description
stringlengths
171
4k
code
stringlengths
94
3.98k
normalized_code
stringlengths
57
4.99k
Given an array arr[] of n integers. Count the total number of sub-array having total distinct elements same as that of total distinct elements of the original array. Example 1: Input: N=5 arr[] = {2, 1, 3, 2, 3} Output: 5 Explanation: Total distinct elements in array is 3 Total sub-arrays that satisfy the condition are: Subarray from index 0 to 2 Subarray from index 0 to 3 Subarray from index 0 to 4 Subarray from index 1 to 3 Subarray from index 1 to 4 Example 2: Input: N=5 arr[] = {2, 4, 4, 2, 4} Output: 9 Your Task: Since, this is a function problem. You don't need to take any input, as it is already accomplished by the driver code. You just need to complete the function countDistinctSubarray() that takes array arr and integer n as parameters and returns the desired result. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1 ≤ N ≤ 10^{4}
class Solution: def countDistinctSubarray(self, a, n): w = len(set(a)) count = 0 i = 0 d = {} s = 0 for i in range(n): d[a[i]] = d.get(a[i], 0) + 1 while len(d) >= w: count += n - i d[a[s]] -= 1 if d[a[s]] == 0: d.pop(a[s]) s += 1 return count
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER WHILE FUNC_CALL VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR NUMBER RETURN VAR
Given an array arr[] of n integers. Count the total number of sub-array having total distinct elements same as that of total distinct elements of the original array. Example 1: Input: N=5 arr[] = {2, 1, 3, 2, 3} Output: 5 Explanation: Total distinct elements in array is 3 Total sub-arrays that satisfy the condition are: Subarray from index 0 to 2 Subarray from index 0 to 3 Subarray from index 0 to 4 Subarray from index 1 to 3 Subarray from index 1 to 4 Example 2: Input: N=5 arr[] = {2, 4, 4, 2, 4} Output: 9 Your Task: Since, this is a function problem. You don't need to take any input, as it is already accomplished by the driver code. You just need to complete the function countDistinctSubarray() that takes array arr and integer n as parameters and returns the desired result. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1 ≤ N ≤ 10^{4}
class Solution: def countDistinctSubarray(self, arr, n): s = set(arr) cnt_distinct = len(s) ans = self.atmost(arr, cnt_distinct) - self.atmost(arr, cnt_distinct - 1) return ans def atmost(self, arr, B): i = 0 j = 0 d = {} cnt = 0 while j < len(arr): if arr[j] in d: d[arr[j]] += 1 else: d[arr[j]] = 1 while len(d) > B: d[arr[i]] -= 1 if d[arr[i]] == 0: d.pop(arr[i]) i += 1 cnt += j - i + 1 j += 1 return cnt
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER WHILE FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER RETURN VAR
Given an array arr[] of n integers. Count the total number of sub-array having total distinct elements same as that of total distinct elements of the original array. Example 1: Input: N=5 arr[] = {2, 1, 3, 2, 3} Output: 5 Explanation: Total distinct elements in array is 3 Total sub-arrays that satisfy the condition are: Subarray from index 0 to 2 Subarray from index 0 to 3 Subarray from index 0 to 4 Subarray from index 1 to 3 Subarray from index 1 to 4 Example 2: Input: N=5 arr[] = {2, 4, 4, 2, 4} Output: 9 Your Task: Since, this is a function problem. You don't need to take any input, as it is already accomplished by the driver code. You just need to complete the function countDistinctSubarray() that takes array arr and integer n as parameters and returns the desired result. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1 ≤ N ≤ 10^{4}
class Solution: def countDistinctSubarray(self, arr, n): ans = 0 target_length = len(set(arr)) d = {} length = 0 left = 0 for i in range(n): if arr[i] not in d or d[arr[i]] == 0: length += 1 d[arr[i]] = 1 else: d[arr[i]] += 1 while length == target_length: ans += n - i d[arr[left]] -= 1 if d[arr[left]] == 0: length -= 1 left += 1 return ans
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR NUMBER VAR VAR VAR NUMBER WHILE VAR VAR VAR BIN_OP VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER RETURN VAR
Given an array arr[] of n integers. Count the total number of sub-array having total distinct elements same as that of total distinct elements of the original array. Example 1: Input: N=5 arr[] = {2, 1, 3, 2, 3} Output: 5 Explanation: Total distinct elements in array is 3 Total sub-arrays that satisfy the condition are: Subarray from index 0 to 2 Subarray from index 0 to 3 Subarray from index 0 to 4 Subarray from index 1 to 3 Subarray from index 1 to 4 Example 2: Input: N=5 arr[] = {2, 4, 4, 2, 4} Output: 9 Your Task: Since, this is a function problem. You don't need to take any input, as it is already accomplished by the driver code. You just need to complete the function countDistinctSubarray() that takes array arr and integer n as parameters and returns the desired result. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1 ≤ N ≤ 10^{4}
class Solution: def countDistinctSubarray(self, arr, n): sp_set = set() for i in arr: sp_set.add(i) k = len(sp_set) dp = {} right, window, ans = 0, 0, 0 for left in range(n): while right < n and window < k: dp[arr[right]] = dp.get(arr[right], 0) + 1 if dp[arr[right]] == 1: window += 1 right += 1 if window == k: ans += n - right + 1 dp[arr[left]] -= 1 if dp[arr[left]] == 0: window -= 1 return ans return res
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR VAR ASSIGN VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER IF VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER RETURN VAR RETURN VAR
Given an array arr[] of n integers. Count the total number of sub-array having total distinct elements same as that of total distinct elements of the original array. Example 1: Input: N=5 arr[] = {2, 1, 3, 2, 3} Output: 5 Explanation: Total distinct elements in array is 3 Total sub-arrays that satisfy the condition are: Subarray from index 0 to 2 Subarray from index 0 to 3 Subarray from index 0 to 4 Subarray from index 1 to 3 Subarray from index 1 to 4 Example 2: Input: N=5 arr[] = {2, 4, 4, 2, 4} Output: 9 Your Task: Since, this is a function problem. You don't need to take any input, as it is already accomplished by the driver code. You just need to complete the function countDistinctSubarray() that takes array arr and integer n as parameters and returns the desired result. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1 ≤ N ≤ 10^{4}
class Solution: def countDistinctSubarray(self, arr, n): l = len(set(arr)) dp = {} for xi in arr: dp[xi] = 0 solve = 0 c = 0 i = 0 j = 0 while j < n: dp[arr[j]] += 1 if dp[arr[j]] == 1: c += 1 while c == l: solve += n - j dp[arr[i]] -= 1 if dp[arr[i]] == 0: c -= 1 i += 1 j += 1 return solve
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER WHILE VAR VAR VAR BIN_OP VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER RETURN VAR
Given an array arr[] of n integers. Count the total number of sub-array having total distinct elements same as that of total distinct elements of the original array. Example 1: Input: N=5 arr[] = {2, 1, 3, 2, 3} Output: 5 Explanation: Total distinct elements in array is 3 Total sub-arrays that satisfy the condition are: Subarray from index 0 to 2 Subarray from index 0 to 3 Subarray from index 0 to 4 Subarray from index 1 to 3 Subarray from index 1 to 4 Example 2: Input: N=5 arr[] = {2, 4, 4, 2, 4} Output: 9 Your Task: Since, this is a function problem. You don't need to take any input, as it is already accomplished by the driver code. You just need to complete the function countDistinctSubarray() that takes array arr and integer n as parameters and returns the desired result. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1 ≤ N ≤ 10^{4}
class Solution: def countDistinctSubarray(self, nums, n): k = len(set(nums)) return self.subarraysWithatmostkDistinct( nums, k ) - self.subarraysWithatmostkDistinct(nums, k - 1) def subarraysWithatmostkDistinct(self, nums, k): memo = {} Count = release = 0 for acquire in range(len(nums)): if nums[acquire] in memo: memo[nums[acquire]] += 1 else: memo[nums[acquire]] = 1 while release <= acquire and len(memo) > k: memo[nums[release]] -= 1 if memo[nums[release]] == 0: del memo[nums[release]] release += 1 Count += acquire - release + 1 return Count
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR RETURN BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_DEF ASSIGN VAR DICT ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER WHILE VAR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER VAR VAR VAR VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER RETURN VAR
Given an array arr[] of n integers. Count the total number of sub-array having total distinct elements same as that of total distinct elements of the original array. Example 1: Input: N=5 arr[] = {2, 1, 3, 2, 3} Output: 5 Explanation: Total distinct elements in array is 3 Total sub-arrays that satisfy the condition are: Subarray from index 0 to 2 Subarray from index 0 to 3 Subarray from index 0 to 4 Subarray from index 1 to 3 Subarray from index 1 to 4 Example 2: Input: N=5 arr[] = {2, 4, 4, 2, 4} Output: 9 Your Task: Since, this is a function problem. You don't need to take any input, as it is already accomplished by the driver code. You just need to complete the function countDistinctSubarray() that takes array arr and integer n as parameters and returns the desired result. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1 ≤ N ≤ 10^{4}
class Solution: def countDistinctSubarray(self, arr, n): tot = 0 mp = {} for i in arr: if i not in mp: mp[i] = 0 tot += 1 mp = {} l = 0 r = 0 tem = 0 while True: if tem == tot: break if arr[r] not in mp: mp[arr[r]] = 0 tem += 1 mp[arr[r]] += 1 if tem == tot: break r += 1 ans = 0 ans += n - r tog = 0 while l < n and r < n: if tog == 0: mp[arr[l]] -= 1 if mp[arr[l]] != 0: ans += n - r l += 1 continue else: tog = 1 find = arr[l] l += 1 else: r += 1 while r < n and arr[r] != find: mp[arr[r]] += 1 r += 1 if r == n: break mp[arr[r]] += 1 tog = 0 ans += n - r return ans
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR DICT FOR VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER VAR NUMBER ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER IF VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR NUMBER VAR NUMBER VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR NUMBER VAR BIN_OP VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR IF VAR NUMBER VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER VAR NUMBER WHILE VAR VAR VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER VAR BIN_OP VAR VAR RETURN VAR
Given an array arr[] of n integers. Count the total number of sub-array having total distinct elements same as that of total distinct elements of the original array. Example 1: Input: N=5 arr[] = {2, 1, 3, 2, 3} Output: 5 Explanation: Total distinct elements in array is 3 Total sub-arrays that satisfy the condition are: Subarray from index 0 to 2 Subarray from index 0 to 3 Subarray from index 0 to 4 Subarray from index 1 to 3 Subarray from index 1 to 4 Example 2: Input: N=5 arr[] = {2, 4, 4, 2, 4} Output: 9 Your Task: Since, this is a function problem. You don't need to take any input, as it is already accomplished by the driver code. You just need to complete the function countDistinctSubarray() that takes array arr and integer n as parameters and returns the desired result. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1 ≤ N ≤ 10^{4}
class Solution: def countDistinctSubarray(self, arr, n): d = {} k = 0 for i in arr: if i not in d: d[i] = 1 k += 1 else: d[i] += 1 l = 0 r = 0 x = 0 dl = {} s = 0 for i in range(n): if arr[i] not in dl: dl[arr[i]] = 1 s += 1 else: dl[arr[i]] += 1 if s == k: x += n - i while s == k: dl[arr[l]] -= 1 if dl[arr[l]] == 0: del dl[arr[l]] s -= 1 else: x += n - i l += 1 return x t = int(input()) for _ in range(0, t): n = int(input()) a = list(map(int, input().split())) ob = Solution() print(ob.countDistinctSubarray(a, n))
CLASS_DEF FUNC_DEF ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER VAR NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR NUMBER VAR NUMBER VAR VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR VAR WHILE VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER VAR VAR VAR VAR NUMBER VAR BIN_OP VAR VAR VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Given an array arr[] of n integers. Count the total number of sub-array having total distinct elements same as that of total distinct elements of the original array. Example 1: Input: N=5 arr[] = {2, 1, 3, 2, 3} Output: 5 Explanation: Total distinct elements in array is 3 Total sub-arrays that satisfy the condition are: Subarray from index 0 to 2 Subarray from index 0 to 3 Subarray from index 0 to 4 Subarray from index 1 to 3 Subarray from index 1 to 4 Example 2: Input: N=5 arr[] = {2, 4, 4, 2, 4} Output: 9 Your Task: Since, this is a function problem. You don't need to take any input, as it is already accomplished by the driver code. You just need to complete the function countDistinctSubarray() that takes array arr and integer n as parameters and returns the desired result. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1 ≤ N ≤ 10^{4}
class Solution: def countDistinctSubarray(self, arr, n): s = set(arr) d = {e: (0) for e in s} z, k = 0, 0 ns = set() c = 0 while k < len(arr): ns.add(arr[k]) d[arr[k]] += 1 k += 1 while len(ns) == len(s): c += len(arr) - k + 1 d[arr[z]] -= 1 if not d[arr[z]]: ns.remove(arr[z]) z += 1 return c
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER VAR VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER WHILE FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR VAR VAR NUMBER IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER RETURN VAR
Given an array arr[] of n integers. Count the total number of sub-array having total distinct elements same as that of total distinct elements of the original array. Example 1: Input: N=5 arr[] = {2, 1, 3, 2, 3} Output: 5 Explanation: Total distinct elements in array is 3 Total sub-arrays that satisfy the condition are: Subarray from index 0 to 2 Subarray from index 0 to 3 Subarray from index 0 to 4 Subarray from index 1 to 3 Subarray from index 1 to 4 Example 2: Input: N=5 arr[] = {2, 4, 4, 2, 4} Output: 9 Your Task: Since, this is a function problem. You don't need to take any input, as it is already accomplished by the driver code. You just need to complete the function countDistinctSubarray() that takes array arr and integer n as parameters and returns the desired result. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1 ≤ N ≤ 10^{4}
class Solution: def countDistinctSubarray(self, arr, n): d = {} for i in arr: d[i] = d.get(i, 0) + 1 r = 0 k = len(d) d = {} ans = 0 countdist = 0 for l in range(0, n): while r < n and countdist < k: d[arr[r]] = d.get(arr[r], 0) + 1 if d[arr[r]] == 1: countdist += 1 r += 1 if countdist == k: ans += n - r + 1 d[arr[l]] -= 1 if d.get(arr[l], 0) == 0: countdist -= 1 return ans
CLASS_DEF FUNC_DEF ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR WHILE VAR VAR VAR VAR ASSIGN VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER IF VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR NUMBER NUMBER VAR NUMBER RETURN VAR
Given an array arr[] of n integers. Count the total number of sub-array having total distinct elements same as that of total distinct elements of the original array. Example 1: Input: N=5 arr[] = {2, 1, 3, 2, 3} Output: 5 Explanation: Total distinct elements in array is 3 Total sub-arrays that satisfy the condition are: Subarray from index 0 to 2 Subarray from index 0 to 3 Subarray from index 0 to 4 Subarray from index 1 to 3 Subarray from index 1 to 4 Example 2: Input: N=5 arr[] = {2, 4, 4, 2, 4} Output: 9 Your Task: Since, this is a function problem. You don't need to take any input, as it is already accomplished by the driver code. You just need to complete the function countDistinctSubarray() that takes array arr and integer n as parameters and returns the desired result. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1 ≤ N ≤ 10^{4}
class Solution: def countDistinctSubarray(self, arr, n): d = {} for i in range(len(arr)): if arr[i] in d: d[arr[i]] = d[arr[i]] + 1 else: d[arr[i]] = 1 i = 0 j = 0 re = 0 d1 = {} while j < len(arr): if arr[j] in d1: d1[arr[j]] = d1[arr[j]] + 1 else: d1[arr[j]] = 1 if len(d1) < len(d): j = j + 1 elif len(d1) == len(d): while len(d1) == len(d): result = len(arr) - j re = re + result d1[arr[i]] = d1[arr[i]] - 1 if d1[arr[i]] == 0: del d1[arr[i]] i = i + 1 j = j + 1 return re
CLASS_DEF FUNC_DEF ASSIGN VAR DICT FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT WHILE VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR WHILE FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
Given an array arr[] of n integers. Count the total number of sub-array having total distinct elements same as that of total distinct elements of the original array. Example 1: Input: N=5 arr[] = {2, 1, 3, 2, 3} Output: 5 Explanation: Total distinct elements in array is 3 Total sub-arrays that satisfy the condition are: Subarray from index 0 to 2 Subarray from index 0 to 3 Subarray from index 0 to 4 Subarray from index 1 to 3 Subarray from index 1 to 4 Example 2: Input: N=5 arr[] = {2, 4, 4, 2, 4} Output: 9 Your Task: Since, this is a function problem. You don't need to take any input, as it is already accomplished by the driver code. You just need to complete the function countDistinctSubarray() that takes array arr and integer n as parameters and returns the desired result. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1 ≤ N ≤ 10^{4}
class Solution: def countDistinctSubarray(self, arr, n): counter = dict.fromkeys(arr, 0) zeroset = set(arr) count = 0 i, j, count = 0, -1, 0 while i < n and j < n: while len(zeroset) > 0: j = j + 1 if j >= n: break counter[arr[j]] += 1 if arr[j] in zeroset: zeroset.remove(arr[j]) else: inc = n - j count += inc counter[arr[i]] = max(0, counter[arr[i]] - 1) if counter[arr[i]] == 0: zeroset.add(arr[i]) i = i + 1 if i >= n: break return count
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER WHILE VAR VAR VAR VAR WHILE FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR RETURN VAR
Given an array arr[] of n integers. Count the total number of sub-array having total distinct elements same as that of total distinct elements of the original array. Example 1: Input: N=5 arr[] = {2, 1, 3, 2, 3} Output: 5 Explanation: Total distinct elements in array is 3 Total sub-arrays that satisfy the condition are: Subarray from index 0 to 2 Subarray from index 0 to 3 Subarray from index 0 to 4 Subarray from index 1 to 3 Subarray from index 1 to 4 Example 2: Input: N=5 arr[] = {2, 4, 4, 2, 4} Output: 9 Your Task: Since, this is a function problem. You don't need to take any input, as it is already accomplished by the driver code. You just need to complete the function countDistinctSubarray() that takes array arr and integer n as parameters and returns the desired result. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1 ≤ N ≤ 10^{4}
class Solution: def mapAdd(self, dic, val): if val in dic: dic[val] += 1 else: dic[val] = 1 def mapSub(self, dic, val): dic[val] -= 1 if dic[val] == 0: del dic[val] def getCount(self, arr): dSet = set() for val in arr: if val not in dSet: dSet.add(val) return len(dSet) def countDistinctSubarray(self, arr, n): count = self.getCount(arr) resCnt = 0 currMap = {} lb = -1 ub = -1 while lb < len(arr) and ub < len(arr): if len(currMap) == count: resCnt += n - ub lb += 1 self.mapSub(currMap, arr[lb]) else: ub += 1 if ub == n: return resCnt self.mapAdd(currMap, arr[ub]) return resCnt
CLASS_DEF FUNC_DEF IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER FUNC_DEF VAR VAR NUMBER IF VAR VAR NUMBER VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR RETURN FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR VAR NUMBER IF VAR VAR RETURN VAR EXPR FUNC_CALL VAR VAR VAR VAR RETURN VAR
Given an array arr[] of n integers. Count the total number of sub-array having total distinct elements same as that of total distinct elements of the original array. Example 1: Input: N=5 arr[] = {2, 1, 3, 2, 3} Output: 5 Explanation: Total distinct elements in array is 3 Total sub-arrays that satisfy the condition are: Subarray from index 0 to 2 Subarray from index 0 to 3 Subarray from index 0 to 4 Subarray from index 1 to 3 Subarray from index 1 to 4 Example 2: Input: N=5 arr[] = {2, 4, 4, 2, 4} Output: 9 Your Task: Since, this is a function problem. You don't need to take any input, as it is already accomplished by the driver code. You just need to complete the function countDistinctSubarray() that takes array arr and integer n as parameters and returns the desired result. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1 ≤ N ≤ 10^{4}
class Solution: def countDistinctSubarray(self, arr, n): i, j = 0, 0 m = {} count = 0 ori = len(set(arr)) ans = 0 while j < n: if arr[j] not in m: m[arr[j]] = 1 count += 1 else: m[arr[j]] += 1 while count == ori: ans += len(arr) - j m[arr[i]] -= 1 if m[arr[i]] == 0: count -= 1 m.pop(arr[i]) i += 1 j += 1 return ans
CLASS_DEF FUNC_DEF ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR NUMBER VAR NUMBER VAR VAR VAR NUMBER WHILE VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER RETURN VAR
Given an array arr[] of n integers. Count the total number of sub-array having total distinct elements same as that of total distinct elements of the original array. Example 1: Input: N=5 arr[] = {2, 1, 3, 2, 3} Output: 5 Explanation: Total distinct elements in array is 3 Total sub-arrays that satisfy the condition are: Subarray from index 0 to 2 Subarray from index 0 to 3 Subarray from index 0 to 4 Subarray from index 1 to 3 Subarray from index 1 to 4 Example 2: Input: N=5 arr[] = {2, 4, 4, 2, 4} Output: 9 Your Task: Since, this is a function problem. You don't need to take any input, as it is already accomplished by the driver code. You just need to complete the function countDistinctSubarray() that takes array arr and integer n as parameters and returns the desired result. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1 ≤ N ≤ 10^{4}
class Solution: def countDistinctSubarray(self, arr, n): d = {} for i in arr: d[i] = 0 k = len(d) count, j, w = 0, 0, 0 for i in range(n): while k != w and j < n: d[arr[j]] += 1 if d[arr[j]] == 1: w += 1 j += 1 if w == k: count += n - j + 1 d[arr[i]] -= 1 if d[arr[i]] == 0: w -= 1 return count
CLASS_DEF FUNC_DEF ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, S): start = 0 end = 0 maxLen = 0 charDict = {} while end < len(S): if S[end] in charDict and charDict[S[end]] >= start: start = charDict[S[end]] + 1 charDict[S[end]] = end end += 1 maxLen = max(maxLen, end - start) return maxLen
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT WHILE VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, S): d = {} i, j, ans = 0, 0, 0 n = len(S) while j < n: if S[j] not in d: d[S[j]] = j else: ans = max(ans, j - i) a = d[S[j]] while i <= a: del d[S[i]] i += 1 d[S[j]] = j j += 1 ans = max(len(d), ans) return ans
CLASS_DEF FUNC_DEF ASSIGN VAR DICT ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR VAR WHILE VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, s): s_set = set() j = 0 ans = -1 for i in range(len(s)): if s[i] not in s_set: s_set.add(s[i]) else: while j < i and s[i] in s_set: s_set.remove(s[j]) j += 1 s_set.add(s[i]) ans = max(ans, i - j + 1) return ans
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR WHILE VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, s): n = len(s) ans = 0 mem = {} l = 0 for i in range(n): if s[i] not in mem.keys(): mem[s[i]] = i else: ans = max(ans, i - l) while l < mem[s[i]]: del mem[s[l]] l += 1 l += 1 mem[s[i]] = i if n - l > ans: ans = n - l return ans
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR FUNC_CALL VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR WHILE VAR VAR VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, S): d = {} l = r = 0 maxlen = 0 while r < len(S): if S[r] in d: l = max(d[S[r]] + 1, l) d[S[r]] = r maxlen = max(maxlen, r - l + 1) r += 1 return maxlen
CLASS_DEF FUNC_DEF ASSIGN VAR DICT ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, S): n = len(S) seen = set() left = 0 right = 0 max_len = 0 while left < n and right < n: if S[right] not in seen: seen.add(s[right]) right += 1 max_len = max(max_len, right - left) else: seen.remove(s[left]) left += 1 return max_len
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, s): n = len(s) freq = {} l, r = 0, 0 res = 0 while r < n: while s[r] in freq: del freq[s[l]] l += 1 freq[s[r]] = 1 + freq.get(s[r], 0) res = max(res, r - l + 1) r += 1 return res
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR VAR WHILE VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR BIN_OP NUMBER FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, S): hashSet = set() l = 0 r = 0 n = len(S) maxLen = -1 while r < n: while S[r] in hashSet: hashSet.remove(S[l]) l += 1 hashSet.add(S[r]) maxLen = max(maxLen, r - l + 1) r += 1 return maxLen
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR WHILE VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, S): d = {} j = 0 ans = 0 for i in range(len(s)): item = s[i] if item in d: j = max(j, d[item] + 1) d[item] = i ans = max(ans, i - j + 1) return ans
CLASS_DEF FUNC_DEF ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, S): dict1 = {} i = j = 0 max_len = 0 while j < len(s): if S[j] not in dict1: dict1[S[j]] = 1 max_len = max(max_len, j - i + 1) j += 1 else: while S[j] in dict1: del dict1[S[i]] i += 1 return max_len
CLASS_DEF FUNC_DEF ASSIGN VAR DICT ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER WHILE VAR VAR VAR VAR VAR VAR VAR NUMBER RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, S): i, j = 0, 0 fMap = {} lenMax = 0 while j < len(S): fMap[S[j]] = fMap.get(S[j], 0) + 1 while fMap[S[j]] > 1: fMap[S[i]] -= 1 i += 1 lenMax = max(lenMax, j - i + 1) j += 1 return lenMax
CLASS_DEF FUNC_DEF ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR DICT ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER WHILE VAR VAR VAR NUMBER VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, S): a = [] maxm = 0 if len(S) == 1: return 1 for i in S: if i not in a: a.append(i) else: if maxm < len(a): maxm = len(a) c = a.index(i) a = a[c + 1 :] a.append(i) if maxm < len(a): return len(a) return maxm
CLASS_DEF FUNC_DEF ASSIGN VAR LIST ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR NUMBER RETURN NUMBER FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR RETURN FUNC_CALL VAR VAR RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, S): max_len = 0 current_len = 0 char_set = set() left = 0 right = 0 while right < len(S): if S[right] not in char_set: char_set.add(S[right]) current_len += 1 max_len = max(max_len, current_len) right += 1 else: char_set.remove(S[left]) left += 1 current_len -= 1 return max_len
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, S): has = [(-1) for _ in range(256)] left = 0 right = 0 n = len(S) res = 0 while right < n: if has[ord(S[right])] != -1: left = max(has[ord(S[right])] + 1, left) has[ord(S[right])] = right res = max(res, right - left + 1) right += 1 return res
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR IF VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, S): i, j = 0, 0 maxi = -9999 n = len(S) d = {} while j < n: if S[j] in d: while S[i] != S[j]: d[S[i]] -= 1 if d[S[i]] == 0: del d[S[i]] i += 1 i += 1 elif S[j] not in d: d[S[j]] = 1 if j - i + 1 > maxi: maxi = j - i + 1 j += 1 return maxi
CLASS_DEF FUNC_DEF ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT WHILE VAR VAR IF VAR VAR VAR WHILE VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, s): if len(s) == 0: return 0 start = 0 maxl = 0 d = {} for i in range(len(s)): if s[i] in d and start <= d[s[i]]: start = d[s[i]] + 1 else: maxl = max(maxl, i - start + 1) d[s[i]] = i return maxl
CLASS_DEF FUNC_DEF IF FUNC_CALL VAR VAR NUMBER RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR VAR RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, str): l = 0 res = 0 a = {} arr = [] for r in range(len(str)): while str[r] in a: ele = arr.pop(0) del a[ele] l += 1 arr.append(str[r]) a[str[r]] = 1 res = max(res, r - l + 1) return res
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, S): n = len(S) if n == 0: return 0 res = float("-inf") has = set() left = 0 for right in range(n): if S[right] in has: while left < right and S[right] in has: has.remove(S[left]) left += 1 has.add(S[right]) res = max(res, right - left + 1) return res
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR WHILE VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, S): hashmap = {} left = 0 right = 0 i = -1 j = -1 max_len = -int(1000000000.0) while right < len(S): if S[right] not in hashmap: hashmap[S[right]] = 1 else: while left <= right and S[right] in hashmap: del hashmap[S[left]] left += 1 hashmap[S[right]] = 1 if i == -1 and j == -1: i = left j = right elif j - i < right - left: i = left j = right max_len = max(max_len, j - i + 1) right += 1 return max_len
CLASS_DEF FUNC_DEF ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR NUMBER WHILE VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR IF BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, S): j = 0 i = 0 x = {} max_len = 0 while j < len(S): if S[j] not in x: x[S[j]] = 1 else: max_len = max(max_len, j - i) while i < j and S[i] != S[j]: del x[S[i]] i += 1 del x[S[i]] i += 1 x[S[j]] = 1 j += 1 max_len = max(max_len, j - i) return max_len
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR WHILE VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, S): s = {} left = output = 0 for right, num in enumerate(S): if num in s: left = max(left, s[num] + 1) output = max(output, right - left + 1) s[num] = right return output
CLASS_DEF FUNC_DEF ASSIGN VAR DICT ASSIGN VAR VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, S): l = [] s1 = "" for i in S: if i not in s1: s1 += i else: l.append(s1) k = s1.index(i) s1 = s1[k + 1 :] + i l.append(s1) l.sort(key=len) return len(l[-1])
CLASS_DEF FUNC_DEF ASSIGN VAR LIST ASSIGN VAR STRING FOR VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR RETURN FUNC_CALL VAR VAR NUMBER
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, S): n = len(S) cur_len = 1 max_len = 1 prev_index = -1 visited = {} for i in S: visited[i] = -1 visited[S[0]] = 0 for i in range(1, n): prev_index = visited[S[i]] if prev_index == -1 or i - cur_len > prev_index: cur_len += 1 else: if cur_len > max_len: max_len = cur_len cur_len = i - prev_index visited[S[i]] = i if cur_len > max_len: max_len = cur_len return max_len
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR VAR IF VAR NUMBER BIN_OP VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, S): if len(S) == 1 or S == S[0] * len(S): return 1 start = 0 l = 0 i = 1 while i < len(S): if S[i] in S[start:i]: while start < i: if S[start] == S[i]: start += 1 break start += 1 l = max(l, len(S[start : i + 1])) i += 1 return l
CLASS_DEF FUNC_DEF IF FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR WHILE VAR VAR IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, S): dic = {} cm = count = i = 0 while i < len(S): if S[i] in dic: if cm < count: cm = count count = 0 i = dic[S[i]] + 1 dic = {} else: dic[S[i]] = i count += 1 i += 1 if cm > count: return cm else: return count
CLASS_DEF FUNC_DEF ASSIGN VAR DICT ASSIGN VAR VAR VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR DICT ASSIGN VAR VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR RETURN VAR RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, S): mp = {} ans = 0 i = 0 for j in range(len(S)): if S[j] in mp: i = max(mp[S[j]], i) ans = max(ans, j - i + 1) mp[S[j]] = j + 1 return ans
CLASS_DEF FUNC_DEF ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, str1): r = 0 l = 0 map = {} MxLen, n, lent = 0, len(str1), 0 while r < n: if map.get(str1[r], -1) != -1: l = max(map[str1[r]] + 1, l) map[str1[r]] = r MxLen = max(MxLen, r - l + 1) r += 1 return MxLen
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT ASSIGN VAR VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER WHILE VAR VAR IF FUNC_CALL VAR VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, s): temp = "" ans = 0 for i in range(len(s)): ch = s[i] if ch not in temp: temp += ch ans = max(ans, len(temp)) else: temp += ch while temp[0] != ch: temp = temp[1:] temp = temp[1:] return ans
CLASS_DEF FUNC_DEF ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR IF VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR WHILE VAR NUMBER VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, s): n = len(s) res = 0 prev = [-1] * 256 i = 0 for j in range(n): i = max(i, prev[ord(s[j])] + 1) maxEnd = j - i + 1 res = max(res, maxEnd) prev[ord(s[j])] = j return res
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, S): i = -1 j = -1 mlen = 0 hashmap = {} le = len(S) - 1 while True: f1 = False f2 = False while i < le: f1 = True i += 1 ch = S[i] if ch in hashmap: hashmap[ch] += 1 else: hashmap[ch] = 1 if hashmap[ch] == 2: break else: clen = i - j if clen > mlen: mlen = clen while j < i: f2 = True j += 1 ch = S[j] hashmap[ch] -= 1 if hashmap[ch] == 1: break if f1 == False and f2 == False: break return mlen
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR VAR VAR NUMBER IF VAR VAR NUMBER IF VAR NUMBER VAR NUMBER RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, s): d = {} l = 0 ml = 0 for r in range(len(s)): if s[r] not in d: ml = max(ml, r - l + 1) elif d[s[r]] < l: ml = max(ml, r - l + 1) else: l = d[s[r]] + 1 d[s[r]] = r return ml
CLASS_DEF FUNC_DEF ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, arr): r, l = 0, 0 max_len = 0 count_fr = {} while r < len(arr): if count_fr.get(arr[r], -1) != -1: l = max(count_fr[arr[r]] + 1, l) max_len = max(max_len, r - l + 1) count_fr[arr[r]] = r r += 1 return max_len
CLASS_DEF FUNC_DEF ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT WHILE VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR NUMBER RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, s): n = len(s) hm = {} l = 0 r = 0 ans = 0 while r < n: if s[r] in hm: l = max(l, hm[s[r]] + 1) hm[s[r]] = r ans = max(ans, r - l + 1) r += 1 return ans
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, s: str) -> int: max_len = 0 left, right = 0, 0 unique_chars = set() while right < len(s): if s[right] not in unique_chars: unique_chars.add(s[right]) right += 1 max_len = max(max_len, right - left) else: unique_chars.remove(s[left]) left += 1 return max_len
CLASS_DEF FUNC_DEF VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR WHILE VAR FUNC_CALL VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER RETURN VAR VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, S): l = 0 r = 0 max = 0 a = "" for i in s: if i in a[l:r]: while a[l] != i: l += 1 l += 1 a += i if r - l + 1 > max: max = r - l + 1 r += 1 return max
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR STRING FOR VAR VAR IF VAR VAR VAR VAR WHILE VAR VAR VAR VAR NUMBER VAR NUMBER VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, S): maxi = -(10**9) dic = {} start = 0 for i in range(len(S)): if S[i] not in dic: dic[S[i]] = i else: if start < dic[S[i]] + 1: start = dic[S[i]] + 1 dic[S[i]] = i maxi = max(maxi, i - start + 1) if maxi == -(10**9): return -1 return maxi
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR IF VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR BIN_OP NUMBER NUMBER RETURN NUMBER RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, S): ans = 0 l = 0 A = set() for i in range(len(S)): while S[i] in A: A.remove(S[l]) l = l + 1 A.add(S[i]) ans = max(ans, len(A)) return ans
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, S): n = len(S) d = {} for i in range(n): d[S[i]] = -1 d[S[0]] = 0 l = 1 maxx = 1 for i in range(1, n): x = d[S[i]] if x == -1 or i - l > x: l += 1 else: maxx = max(maxx, l) l = i - x d[S[i]] = i maxx = max(maxx, l) return maxx
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR VAR IF VAR NUMBER BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, S): l = [] r = [] if len(set(S)) == len(S): return len(S) for i in S: if i not in r: r += [i] else: l += [len(r)] p = i while True: if p in r: r.pop(0) else: r += [p] break l += [len(r)] return max(l)
CLASS_DEF FUNC_DEF ASSIGN VAR LIST ASSIGN VAR LIST IF FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR RETURN FUNC_CALL VAR VAR FOR VAR VAR IF VAR VAR VAR LIST VAR VAR LIST FUNC_CALL VAR VAR ASSIGN VAR VAR WHILE NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER VAR LIST VAR VAR LIST FUNC_CALL VAR VAR RETURN FUNC_CALL VAR VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, S): seen = {} mL = float("-inf") start, end = 0, 0 while end < len(S): if S[end] in seen: start = max(start, seen[S[end]] + 1) seen[S[end]] = end mL = max(mL, end - start + 1) end += 1 return mL if mL != float("-inf") else 0
CLASS_DEF FUNC_DEF ASSIGN VAR DICT ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR VAR NUMBER NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER RETURN VAR FUNC_CALL VAR STRING VAR NUMBER
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, S): char = [(0) for i in range(250)] n = len(S) j = 0 ans = 0 i = 0 while j < n: char[ord(S[j])] += 1 if char[ord(S[j])] > 1: while char[ord(S[j])] > 1: char[ord(S[i])] -= 1 i = i + 1 ans = max(ans, j - i + 1) j = j + 1 return ans
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, S): length = len(S) first = 0 second = 0 max = 1 count_list = [] for i in range(26): count_list.append(0) while second < length: while count_list[ord(S[second]) - ord("a")]: count_list[ord(S[first]) - ord("a")] = 0 first += 1 count_list[ord(S[second]) - ord("a")] = 1 count = second - first + 1 if max < count: max = count second += 1 return max
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER WHILE VAR VAR WHILE VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING NUMBER VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR NUMBER RETURN VAR
Given a string S, find the length of the longest substring without repeating characters. Example 1: Input: S = "geeksforgeeks" Output: 7 Explanation: Longest substring is "eksforg". Example 2: Input: S = "abdefgabef" Output: 6 Explanation: Longest substring are "abdefg" , "bdefga" and "defgab". Your Task: You don't need to take input or print anything. Your task is to complete the function longestUniqueSubsttr() which takes a string S as and returns the length of the longest substring. Expected Time Complexity: O(|S|). Expected Auxiliary Space: O(K) where K is constant. Constraints: 1 ≤ |S| ≤ 10^{5} It is guaranteed that all characters of the String S will be lowercase letters from 'a' to 'z'
class Solution: def longestUniqueSubsttr(self, S): start = end = m = 0 dic = {} for i, c in enumerate(S): if c in dic and dic[c] >= start: m = max(m, end - start) start = dic[c] + 1 dic[c] = i end += 1 return max(m, end - start)
CLASS_DEF FUNC_DEF ASSIGN VAR VAR VAR NUMBER ASSIGN VAR DICT FOR VAR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER RETURN FUNC_CALL VAR VAR BIN_OP VAR VAR
There are several cards arranged in a row, and each has an associated number of points. The points are given in the integer array cardPoints of size N. In one step, you can take one card from beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints, and its size N and the integer k, return the maximum score you can obtain. Example 1: Input: N = 7 k = 3 cardPoints[ ] = {1, 2, 3, 4, 5, 6, 1} Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: N = 5 k = 5 arr[ ] = {8, 6, 2, 4, 5} Output: 25 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Your Task: You don't need to read input or print anything. Your task is to complete the function maxScore() which takes the array of integers cardPoints , an integer N and k as parameters and returns a maximum score. Expected Time Complexity: O(N) Expected Auxiliary Space: O(1) Constraints: 1 ≤ N ≤ 10^{5} 1 ≤ k ≤ N ^{1 }≤ cardPoints_{i }≤ 10^{5}
class Solution: def maxScore(self, a, n, k): sumf = sum(a[:k]) sumb = sum(a[n - k : n]) bf = 0 ef = k - 1 bb = n - 1 eb = n - k ans = 0 x = 1 while x <= k: if sumf >= sumb: ans += a[bf] sumf -= a[bf] sumb -= a[eb] bf += 1 eb += 1 elif sumf < sumb: ans += a[bb] sumf -= a[ef] sumb -= a[bb] bb -= 1 ef -= 1 x += 1 return ans
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER RETURN VAR
There are several cards arranged in a row, and each has an associated number of points. The points are given in the integer array cardPoints of size N. In one step, you can take one card from beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints, and its size N and the integer k, return the maximum score you can obtain. Example 1: Input: N = 7 k = 3 cardPoints[ ] = {1, 2, 3, 4, 5, 6, 1} Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: N = 5 k = 5 arr[ ] = {8, 6, 2, 4, 5} Output: 25 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Your Task: You don't need to read input or print anything. Your task is to complete the function maxScore() which takes the array of integers cardPoints , an integer N and k as parameters and returns a maximum score. Expected Time Complexity: O(N) Expected Auxiliary Space: O(1) Constraints: 1 ≤ N ≤ 10^{5} 1 ≤ k ≤ N ^{1 }≤ cardPoints_{i }≤ 10^{5}
class Solution: def maxScore(self, cardPoints, n, k): n = len(cardPoints) res = sumi = sum(cardPoints[:k]) left = k - 1 right = n - 1 while left >= 0: sumi -= cardPoints[left] sumi += cardPoints[right] res = max(res, sumi) left -= 1 right -= 1 return res
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER RETURN VAR
There are several cards arranged in a row, and each has an associated number of points. The points are given in the integer array cardPoints of size N. In one step, you can take one card from beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints, and its size N and the integer k, return the maximum score you can obtain. Example 1: Input: N = 7 k = 3 cardPoints[ ] = {1, 2, 3, 4, 5, 6, 1} Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: N = 5 k = 5 arr[ ] = {8, 6, 2, 4, 5} Output: 25 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Your Task: You don't need to read input or print anything. Your task is to complete the function maxScore() which takes the array of integers cardPoints , an integer N and k as parameters and returns a maximum score. Expected Time Complexity: O(N) Expected Auxiliary Space: O(1) Constraints: 1 ≤ N ≤ 10^{5} 1 ≤ k ≤ N ^{1 }≤ cardPoints_{i }≤ 10^{5}
class Solution: def maxScore(self, a, N, k): s = sum(a[:k]) e = 0 m = max(s, e) j = len(a) - 1 for i in range(k - 1, -1, -1): e += a[j] s -= a[i] m = max(m, s + e) j -= 1 k -= 1 return m
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR NUMBER VAR NUMBER RETURN VAR
There are several cards arranged in a row, and each has an associated number of points. The points are given in the integer array cardPoints of size N. In one step, you can take one card from beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints, and its size N and the integer k, return the maximum score you can obtain. Example 1: Input: N = 7 k = 3 cardPoints[ ] = {1, 2, 3, 4, 5, 6, 1} Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: N = 5 k = 5 arr[ ] = {8, 6, 2, 4, 5} Output: 25 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Your Task: You don't need to read input or print anything. Your task is to complete the function maxScore() which takes the array of integers cardPoints , an integer N and k as parameters and returns a maximum score. Expected Time Complexity: O(N) Expected Auxiliary Space: O(1) Constraints: 1 ≤ N ≤ 10^{5} 1 ≤ k ≤ N ^{1 }≤ cardPoints_{i }≤ 10^{5}
class Solution: def maxScore(self, cardPoints, N, k): s = 0 for i in range(N - k, N): s += cardPoints[i] p = s for i in range(k): h = cardPoints[N - (k - i)] p = p - h + cardPoints[i] s = max(s, p) return s
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR
There are several cards arranged in a row, and each has an associated number of points. The points are given in the integer array cardPoints of size N. In one step, you can take one card from beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints, and its size N and the integer k, return the maximum score you can obtain. Example 1: Input: N = 7 k = 3 cardPoints[ ] = {1, 2, 3, 4, 5, 6, 1} Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: N = 5 k = 5 arr[ ] = {8, 6, 2, 4, 5} Output: 25 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Your Task: You don't need to read input or print anything. Your task is to complete the function maxScore() which takes the array of integers cardPoints , an integer N and k as parameters and returns a maximum score. Expected Time Complexity: O(N) Expected Auxiliary Space: O(1) Constraints: 1 ≤ N ≤ 10^{5} 1 ≤ k ≤ N ^{1 }≤ cardPoints_{i }≤ 10^{5}
class Solution: def maxScore(self, arr, n, k): l, r = 0, n - k summ = max_sum = sum(arr[r:]) for r in range(n - k, n): summ = summ - arr[r] + arr[l] l += 1 if summ > max_sum: max_sum = summ return max_sum
CLASS_DEF FUNC_DEF ASSIGN VAR VAR NUMBER BIN_OP VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR RETURN VAR
There are several cards arranged in a row, and each has an associated number of points. The points are given in the integer array cardPoints of size N. In one step, you can take one card from beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints, and its size N and the integer k, return the maximum score you can obtain. Example 1: Input: N = 7 k = 3 cardPoints[ ] = {1, 2, 3, 4, 5, 6, 1} Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: N = 5 k = 5 arr[ ] = {8, 6, 2, 4, 5} Output: 25 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Your Task: You don't need to read input or print anything. Your task is to complete the function maxScore() which takes the array of integers cardPoints , an integer N and k as parameters and returns a maximum score. Expected Time Complexity: O(N) Expected Auxiliary Space: O(1) Constraints: 1 ≤ N ≤ 10^{5} 1 ≤ k ≤ N ^{1 }≤ cardPoints_{i }≤ 10^{5}
class Solution: def maxScore(self, cardPoints, N, k): maxScore = 0 sumTotal = sum(cardPoints[:k]) maxScore = max(maxScore, sumTotal) for i in range(k): sumTotal = sumTotal - cardPoints[k - 1 - i] + cardPoints[N - 1 - i] maxScore = max(maxScore, sumTotal) return maxScore
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR
There are several cards arranged in a row, and each has an associated number of points. The points are given in the integer array cardPoints of size N. In one step, you can take one card from beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints, and its size N and the integer k, return the maximum score you can obtain. Example 1: Input: N = 7 k = 3 cardPoints[ ] = {1, 2, 3, 4, 5, 6, 1} Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: N = 5 k = 5 arr[ ] = {8, 6, 2, 4, 5} Output: 25 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Your Task: You don't need to read input or print anything. Your task is to complete the function maxScore() which takes the array of integers cardPoints , an integer N and k as parameters and returns a maximum score. Expected Time Complexity: O(N) Expected Auxiliary Space: O(1) Constraints: 1 ≤ N ≤ 10^{5} 1 ≤ k ≤ N ^{1 }≤ cardPoints_{i }≤ 10^{5}
class Solution: def maxScore(self, a, n, k): ans = 0 for i in range(k): ans += a[i] res = ans j = n - 1 while i >= 0: ans = ans - a[i] + a[j] res = max(res, ans) i -= 1 j -= 1 return res
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER RETURN VAR
There are several cards arranged in a row, and each has an associated number of points. The points are given in the integer array cardPoints of size N. In one step, you can take one card from beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints, and its size N and the integer k, return the maximum score you can obtain. Example 1: Input: N = 7 k = 3 cardPoints[ ] = {1, 2, 3, 4, 5, 6, 1} Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: N = 5 k = 5 arr[ ] = {8, 6, 2, 4, 5} Output: 25 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Your Task: You don't need to read input or print anything. Your task is to complete the function maxScore() which takes the array of integers cardPoints , an integer N and k as parameters and returns a maximum score. Expected Time Complexity: O(N) Expected Auxiliary Space: O(1) Constraints: 1 ≤ N ≤ 10^{5} 1 ≤ k ≤ N ^{1 }≤ cardPoints_{i }≤ 10^{5}
class Solution: def maxScore(self, cardPoints, N, k): tot = sum(cardPoints) ans = 0 res = 0 for i in range(N - k): res += cardPoints[i] ans = tot - res for i in range(N - k, N): res += cardPoints[i] - cardPoints[i - (N - k)] ans = max(ans, tot - res) return ans
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR RETURN VAR
There are several cards arranged in a row, and each has an associated number of points. The points are given in the integer array cardPoints of size N. In one step, you can take one card from beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints, and its size N and the integer k, return the maximum score you can obtain. Example 1: Input: N = 7 k = 3 cardPoints[ ] = {1, 2, 3, 4, 5, 6, 1} Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: N = 5 k = 5 arr[ ] = {8, 6, 2, 4, 5} Output: 25 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Your Task: You don't need to read input or print anything. Your task is to complete the function maxScore() which takes the array of integers cardPoints , an integer N and k as parameters and returns a maximum score. Expected Time Complexity: O(N) Expected Auxiliary Space: O(1) Constraints: 1 ≤ N ≤ 10^{5} 1 ≤ k ≤ N ^{1 }≤ cardPoints_{i }≤ 10^{5}
class Solution: def maxScore(self, cardPoints, N, k): left, right = 0, len(cardPoints) - k total = sum(cardPoints[right:]) res = total while right < len(cardPoints): total += cardPoints[left] - cardPoints[right] res = max(total, res) left += 1 right += 1 return res
CLASS_DEF FUNC_DEF ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR WHILE VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER RETURN VAR
There are several cards arranged in a row, and each has an associated number of points. The points are given in the integer array cardPoints of size N. In one step, you can take one card from beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints, and its size N and the integer k, return the maximum score you can obtain. Example 1: Input: N = 7 k = 3 cardPoints[ ] = {1, 2, 3, 4, 5, 6, 1} Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: N = 5 k = 5 arr[ ] = {8, 6, 2, 4, 5} Output: 25 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Your Task: You don't need to read input or print anything. Your task is to complete the function maxScore() which takes the array of integers cardPoints , an integer N and k as parameters and returns a maximum score. Expected Time Complexity: O(N) Expected Auxiliary Space: O(1) Constraints: 1 ≤ N ≤ 10^{5} 1 ≤ k ≤ N ^{1 }≤ cardPoints_{i }≤ 10^{5}
class Solution: def maxScore(self, A, N, k): req = len(A) - k summ = sum(A) partSum = sum(A[0:req]) mini = partSum for i in range(req, N): old = i - req partSum -= A[old] partSum += A[i] mini = min(mini, partSum) return summ - mini
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN BIN_OP VAR VAR
There are several cards arranged in a row, and each has an associated number of points. The points are given in the integer array cardPoints of size N. In one step, you can take one card from beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints, and its size N and the integer k, return the maximum score you can obtain. Example 1: Input: N = 7 k = 3 cardPoints[ ] = {1, 2, 3, 4, 5, 6, 1} Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: N = 5 k = 5 arr[ ] = {8, 6, 2, 4, 5} Output: 25 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Your Task: You don't need to read input or print anything. Your task is to complete the function maxScore() which takes the array of integers cardPoints , an integer N and k as parameters and returns a maximum score. Expected Time Complexity: O(N) Expected Auxiliary Space: O(1) Constraints: 1 ≤ N ≤ 10^{5} 1 ≤ k ≤ N ^{1 }≤ cardPoints_{i }≤ 10^{5}
class Solution: def maxScore(self, cardPoints, N, k): cur = sum(cardPoints[:k]) maxs = cur x = len(cardPoints) for i in range(k): cur = cur + cardPoints[x - 1 - i] cur = cur - cardPoints[k - 1 - i] maxs = max(maxs, cur) return maxs
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR
There are several cards arranged in a row, and each has an associated number of points. The points are given in the integer array cardPoints of size N. In one step, you can take one card from beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints, and its size N and the integer k, return the maximum score you can obtain. Example 1: Input: N = 7 k = 3 cardPoints[ ] = {1, 2, 3, 4, 5, 6, 1} Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: N = 5 k = 5 arr[ ] = {8, 6, 2, 4, 5} Output: 25 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Your Task: You don't need to read input or print anything. Your task is to complete the function maxScore() which takes the array of integers cardPoints , an integer N and k as parameters and returns a maximum score. Expected Time Complexity: O(N) Expected Auxiliary Space: O(1) Constraints: 1 ≤ N ≤ 10^{5} 1 ≤ k ≤ N ^{1 }≤ cardPoints_{i }≤ 10^{5}
class Solution: def maxScore(self, cardPoints, N, k): cardPoints = cardPoints[N - k :] + cardPoints[:k] i, j = 0, 0 maxi = 0 sum_ = 0 count = 0 N = len(cardPoints) while j < N: sum_ += cardPoints[j] count += 1 if count < k: j += 1 elif count == k: maxi = max(maxi, sum_) sum_ -= cardPoints[i] i += 1 j += 1 count -= 1 return maxi
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER RETURN VAR
There are several cards arranged in a row, and each has an associated number of points. The points are given in the integer array cardPoints of size N. In one step, you can take one card from beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints, and its size N and the integer k, return the maximum score you can obtain. Example 1: Input: N = 7 k = 3 cardPoints[ ] = {1, 2, 3, 4, 5, 6, 1} Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: N = 5 k = 5 arr[ ] = {8, 6, 2, 4, 5} Output: 25 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Your Task: You don't need to read input or print anything. Your task is to complete the function maxScore() which takes the array of integers cardPoints , an integer N and k as parameters and returns a maximum score. Expected Time Complexity: O(N) Expected Auxiliary Space: O(1) Constraints: 1 ≤ N ≤ 10^{5} 1 ≤ k ≤ N ^{1 }≤ cardPoints_{i }≤ 10^{5}
class Solution: def maxScore(self, cardPoints, N, k): n = len(cardPoints) left, right = 0, n - k total_sum = sum(cardPoints[right:]) ans_sum = total_sum for i in range(k): total_sum += cardPoints[left] - cardPoints[right] ans_sum = max(ans_sum, total_sum) left += 1 right += 1 return ans_sum
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER RETURN VAR
There are several cards arranged in a row, and each has an associated number of points. The points are given in the integer array cardPoints of size N. In one step, you can take one card from beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints, and its size N and the integer k, return the maximum score you can obtain. Example 1: Input: N = 7 k = 3 cardPoints[ ] = {1, 2, 3, 4, 5, 6, 1} Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: N = 5 k = 5 arr[ ] = {8, 6, 2, 4, 5} Output: 25 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Your Task: You don't need to read input or print anything. Your task is to complete the function maxScore() which takes the array of integers cardPoints , an integer N and k as parameters and returns a maximum score. Expected Time Complexity: O(N) Expected Auxiliary Space: O(1) Constraints: 1 ≤ N ≤ 10^{5} 1 ≤ k ≤ N ^{1 }≤ cardPoints_{i }≤ 10^{5}
class Solution: def maxScore(self, cardPoints, N, k): ans = 0 for i in range(k): ans += cardPoints[i] cur = ans for i in range(k - 1, -1, -1): cur -= cardPoints[i] cur += cardPoints[N - k + i] ans = max(cur, ans) return ans
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR
There are several cards arranged in a row, and each has an associated number of points. The points are given in the integer array cardPoints of size N. In one step, you can take one card from beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints, and its size N and the integer k, return the maximum score you can obtain. Example 1: Input: N = 7 k = 3 cardPoints[ ] = {1, 2, 3, 4, 5, 6, 1} Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: N = 5 k = 5 arr[ ] = {8, 6, 2, 4, 5} Output: 25 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Your Task: You don't need to read input or print anything. Your task is to complete the function maxScore() which takes the array of integers cardPoints , an integer N and k as parameters and returns a maximum score. Expected Time Complexity: O(N) Expected Auxiliary Space: O(1) Constraints: 1 ≤ N ≤ 10^{5} 1 ≤ k ≤ N ^{1 }≤ cardPoints_{i }≤ 10^{5}
class Solution: def maxScore(self, cardPoints, N, k): summa = 0 for i in range(N - k): summa += cardPoints[i] mini = summa for i in range(k): summa -= cardPoints[i] summa += cardPoints[i + N - k] mini = min(mini, summa) return sum(cardPoints) - mini
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN BIN_OP FUNC_CALL VAR VAR VAR
There are several cards arranged in a row, and each has an associated number of points. The points are given in the integer array cardPoints of size N. In one step, you can take one card from beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints, and its size N and the integer k, return the maximum score you can obtain. Example 1: Input: N = 7 k = 3 cardPoints[ ] = {1, 2, 3, 4, 5, 6, 1} Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: N = 5 k = 5 arr[ ] = {8, 6, 2, 4, 5} Output: 25 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Your Task: You don't need to read input or print anything. Your task is to complete the function maxScore() which takes the array of integers cardPoints , an integer N and k as parameters and returns a maximum score. Expected Time Complexity: O(N) Expected Auxiliary Space: O(1) Constraints: 1 ≤ N ≤ 10^{5} 1 ≤ k ≤ N ^{1 }≤ cardPoints_{i }≤ 10^{5}
class Solution: def maxScore(self, cardPoints, N, k): total_points = sum(cardPoints) if k == len(cardPoints): return total_points remain_size = N - k curr_sum = sum(cardPoints[:remain_size]) mini_sum = curr_sum for i in range(remain_size, len(cardPoints)): curr_sum -= cardPoints[i - remain_size] curr_sum += cardPoints[i] mini_sum = min(curr_sum, mini_sum) return total_points - mini_sum
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR RETURN VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN BIN_OP VAR VAR
There are several cards arranged in a row, and each has an associated number of points. The points are given in the integer array cardPoints of size N. In one step, you can take one card from beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints, and its size N and the integer k, return the maximum score you can obtain. Example 1: Input: N = 7 k = 3 cardPoints[ ] = {1, 2, 3, 4, 5, 6, 1} Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: N = 5 k = 5 arr[ ] = {8, 6, 2, 4, 5} Output: 25 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Your Task: You don't need to read input or print anything. Your task is to complete the function maxScore() which takes the array of integers cardPoints , an integer N and k as parameters and returns a maximum score. Expected Time Complexity: O(N) Expected Auxiliary Space: O(1) Constraints: 1 ≤ N ≤ 10^{5} 1 ≤ k ≤ N ^{1 }≤ cardPoints_{i }≤ 10^{5}
class Solution: def maxScore(self, cardPoints, N, k): arr = cardPoints n = len(cardPoints) t = sum(cardPoints) r = n - k sub = sum(arr[:r]) min_s = sub for i in range(r, n): sub += arr[i] sub -= arr[i - r] min_s = min(min_s, sub) return t - min_s
CLASS_DEF FUNC_DEF ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN BIN_OP VAR VAR
There are several cards arranged in a row, and each has an associated number of points. The points are given in the integer array cardPoints of size N. In one step, you can take one card from beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints, and its size N and the integer k, return the maximum score you can obtain. Example 1: Input: N = 7 k = 3 cardPoints[ ] = {1, 2, 3, 4, 5, 6, 1} Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: N = 5 k = 5 arr[ ] = {8, 6, 2, 4, 5} Output: 25 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Your Task: You don't need to read input or print anything. Your task is to complete the function maxScore() which takes the array of integers cardPoints , an integer N and k as parameters and returns a maximum score. Expected Time Complexity: O(N) Expected Auxiliary Space: O(1) Constraints: 1 ≤ N ≤ 10^{5} 1 ≤ k ≤ N ^{1 }≤ cardPoints_{i }≤ 10^{5}
class Solution: def maxScore(self, arr, N, k): i = 0 j = N - k total = sum(arr[j:]) ans = total while j < N: total = total + arr[i] - arr[j] ans = max(ans, total) i = i + 1 j = j + 1 return ans
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
There are several cards arranged in a row, and each has an associated number of points. The points are given in the integer array cardPoints of size N. In one step, you can take one card from beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints, and its size N and the integer k, return the maximum score you can obtain. Example 1: Input: N = 7 k = 3 cardPoints[ ] = {1, 2, 3, 4, 5, 6, 1} Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: N = 5 k = 5 arr[ ] = {8, 6, 2, 4, 5} Output: 25 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Your Task: You don't need to read input or print anything. Your task is to complete the function maxScore() which takes the array of integers cardPoints , an integer N and k as parameters and returns a maximum score. Expected Time Complexity: O(N) Expected Auxiliary Space: O(1) Constraints: 1 ≤ N ≤ 10^{5} 1 ≤ k ≤ N ^{1 }≤ cardPoints_{i }≤ 10^{5}
class Solution: def maxScore(self, cardPoints, N, k): sum1 = 0 ans = 0 i = 0 j = N - 1 sum1 = 0 while i < k: sum1 = sum1 + cardPoints[i] ans = max(ans, sum1) i = i + 1 i = i - 1 while i >= 0 and j >= 0: sum1 = sum1 + cardPoints[j] - cardPoints[i] ans = max(sum1, ans) i = i - 1 j = j - 1 return ans
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
There are several cards arranged in a row, and each has an associated number of points. The points are given in the integer array cardPoints of size N. In one step, you can take one card from beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints, and its size N and the integer k, return the maximum score you can obtain. Example 1: Input: N = 7 k = 3 cardPoints[ ] = {1, 2, 3, 4, 5, 6, 1} Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: N = 5 k = 5 arr[ ] = {8, 6, 2, 4, 5} Output: 25 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Your Task: You don't need to read input or print anything. Your task is to complete the function maxScore() which takes the array of integers cardPoints , an integer N and k as parameters and returns a maximum score. Expected Time Complexity: O(N) Expected Auxiliary Space: O(1) Constraints: 1 ≤ N ≤ 10^{5} 1 ≤ k ≤ N ^{1 }≤ cardPoints_{i }≤ 10^{5}
class Solution: def maxScore(self, cardPoints, N, k): suff = [0] for el in cardPoints[::-1]: suff.append(suff[-1] + el) ans = 0 temp = 0 for i in range(k + 1): ans = max(ans, temp + suff[k - i]) if i < len(cardPoints): temp += cardPoints[i] return ans
CLASS_DEF FUNC_DEF ASSIGN VAR LIST NUMBER FOR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR IF VAR FUNC_CALL VAR VAR VAR VAR VAR RETURN VAR
There are several cards arranged in a row, and each has an associated number of points. The points are given in the integer array cardPoints of size N. In one step, you can take one card from beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints, and its size N and the integer k, return the maximum score you can obtain. Example 1: Input: N = 7 k = 3 cardPoints[ ] = {1, 2, 3, 4, 5, 6, 1} Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: N = 5 k = 5 arr[ ] = {8, 6, 2, 4, 5} Output: 25 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Your Task: You don't need to read input or print anything. Your task is to complete the function maxScore() which takes the array of integers cardPoints , an integer N and k as parameters and returns a maximum score. Expected Time Complexity: O(N) Expected Auxiliary Space: O(1) Constraints: 1 ≤ N ≤ 10^{5} 1 ≤ k ≤ N ^{1 }≤ cardPoints_{i }≤ 10^{5}
class Solution: def maxScore(self, cardPoints, N, k): o_s = sum(cardPoints[N - k :]) m = o_s i = 0 j = N - k - 1 while j < N - 1: j += 1 o_s = o_s - cardPoints[j] + cardPoints[i] i += 1 m = max(m, o_s) return m
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER WHILE VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR
There are several cards arranged in a row, and each has an associated number of points. The points are given in the integer array cardPoints of size N. In one step, you can take one card from beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints, and its size N and the integer k, return the maximum score you can obtain. Example 1: Input: N = 7 k = 3 cardPoints[ ] = {1, 2, 3, 4, 5, 6, 1} Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: N = 5 k = 5 arr[ ] = {8, 6, 2, 4, 5} Output: 25 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Your Task: You don't need to read input or print anything. Your task is to complete the function maxScore() which takes the array of integers cardPoints , an integer N and k as parameters and returns a maximum score. Expected Time Complexity: O(N) Expected Auxiliary Space: O(1) Constraints: 1 ≤ N ≤ 10^{5} 1 ≤ k ≤ N ^{1 }≤ cardPoints_{i }≤ 10^{5}
class Solution: def maxScore(self, cardPoints, N, k): start_sum = 0 end_sum = sum(cardPoints[-k:]) max_sum = end_sum for i in range(k): start_sum = start_sum + cardPoints[i] end_sum = end_sum - cardPoints[N - k + i] current_sum = start_sum + end_sum max_sum = max(max_sum, current_sum) return max_sum
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR
There are several cards arranged in a row, and each has an associated number of points. The points are given in the integer array cardPoints of size N. In one step, you can take one card from beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints, and its size N and the integer k, return the maximum score you can obtain. Example 1: Input: N = 7 k = 3 cardPoints[ ] = {1, 2, 3, 4, 5, 6, 1} Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: N = 5 k = 5 arr[ ] = {8, 6, 2, 4, 5} Output: 25 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Your Task: You don't need to read input or print anything. Your task is to complete the function maxScore() which takes the array of integers cardPoints , an integer N and k as parameters and returns a maximum score. Expected Time Complexity: O(N) Expected Auxiliary Space: O(1) Constraints: 1 ≤ N ≤ 10^{5} 1 ≤ k ≤ N ^{1 }≤ cardPoints_{i }≤ 10^{5}
class Solution: def maxScore(self, card, N, k): n = len(card) r = n - k total = sum(card[n - k :]) res = total l = 0 while r < n: total = total + card[l] - card[r] res = max(res, total) r += 1 l += 1 return res
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER RETURN VAR
There are several cards arranged in a row, and each has an associated number of points. The points are given in the integer array cardPoints of size N. In one step, you can take one card from beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints, and its size N and the integer k, return the maximum score you can obtain. Example 1: Input: N = 7 k = 3 cardPoints[ ] = {1, 2, 3, 4, 5, 6, 1} Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: N = 5 k = 5 arr[ ] = {8, 6, 2, 4, 5} Output: 25 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Your Task: You don't need to read input or print anything. Your task is to complete the function maxScore() which takes the array of integers cardPoints , an integer N and k as parameters and returns a maximum score. Expected Time Complexity: O(N) Expected Auxiliary Space: O(1) Constraints: 1 ≤ N ≤ 10^{5} 1 ≤ k ≤ N ^{1 }≤ cardPoints_{i }≤ 10^{5}
class Solution: def maxScore(self, cardPoints, N, k): window = N - k if window == 0: return sum(cardPoints) window_sum = sum(cardPoints[: window - 1]) total_sum = sum(cardPoints) max_sum = 0 for i in range(window - 1, N): window_sum += cardPoints[i] max_sum = max(max_sum, total_sum - window_sum) window_sum -= cardPoints[i - window + 1] return max_sum
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER RETURN FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER RETURN VAR
There are several cards arranged in a row, and each has an associated number of points. The points are given in the integer array cardPoints of size N. In one step, you can take one card from beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints, and its size N and the integer k, return the maximum score you can obtain. Example 1: Input: N = 7 k = 3 cardPoints[ ] = {1, 2, 3, 4, 5, 6, 1} Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: N = 5 k = 5 arr[ ] = {8, 6, 2, 4, 5} Output: 25 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Your Task: You don't need to read input or print anything. Your task is to complete the function maxScore() which takes the array of integers cardPoints , an integer N and k as parameters and returns a maximum score. Expected Time Complexity: O(N) Expected Auxiliary Space: O(1) Constraints: 1 ≤ N ≤ 10^{5} 1 ≤ k ≤ N ^{1 }≤ cardPoints_{i }≤ 10^{5}
class Solution: def maxScore(self, cardPoints, N, k): startpoint = N - 1 endpoint = k - 1 rollingsum = sum(cardPoints[0 : endpoint + 1]) maxsum = rollingsum for i in range(k): rollingsum = rollingsum - cardPoints[endpoint] + cardPoints[startpoint] startpoint -= 1 endpoint -= 1 maxsum = max(maxsum, rollingsum) return maxsum
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR
There are several cards arranged in a row, and each has an associated number of points. The points are given in the integer array cardPoints of size N. In one step, you can take one card from beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints, and its size N and the integer k, return the maximum score you can obtain. Example 1: Input: N = 7 k = 3 cardPoints[ ] = {1, 2, 3, 4, 5, 6, 1} Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: N = 5 k = 5 arr[ ] = {8, 6, 2, 4, 5} Output: 25 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Your Task: You don't need to read input or print anything. Your task is to complete the function maxScore() which takes the array of integers cardPoints , an integer N and k as parameters and returns a maximum score. Expected Time Complexity: O(N) Expected Auxiliary Space: O(1) Constraints: 1 ≤ N ≤ 10^{5} 1 ≤ k ≤ N ^{1 }≤ cardPoints_{i }≤ 10^{5}
class Solution: def maxScore(self, arr, n, k): if k == n: return sum(arr) left_sum = 0 right_sum = 0 for i in range(k): left_sum += arr[i] ll = 0 lr = k - 1 rr = n - 1 rl = n - k count = left_sum suma = left_sum for i in range(k): left_sum -= arr[lr] right_sum += arr[rr] suma = suma + arr[rr] - arr[lr] rr -= 1 lr -= 1 count = max(count, suma) return count
CLASS_DEF FUNC_DEF IF VAR VAR RETURN FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR
There are several cards arranged in a row, and each has an associated number of points. The points are given in the integer array cardPoints of size N. In one step, you can take one card from beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints, and its size N and the integer k, return the maximum score you can obtain. Example 1: Input: N = 7 k = 3 cardPoints[ ] = {1, 2, 3, 4, 5, 6, 1} Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: N = 5 k = 5 arr[ ] = {8, 6, 2, 4, 5} Output: 25 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Your Task: You don't need to read input or print anything. Your task is to complete the function maxScore() which takes the array of integers cardPoints , an integer N and k as parameters and returns a maximum score. Expected Time Complexity: O(N) Expected Auxiliary Space: O(1) Constraints: 1 ≤ N ≤ 10^{5} 1 ≤ k ≤ N ^{1 }≤ cardPoints_{i }≤ 10^{5}
class Solution: def maxScore(self, cardPoints, N, k): i, j, ans = 0, 0, float("inf") state = 0 window = N - k count = 0 for j in range(N): state += cardPoints[j] count += 1 if count > window: state -= cardPoints[i] i += 1 count -= 1 if count == window: ans = min(ans, state) return sum(cardPoints) - ans
CLASS_DEF FUNC_DEF ASSIGN VAR VAR VAR NUMBER NUMBER FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN BIN_OP FUNC_CALL VAR VAR VAR
There are several cards arranged in a row, and each has an associated number of points. The points are given in the integer array cardPoints of size N. In one step, you can take one card from beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints, and its size N and the integer k, return the maximum score you can obtain. Example 1: Input: N = 7 k = 3 cardPoints[ ] = {1, 2, 3, 4, 5, 6, 1} Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: N = 5 k = 5 arr[ ] = {8, 6, 2, 4, 5} Output: 25 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Your Task: You don't need to read input or print anything. Your task is to complete the function maxScore() which takes the array of integers cardPoints , an integer N and k as parameters and returns a maximum score. Expected Time Complexity: O(N) Expected Auxiliary Space: O(1) Constraints: 1 ≤ N ≤ 10^{5} 1 ≤ k ≤ N ^{1 }≤ cardPoints_{i }≤ 10^{5}
class Solution: def maxScore(self, cardPoints, N, k): sum = 0 res = 0 Sum = [] Score = 0 n = len(cardPoints) for i in range(n): sum += cardPoints[i] Sum.append(sum) for i in range(k + 1): j = i + n - k - 1 if i == 0: res = Sum[j] else: res = Sum[j] - Sum[i - 1] Score = max(Score, sum - res) return Score
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR RETURN VAR
Given a string, find the length of the longest substring without repeating characters. Examples: Given "abcabcbb", the answer is "abc", which the length is 3. Given "bbbbb", the answer is "b", with the length of 1. Given "pwwkew", the answer is "wke", with the length of 3. Note that the answer must be a substring, "pwke" is a subsequence and not a substring.
class Solution: def lengthOfLongestSubstring(self, s): L, res, last = -1, 0, {} for R, char in enumerate(s): if char in last and last[char] > L: L = last[char] elif R - L > res: res = R - L last[char] = R return res
CLASS_DEF FUNC_DEF ASSIGN VAR VAR VAR NUMBER NUMBER DICT FOR VAR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR RETURN VAR
Given a string, find the length of the longest substring without repeating characters. Examples: Given "abcabcbb", the answer is "abc", which the length is 3. Given "bbbbb", the answer is "b", with the length of 1. Given "pwwkew", the answer is "wke", with the length of 3. Note that the answer must be a substring, "pwke" is a subsequence and not a substring.
class Solution: def lengthOfLongestSubstring(self, s): result = 0 if len(s) == 0: return result hashmap = {} start = 0 for i in range(len(s)): if s[i] in hashmap: start = max(hashmap[s[i]] + 1, start) hashmap[s[i]] = i result = max(result, i - start + 1) return result
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR NUMBER RETURN VAR ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER RETURN VAR
Given a string, find the length of the longest substring without repeating characters. Examples: Given "abcabcbb", the answer is "abc", which the length is 3. Given "bbbbb", the answer is "b", with the length of 1. Given "pwwkew", the answer is "wke", with the length of 3. Note that the answer must be a substring, "pwke" is a subsequence and not a substring.
class Solution: def lengthOfLongestSubstring(self, s): head = 0 dic = {} res = 0 for i in range(len(s)): if s[i] in dic and dic[s[i]] >= head: res = max(res, i - head) head = dic[s[i]] + 1 dic[s[i]] = i return max(res, len(s) - head)
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR RETURN FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR
Given a string, find the length of the longest substring without repeating characters. Examples: Given "abcabcbb", the answer is "abc", which the length is 3. Given "bbbbb", the answer is "b", with the length of 1. Given "pwwkew", the answer is "wke", with the length of 3. Note that the answer must be a substring, "pwke" is a subsequence and not a substring.
class Solution: def lengthOfLongestSubstring(self, s): record = {} result = 0 start = -1 for i, x in enumerate(s): if x in record: start = max(start, record[x]) record[x] = i result = max(result, i - start) return result
CLASS_DEF FUNC_DEF ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR RETURN VAR
Given a string, find the length of the longest substring without repeating characters. Examples: Given "abcabcbb", the answer is "abc", which the length is 3. Given "bbbbb", the answer is "b", with the length of 1. Given "pwwkew", the answer is "wke", with the length of 3. Note that the answer must be a substring, "pwke" is a subsequence and not a substring.
class Solution: def lengthOfLongestSubstring(self, s): idx = i = 0 record = set() count = 0 maxcount = 0 while i < len(s): if s[i] in record: record.remove(s[idx]) count -= 1 idx += 1 else: record.add(s[i]) count += 1 i += 1 if count > maxcount: maxcount = count return maxcount
CLASS_DEF FUNC_DEF ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR VAR RETURN VAR
Given a string, find the length of the longest substring without repeating characters. Examples: Given "abcabcbb", the answer is "abc", which the length is 3. Given "bbbbb", the answer is "b", with the length of 1. Given "pwwkew", the answer is "wke", with the length of 3. Note that the answer must be a substring, "pwke" is a subsequence and not a substring.
class Solution: def lengthOfLongestSubstring(self, s): dic = {} start = max_len = 0 for i, c in enumerate(s): if c in dic and start <= dic[c]: start = dic[c] + 1 else: max_len = max(max_len, i - start + 1) dic[c] = i return max_len
CLASS_DEF FUNC_DEF ASSIGN VAR DICT ASSIGN VAR VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR RETURN VAR
Given a string, find the length of the longest substring without repeating characters. Examples: Given "abcabcbb", the answer is "abc", which the length is 3. Given "bbbbb", the answer is "b", with the length of 1. Given "pwwkew", the answer is "wke", with the length of 3. Note that the answer must be a substring, "pwke" is a subsequence and not a substring.
class Solution: def lengthOfLongestSubstring(self, s): char_dict = {} longest_run = 0 current_run = 0 distance = 2 for i, char in enumerate(s): if char in char_dict: distance = i - char_dict[char] if distance <= current_run: current_run = distance else: current_run += 1 else: current_run += 1 char_dict[char] = i if current_run > longest_run: longest_run = current_run return longest_run
CLASS_DEF FUNC_DEF ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR IF VAR VAR ASSIGN VAR VAR RETURN VAR
Given a string, find the length of the longest substring without repeating characters. Examples: Given "abcabcbb", the answer is "abc", which the length is 3. Given "bbbbb", the answer is "b", with the length of 1. Given "pwwkew", the answer is "wke", with the length of 3. Note that the answer must be a substring, "pwke" is a subsequence and not a substring.
class Solution: def lengthOfLongestSubstring(self, s): helper_dict = {} longest_start = 0 longest_end = -1 current_start = 0 for char_index, char in enumerate(s): if char not in helper_dict or helper_dict[char] < current_start: helper_dict[char] = char_index else: current_start = helper_dict[char] + 1 helper_dict[char] = char_index if char_index - current_start > longest_end - longest_start: longest_start = current_start longest_end = char_index return longest_end - longest_start + 1
CLASS_DEF FUNC_DEF ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR IF BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR RETURN BIN_OP BIN_OP VAR VAR NUMBER
Given a string, find the length of the longest substring without repeating characters. Examples: Given "abcabcbb", the answer is "abc", which the length is 3. Given "bbbbb", the answer is "b", with the length of 1. Given "pwwkew", the answer is "wke", with the length of 3. Note that the answer must be a substring, "pwke" is a subsequence and not a substring.
class Solution: def lengthOfLongestSubstring(self, s): start = 0 end = 0 seen_set = set() longest_substring = "" while end < len(s): end += 1 currentelem = s[end - 1] if currentelem not in seen_set: seen_set.add(currentelem) if end - start > len(longest_substring): longest_substring = s[start:end] else: while start < end - 1: if s[start] != currentelem: seen_set.remove(s[start]) start += 1 else: start += 1 break return len(longest_substring)
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING WHILE VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR IF BIN_OP VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR WHILE VAR BIN_OP VAR NUMBER IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER RETURN FUNC_CALL VAR VAR
Utkarsh has recently started taking English-language classes to improve his reading and writing skills. However, he is still struggling to learn English. His teacher gave him the following problem to improve his vowel-identification skills: There is a string S of length N consisting of lowercase English letters only. Utkarsh has to start from the first letter of the string. Each time he encounters a vowel (i.e. a character from the set \{a, e, i, o, u\}) he has to reverse the entire substring that came before the vowel. Utkarsh needs help verifying his answer. Can you print the final string after performing all the operations for him? ------ Input Format ------ - First line will contain T, number of test cases. Then T test cases follow. - The first line of each test case contains N, the length of the string. - The second line contains S, the string itself. ------ Output Format ------ For each test case, output in a single line the final string after traversing S from left to right and performing the necessary reversals. ------ Constraints ------ $1 ≤ T ≤ 10^{4}$ $1 ≤ N ≤ 10^{6}$ - Sum of $N$ over all test cases does not exceed $10^{6}$. ----- Sample Input 1 ------ 2 10 abcdefghij 7 bcadage ----- Sample Output 1 ------ hgfeabcdij gacbade ----- explanation 1 ------ Test case $1$: The first letter is a vowel, but there is no substring before it to reverse, so we leave it as it is. Next, we reverse abcd and the string becomes dcbaefghij. Next we reach the vowel i and reverse dcbaefgh to get the string hgfeabcdij. Test case $2$: Initially, we reverse bc and the string becomes cbadage. Next we reach the vowel a and reverse cbad to get the string dabcage. Finally we reach the vowel e and reverse dabcag to get the string gacbade.
T = int(input()) for vinay in range(T): N = int(input()) S = input() count = 0 ans1 = "" ans2 = "" for c in range(N - 1, -1, -1): if count % 2 == 0: ans2 = S[c] + ans2 else: ans1 += S[c] if S[c] == "a" or S[c] == "e" or S[c] == "i" or S[c] == "o" or S[c] == "u": count += 1 print(ans1 + ans2)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR STRING ASSIGN VAR STRING FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR VAR VAR VAR VAR IF VAR VAR STRING VAR VAR STRING VAR VAR STRING VAR VAR STRING VAR VAR STRING VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
Utkarsh has recently started taking English-language classes to improve his reading and writing skills. However, he is still struggling to learn English. His teacher gave him the following problem to improve his vowel-identification skills: There is a string S of length N consisting of lowercase English letters only. Utkarsh has to start from the first letter of the string. Each time he encounters a vowel (i.e. a character from the set \{a, e, i, o, u\}) he has to reverse the entire substring that came before the vowel. Utkarsh needs help verifying his answer. Can you print the final string after performing all the operations for him? ------ Input Format ------ - First line will contain T, number of test cases. Then T test cases follow. - The first line of each test case contains N, the length of the string. - The second line contains S, the string itself. ------ Output Format ------ For each test case, output in a single line the final string after traversing S from left to right and performing the necessary reversals. ------ Constraints ------ $1 ≤ T ≤ 10^{4}$ $1 ≤ N ≤ 10^{6}$ - Sum of $N$ over all test cases does not exceed $10^{6}$. ----- Sample Input 1 ------ 2 10 abcdefghij 7 bcadage ----- Sample Output 1 ------ hgfeabcdij gacbade ----- explanation 1 ------ Test case $1$: The first letter is a vowel, but there is no substring before it to reverse, so we leave it as it is. Next, we reverse abcd and the string becomes dcbaefghij. Next we reach the vowel i and reverse dcbaefgh to get the string hgfeabcdij. Test case $2$: Initially, we reverse bc and the string becomes cbadage. Next we reach the vowel a and reverse cbad to get the string dabcage. Finally we reach the vowel e and reverse dabcag to get the string gacbade.
kt = int(input()) while kt: p = int(input()) s = input() ans = [] for i in s: ans.append(i) h = p - 1 while h >= 0 and s[h] not in ["a", "e", "i", "o", "u"]: h -= 1 h -= 1 st = 0 end = h dirl = 0 ind = h while ind >= 0: temp = [] while ind >= 0: if s[ind] in ["a", "e", "i", "o", "u"]: temp.append(s[ind]) ind -= 1 break else: temp.append(s[ind]) ind -= 1 if dirl % 2 == 1: for it in temp: ans[end] = it end -= 1 else: for it in temp: ans[st] = it st += 1 dirl += 1 print("".join(i for i in ans)) kt -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER VAR VAR LIST STRING STRING STRING STRING STRING VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE VAR NUMBER ASSIGN VAR LIST WHILE VAR NUMBER IF VAR VAR LIST STRING STRING STRING STRING STRING EXPR FUNC_CALL VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR NUMBER IF BIN_OP VAR NUMBER NUMBER FOR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER FOR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING VAR VAR VAR VAR NUMBER
Utkarsh has recently started taking English-language classes to improve his reading and writing skills. However, he is still struggling to learn English. His teacher gave him the following problem to improve his vowel-identification skills: There is a string S of length N consisting of lowercase English letters only. Utkarsh has to start from the first letter of the string. Each time he encounters a vowel (i.e. a character from the set \{a, e, i, o, u\}) he has to reverse the entire substring that came before the vowel. Utkarsh needs help verifying his answer. Can you print the final string after performing all the operations for him? ------ Input Format ------ - First line will contain T, number of test cases. Then T test cases follow. - The first line of each test case contains N, the length of the string. - The second line contains S, the string itself. ------ Output Format ------ For each test case, output in a single line the final string after traversing S from left to right and performing the necessary reversals. ------ Constraints ------ $1 ≤ T ≤ 10^{4}$ $1 ≤ N ≤ 10^{6}$ - Sum of $N$ over all test cases does not exceed $10^{6}$. ----- Sample Input 1 ------ 2 10 abcdefghij 7 bcadage ----- Sample Output 1 ------ hgfeabcdij gacbade ----- explanation 1 ------ Test case $1$: The first letter is a vowel, but there is no substring before it to reverse, so we leave it as it is. Next, we reverse abcd and the string becomes dcbaefghij. Next we reach the vowel i and reverse dcbaefgh to get the string hgfeabcdij. Test case $2$: Initially, we reverse bc and the string becomes cbadage. Next we reach the vowel a and reverse cbad to get the string dabcage. Finally we reach the vowel e and reverse dabcag to get the string gacbade.
t = int(input()) for i in range(t): n = int(input()) s = input() l = ["a", "e", "i", "o", "u"] a = [] temp = "" cnt = 0 for i in range(len(s)): if i != 0 and s[i] in l: a.append(temp) temp = "" cnt += 1 temp += s[i] ans = [] if cnt % 2 == 0: i = 0 while i < cnt: if i % 2 == 0: ans.append(a[i]) else: ans.insert(0, a[i]) i += 1 else: i = 0 while i < cnt: if i % 2: ans.append(a[i]) else: ans.insert(0, a[i]) i += 1 ans.append(temp) for k in range(cnt // 2 + cnt % 2): l = ans[k] ans[k] = l[::-1] for h in ans: print(h, end="") print()
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST STRING STRING STRING STRING STRING ASSIGN VAR LIST ASSIGN VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR STRING VAR NUMBER VAR VAR VAR ASSIGN VAR LIST IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR
Utkarsh has recently started taking English-language classes to improve his reading and writing skills. However, he is still struggling to learn English. His teacher gave him the following problem to improve his vowel-identification skills: There is a string S of length N consisting of lowercase English letters only. Utkarsh has to start from the first letter of the string. Each time he encounters a vowel (i.e. a character from the set \{a, e, i, o, u\}) he has to reverse the entire substring that came before the vowel. Utkarsh needs help verifying his answer. Can you print the final string after performing all the operations for him? ------ Input Format ------ - First line will contain T, number of test cases. Then T test cases follow. - The first line of each test case contains N, the length of the string. - The second line contains S, the string itself. ------ Output Format ------ For each test case, output in a single line the final string after traversing S from left to right and performing the necessary reversals. ------ Constraints ------ $1 ≤ T ≤ 10^{4}$ $1 ≤ N ≤ 10^{6}$ - Sum of $N$ over all test cases does not exceed $10^{6}$. ----- Sample Input 1 ------ 2 10 abcdefghij 7 bcadage ----- Sample Output 1 ------ hgfeabcdij gacbade ----- explanation 1 ------ Test case $1$: The first letter is a vowel, but there is no substring before it to reverse, so we leave it as it is. Next, we reverse abcd and the string becomes dcbaefghij. Next we reach the vowel i and reverse dcbaefgh to get the string hgfeabcdij. Test case $2$: Initially, we reverse bc and the string becomes cbadage. Next we reach the vowel a and reverse cbad to get the string dabcage. Finally we reach the vowel e and reverse dabcag to get the string gacbade.
t = int(input()) for _ in range(t): n = int(input()) s = input()[::-1] left = [] right = [] back = True for c in s: if back: right.append(c) else: left.append(c) if c in "aeuio": back = not back right.reverse() print("".join(left + right))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR VAR IF VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR IF VAR STRING ASSIGN VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL STRING BIN_OP VAR VAR
Utkarsh has recently started taking English-language classes to improve his reading and writing skills. However, he is still struggling to learn English. His teacher gave him the following problem to improve his vowel-identification skills: There is a string S of length N consisting of lowercase English letters only. Utkarsh has to start from the first letter of the string. Each time he encounters a vowel (i.e. a character from the set \{a, e, i, o, u\}) he has to reverse the entire substring that came before the vowel. Utkarsh needs help verifying his answer. Can you print the final string after performing all the operations for him? ------ Input Format ------ - First line will contain T, number of test cases. Then T test cases follow. - The first line of each test case contains N, the length of the string. - The second line contains S, the string itself. ------ Output Format ------ For each test case, output in a single line the final string after traversing S from left to right and performing the necessary reversals. ------ Constraints ------ $1 ≤ T ≤ 10^{4}$ $1 ≤ N ≤ 10^{6}$ - Sum of $N$ over all test cases does not exceed $10^{6}$. ----- Sample Input 1 ------ 2 10 abcdefghij 7 bcadage ----- Sample Output 1 ------ hgfeabcdij gacbade ----- explanation 1 ------ Test case $1$: The first letter is a vowel, but there is no substring before it to reverse, so we leave it as it is. Next, we reverse abcd and the string becomes dcbaefghij. Next we reach the vowel i and reverse dcbaefgh to get the string hgfeabcdij. Test case $2$: Initially, we reverse bc and the string becomes cbadage. Next we reach the vowel a and reverse cbad to get the string dabcage. Finally we reach the vowel e and reverse dabcag to get the string gacbade.
for _ in range(0, int(input())): n = int(input()) s = input() ans = [" "] * n vowel = 0 left, right = 0, n - 1 for i in range(n - 1, -1, -1): if vowel & 1 == 1: ans[left] = s[i] left += 1 else: ans[right] = s[i] right -= 1 vowel += 1 if s[i] in ["a", "e", "i", "o", "u"] else 0 print("".join(x for x in ans))
FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST STRING VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR NUMBER VAR VAR VAR LIST STRING STRING STRING STRING STRING NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING VAR VAR VAR