description
stringlengths
171
4k
code
stringlengths
94
3.98k
normalized_code
stringlengths
57
4.99k
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
t = int(input()) for _ in range(t): n, k = map(int, input().split()) a = list(map(int, input().split())) pre = a[0] cnt = 0 ans = 0 for cur in a[1:]: if pre < 2 * cur: cnt += 1 else: cnt = 0 if cnt >= k: ans += 1 pre = cur print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR NUMBER IF VAR BIN_OP NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
import sys def get_ints(): return map(int, sys.stdin.readline().strip().split()) def get_list(): return list(map(int, sys.stdin.readline().strip().split())) def get_string(): return sys.stdin.readline().strip() t = int(input()) for _ in range(t): n, k = get_ints() arr = get_list() cnt = 0 l = 0 for i in range(1, n): if 2 * arr[i] > arr[i - 1]: if i - l == k: cnt += 1 l += 1 else: l = i print(cnt)
IMPORT FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP NUMBER VAR VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
for _ in range(int(input())): n, k = input().split(" ") n, k = int(n), int(k) arr = input().split(" ") k += 1 temp = 1 ans = 0 for i in range(n): arr[i] = int(arr[i]) if i != 0 and 2 * arr[i] > arr[i - 1]: temp += 1 else: temp = 1 ans += 1 if temp >= k else 0 print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER BIN_OP NUMBER VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER VAR VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
n = int(input()) for i in range(n): l = list(map(int, input().split())) long = l[0] equ = l[1] s = list(map(int, input().split())) s.append(0) num = 0 tip = [] ans = 0 for j in range(long): if s[j] < 2 * s[j + 1]: num += 1 else: tip.append(num) num = 0 for p in tip: if p >= equ: ans += p - equ + 1 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR BIN_OP NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
for _ in range(int(input())): n, k = map(int, input().split()) a = list(map(int, input().split())) a = [(a[i + 1] * 2 > a[i]) for i in range(n - 1)] s = sum(a[:k]) count = int(s == k) for i in range(n - k - 1): s += a[i + k] - a[i] if s == k: count += 1 print(count)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR BIN_OP VAR VAR VAR VAR IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
t = int(input()) for _ in range(t): n, k = [int(x) for x in input().split()] k += 1 a = [int(x) for x in input().split()] broken = [-1] + [i for i in range(n - 1) if a[i] >= 2 * a[i + 1]] + [n - 1] print( sum(max(0, broken[i + 1] - broken[i] - k + 1) for i in range(len(broken) - 1)) )
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP LIST NUMBER VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR BIN_OP NUMBER VAR BIN_OP VAR NUMBER LIST BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
for x in range(int(input())): n, k = map(int, input().split()) l = list(map(int, input().split())) sub = 0 ans = [0] * n for x in range(n - 1): if l[x] < l[x + 1] * 2: ans[x] = 1 s = 0 for x in range(k): s += ans[x] if s == k: sub += 1 for y in range(k, n - 1): s -= ans[y - k] s += ans[y] if s == k: sub += 1 print(sub)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR VAR VAR VAR VAR IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
for _ in range(int(input())): n, k = list(map(int, input().split())) lis = list(map(int, input().split())) c = 0 v = 0 for i in range(n - 1): if lis[i] >= 2 * lis[i + 1]: c += max(v - k + 1, 0) v = 0 else: v += 1 c += max(v - k + 1, 0) print(c)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR BIN_OP NUMBER VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER VAR NUMBER VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
import sys from sys import stdin, stdout sys.setrecursionlimit(10**6) I = stdin.readline O = stdout.write def bi(n): return bin(n).replace("0b", "") def solve(): n, k = list(map(int, input().split())) arr = list(map(int, input().split())) fin = [(1) for i in range(n)] for i in range(1, n): if 2 * arr[i] <= arr[i - 1]: fin[i] = 0 for i in range(1, n): fin[i] += fin[i - 1] ans = 0 for i in range(n - k): if fin[i + k] - fin[i] == k: ans += 1 print(ans) for tc in range(int(input())): solve()
IMPORT EXPR FUNC_CALL VAR BIN_OP NUMBER NUMBER ASSIGN VAR VAR ASSIGN VAR VAR FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR VAR STRING STRING FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP NUMBER VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
testcase = int(input()) for _ in range(testcase): n, k = list(map(int, input().split())) lists = list(map(int, input().split())) left = 0 count = 0 for right in range(1, len(lists)): if lists[right] * 2 <= lists[right - 1]: left = right if right - left >= k: count += 1 print(count)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR VAR IF BIN_OP VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
def solve(): n, k = map(int, input().split()) l = list(map(int, input().split())) ans = 0 ct = 1 for i in range(1, n): if 2 * l[i] > l[i - 1]: ct += 1 else: ct = 1 if ct > k: ans += 1 print(ans) for t in range(int(input())): solve()
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP NUMBER VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
def sol(): n, k = map(int, input().split()) l = list(map(int, input().split())) tl = [0] * n tl[0] = 1 ans = 0 for i in range(1, n): if 2 * l[i] > l[i - 1]: tl[i] = tl[i - 1] + 1 else: tl[i] = 1 for i in tl: if i > k: ans += 1 print(ans) for t in range(int(input())): sol()
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP NUMBER VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER FOR VAR VAR IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
import sys input = sys.stdin.readline def solve(): n, k = map(int, input().split()) a = list(map(int, input().split())) ans = 0 cnt = 0 for j in range(k): cnt += a[j] >= a[j + 1] * 2 for i in range(n - k): ans += cnt == 0 cnt -= a[i] >= a[i + 1] * 2 if i + 1 + k < n: cnt += a[i + k] >= a[i + k + 1] * 2 return ans for _ in range(int(input())): print(solve())
IMPORT ASSIGN VAR VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR NUMBER VAR VAR VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER IF BIN_OP BIN_OP VAR NUMBER VAR VAR VAR VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
import itertools for _ in range(int(input())): n, k = map(int, input().split()) a = list(map(int, input().split())) a.append(0) cnt = 0 res = 0 for i in range(n): if a[i] < 2 * a[i + 1]: cnt += 1 else: if cnt >= k: res += cnt - k + 1 cnt = 0 print(res)
IMPORT FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR BIN_OP NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
t = int(input()) for i in range(t): n, k = map(int, input().split()) a = list(map(int, input().split())) b = [0] * (n - 1) for i in range(n - 1): b[i] = 1 if a[i] < 2 * a[i + 1] else 0 ans = 0 c = sum(b[:k]) if c == k: ans += 1 for i in range(n - k - 1): c -= b[i] c += b[i + k] if c == k: ans += 1 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR BIN_OP NUMBER VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR VAR VAR BIN_OP VAR VAR IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
t = int(input()) for case in range(t): n, k = map(int, input().split(" ")) arr = list(map(int, input().split(" "))) consecutive = 0 count = 0 for j in range(n - 1): if arr[j] < 2 * arr[j + 1]: if consecutive < k: consecutive += 1 if consecutive == k: count += 1 else: consecutive = 0 print(count)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR BIN_OP NUMBER VAR BIN_OP VAR NUMBER IF VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
a = int(input()) for y in range(a): b, c = map(int, input().split()) d = list(map(int, input().split())) l = 0 f = 1 o = 0 for y in range(1, b - c): if 2 * d[y] <= d[y - 1]: l = y if f - (c + 1) + 1 > 0: o += f - (c + 1) + 1 f = 1 else: f += 1 k = b - c - l + 1 for y in range(b - c, b): if 2 * d[y] > d[y - 1]: k += 1 else: break j = 0 if k - (c + 1) > 0: j += k - (c + 1) print(j + o)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR IF BIN_OP NUMBER VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR IF BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR IF BIN_OP NUMBER VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
for t in range(int(input())): n, k = map(int, input().split()) cnt = 0 temp = 0 last = 0 i = 1 for a in map(int, input().split()): if a * 2 > last: temp += 1 if i == n: cnt += max(0, temp - k) else: cnt += max(0, temp - k) temp = 1 last = a i += 1 print(cnt)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR NUMBER VAR VAR NUMBER IF VAR VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
import itertools for _ in range(int(input())): n, k = map(int, input().split()) a = list(map(int, input().split())) print( sum( max(sum(1 for _ in g) + 1 - k, 0) for t, g in itertools.groupby(i < j + j for i, j in zip(a, a[1:])) if t ) )
IMPORT FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
for _ in range(int(input())): n, k = list(map(int, input().split())) arr = list(map(int, input().split())) arr_bool = [True] for i in range(1, n): if arr[i - 1] < 2 * arr[i]: arr_bool.append(True) else: arr_bool.append(False) arr_bool.append(False) i = 0 count = 0 start = 0 for i, bool in enumerate(arr_bool): if not bool: count += max(i - start - k, 0) start = i print(count)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR BIN_OP VAR NUMBER BIN_OP NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
def read_arr(): return list(map(int, input().split(" "))) _t = 1 _t = int(input()) for _i in range(_t): n, k = read_arr() A = read_arr() B = [0] * n ans, cur = 0, 0 for i in range(1, n): if A[i] * 2 > A[i - 1]: B[i] = 1 for b in B: if b == 1: cur += 1 if cur >= k: ans += 1 else: cur = 0 print(ans)
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR VAR IF VAR NUMBER VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
for i in range(int(input())): a, b = map(int, input().split()) lis = list(map(int, input().split())) ans = 0 c = 1 an = "" for i in range(a - 1): if lis[i] < 2 * lis[i + 1]: c += 1 else: if c - b > 0: ans += c - b c = 1 if c - b > 0: ans += c - b print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR BIN_OP NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER IF BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
def sort_2(n, k, l): c = 1 i = 1 ans = 0 while i < n: if 2 * l[i] > l[i - 1]: c += 1 else: c = 1 if c >= k + 1: ans += 1 i += 1 return ans for i in range(int(input())): [n, k] = list(map(int, input().split())) l = list(map(int, input().split())) print(sort_2(n, k, l))
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP NUMBER VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN LIST VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
t = int(input()) for _ in range(t): n, k = [int(i) for i in input().strip().split()] a = [int(i) for i in input().strip().split()] i = 0 j = 1 ans = 0 while j < n: while j < n and a[j] / a[j - 1] > 0.5: j += 1 if j - i >= k + 1: ans += j - i - k i = j j = i + 1 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER IF BIN_OP VAR VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
for _ in range(int(input())): n, k = map(int, input().split()) a = list(map(int, input().split())) b = [(2 * a[i] > a[i - 1]) for i in range(1, n)] colT = sum(b[i] for i in range(k)) ans = 0 if colT == k: ans += 1 for i in range(1, n - k): colT += b[i + k - 1] - b[i - 1] if colT == k: ans += 1 print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP NUMBER VAR VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
def solve(): n, k = map(int, input().split()) arr = list(map(int, input().split())) ans = 0 count = 1 k += 1 for i in range(1, n): if arr[i] * 2 > arr[i - 1]: count += 1 else: if count >= k: ans += count - k + 1 count = 1 if count >= k: ans += count - k + 1 print(ans) for T in range(int(input())): solve()
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
for _ in range(int(input())): n, k = map(int, input().split()) l = list(map(int, input().split())) b = "" for i in range(n - 1): if l[i] < 2 * l[i + 1]: b += "1" else: b += "0" x = b.split("0") ans = 0 for i in x: temp = len(i) if k > temp: continue elif k == temp: ans += 1 else: ans += temp - k + 1 print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR STRING FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR BIN_OP NUMBER VAR BIN_OP VAR NUMBER VAR STRING VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR IF VAR VAR VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
def solve(): n, k = map(int, input().split()) a = map(int, input().split()) a = list(a) res = 0 t = 1 i = 1 while i < n: while i < n and a[i - 1] < a[i] * 2: i = i + 1 t = t + 1 if t >= k + 1: res = res + t - k t = 1 i = i + 1 print(res) T = int(input()) for i in range(T): solve()
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR WHILE VAR VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
p = lambda: map(int, input().split()) def solve(): n, k = p() a = [*p()] b = [(a[i] < 2 * a[i + 1]) for i in range(n - 1)] cnt = 0 s = 0 for i in range(k): s += b[i] i = 0 j = k if s == k: cnt += 1 while j < n - 1: s += b[j] s -= b[i] if s == k: cnt += 1 i += 1 j += 1 print(cnt) t = int(input()) for _ in range(t): solve()
ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR LIST FUNC_CALL VAR ASSIGN VAR VAR VAR BIN_OP NUMBER VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR IF VAR VAR VAR NUMBER WHILE VAR BIN_OP VAR NUMBER VAR VAR VAR VAR VAR VAR IF VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
x = int(input()) def cal(n, k, arr): ans = 0 t = 0 for i in range(1, n): if arr[i] * 2 > arr[i - 1]: if i == n - 1: ans += max(0, i - t - k + 1) else: ans += max(0, i - t - k) t = i return ans for jj in range(x): n, k = [int(i) for i in input().split(" ")] arr = [int(i) for i in input().split(" ")] print(cal(n, k, arr))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
def gcd(a, b): if b == 0: return a return gcd(b, a % b) def shift(s): for i in range(1, len(s) + 1): if s == s[i:] + s[:i]: return i for _ in range(int(input())): n, k = [int(x) for x in input().split()] a = [int(x) for x in input().split()] cur = 1 ans = 0 for i in range(1, n): if a[i - 1] < 2 * a[i]: cur += 1 else: cur = 1 if cur > k: ans += 1 print(ans)
FUNC_DEF IF VAR NUMBER RETURN VAR RETURN FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_DEF FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR BIN_OP VAR VAR VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR BIN_OP VAR NUMBER BIN_OP NUMBER VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
t = int(input()) while t: n, k = map(int, input().split()) l = list(map(int, input().split())) le = 1 ans = 0 for i in range(n - 1): if 2 * l[i + 1] > l[i]: le += 1 else: le = 1 if le >= k + 1: ans += 1 print(ans) t -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF BIN_OP NUMBER VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
for _ in range(int(input())): n, k = list(map(int, input().split())) a = list(map(int, input().split())) s = [] for i in range(n - 1): if a[i] < 2 * a[i + 1]: s.append(1) else: s.append(0) cnt = 0 now = sum(s[:k]) if now == k: cnt += 1 for i in range(k, len(s)): now -= s[i - k] now += s[i] if now == k: cnt += 1 print(cnt)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR BIN_OP NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR VAR IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
t = int(input()) for _ in range(t): n, k = map(int, input().split()) arr = list(map(int, input().split())) l = [] for i in range(1, n): if 2 * arr[i] > arr[i - 1]: l.append(1) else: l.append(0) cs = sum(l[:k]) ans = 0 if cs == k: ans += 1 for i in range(k, n - 1): cs += l[i] cs -= l[i - k] if cs == k: ans += 1 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP NUMBER VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER IF VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR VAR VAR VAR BIN_OP VAR VAR IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
n = int(input()) while n > 0: x, y = map(int, input().split()) l1 = list(map(int, input().strip().split())) l2 = l1 l2 = [(x * 2) for x in l2] ans = 0 k = 0 for i in range(0, x - 1): if l1[i] < l2[i + 1]: k += 1 else: k = 0 if k >= y: ans += 1 print(ans) n -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
t = int(input()) for j in range(t): n, k = map(int, input().split()) a = list(map(int, input().split())) ans = 0 cur = 1 for i in range(n - 1): if cur < k: if a[i] < a[i + 1] * 2: cur += 1 else: cur = 1 elif a[i] < a[i + 1] * 2: ans += 1 else: cur = 1 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR IF VAR VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
t = int(input()) for i in range(t): [n, k] = [int(i) for i in input().split()] arr = [int(i) for i in input().split()] length = 0 ans = 0 for i in range(n): if i == n - 1: if length >= k: ans += length + 1 - k break if arr[i] < 2 * arr[i + 1]: length += 1 else: if length >= k: ans += length + 1 - k length = 0 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN LIST VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR IF VAR VAR BIN_OP NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
tc = int(input()) for _ in range(tc): n, k = list(map(int, input().split())) a = list(map(int, input().split())) l = [] cnt1 = 1 for i in range(len(a) - 1): if a[i] < 2 * a[i + 1]: cnt1 += 1 elif a[i] >= 2 * a[i + 1]: l.append(cnt1) cnt1 = 1 l.append(cnt1) cnt = 0 for i in l: if i >= k + 1: cnt += i - (k + 1) + 1 print(cnt)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR BIN_OP NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR BIN_OP NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
Given an array $a$ of length $n$ and an integer $k$, find the number of indices $1 \leq i \leq n - k$ such that the subarray $[a_i, \dots, a_{i+k}]$ with length $k+1$ (not with length $k$) has the following property: If you multiply the first element by $2^0$, the second element by $2^1$, ..., and the ($k+1$)-st element by $2^k$, then this subarray is sorted in strictly increasing order. More formally, count the number of indices $1 \leq i \leq n - k$ such that $$2^0 \cdot a_i < 2^1 \cdot a_{i+1} < 2^2 \cdot a_{i+2} < \dots < 2^k \cdot a_{i+k}.$$ -----Input----- The first line contains an integer $t$ ($1 \leq t \leq 1000$) — the number of test cases. The first line of each test case contains two integers $n$, $k$ ($3 \leq n \leq 2 \cdot 10^5$, $1 \leq k < n$) — the length of the array and the number of inequalities. The second line of each test case contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^9$) — the elements of the array. The sum of $n$ across all test cases does not exceed $2 \cdot 10^5$. -----Output----- For each test case, output a single integer — the number of indices satisfying the condition in the statement. -----Examples----- Input 6 4 2 20 22 19 84 5 1 9 5 3 2 1 5 2 9 5 3 2 1 7 2 22 12 16 4 3 22 12 7 3 22 12 16 4 3 22 12 9 3 3 9 12 3 9 12 3 9 12 Output 2 3 2 3 1 0 -----Note----- In the first test case, both subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2,a_3] = [20,22,19]$, and $1 \cdot 20 < 2 \cdot 22 < 4 \cdot 19$. $i=2$: the subarray $[a_2,a_3,a_4] = [22,19,84]$, and $1 \cdot 22 < 2 \cdot 19 < 4 \cdot 84$. In the second test case, three subarrays satisfy the condition: $i=1$: the subarray $[a_1,a_2] = [9,5]$, and $1 \cdot 9 < 2 \cdot 5$. $i=2$: the subarray $[a_2,a_3] = [5,3]$, and $1 \cdot 5 < 2 \cdot 3$. $i=3$: the subarray $[a_3,a_4] = [3,2]$, and $1 \cdot 3 < 2 \cdot 2$. $i=4$: the subarray $[a_4,a_5] = [2,1]$, but $1 \cdot 2 = 2 \cdot 1$, so this subarray doesn't satisfy the condition.
t = int(input()) for i in range(t): n, k = [int(v) for v in input().split()] w = [int(v) for v in input().split()] z = [] for j in range(1, n): if w[j] * 2 > w[j - 1]: z.append(1) else: z.append(0) res = 0 c = 0 for j in range(n - 1): if z[j] == 1: c += 1 else: if c >= k: res += c - k + 1 c = 0 if c >= k: res += c - k + 1 print(res)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: pref = {(0): -1} result = best = math.inf best_till = [math.inf] * len(arr) for i, curr in enumerate(itertools.accumulate(arr)): diff = curr - target if diff in pref: left = pref[diff] length = i - left result = min(result, best_till[left] + length) best = min(best, length) pref[curr] = i best_till[i] = best return result if result < math.inf else -1
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP LIST VAR FUNC_CALL VAR VAR FOR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR VAR VAR NUMBER VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: record = collections.defaultdict() record[0] = 0 l1 = l2 = float("Inf") tmp_sum = 0 res = float("Inf") dp = [float("Inf") for _ in range(len(arr) + 1)] for i in range(len(arr)): tmp_sum += arr[i] if tmp_sum - target in record: dp[i + 1] = i - record[tmp_sum - target] + 1 res = min(res, dp[i + 1] + dp[record[tmp_sum - target]]) record[tmp_sum] = i + 1 dp[i + 1] = min(dp[i + 1], dp[i]) return res if res < float("Inf") else -1
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR RETURN VAR FUNC_CALL VAR STRING VAR NUMBER VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: arr_len = len(arr) dp = [sys.maxsize] * arr_len left = right = 0 sum_tmp = 0 length, ans_len = sys.maxsize, sys.maxsize while right < arr_len: sum_tmp += arr[right] while sum_tmp > target: sum_tmp -= arr[left] left += 1 if sum_tmp == target: if left > 0 and dp[left - 1] != sys.maxsize: length = min(length, dp[left - 1] + right - left + 1) ans_len = min(ans_len, right - left + 1) dp[right] = ans_len right += 1 return length if length != sys.maxsize else -1
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR VAR WHILE VAR VAR VAR VAR VAR WHILE VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR IF VAR NUMBER VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER RETURN VAR VAR VAR NUMBER VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: result = float("inf") leftmin = self.getMinLen(arr, target, True) rightmin = self.getMinLen(arr, target, False) for i in range(0, len(arr) - 1): result = min(result, leftmin[i] + rightmin[i + 1]) return result if result != float("inf") else -1 def getMinLen(self, arr, target, l2r): if not l2r: arr = arr[::-1] memo = {(0): 0} result = [float("inf")] * len(arr) curSum = 0 for i, num in enumerate(arr): if i > 0: result[i] = result[i - 1] curSum += num if curSum - target in memo: curLen = i - memo[curSum - target] + 1 result[i] = min(result[i], curLen) memo[curSum] = i + 1 if not l2r: result = result[::-1] return result
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR FUNC_CALL VAR STRING VAR NUMBER VAR FUNC_DEF IF VAR ASSIGN VAR VAR NUMBER ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR BIN_OP LIST FUNC_CALL VAR STRING FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER IF VAR ASSIGN VAR VAR NUMBER RETURN VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: dp = [len(arr) + 1] * len(arr) table = {(0): -1} s = 0 min_sum = len(arr) + 1 for i in range(len(arr)): s += arr[i] if i > 0: dp[i] = dp[i - 1] if s - target in table: length = i - table[s - target] dp[i] = min(dp[i], length) if length <= i: min_sum = min(min_sum, length + dp[i - length]) table[s] = i if min_sum == len(arr) + 1: return -1 else: return min_sum
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR BIN_OP LIST BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER RETURN NUMBER RETURN VAR VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: H = {(0): -1} total = 0 M = len(arr) + 1 for i, a in enumerate(arr): total += a H[total] = i result = M minL = M total = 0 for i, a in enumerate(arr): total += a if total - target in H: minL = min(minL, i - H[total - target]) if total + target in H and minL < M: result = min(result, minL + H[total + target] - i) return result if result < M else -1
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR VAR RETURN VAR VAR VAR NUMBER VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: sums = {(0): -1} prefix = 0 dp = [math.inf for _ in range(len(arr) + 1)] ans = math.inf for idx, num in enumerate(arr): prefix += num dp[idx + 1] = min(dp[idx + 1], dp[idx]) if prefix - target in sums: ans = min( ans, idx - sums[prefix - target] + dp[sums[prefix - target] + 1] ) dp[idx + 1] = min(dp[idx + 1], idx - sums[prefix - target]) sums[prefix] = idx return ans if ans != math.inf else -1
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR FOR VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR RETURN VAR VAR VAR NUMBER VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: run = [0, arr[0]] h = {(0): 0, arr[0]: 1} prefix = [len(arr)] for i in range(1, len(arr)): if run[i] - target in h: prefix.append(min(prefix[-1], i - h[run[i] - target])) else: prefix.append(prefix[-1]) run.append(run[-1] + arr[i]) h[run[-1]] = i + 1 suffix = [len(arr) for i in range(len(arr))] if arr[-1] == target: suffix[-1] = 1 for i in range(len(arr) - 2, -1, -1): if run[i] + target in h: suffix[i] = min(suffix[i + 1], h[run[i] + target] - i) else: suffix[i] = suffix[i + 1] res = len(arr) + 1 for i in range(len(arr)): if not (prefix[i] == len(arr) or suffix[i] == len(arr)): res = min(res, prefix[i] + suffix[i]) if res == len(arr) + 1: return -1 return res
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR LIST NUMBER VAR NUMBER ASSIGN VAR DICT NUMBER VAR NUMBER NUMBER NUMBER ASSIGN VAR LIST FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER BIN_OP VAR VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR ASSIGN VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER RETURN NUMBER RETURN VAR VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: p = [0] m = {(0): -1} minLen = [float("inf")] cur = 0 ans = best = float("inf") for i, a in enumerate(arr): cur += a p.append(cur) if cur - target in m: ans = min(ans, i - m[cur - target] + minLen[m[cur - target] + 1]) best = min(i - m[cur - target], best) minLen.append(best) m[cur] = i return ans if ans != float("inf") else -1
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR LIST NUMBER ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR LIST FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR STRING FOR VAR VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR RETURN VAR FUNC_CALL VAR STRING VAR NUMBER VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: def prefix_sum(arr): lookup = {} dp = [float("inf")] * len(arr) cumsum = 0 for i, num in enumerate(arr): cumsum += num if cumsum == target: dp[i] = i - 0 + 1 elif cumsum - target in lookup: dp[i] = i - lookup[cumsum - target] lookup[cumsum] = i dp[i] = min(dp[i - 1], dp[i]) return dp prefix = prefix_sum(arr) suffix = prefix_sum(arr[::-1])[::-1] ans = float("inf") for i in range(1, len(arr)): ans = min(ans, prefix[i - 1] + suffix[i]) return ans if ans != float("inf") else -1
CLASS_DEF FUNC_DEF VAR VAR VAR FUNC_DEF ASSIGN VAR DICT ASSIGN VAR BIN_OP LIST FUNC_CALL VAR STRING FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR RETURN VAR FUNC_CALL VAR STRING VAR NUMBER VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
INF = int(1000000000.0) class Solution: def shortest_subarrays(self, a, target): cum = [0] for x in a: cum.append(cum[-1] + x) hist = {(0): 0} ret = [INF] for i in range(1, len(cum)): ci = cum[i] begin = hist.get(ci - target, -1) if begin >= 0: ret.append(min(i - begin, ret[-1])) else: ret.append(ret[-1]) hist[ci] = i return ret def minSumOfLengths(self, arr: List[int], target: int) -> int: forward = self.shortest_subarrays(arr, target) backward = self.shortest_subarrays(reversed(arr), target) ret = INF for i in range(1, len(arr) - 1 + 1): ret = min(ret, forward[i] + backward[len(arr) - i]) if ret >= INF: return -1 return ret
ASSIGN VAR FUNC_CALL VAR NUMBER CLASS_DEF FUNC_DEF ASSIGN VAR LIST NUMBER FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR LIST VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR RETURN VAR FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR IF VAR VAR RETURN NUMBER RETURN VAR VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: n = len(arr) def get_dp(arr): dp = [] ptr = 0 total = 0 min_val = float("inf") for i in range(n): total += arr[i] while ptr < i and total > target: total -= arr[ptr] ptr += 1 if total == target: min_val = min(min_val, i - ptr + 1) dp.append(min_val) return dp dp_left = get_dp(arr) dp_right = get_dp(arr[::-1])[::-1] min_val = float("inf") for i in range(n - 1): min_val = min(min_val, dp_left[i] + dp_right[i + 1]) return min_val if min_val != float("inf") else -1
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR VAR VAR VAR WHILE VAR VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR FUNC_CALL VAR STRING VAR NUMBER VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr, target): result = inf = 2**31 - 1 i = window = 0 premin = [inf] * len(arr) for j in range(len(arr)): window += arr[j] while window > target: window -= arr[i] i += 1 if window == target: curr = j - i + 1 if result > curr + premin[i - 1]: result = curr + premin[i - 1] premin[j] = curr if curr < premin[j - 1] else premin[j - 1] else: premin[j] = premin[j - 1] return result if result < inf else -1
CLASS_DEF FUNC_DEF ASSIGN VAR VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP LIST VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR WHILE VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR BIN_OP VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR VAR VAR NUMBER
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: mp = {} sum_list = 0 mp[0] = -1 for i, val in enumerate(arr): sum_list += val mp[sum_list] = i res = float("inf") lvalue = float("inf") sum_list = 0 for i, val in enumerate(arr): sum_list += val if sum_list - target in mp: lvalue = min(lvalue, i - mp[sum_list - target]) if sum_list + target in mp and lvalue != float("inf"): res = min(res, lvalue + mp[sum_list + target] - i) return -1 if res == float("inf") else res
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR NUMBER NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR IF BIN_OP VAR VAR VAR VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR VAR RETURN VAR FUNC_CALL VAR STRING NUMBER VAR VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: l = len(arr) left, right, pre = [l] * l, [l] * l, {(0): -1} p = 0 for i in range(l): p += arr[i] if p - target in pre: prev = pre[p - target] left[i] = i - prev if prev >= 0: right[prev] = min(right[prev], i - prev) pre[p] = i for i in range(1, l): left[i] = min(left[i], left[i - 1]) for i in range(l - 2, -1, -1): right[i] = min(right[i], right[i + 1]) ans = l + 1 ans = min( left[i] + right[i] if left[i] < l and right[i] < l else l + 1 for i in range(l) ) return ans if ans < l + 1 else -1
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR BIN_OP LIST VAR VAR BIN_OP LIST VAR VAR DICT NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR RETURN VAR BIN_OP VAR NUMBER VAR NUMBER VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: n = len(arr) left = [float("inf")] * n memo = {(0): -1} current = 0 for k in range(n): if k > 0: left[k] = left[k - 1] current += arr[k] if current - target in memo: left[k] = min(left[k], k - memo[current - target]) memo[current] = k right = [float("inf")] * n memo = {(0): n} current = 0 for k in range(n - 1, -1, -1): if k < n - 1: right[k] = right[k + 1] current += arr[k] if current - target in memo: right[k] = min(right[k], memo[current - target] - k) memo[current] = k ans = float("inf") for k in range(n - 1): ans = min(ans, left[k] + right[k + 1]) return ans if ans != float("inf") else -1
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST FUNC_CALL VAR STRING VAR ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP LIST FUNC_CALL VAR STRING VAR ASSIGN VAR DICT NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR FUNC_CALL VAR STRING VAR NUMBER VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def getMinArr(self, arr, target, right=False): pre_sum = 0 res = [float("inf") for i in range(len(arr))] sum_dict = {(0): 0} if right: arr = arr[::-1] for i, num in enumerate(arr): pre_sum += num if i > 0: res[i] = res[i - 1] if pre_sum - target in sum_dict: cur_len = i - sum_dict[pre_sum - target] + 1 res[i] = min(res[i], cur_len) sum_dict[pre_sum] = i + 1 if right: res.reverse() return res def minSumOfLengths(self, arr: List[int], target: int) -> int: left_min = self.getMinArr(arr, target) right_min = self.getMinArr(arr, target, True) min_len = float("inf") for i in range(len(arr) - 1): min_len = min(min_len, left_min[i] + right_min[i + 1]) if min_len == float("inf"): return -1 return min_len
CLASS_DEF FUNC_DEF NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR DICT NUMBER NUMBER IF VAR ASSIGN VAR VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER IF VAR EXPR FUNC_CALL VAR RETURN VAR FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR FUNC_CALL VAR STRING RETURN NUMBER RETURN VAR VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: n = len(arr) su = 0 s = 0 min_len = float("inf") min_lens = [float("inf") for _ in range(n)] ans = float("inf") for e in range(n): su += arr[e] while su > target: su -= arr[s] s += 1 if su == target: cur_len = e - s + 1 if s > 0 and min_lens[s - 1] != float("inf"): ans = min(ans, cur_len + min_lens[s - 1]) min_len = min(min_len, cur_len) min_lens[e] = min_len return -1 if ans >= float("inf") else ans
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR VAR VAR VAR WHILE VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR NUMBER VAR BIN_OP VAR NUMBER FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR FUNC_CALL VAR STRING NUMBER VAR VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: if not arr: return -1 prefixes = [0] * len(arr) suffixes = [0] * len(arr) left = right = 0 curr = 0 min_len = float("inf") while right < len(arr): curr += arr[right] while curr >= target and left <= right: if curr == target: l = right - left + 1 if l < min_len: min_len = l curr -= arr[left] left += 1 prefixes[right] = min_len right += 1 left = right = len(arr) - 1 curr = 0 min_len = float("inf") while left >= 0: curr += arr[left] while curr >= target and left <= right: if curr == target: l = right - left + 1 if l < min_len: min_len = l curr -= arr[right] right -= 1 suffixes[left] = min_len left -= 1 min_len = float("inf") for i in range(len(arr) - 1): s = prefixes[i] + suffixes[i + 1] if s < min_len: min_len = s return min_len if min_len != float("inf") else -1
CLASS_DEF FUNC_DEF VAR VAR VAR IF VAR RETURN NUMBER ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING WHILE VAR FUNC_CALL VAR VAR VAR VAR VAR WHILE VAR VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING WHILE VAR NUMBER VAR VAR VAR WHILE VAR VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR RETURN VAR FUNC_CALL VAR STRING VAR NUMBER VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: n = len(arr) res = n + 1 pre = {} pre[0] = -1 dp = [float("inf")] * n p = 0 for i, a in enumerate(arr): p += a dp[i] = dp[i - 1] if p - target in pre: cur = i - pre[p - target] if pre[p - target] >= 0 and dp[pre[p - target]] != float("inf"): res = min(res, cur + dp[pre[p - target]]) dp[i] = min(i - pre[p - target], dp[i - 1]) pre[p] = i return -1 if res == n + 1 else res
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR DICT ASSIGN VAR NUMBER NUMBER ASSIGN VAR BIN_OP LIST FUNC_CALL VAR STRING VAR ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP VAR VAR IF VAR BIN_OP VAR VAR NUMBER VAR VAR BIN_OP VAR VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR RETURN VAR BIN_OP VAR NUMBER NUMBER VAR VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: start, ans, sum = 0, float("inf"), 0 best = [float("inf")] * len(arr) best_so_far = float("inf") for i in range(len(arr)): sum += arr[i] while sum > target: sum -= arr[start] start += 1 if sum == target: if start > 0 and best[start - 1] != float("inf"): ans = min(ans, best[start - 1] + i - start + 1) best_so_far = min(best_so_far, i - start + 1) best[i] = best_so_far return -1 if ans == float("inf") else ans
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR VAR VAR NUMBER FUNC_CALL VAR STRING NUMBER ASSIGN VAR BIN_OP LIST FUNC_CALL VAR STRING FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR WHILE VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR IF VAR NUMBER VAR BIN_OP VAR NUMBER FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR RETURN VAR FUNC_CALL VAR STRING NUMBER VAR VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: prefix_sum2_idx = defaultdict(int) prefix_sum2_idx[0] = -1 prefix_sum = 0 n = len(arr) for i in range(n): prefix_sum += arr[i] prefix_sum2_idx[prefix_sum] = i prefix_sum = 0 l_min_len = float("inf") min_len = float("inf") for i in range(n): prefix_sum += arr[i] if prefix_sum - target in prefix_sum2_idx: l_min_len = min(l_min_len, i - prefix_sum2_idx[prefix_sum - target]) if prefix_sum + target in prefix_sum2_idx: min_len = min( min_len, prefix_sum2_idx[prefix_sum + target] - i + l_min_len ) return -1 if min_len == float("inf") else min_len
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR VAR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR VAR RETURN VAR FUNC_CALL VAR STRING NUMBER VAR VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: best_so_far = [float("inf") for i in range(len(arr) + 1)] prefix_sum = 0 prefix_sum_to_idx = {(0): -1} res = float("inf") for i, v in enumerate(arr): prefix_sum += v best_so_far[i + 1] = best_so_far[i] prev_sum = prefix_sum - target if prev_sum in prefix_sum_to_idx: res = min( res, best_so_far[prefix_sum_to_idx[prev_sum] + 1] + i - prefix_sum_to_idx[prev_sum], ) best_so_far[i + 1] = min( best_so_far[i], i - prefix_sum_to_idx[prev_sum] ) prefix_sum_to_idx[prefix_sum] = i return -1 if res == float("inf") else res
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR STRING VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR STRING FOR VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR NUMBER VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR FUNC_CALL VAR STRING NUMBER VAR VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: lim = len(arr) pref = [arr[0]] d = dict() e = dict() d[arr[0]] = [0] e[arr[0]] = 1 for i in range(1, lim): pref.append(pref[-1] + arr[i]) try: d[pref[-1]].append(i) e[pref[i]] += 1 except: d[pref[-1]] = [i] e[pref[i]] = 1 A = [lim] * lim for i in range(0, lim): val = target + pref[i] - arr[i] if val in d: l = 0 h = e[val] - 1 mn = lim + 1 while l <= h: m = (l + h) // 2 if d[val][m] >= i: if d[val][m] < mn: mn = d[val][m] h = m - 1 else: l = m + 1 if mn != lim + 1: A[i] = mn - i + 1 if arr[i] == target: A[i] = 1 pmn = lim p = [lim] * lim s = [lim] * lim for i in range(0, lim): if i + A[i] < lim and p[i + A[i]] > A[i]: p[i + A[i]] = A[i] smn = lim if A[-1] < lim: smn = A[-1] for i in range(lim - 1, -1, -1): if A[i] < smn: smn = A[i] s[i] = smn mn = lim + 1 for i in range(0, lim): if p[i] + s[i] < mn: mn = p[i] + s[i] if mn >= lim + 1: return -1 return mn
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR NUMBER LIST NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR NUMBER VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER LIST VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR BIN_OP LIST VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR VAR IF VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP LIST VAR VAR ASSIGN VAR BIN_OP LIST VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR IF VAR NUMBER VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR IF VAR BIN_OP VAR NUMBER RETURN NUMBER RETURN VAR VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengthsOld(self, arr: List[int], target: int) -> int: n = len(arr) if n == 1: return -1 i = 0 j = 0 sum_ = arr[i] interval = [] while i < n and j < n: if sum_ == target: interval.append([i, j, j - i + 1]) sum_ -= arr[i] i += 1 j += 1 if j < n: sum_ += arr[j] elif sum_ < target: if j < n - 1: sum_ += arr[j + 1] j += 1 else: sum_ -= arr[i] i += 1 if len(interval) == 0: return -1 interval.sort(key=lambda x: x[2]) interval_val_sorted = [x for x in interval] interval.sort(key=lambda x: x[0]) print(interval_val_sorted) print(interval) i_, j_, l_ = interval[0][0], interval[0][1], interval[0][2] found = False for i in range(1, len(interval), 1): i_1, j_1, l_1 = interval[i][0], interval[i][1], interval[i][2] if i_1 >= i_ and i_1 <= j_: continue if i_ >= i_1 and i_ <= j_1: continue found = True break if found == False: return -1 return l_ + l_1 def findCeil(self, x, starts): s = 0 e = len(starts) - 1 res = -1 while s <= e: mid = s + (e - s) // 2 if starts[mid] > x: res = mid e = mid - 1 else: s = mid + 1 return res def minSumOfLengths(self, arr: List[int], target: int) -> int: n = len(arr) i = 0 j = 0 overlaps = list() sum_ = 0 j = 0 while i < n and j < n: sum_ += arr[j] while j < n - 1 and sum_ < target: j += 1 sum_ += arr[j] if sum_ == target: overlaps.append([i, j]) sum_ -= arr[i] sum_ -= arr[j] i += 1 if sum_ == target: if i <= n - 1: overlaps.append([i, j - 1]) starting = [x for [x, y] in overlaps] length = [(y - x + 1) for [x, y] in overlaps] l_o = len(length) if l_o == 0: return -1 min_arr = [length[-1]] s = 1 min_ = length[-1] for i in range(l_o - 2, -1, -1): min_ = min(length[i], min_) min_arr.append(min_) min_length = sys.maxsize min_arr = list(reversed(min_arr)) for overlap in overlaps: s, e = overlap[0], overlap[1] indi = self.findCeil(e, starting) if indi == -1: continue min_length = min(min_length, e - s + 1 + min_arr[indi]) if min_length == sys.maxsize: return -1 return min_length
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR LIST WHILE VAR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR LIST VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR VAR IF VAR VAR IF VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR VAR VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER RETURN NUMBER EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR NUMBER NUMBER VAR NUMBER NUMBER VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER IF VAR VAR VAR VAR IF VAR VAR VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER RETURN NUMBER RETURN BIN_OP VAR VAR VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR VAR VAR VAR WHILE VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR LIST VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR IF VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR LIST VAR BIN_OP VAR NUMBER ASSIGN VAR VAR LIST VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER LIST VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER RETURN NUMBER ASSIGN VAR LIST VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR VAR ASSIGN VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR IF VAR VAR RETURN NUMBER RETURN VAR VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: i, window, result = 0, 0, float("inf") premin = [float("inf")] * len(arr) for j, num in enumerate(arr): window += num while window > target: window -= arr[i] i += 1 if window == target: curr = j - i + 1 result = min(result, curr + premin[i - 1]) premin[j] = min(curr, premin[j - 1]) else: premin[j] = premin[j - 1] return result if result < float("inf") else -1
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR VAR VAR NUMBER NUMBER FUNC_CALL VAR STRING ASSIGN VAR BIN_OP LIST FUNC_CALL VAR STRING FUNC_CALL VAR VAR FOR VAR VAR FUNC_CALL VAR VAR VAR VAR WHILE VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR FUNC_CALL VAR STRING VAR NUMBER VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: preSum = {(0): -1} n = len(arr) curSum = 0 minLen = float("inf") lsize = float("inf") for i in range(n): curSum += arr[i] preSum[curSum] = i curSum = 0 for i in range(n): curSum += arr[i] if curSum - target in preSum: lsize = min(lsize, i - preSum[curSum - target]) if curSum + target in preSum and lsize != float("inf"): minLen = min(minLen, preSum[curSum + target] - i + lsize) return minLen if minLen != float("inf") else -1
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR IF BIN_OP VAR VAR VAR VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR VAR RETURN VAR FUNC_CALL VAR STRING VAR NUMBER VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: left_min = self.getMinArr(arr, target, True) right_min = self.getMinArr(arr, target, False) result = sys.maxsize for i in range(0, len(arr) - 1): if max(left_min[i], right_min[i + 1]) != sys.maxsize: result = min(left_min[i] + right_min[i + 1], result) return result if result < sys.maxsize else -1 def getMinArr(self, arr, target, right): result = [sys.maxsize] * len(arr) current_sum = 0 num_map = {(0): 0} nums = arr if right else arr[::-1] for i, num in enumerate(nums): if i > 0: result[i] = result[i - 1] current_sum += num if current_sum - target in num_map: current_len = i - num_map[current_sum - target] + 1 result[i] = min(result[i], current_len) num_map[current_sum] = i + 1 if not right: result.reverse() return result
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR RETURN VAR VAR VAR NUMBER VAR FUNC_DEF ASSIGN VAR BIN_OP LIST VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR VAR VAR VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER IF VAR EXPR FUNC_CALL VAR RETURN VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: accuArr = [] y = 0 for x in arr: y += x accuArr.append(y) bestTill = [float("inf")] * len(arr) bestTillNow = float("inf") sum2Pos = dict() sum2Pos[0] = -1 res = float("inf") for i in range(len(accuArr)): currAccu = accuArr[i] preSum = currAccu - target if preSum in sum2Pos: preEnd = sum2Pos[preSum] currLength = i - preEnd if preEnd != -1: res = min(res, currLength + bestTill[preEnd]) bestTillNow = min(bestTillNow, currLength) sum2Pos[currAccu] = i bestTill[i] = bestTillNow return res if res != float("inf") else -1
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST FUNC_CALL VAR STRING FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR FUNC_CALL VAR STRING VAR NUMBER VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: n = len(arr) dp = [float("inf")] * n sums, res = 0, float("inf") sum_record = {(0): -1} for i, num in enumerate(arr): sums += num dp[i] = dp[i - 1] if sums - target in sum_record: cur_len = i - sum_record[sums - target] if i - cur_len >= 0: res = min(res, cur_len + dp[i - cur_len]) dp[i] = min(dp[i - 1], cur_len) sum_record[sums] = i return res if res != float("inf") else -1
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST FUNC_CALL VAR STRING VAR ASSIGN VAR VAR NUMBER FUNC_CALL VAR STRING ASSIGN VAR DICT NUMBER NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR VAR RETURN VAR FUNC_CALL VAR STRING VAR NUMBER VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: l = r = 0 s = arr[l] res = [] while r < len(arr): if s == target: ln = r - l + 1 res.append((ln, l, r)) if s <= target: r += 1 if r < len(arr): s += arr[r] else: l += 1 s -= arr[l - 1] if l > r: r += 1 if r < len(arr): s += arr[r] msl = [math.inf] * len(arr) msr = [math.inf] * len(arr) mi = math.inf resi = -1 for i in range(len(arr)): if resi + 1 < len(res) and res[resi + 1][2] == i: resi += 1 mi = min(mi, res[resi][0]) msl[i] = mi mi = math.inf resi = len(res) for i in range(len(arr) - 1, -1, -1): if resi - 1 >= 0 and res[resi - 1][1] == i: resi -= 1 mi = min(mi, res[resi][0]) msr[i] = mi mn = math.inf for i in range(len(arr) - 1): mn = min(mn, msl[i] + msr[i + 1]) if mn == math.inf: return -1 return mn
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR LIST WHILE VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR IF VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP LIST VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR RETURN NUMBER RETURN VAR VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: n = len(arr) prefixSum = [0] * n targetSum = [sys.maxsize] * n beforeSum = [sys.maxsize] * n afterSum = [sys.maxsize] * n sumDict = {(0): -1} total = 0 for i in range(n): total += arr[i] prefixSum[i] = total if total - target in sumDict: index = sumDict[total - target] targetSum[i] = i - index sumDict[total] = i minValue = sys.maxsize for i in range(n): minValue = min(targetSum[i], minValue) beforeSum[i] = minValue minValue = sys.maxsize for i in reversed(list(range(1, n))): startIndex = i - targetSum[i] if startIndex >= 0: afterSum[startIndex] = min(afterSum[startIndex], targetSum[i]) minValue = sys.maxsize for i in range(len(arr)): minValue = min(minValue, beforeSum[i] + afterSum[i]) if minValue == sys.maxsize: minValue = -1 return minValue
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST VAR VAR ASSIGN VAR BIN_OP LIST VAR VAR ASSIGN VAR BIN_OP LIST VAR VAR ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR VAR IF VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR IF VAR VAR ASSIGN VAR NUMBER RETURN VAR VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
import sys class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: table = {(0): -1} cursum = 0 dp1 = [sys.maxsize for i in range(len(arr))] for i in range(len(arr)): if i > 0: dp1[i] = dp1[i - 1] cursum += arr[i] if cursum - target in list(table.keys()): dp1[i] = min(dp1[i], i - table[cursum - target]) table[cursum] = i table = {(0): len(arr)} cursum = 0 dp2 = [sys.maxsize for i in range(len(arr))] for i in range(len(arr) - 1, -1, -1): if i < len(arr) - 1: dp2[i] = dp2[i + 1] cursum += arr[i] if cursum - target in list(table.keys()): dp2[i] = min(dp2[i], table[cursum - target] - i) table[cursum] = i res = sys.maxsize for i in range(len(dp1) - 1): if dp1[i] != sys.maxsize and dp2[i + 1] != sys.maxsize: res = min(res, dp1[i] + dp2[i + 1]) if res == sys.maxsize: return -1 else: return res
IMPORT CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR IF BIN_OP VAR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR DICT NUMBER FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR IF BIN_OP VAR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR RETURN NUMBER RETURN VAR VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: mapsum = {} mapsum[0] = -1 totsum = 0 best_till = [math.inf] * len(arr) best = math.inf end = -1 res = float("inf") for i in range(len(arr)): totsum += arr[i] if totsum - target in mapsum: end = mapsum[totsum - target] if end > -1: res = min(res, i - end + best_till[end]) best = min(best, i - end) best_till[i] = best mapsum[totsum] = i if res < math.inf: return res return res if res < math.inf else -1
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR DICT ASSIGN VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR IF VAR VAR RETURN VAR RETURN VAR VAR VAR NUMBER VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: n = len(arr) prefix = [float("INF")] * (n + 1) suffix = [float("INF")] * (n + 1) tmp = 0 start = 0 for i in range(n): if arr[i] == target: prefix[i + 1] = 1 elif tmp + arr[i] < target: tmp += arr[i] else: tmp += arr[i] while tmp > target and start < i: tmp -= arr[start] start += 1 if tmp == target: prefix[i + 1] = i - start + 1 prefix[i + 1] = min(prefix[i + 1], prefix[i]) tmp = 0 start = -1 for i in range(-1, -n - 1, -1): if arr[i] == target: suffix[i] = 1 elif tmp + arr[i] < target: tmp += arr[i] else: tmp += arr[i] while tmp > target and start > i: tmp -= arr[start] start -= 1 if tmp == target: suffix[i] = start - i + 1 suffix[i] = min(suffix[i], suffix[i + 1]) min_val = float("INF") for i in range(n): min_val = min(min_val, prefix[i] + suffix[i + 1]) return min_val if min_val != float("INF") else -1
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST FUNC_CALL VAR STRING BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST FUNC_CALL VAR STRING BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER NUMBER IF BIN_OP VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR WHILE VAR VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR ASSIGN VAR VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR WHILE VAR VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR FUNC_CALL VAR STRING VAR NUMBER VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: left = self.shortestTails(arr, target, False) right = self.shortestTails(arr, target, True) mn = float("inf") for i in range(len(arr) - 1): if left[i][0] < float("inf") and right[i + 1][0] < float("inf"): mn = min(mn, left[i][0] + right[i + 1][0]) return mn if mn < float("inf") else -1 def shortestTails(self, arr, target, reverse): end = len(arr) - 1 if reverse else 0 prefixSumMap = {(0): len(arr) if reverse else -1} s = 0 shortestAt = [None] * len(arr) shortest = float("inf"), -1, -1 for _ in range(len(arr)): s += arr[end] diff = s - target if diff in prefixSumMap: start = prefixSumMap[diff] if abs(end - start) < shortest[0]: shortest = abs(end - start), start, end shortestAt[end] = shortest prefixSumMap[s] = end end = end - 1 if reverse else end + 1 return shortestAt
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR NUMBER FUNC_CALL VAR STRING VAR BIN_OP VAR NUMBER NUMBER FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER RETURN VAR FUNC_CALL VAR STRING VAR NUMBER VAR FUNC_DEF ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR DICT NUMBER VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NONE FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR STRING NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR VAR VAR IF FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER RETURN VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: minLen = float("inf") lsize = float("inf") preSum = {(0): -1} curSum = 0 for i, val in enumerate(arr): curSum += val preSum[curSum] = i curSum = 0 for i, val in enumerate(arr): curSum += val if curSum - target in preSum: lsize = min(lsize, i - preSum[curSum - target]) if curSum + target in preSum and lsize != float("inf"): minLen = min(minLen, preSum[curSum + target] - i + lsize) return minLen if minLen != float("inf") else -1
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR IF BIN_OP VAR VAR VAR VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR VAR RETURN VAR FUNC_CALL VAR STRING VAR NUMBER VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: for i in range(1, len(arr)): arr[i] += arr[i - 1] index = {(0): -1} best_till = [float("inf")] * len(arr) res = float("inf") best = float("inf") for i, val in enumerate(arr): if val - target in index: start_of_window = index[val - target] length = i - start_of_window res = min(res, best_till[start_of_window + 1] + length) best = min(best, length) if i + 1 < len(best_till): best_till[i + 1] = best index[val] = i return -1 if res == float("inf") else res
CLASS_DEF FUNC_DEF VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR BIN_OP LIST FUNC_CALL VAR STRING FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING FOR VAR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF BIN_OP VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR VAR RETURN VAR FUNC_CALL VAR STRING NUMBER VAR VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: prefix = {(0): -1} res, best, dp = sys.maxsize, sys.maxsize, [sys.maxsize] * len(arr) for i, acc in enumerate(itertools.accumulate(arr)): if acc - target in prefix: end = prefix[acc - target] if end > -1: res = min(res, i - end + dp[end]) best = min(best, i - end) dp[i] = best prefix[acc] = i return -1 if res == sys.maxsize else res
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR VAR VAR VAR VAR BIN_OP LIST VAR FUNC_CALL VAR VAR FOR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR VAR NUMBER VAR VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: left, right = 0, 0 valid_subarray_lengths = [(0) for _ in range(len(arr))] cum_sum = 0 for i in range(len(arr)): cum_sum += arr[i] right = i while cum_sum > target: cum_sum -= arr[left] left += 1 if cum_sum == target: valid_subarray_lengths[i] = right - left + 1 prefix_min_lengths = [None for _ in range(len(valid_subarray_lengths))] prefix_min = float("inf") for i in range(len(valid_subarray_lengths)): prefix_min = min( prefix_min, ( valid_subarray_lengths[i] if valid_subarray_lengths[i] else float("inf") ), ) prefix_min_lengths[i] = prefix_min res = float("inf") for i in range(len(valid_subarray_lengths)): if ( valid_subarray_lengths[i] != 0 and i - valid_subarray_lengths[i] >= 0 and prefix_min_lengths[i - valid_subarray_lengths[i]] > 0 ): res = min( res, valid_subarray_lengths[i] + prefix_min_lengths[i - valid_subarray_lengths[i]], ) return res if res != float("inf") else -1
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR WHILE VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NONE VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR FUNC_CALL VAR STRING ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER BIN_OP VAR VAR VAR NUMBER VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR RETURN VAR FUNC_CALL VAR STRING VAR NUMBER VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: n = len(arr) dp = [float("inf") for _ in range(n + 1)] ans = float("inf") start = 0 curr_sum = 0 for end in range(n): curr_sum += arr[end] while start < end and curr_sum > target: curr_sum -= arr[start] start += 1 if curr_sum == target: ans = min(ans, end - start + 1 + dp[start - 1]) dp[end] = min(dp[end - 1], end - start + 1) else: dp[end] = dp[end - 1] return ans if ans != float("inf") else -1
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR STRING VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR WHILE VAR VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR FUNC_CALL VAR STRING VAR NUMBER VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: n_arr = len(arr) if n_arr == 0: return -1 def get_minlen_ending_before(array: List[int]) -> List[int]: n_array = len(array) minlen_array = [float("inf")] * n_array curr_sum = array[0] i = 0 j = 0 min_len = float("inf") while i < n_array and j < n_array: increment_i = False increment_j = False if curr_sum == target: min_len = min(min_len, j - i + 1) curr_sum -= array[i] increment_i = True elif curr_sum < target: increment_j = True if j < n_array - 1: curr_sum += array[j + 1] elif curr_sum > target: curr_sum -= array[i] increment_i = True if j < n_array - 1: minlen_array[j + 1] = min_len if increment_i: i += 1 if increment_j: j += 1 if j < i and i < n_array: j = i curr_sum = array[i] return minlen_array prefix = get_minlen_ending_before(arr) postfix = get_minlen_ending_before(arr[::-1] + [0])[1:][::-1] min_sum = float("inf") for i in range(n_arr): min_sum = min(min_sum, prefix[i] + postfix[i]) return min_sum if min_sum < float("inf") else -1
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER RETURN NUMBER FUNC_DEF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST FUNC_CALL VAR STRING VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING WHILE VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR ASSIGN VAR NUMBER IF VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR IF VAR VAR NUMBER IF VAR VAR NUMBER IF VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR RETURN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER LIST NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR RETURN VAR FUNC_CALL VAR STRING VAR NUMBER VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr, target): result = inf = 2**31 - 1 i = window = count = 0 preMin = [(-1, inf)] for j, num in enumerate(arr): window += num while window > target: window -= arr[i] i += 1 if window == target: curr = j - i + 1 n = 0 for index, length in preMin[::-1]: if index <= i - 1: n = length break if result > curr + n: result = curr + n if curr < preMin[-1][-1]: preMin.append((j, curr)) return result if result < inf else -1
CLASS_DEF FUNC_DEF ASSIGN VAR VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR LIST NUMBER VAR FOR VAR VAR FUNC_CALL VAR VAR VAR VAR WHILE VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER ASSIGN VAR VAR IF VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR RETURN VAR VAR VAR NUMBER
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: n = len(arr) prefix_sum = list(accumulate(arr)) suffix_sum = list(accumulate(arr[::-1])) def helper(prefix_sum, n, target): dict_x = {(0): -1} l_1 = [(n + 1) for _ in range(n)] for i in range(n): t1 = prefix_sum[i] - target x = n + 1 if dict_x.get(t1, "x") != "x": x = i - dict_x[t1] l_1[i] = min(x, l_1[i - 1] if i > 0 else n + 1) dict_x[prefix_sum[i]] = i return l_1 l = helper(prefix_sum, n, target) r = helper(suffix_sum, n, target)[::-1] ans = sys.maxsize for i in range(n - 1): ans = min(ans, l[i] + r[i + 1]) print(ans) return ans if ans <= n else -1
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER FUNC_DEF ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR STRING STRING ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR NUMBER VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR RETURN VAR VAR VAR NUMBER VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: prefix = [] for n in arr: if len(prefix) == 0: prefix.append(n) else: prefix.append(prefix[-1] + n) indexMap = {} indexMap[0] = -1 best = output = float("inf") best_till = [float("inf")] * len(arr) for i, p in enumerate(prefix): if p - target in indexMap: output = min( output, i - indexMap[p - target] + best_till[indexMap[p - target]] ) best = min(best, i - indexMap[p - target]) best_till[i] = best indexMap[p] = i return -1 if output == float("inf") else output
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR LIST FOR VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR DICT ASSIGN VAR NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP LIST FUNC_CALL VAR STRING FUNC_CALL VAR VAR FOR VAR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR FUNC_CALL VAR STRING NUMBER VAR VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: ptr1, ptr2 = 0, 0 s = arr[0] m = [-1] * len(arr) ans = -1 global_min = -1 while ptr2 < len(arr): if global_min > 0: m[ptr2] = global_min if s == target: m[ptr2] = ( min(global_min, ptr2 - ptr1 + 1) if global_min > 0 else ptr2 - ptr1 + 1 ) global_min = m[ptr2] if ptr1 - 1 >= 0 and m[ptr1 - 1] > 0: ans = ( min(ans, m[ptr1 - 1] + ptr2 - ptr1 + 1) if ans > 0 else m[ptr1 - 1] + ptr2 - ptr1 + 1 ) ptr1 += 1 ptr2 += 1 if ptr2 < len(arr): s = s - arr[ptr1 - 1] + arr[ptr2] elif s > target: ptr1 += 1 s = s - arr[ptr1 - 1] if ptr1 > ptr2 and ptr2 + 1 < len(arr): ptr2 += 1 s = s + arr[ptr2] else: ptr2 += 1 if ptr2 < len(arr): s = s + arr[ptr2] return ans
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR NUMBER FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR BIN_OP VAR NUMBER IF VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR RETURN VAR VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: if len(arr) < 2: return -1 n = len(arr) curSum = 0 prefixSum = {(0): -1} dp = [float("inf")] * n ans = float("inf") for i in range(n): curSum += arr[i] if curSum - target in prefixSum: j = prefixSum[curSum - target] + 1 ans = min(ans, i - j + 1 + dp[j - 1]) dp[i] = min(dp[i - 1], i - j + 1) else: dp[i] = dp[i - 1] prefixSum[curSum] = i return ans if ans < float("inf") else -1
CLASS_DEF FUNC_DEF VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR BIN_OP LIST FUNC_CALL VAR STRING VAR ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR VAR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR RETURN VAR FUNC_CALL VAR STRING VAR NUMBER VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: res = [float("inf")] * len(arr) ans = float("inf") currMin = float("inf") i = 0 s = 0 for j in range(len(arr)): s += arr[j] while s > target: s -= arr[i] i += 1 if s == target: currMin = min(currMin, j - i + 1) ans = min(ans, j - i + 1 + res[i - 1]) res[j] = currMin return ans if ans < float("inf") else -1
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR BIN_OP LIST FUNC_CALL VAR STRING FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR WHILE VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR RETURN VAR FUNC_CALL VAR STRING VAR NUMBER VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: LARGE_NUMBER = 1000000000 if not arr: return -1 psum = [0] * (len(arr) + 1) sum2i = {} for i in range(len(arr)): psum[i + 1] = psum[i] + arr[i] res = LARGE_NUMBER dp = [LARGE_NUMBER] * (len(arr) + 1) for i, x in enumerate(psum): assert x not in sum2i sum2i[x] = i if i > 0: dp[i] = dp[i - 1] if psum[i] - target in sum2i: j = sum2i[psum[i] - target] dp[i] = min(dp[i], i - j) if dp[j] != LARGE_NUMBER: res = min(res, dp[j] + i - j) return res if res != LARGE_NUMBER else -1
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR NUMBER IF VAR RETURN NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR DICT FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP LIST VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR IF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR RETURN VAR VAR VAR NUMBER VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: len_to_start = collections.defaultdict(list) start, end = 0, 1 tmp_sum = arr[0] earliest_end, latest_start = len(arr), 0 while start < len(arr): while end < len(arr) and tmp_sum < target: tmp_sum += arr[end] end += 1 if tmp_sum == target: len_to_start[end - start].append(start) earliest_end = min(earliest_end, end) latest_start = max(latest_start, start) tmp_sum -= arr[start] start += 1 if earliest_end > latest_start: return -1 for l, starts in list(len_to_start.items()): if len(starts) > 2: len_to_start[l] = [starts[0], starts[-1]] shortest = len(arr) for l1 in len_to_start: for s1 in len_to_start[l1]: for l2 in len_to_start: for s2 in len_to_start[l2]: if l1 + l2 >= shortest: continue if s1 < s2 and s1 + l1 <= s2: shortest = l1 + l2 if s2 < s1 and s2 + l2 <= s1: shortest = l1 + l2 return shortest
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER WHILE VAR FUNC_CALL VAR VAR WHILE VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR RETURN NUMBER FOR VAR VAR FUNC_CALL VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR LIST VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR FOR VAR VAR VAR FOR VAR VAR FOR VAR VAR VAR IF BIN_OP VAR VAR VAR IF VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR RETURN VAR VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: INF = len(arr) + 1 best_idx = [INF] * len(arr) best = INF csum = 0 left = 0 for right in range(len(arr)): csum += arr[right] while csum > target and left <= right: csum -= arr[left] left += 1 if csum == target: best = min(best, best_idx[left - 1] + right - left + 1) best_idx[right] = min(best_idx[right - 1], right - left + 1) else: best_idx[right] = best_idx[right - 1] if INF == best: return -1 return best
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP LIST VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR WHILE VAR VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR RETURN NUMBER RETURN VAR VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: left = list(itertools.accumulate(arr)) right = list(itertools.accumulate(arr[::-1])) right = right[::-1] rans = [500000] * len(arr) lans = [500000] * len(arr) i, j, n = 0, 0, len(arr) while i < n and j < n: sm = left[j] - (left[i - 1] if i else 0) while sm > target and i <= j: i += 1 sm = left[j] - (left[i - 1] if i else 0) if sm == target: lans[j] = min(lans[j], j - i + 1) j += 1 i, j = n - 1, n - 1 while i > -1: sm = right[i] - (right[j + 1] if j + 1 < n else 0) while sm > target and j >= i: j -= 1 sm = right[i] - (right[j + 1] if j + 1 < n else 0) if sm == target: rans[i] = min(rans[i], j - i + 1) i -= 1 ans = math.inf mv = 999999999 for i in range(n): mv = min(mv, lans[i]) lans[i] = mv mv = 212498174 for i in range(n - 1, -1, -1): mv = min(mv, rans[i]) rans[i] = mv for i in range(n - 1): ans = min(ans, lans[i] + rans[i + 1]) return ans if ans < 500000 else -1
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER NUMBER FUNC_CALL VAR VAR WHILE VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR NUMBER NUMBER WHILE VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER NUMBER WHILE VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR NUMBER VAR NUMBER VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: prefix = {(0): -1} best_till = [math.inf] * len(arr) ans = best = math.inf for i in range(1, len(arr)): arr[i] += arr[i - 1] for i, cur in enumerate(arr): if cur - target in prefix: end = prefix[cur - target] if end > -1: ans = min(ans, i - end + best_till[end]) best = min(best, i - end) best_till[i] = best prefix[cur] = i return -1 if ans == math.inf else ans
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR BIN_OP LIST VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR VAR NUMBER VAR VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: left_sub_array = [len(arr)] * len(arr) sub_sum, next_index = 0, 0 for index in range(len(arr)): while sub_sum < target and next_index < len(arr): sub_sum += arr[next_index] if sub_sum > target: sub_sum -= arr[next_index] break else: if sub_sum == target: left_sub_array[next_index] = next_index - index + 1 next_index += 1 sub_sum -= arr[index] left_sub_array[index] = min( left_sub_array[index], left_sub_array[index - 1] ) r_arr = arr[::-1] right_sub_array = [len(r_arr)] * len(r_arr) sub_sum, next_index = 0, 0 for index in range(len(r_arr)): while sub_sum < target and next_index < len(r_arr): sub_sum += r_arr[next_index] if sub_sum > target: sub_sum -= r_arr[next_index] break else: if sub_sum == target: right_sub_array[next_index] = next_index - index + 1 next_index += 1 sub_sum -= r_arr[index] right_sub_array[index] = min( right_sub_array[index], right_sub_array[index - 1] ) right_sub_array = right_sub_array[::-1] min_length = 2 * len(arr) for index, val in enumerate(left_sub_array[:-1]): min_length = min(min_length, val + right_sub_array[index + 1]) if min_length > len(arr): return -1 else: return min_length
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR BIN_OP LIST FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP LIST FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP NUMBER FUNC_CALL VAR VAR FOR VAR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR NUMBER IF VAR FUNC_CALL VAR VAR RETURN NUMBER RETURN VAR VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: sP = 0 fP = 0 intervalHeap = [] sumSoFar = 0 while fP < len(arr): sumSoFar += arr[fP] if sumSoFar >= target: if sumSoFar == target: heapq.heappush(intervalHeap, (fP - sP + 1, sP, fP)) while sumSoFar >= target: sumSoFar -= arr[sP] sP += 1 if sumSoFar == target: heapq.heappush(intervalHeap, (fP - sP + 1, sP, fP)) fP += 1 if len(intervalHeap) > 1: first = heapq.heappop(intervalHeap) second = heapq.heappop(intervalHeap) if first[2] < second[1] or second[2] < first[1]: return first[0] + second[0] else: while intervalHeap: third = heapq.heappop(intervalHeap) if third and first[2] < third[1] or third[2] < first[1]: return first[0] + third[0] elif third and second[2] < third[1] or third[2] < second[1]: return second[0] + third[0] return -1
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR WHILE VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER RETURN BIN_OP VAR NUMBER VAR NUMBER WHILE VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER RETURN BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER RETURN BIN_OP VAR NUMBER VAR NUMBER RETURN NUMBER VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: sumArr = [] sumMap = {} sumMap[0] = -1 for i in range(len(arr)): sumArr.append(arr[i] + (sumArr[i - 1] if i - 1 > -1 else 0)) sumMap[sumArr[i]] = i res = math.inf dp = [math.inf for i in range(len(arr))] for i in range(0, len(arr)): if sumMap.get(sumArr[i] - target) != None: dp[i] = min( i - sumMap[sumArr[i] - target], dp[i - 1] if i > 0 else math.inf ) else: dp[i] = dp[i - 1] if i > 0 else math.inf print(dp) for i in range(len(arr) - 1, -1, -1): if sumMap.get(sumArr[i] - target) != None: j = sumMap.get(sumArr[i] - target) print(j) l1 = i - j if j > -1 and dp[j] != math.inf: res = min(res, l1 + dp[j]) return -1 if res == math.inf else res
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR LIST ASSIGN VAR DICT ASSIGN VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF FUNC_CALL VAR BIN_OP VAR VAR VAR NONE ASSIGN VAR VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR VAR VAR NUMBER VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR VAR NUMBER VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF FUNC_CALL VAR BIN_OP VAR VAR VAR NONE ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR RETURN VAR VAR NUMBER VAR VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: N = len(arr) prefix = [N + 1] * N suffix = [N + 1] * N presum = dict() total = 0 presum[0] = -1 for i in range(N): total += arr[i] presum[total] = i prefix[0] = N + 1 total = 0 for i in range(0, N): total += arr[i] t = N + 1 xx = total - target if xx in presum: t = i - presum[xx] prefix[i] = min(prefix[i - 1], t) sufsum = dict() total = 0 sufsum[0] = N for i in range(N - 1, -1, -1): total += arr[i] sufsum[total] = i total = 0 if arr[-1] == target: suffix[-1] = 1 total = arr[-1] for i in range(N - 2, -1, -1): total += arr[i] t = N + 1 xx = total - target if xx in sufsum: t = sufsum[xx] - i suffix[i] = min(suffix[i + 1], t) rtv = N + 1 for i in range(N - 1): cur = prefix[i] + suffix[i + 1] rtv = min(rtv, cur) if rtv > N: return -1 return rtv
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP LIST BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER VAR ASSIGN VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR RETURN NUMBER RETURN VAR VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr, target): result = inf = 2**31 - 1 i = window = count = 0 preMin = deque([(-1, inf)]) for j, num in enumerate(arr): window += num while window > target: window -= arr[i] i += 1 while len(preMin) >= 2 and preMin[1][0] <= i - 1: preMin.popleft() if window == target: curr = j - i + 1 n = preMin[0][1] if result > curr + n: result = curr + n if curr < preMin[-1][-1]: preMin.append((j, curr)) if curr == 1: count += 1 if count == 2: return 2 return result if result < inf else -1
CLASS_DEF FUNC_DEF ASSIGN VAR VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR LIST NUMBER VAR FOR VAR VAR FUNC_CALL VAR VAR VAR VAR WHILE VAR VAR VAR VAR VAR VAR NUMBER WHILE FUNC_CALL VAR VAR NUMBER VAR NUMBER NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER IF VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR IF VAR NUMBER VAR NUMBER IF VAR NUMBER RETURN NUMBER RETURN VAR VAR VAR NUMBER
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: if not arr: return 0 min_at_curr = [float("inf")] * len(arr) start = end = 0 currSum = 0 minSum = float("inf") while end < len(arr): currSum += arr[end] while start <= end and currSum > target: currSum -= arr[start] start += 1 if currSum == target: minSum = min(minSum, min_at_curr[start - 1] + (end - start) + 1) min_at_curr[end] = min(min_at_curr[end - 1], end - start + 1) else: min_at_curr[end] = min_at_curr[end - 1] end += 1 return minSum if minSum != float("inf") else -1
CLASS_DEF FUNC_DEF VAR VAR VAR IF VAR RETURN NUMBER ASSIGN VAR BIN_OP LIST FUNC_CALL VAR STRING FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING WHILE VAR FUNC_CALL VAR VAR VAR VAR VAR WHILE VAR VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER RETURN VAR FUNC_CALL VAR STRING VAR NUMBER VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: n = len(arr) def get_min(arr): min_left = [float("inf")] * n window = 0 l = 0 for r in range(n): window += arr[r] while window > target: window -= arr[l] l += 1 if window == target: min_left[r] = r - l + 1 if r > 0: min_left[r] = min(min_left[r], min_left[r - 1]) return min_left min_left = get_min(arr) min_right = get_min(arr[::-1])[::-1] best = float("inf") for i in range(1, n): best = min(best, min_left[i - 1] + min_right[i]) return best if best < float("inf") else -1
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR BIN_OP LIST FUNC_CALL VAR STRING VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR WHILE VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR RETURN VAR FUNC_CALL VAR STRING VAR NUMBER VAR
Given an array of integers arr and an integer target. You have to find two non-overlapping sub-arrays of arr each with sum equal target. There can be multiple answers so you have to find an answer where the sum of the lengths of the two sub-arrays is minimum. Return the minimum sum of the lengths of the two required sub-arrays, or return -1 if you cannot find such two sub-arrays.   Example 1: Input: arr = [3,2,2,4,3], target = 3 Output: 2 Explanation: Only two sub-arrays have sum = 3 ([3] and [3]). The sum of their lengths is 2. Example 2: Input: arr = [7,3,4,7], target = 7 Output: 2 Explanation: Although we have three non-overlapping sub-arrays of sum = 7 ([7], [3,4] and [7]), but we will choose the first and third sub-arrays as the sum of their lengths is 2. Example 3: Input: arr = [4,3,2,6,2,3,4], target = 6 Output: -1 Explanation: We have only one sub-array of sum = 6. Example 4: Input: arr = [5,5,4,4,5], target = 3 Output: -1 Explanation: We cannot find a sub-array of sum = 3. Example 5: Input: arr = [3,1,1,1,5,1,2,1], target = 3 Output: 3 Explanation: Note that sub-arrays [1,2] and [2,1] cannot be an answer because they overlap.   Constraints: 1 <= arr.length <= 10^5 1 <= arr[i] <= 1000 1 <= target <= 10^8
class Solution: def minSumOfLengths(self, arr: List[int], target: int) -> int: nums = [(0) for i in range(len(arr))] nums[0] = arr[0] for i in range(1, len(arr)): nums[i] = nums[i - 1] + arr[i] best = [float("inf") for i in range(len(arr))] ans = float("inf") size = float("inf") l = 0 r = 0 window = 0 while l <= r and r < len(arr): window += arr[r] while l <= r and window > target: window -= arr[l] l += 1 if window == target: ans = min(ans, r - l + 1 + best[l - 1]) best[r] = min(best[r - 1], r - l + 1) else: best[r] = best[r - 1] r += 1 if ans == float("inf"): return -1 else: return ans
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR STRING VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR WHILE VAR VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR FUNC_CALL VAR STRING RETURN NUMBER RETURN VAR VAR