = a[i] j = i - 1 while j >= 0 and a[j] < curr: upto[a[j]] = curr j -= 1 j = i + 1 while j < n and a[j] < curr: if upto[curr - a[j]] == curr: ans += 1 j += 1 return ans n = int(input()) a = list(map(int, input().split())) print(Count_Segment(a, n))
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR VAR VAR VAR IF VAR BIN_OP VAR VAR VAR VAR VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a permutation $p$ of $n$ integers $1$, $2$, ..., $n$ (a permutation is an array where each element from $1$ to $n$ occurs exactly once). Let's call some subsegment $p[l, r]$ of this permutation special if $p_l + p_r = \max \limits_{i = l}^{r} p_i$. Please calculate the number of special subsegments. -----Input----- The first line contains one integer $n$ ($3 \le n \le 2 \cdot 10^5$). The second line contains $n$ integers $p_1$, $p_2$, ..., $p_n$ ($1 \le p_i \le n$). All these integers are pairwise distinct. -----Output----- Print the number of special subsegments of the given permutation. -----Examples----- Input 5 3 4 1 5 2 Output 2 Input 3 1 3 2 Output 1 -----Note----- Special subsegments in the first example are $[1, 5]$ and $[1, 3]$. The only special subsegment in the second example is $[1, 3]$.
n = int(input()) a = list(map(int, input().split())) p = list(range(n + 1)) s = [set() for i in range(n + 1)] def find(x): if p[x] != x: p[x] = find(p[x]) return p[x] def union(x, y, cur): x, y = find(x), find(y) r = 0 if len(s[x]) < len(s[y]): x, y = y, x for k in s[y]: r += cur - k in s[x] s[x] |= s[y] s[x].add(cur) p[y] = x return r print(sum(union(i, i + 1, a[i]) for i in sorted(range(n), key=lambda i: a[i])))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_DEF IF VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR RETURN VAR VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
You are given a permutation $p$ of $n$ integers $1$, $2$, ..., $n$ (a permutation is an array where each element from $1$ to $n$ occurs exactly once). Let's call some subsegment $p[l, r]$ of this permutation special if $p_l + p_r = \max \limits_{i = l}^{r} p_i$. Please calculate the number of special subsegments. -----Input----- The first line contains one integer $n$ ($3 \le n \le 2 \cdot 10^5$). The second line contains $n$ integers $p_1$, $p_2$, ..., $p_n$ ($1 \le p_i \le n$). All these integers are pairwise distinct. -----Output----- Print the number of special subsegments of the given permutation. -----Examples----- Input 5 3 4 1 5 2 Output 2 Input 3 1 3 2 Output 1 -----Note----- Special subsegments in the first example are $[1, 5]$ and $[1, 3]$. The only special subsegment in the second example is $[1, 3]$.
n = int(input()) a = list(map(int, input().split())) if a == [(i + 1) for i in range(n)]: print(0) return if a == [(i + 1) for i in range(n)][::-1]: print(0) return p = [0] * (n + 1) p[0] = -1 for i in range(n): p[a[i]] = i num = 2 ** (n - 1).bit_length() def segfunc(x, y): if a[x] < a[y]: return y else: return x seg = [0] * (2 * num - 1) for i in range(n): seg[i + num - 1] = i for i in range(num - 2, -1, -1): seg[i] = segfunc(seg[2 * i + 1], seg[2 * i + 2]) def update(i, x): i += num - 1 seg[i] = x while i: i = (i - 1) // 2 seg[i] = segfunc(seg[i * 2 + 1], seg[i * 2 + 2]) def query(l, r): l += num - 1 r += num - 2 if l == r: return seg[l] s = seg[l] l += 1 while r - l > 1: if ~l % 2: s = segfunc(seg[l], s) if r % 2: s = segfunc(seg[r], s) r -= 1 l //= 2 r = (r - 1) // 2 if l == r: return segfunc(s, seg[l]) return segfunc(s, segfunc(seg[l], seg[r])) def f(l, r): if r - l < 2: return 0 maxi = query(l, r + 1) ma = a[maxi] ans = f(l, maxi - 1) + f(maxi + 1, r) if maxi - l < r - maxi: for i in range(l, maxi): if maxi < p[ma - a[i]] <= r: ans += 1 else: for i in range(maxi + 1, r + 1): if l <= p[ma - a[i]] < maxi: ans += 1 return ans print(f(0, n - 1))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER RETURN IF VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR BIN_OP NUMBER FUNC_CALL BIN_OP VAR NUMBER FUNC_DEF IF VAR VAR VAR VAR RETURN VAR RETURN VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER FUNC_DEF VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR WHILE VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR BIN_OP BIN_OP VAR NUMBER NUMBER FUNC_DEF VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER IF VAR VAR RETURN VAR VAR ASSIGN VAR VAR VAR VAR NUMBER WHILE BIN_OP VAR VAR NUMBER IF BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER IF VAR VAR RETURN FUNC_CALL VAR VAR VAR VAR RETURN FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR VAR FUNC_DEF IF BIN_OP VAR VAR NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF BIN_OP VAR VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR BIN_OP VAR VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR BIN_OP VAR VAR VAR VAR VAR NUMBER RETURN VAR EXPR FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER
You are given a permutation $p$ of $n$ integers $1$, $2$, ..., $n$ (a permutation is an array where each element from $1$ to $n$ occurs exactly once). Let's call some subsegment $p[l, r]$ of this permutation special if $p_l + p_r = \max \limits_{i = l}^{r} p_i$. Please calculate the number of special subsegments. -----Input----- The first line contains one integer $n$ ($3 \le n \le 2 \cdot 10^5$). The second line contains $n$ integers $p_1$, $p_2$, ..., $p_n$ ($1 \le p_i \le n$). All these integers are pairwise distinct. -----Output----- Print the number of special subsegments of the given permutation. -----Examples----- Input 5 3 4 1 5 2 Output 2 Input 3 1 3 2 Output 1 -----Note----- Special subsegments in the first example are $[1, 5]$ and $[1, 3]$. The only special subsegment in the second example is $[1, 3]$.
import sys mod = 1000000007 eps = 10**-9 def main(): import sys input = sys.stdin.readline class Bit: def __init__(self, n): self.size = n self.tree = [0] * (n + 1) def sum(self, i): s = 0 while i > 0: s += self.tree[i] i -= i & -i return s def add(self, i, x): while i <= self.size: self.tree[i] += x i += i & -i def lower_bound(self, w): if w <= 0: return 0 x = 0 k = 1 << self.size.bit_length() - 1 while k: if x + k <= self.size and self.tree[x + k] < w: w -= self.tree[x + k] x += k k >>= 1 return x + 1 N = int(input()) P = list(map(int, input().split())) idx = [0] * (N + 1) for i, p in enumerate(P): idx[p] = i + 1 bit = Bit(N) ans = 0 for p in range(N, 0, -1): i = idx[p] k = bit.sum(i) r = bit.lower_bound(k + 1) l = bit.lower_bound(k) nl = i - l - 1 nr = r - i - 1 if nl < nr: for j in range(l + 1, i): q = P[j - 1] if i < idx[p - q] < r: ans += 1 else: for j in range(i + 1, r): q = P[j - 1] if l < idx[p - q] < i: ans += 1 bit.add(i, 1) print(ans) main()
IMPORT ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER FUNC_DEF IMPORT ASSIGN VAR VAR CLASS_DEF FUNC_DEF ASSIGN VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR VAR VAR VAR BIN_OP VAR VAR RETURN VAR FUNC_DEF WHILE VAR VAR VAR VAR VAR VAR BIN_OP VAR VAR FUNC_DEF IF VAR NUMBER RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER BIN_OP FUNC_CALL VAR NUMBER WHILE VAR IF BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR VAR NUMBER RETURN BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR BIN_OP VAR NUMBER IF VAR VAR BIN_OP VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR BIN_OP VAR NUMBER IF VAR VAR BIN_OP VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Given two arrays of integers nums1 and nums2, return the number of triplets formed (type 1 and type 2) under the following rules: Type 1: Triplet (i, j, k) if nums1[i]2 == nums2[j] * nums2[k] where 0 <= i < nums1.length and 0 <= j < k < nums2.length. Type 2: Triplet (i, j, k) if nums2[i]2 == nums1[j] * nums1[k] where 0 <= i < nums2.length and 0 <= j < k < nums1.length.   Example 1: Input: nums1 = [7,4], nums2 = [5,2,8,9] Output: 1 Explanation: Type 1: (1,1,2), nums1[1]^2 = nums2[1] * nums2[2]. (4^2 = 2 * 8). Example 2: Input: nums1 = [1,1], nums2 = [1,1,1] Output: 9 Explanation: All Triplets are valid, because 1^2 = 1 * 1. Type 1: (0,0,1), (0,0,2), (0,1,2), (1,0,1), (1,0,2), (1,1,2). nums1[i]^2 = nums2[j] * nums2[k]. Type 2: (0,0,1), (1,0,1), (2,0,1). nums2[i]^2 = nums1[j] * nums1[k]. Example 3: Input: nums1 = [7,7,8,3], nums2 = [1,2,9,7] Output: 2 Explanation: There are 2 valid triplets. Type 1: (3,0,2). nums1[3]^2 = nums2[0] * nums2[2]. Type 2: (3,0,1). nums2[3]^2 = nums1[0] * nums1[1]. Example 4: Input: nums1 = [4,7,9,11,23], nums2 = [3,5,1024,12,18] Output: 0 Explanation: There are no valid triplets.   Constraints: 1 <= nums1.length, nums2.length <= 1000 1 <= nums1[i], nums2[i] <= 10^5
class Solution: def numTriplets(self, nums1: List[int], nums2: List[int]) -> int: nums1.sort() nums2.sort() count = 0 nums1m = [(x * x) for x in nums1] nums2m = [(x * x) for x in nums2] d1 = defaultdict(int) d2 = defaultdict(int) for num in nums1: d1[num] += 1 for num in nums2: d2[num] += 1 for num in nums1m: for j in range(len(nums2)): if nums2[j] > num: break if num % nums2[j] != 0: continue left = num // nums2[j] if left in d2: if left == nums2[j]: count += d2[left] - 1 else: count += d2[left] for num in nums2m: for j in range(len(nums1)): if nums1[j] > num: break if num % nums1[j] != 0: continue left = num // nums1[j] if left in d1: if left == nums1[j]: count += d1[left] - 1 else: count += d1[left] return count // 2
CLASS_DEF FUNC_DEF VAR VAR VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR VAR VAR NUMBER FOR VAR VAR VAR VAR NUMBER FOR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR IF BIN_OP VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR IF VAR VAR IF VAR VAR VAR VAR BIN_OP VAR VAR NUMBER VAR VAR VAR FOR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR IF BIN_OP VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR IF VAR VAR IF VAR VAR VAR VAR BIN_OP VAR VAR NUMBER VAR VAR VAR RETURN BIN_OP VAR NUMBER VAR
Given two arrays of integers nums1 and nums2, return the number of triplets formed (type 1 and type 2) under the following rules: Type 1: Triplet (i, j, k) if nums1[i]2 == nums2[j] * nums2[k] where 0 <= i < nums1.length and 0 <= j < k < nums2.length. Type 2: Triplet (i, j, k) if nums2[i]2 == nums1[j] * nums1[k] where 0 <= i < nums2.length and 0 <= j < k < nums1.length.   Example 1: Input: nums1 = [7,4], nums2 = [5,2,8,9] Output: 1 Explanation: Type 1: (1,1,2), nums1[1]^2 = nums2[1] * nums2[2]. (4^2 = 2 * 8). Example 2: Input: nums1 = [1,1], nums2 = [1,1,1] Output: 9 Explanation: All Triplets are valid, because 1^2 = 1 * 1. Type 1: (0,0,1), (0,0,2), (0,1,2), (1,0,1), (1,0,2), (1,1,2). nums1[i]^2 = nums2[j] * nums2[k]. Type 2: (0,0,1), (1,0,1), (2,0,1). nums2[i]^2 = nums1[j] * nums1[k]. Example 3: Input: nums1 = [7,7,8,3], nums2 = [1,2,9,7] Output: 2 Explanation: There are 2 valid triplets. Type 1: (3,0,2). nums1[3]^2 = nums2[0] * nums2[2]. Type 2: (3,0,1). nums2[3]^2 = nums1[0] * nums1[1]. Example 4: Input: nums1 = [4,7,9,11,23], nums2 = [3,5,1024,12,18] Output: 0 Explanation: There are no valid triplets.   Constraints: 1 <= nums1.length, nums2.length <= 1000 1 <= nums1[i], nums2[i] <= 10^5
class Solution: def numTriplets(self, nums1: List[int], nums2: List[int]) -> int: d1, d2 = dict(), dict() for idx, n1 in enumerate(nums1): d1[idx] = dict() for elm in nums1[idx + 1 :]: try: d1[idx][elm] += 1 except KeyError: d1[idx][elm] = 1 for idx, n2 in enumerate(nums2): d2[idx] = dict() for elm in nums2[idx + 1 :]: try: d2[idx][elm] += 1 except KeyError: d2[idx][elm] = 1 good_dict = {} for n1 in nums1: if (1, n1) not in good_dict: good = 0 for idx, n2 in enumerate(nums2): try: good += d2[idx][n1**2 / n2] except KeyError: pass good_dict[1, n1] = [good, 1] else: good_dict[1, n1][-1] += 1 for n2 in nums2: if (2, n2) not in good_dict: good = 0 for idx, n1 in enumerate(nums1): try: good += d1[idx][n2**2 / n1] except KeyError: pass good_dict[2, n2] = [good, 1] else: good_dict[2, n2][-1] += 1 return sum(val * q for val, q in list(good_dict.values()))
CLASS_DEF FUNC_DEF VAR VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FOR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER VAR ASSIGN VAR VAR VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FOR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR DICT FOR VAR VAR IF NUMBER VAR VAR ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER VAR LIST VAR NUMBER VAR NUMBER VAR NUMBER NUMBER FOR VAR VAR IF NUMBER VAR VAR ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER VAR LIST VAR NUMBER VAR NUMBER VAR NUMBER NUMBER RETURN FUNC_CALL VAR BIN_OP VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR
Given two arrays of integers nums1 and nums2, return the number of triplets formed (type 1 and type 2) under the following rules: Type 1: Triplet (i, j, k) if nums1[i]2 == nums2[j] * nums2[k] where 0 <= i < nums1.length and 0 <= j < k < nums2.length. Type 2: Triplet (i, j, k) if nums2[i]2 == nums1[j] * nums1[k] where 0 <= i < nums2.length and 0 <= j < k < nums1.length.   Example 1: Input: nums1 = [7,4], nums2 = [5,2,8,9] Output: 1 Explanation: Type 1: (1,1,2), nums1[1]^2 = nums2[1] * nums2[2]. (4^2 = 2 * 8). Example 2: Input: nums1 = [1,1], nums2 = [1,1,1] Output: 9 Explanation: All Triplets are valid, because 1^2 = 1 * 1. Type 1: (0,0,1), (0,0,2), (0,1,2), (1,0,1), (1,0,2), (1,1,2). nums1[i]^2 = nums2[j] * nums2[k]. Type 2: (0,0,1), (1,0,1), (2,0,1). nums2[i]^2 = nums1[j] * nums1[k]. Example 3: Input: nums1 = [7,7,8,3], nums2 = [1,2,9,7] Output: 2 Explanation: There are 2 valid triplets. Type 1: (3,0,2). nums1[3]^2 = nums2[0] * nums2[2]. Type 2: (3,0,1). nums2[3]^2 = nums1[0] * nums1[1]. Example 4: Input: nums1 = [4,7,9,11,23], nums2 = [3,5,1024,12,18] Output: 0 Explanation: There are no valid triplets.   Constraints: 1 <= nums1.length, nums2.length <= 1000 1 <= nums1[i], nums2[i] <= 10^5
class Solution: def numTriplets(self, nums1: List[int], nums2: List[int]) -> int: count = 0 for i in range(len(nums1)): target = nums1[i] ** 2 temp = defaultdict(int) for j in range(len(nums2)): if target / nums2[j] in list(temp.keys()): count += temp[target / nums2[j]] temp[nums2[j]] += 1 for i in range(len(nums2)): target = nums2[i] ** 2 temp = defaultdict(int) for j in range(len(nums1)): if target / nums1[j] in list(temp.keys()): count += temp[target / nums1[j]] temp[nums1[j]] += 1 return count
CLASS_DEF FUNC_DEF VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER RETURN VAR VAR