description
stringlengths
171
4k
code
stringlengths
94
3.98k
normalized_code
stringlengths
57
4.99k
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): for i in range(n): arr1[i] -= arr2[i] m = dict() m[0] = -1 sum = 0 ans = 0 for i in range(n): sum += arr1[i] if sum in m: ans = max(ans, i - m[sum]) else: m[sum] = i return ans
CLASS_DEF FUNC_DEF FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): temp = [] for i in range(len(arr1)): temp.append(arr1[i] - arr2[i]) pre_sum = 0 x = {} count = 0 for i in range(len(temp)): pre_sum += temp[i] if pre_sum == 0: count = i + 1 if pre_sum not in x: x[pre_sum] = i else: count = max(count, i - x[pre_sum]) return count
CLASS_DEF FUNC_DEF ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): for i in range(len(arr1)): arr1[i] = arr1[i] - arr2[i] ans, sum = 0, 0 d = {(0): -1} k = 0 for i in range(len(arr1)): sum += arr1[i] if sum - k in d: ans = max(ans, i - d[sum - k]) else: d[sum] = i return ans
CLASS_DEF FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): maxLen = 0 presum1 = presum2 = 0 diff = [-1] * (2 * n + 1) for i in range(n): presum1 += 1 if arr1[i] == True else 0 presum2 += 1 if arr2[i] == True else 0 curr_diff = presum1 - presum2 diff_index = n + curr_diff if curr_diff == 0: maxLen = i + 1 elif diff[diff_index] == -1: diff[diff_index] = i else: length = i - diff[diff_index] maxLen = max(maxLen, length) return maxLen
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER NUMBER NUMBER VAR VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): diff1 = diff2 = 0 maxlen = 0 diff = {} for i in range(n): diff1 += arr1[i] diff2 += arr2[i] curr_diff = diff1 - diff2 if curr_diff == 0: maxlen = i + 1 elif curr_diff not in diff: diff[curr_diff] = i else: length = i - diff[curr_diff] maxlen = max(maxlen, length) return maxlen
CLASS_DEF FUNC_DEF ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): for i in range(n): arr1[i] = arr1[i] - arr2[i] p = 0 hash = {} ans = 0 for i, el in enumerate(arr1): p += el if p == 0: ans = i + 1 if p in hash: ans = max(ans, i - hash[p]) else: hash[p] = i return ans
CLASS_DEF FUNC_DEF FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): maxlen = 0 total1 = 0 total2 = 0 d = {} for i in range(n): total1 += arr1[i] total2 += arr2[i] currdiff = total1 - total2 if currdiff == 0: maxlen = i + 1 elif currdiff in d: maxlen = max(maxlen, i - d[currdiff]) else: d[currdiff] = i return maxlen def convertToBool(arr): a = [] for x in arr: if x == "1": a.append(True) else: a.append(False) return a if __name__ == "__main__": tc = int(input()) while tc > 0: n = int(input()) arr1 = input().strip().split() arr2 = input().strip().split() arr1 = convertToBool(arr1) arr2 = convertToBool(arr2) ob = Solution() ans = ob.longestCommonSum(arr1, arr2, n) print(ans) tc = tc - 1
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR LIST FOR VAR VAR IF VAR STRING EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN VAR IF VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): d = {} psum1 = psum2 = 0 longest = 0 for i in range(n): psum1 += arr1[i] psum2 += arr2[i] diff = psum1 - psum2 if diff == 0: longest = i + 1 if diff not in d: d[diff] = i else: longest = max(longest, i - d[diff]) return longest
CLASS_DEF FUNC_DEF ASSIGN VAR DICT ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): for i in range(n): if arr2[i] == 1: arr2[i] = -1 sum1 = 0 max1 = 0 d = {} for i in range(n): sum1 += arr1[i] + arr2[i] if sum1 == 0: if i + 1 > max1: max1 = i + 1 elif sum1 not in d: d[sum1] = i else: z = i - d[sum1] if z > max1: max1 = z return max1
CLASS_DEF FUNC_DEF FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR VAR IF VAR NUMBER IF BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): arr = [] for i in range(len(arr1)): arr.append(arr1[i] - arr2[i]) sm = 0 dct = {(0): -1} res = 0 for i in range(len(arr)): sm += arr[i] if sm in dct: res = max(res, i - dct[sm]) else: dct[sm] = i return res
CLASS_DEF FUNC_DEF ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): minidx = dict() minidx[0] = -1 ans = 0 psum = 0 for i in range(n): psum += arr1[i] - arr2[i] if psum in minidx: ans = max(ans, i - minidx[psum]) else: minidx[psum] = i return ans
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): diff_arr = [0] * n for i in range(n): diff_arr[i] = arr1[i] - arr2[i] d = {} prefix_sum = 0 largest = 0 for i in range(n): prefix_sum += diff_arr[i] if prefix_sum == 0: largest = i + 1 if prefix_sum not in d: d[prefix_sum] = i else: largest = max(largest, i - d[prefix_sum]) return largest
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): for i in range(len(arr1)): arr1[i] = arr1[i] - arr2[i] PFS = [0] s = 0 dic = {(0): -1} ans = 0 for i in range(len(arr1)): s = s + arr1[i] if s not in dic: dic[s] = i else: ans = max(ans, i - dic[s]) return ans
CLASS_DEF FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): temp = [(i - j) for i, j in zip(arr1, arr2)] presum = 0 d = {(0): -1} maxlen = 0 for i in range(len(temp)): presum = presum + temp[i] if presum not in d: d[presum] = i else: maxlen = max(i - d[presum], maxlen) return maxlen
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP VAR VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): n = len(arr1) diff_arr = [(arr1[i] - arr2[i]) for i in range(n)] for i in range(1, n): diff_arr[i] += diff_arr[i - 1] max_len = 0 hm = {} for i in range(n): psum = diff_arr[i] if psum == 0: max_len = max(max_len, i + 1) if psum not in hm: hm[psum] = i continue max_len = max(max_len, i - hm[psum]) return max_len
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): d = {} maxi = 0 pre1 = 0 pre2 = 0 for i in range(n): pre1 += arr1[i] pre2 += arr2[i] diff = pre1 - pre2 if diff == 0: maxi = max(maxi, i + 1) elif diff in d: maxi = max(maxi, i - d[diff]) else: d[diff] = i return maxi
CLASS_DEF FUNC_DEF ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, a, b, n): d = {(0): -1} res = s = 0 for i, (x, y) in enumerate(zip(a, b)): s += x + (-y if y else 0) if s not in d: d[s] = i res = max(res, i - d[s]) return res
CLASS_DEF FUNC_DEF ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): d = {(0): -1} ls = s1 = s2 = 0 for i in range(n): s1 += arr1[i] s2 += arr2[i] c = s1 - s2 if c in d: ls = max(ls, i - d[c]) else: d[c] = i return ls
CLASS_DEF FUNC_DEF ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): d = {} cursum = 0 maxlen = 0 for i in range(n): cursum += arr1[i] - arr2[i] if arr1[i] - arr2[i] == 0 and maxlen == 0: m = 1 if cursum == 0: maxlen = i + 1 if cursum in d: maxlen = max(maxlen, i - d[cursum]) else: d[cursum] = i return maxlen
CLASS_DEF FUNC_DEF ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR VAR IF BIN_OP VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): arr = [0] * n for i in range(n): arr[i] = arr1[i] - arr2[i] d = {(0): -1} ans = 0 sm = 0 for i in range(n): sm += arr[i] if sm in d: ans = max(ans, i - d[sm]) else: d[sm] = i return ans
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): arr = [0] * n for i in range(n): arr[i] = arr1[i] - arr2[i] max_span = 0 ps = 0 ps_dict = {} for i in range(n): ps += arr[i] if ps == 0: max_span = max(max_span, i + 1) elif ps in ps_dict: max_span = max(max_span, i - ps_dict[ps]) else: ps_dict[ps] = i return max_span
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): diff = [(arr1[i] - arr2[i]) for i in range(n)] d, end_idx = {}, -1 tot = max_len = 0 for i in range(n): tot += diff[i] if tot == 0: max_len, end_idx = i + 1, i if d.get(tot, None) is not None: if max_len < i - d[tot]: max_len, end_idx = i - d[tot], i else: d[tot] = i return end_idx + 1 - (end_idx - max_len + 1)
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP VAR VAR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR DICT NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER VAR IF FUNC_CALL VAR VAR NONE NONE IF VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR VAR RETURN BIN_OP BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): diff = [(-1) for i in range(2 * n + 1)] s1 = 0 s2 = 0 mle = 0 for i in range(n): s1 += arr1[i] s2 += arr2[i] d = s1 - s2 index = n + d if d == 0: mle = i + 1 elif diff[index] != -1: l = i - diff[index] if l > mle: mle = l elif diff[index] == -1: diff[index] = i return mle
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): count, ans = 0, 0 dic = {} arr = [] for i, j in zip(arr1, arr2): arr.append(i - j) for i in range(n): count += arr[i] if count == 0: ans = i + 1 elif count not in dic: dic[count] = i elif count in dic: ans = max(ans, i - dic[count]) return ans
CLASS_DEF FUNC_DEF ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR DICT ASSIGN VAR LIST FOR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): arr3 = [] sum = 0 mx = 0 mp = {(0): -1} zip_object = zip(arr1, arr2) for arr1, arr2 in zip_object: arr3.append(arr1 - arr2) for i in range(n): sum += arr3[i] if sum in mp: mx = max(mx, i - mp[sum]) else: mp[sum] = i return mx
CLASS_DEF FUNC_DEF ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FOR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): temp = [] for i in range(n): temp.append(arr1[i] - arr2[i]) ans = 0 csum = 0 d = {} for i in range(len(arr1)): csum += temp[i] if csum == 0: ans = i + 1 elif csum - 0 in d: ans = max(ans, i - d[csum - 0]) if csum not in d: d[csum] = i return ans
CLASS_DEF FUNC_DEF ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): for i in range(n): arr1[i] = arr1[i] - arr2[i] dic = {(0): -1} m = 0 s = 0 for i in range(n): s += arr1[i] if s not in dic: dic[s] = i else: m = max(m, i - dic[s]) return m
CLASS_DEF FUNC_DEF FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): for i in range(1, n): arr1[i] += arr1[i - 1] arr2[i] += arr2[i - 1] lst = [(arr1[i] - arr2[i]) for i in range(n)] rec = {(0): -1} ans = 0 for i in range(n): if lst[i] in rec: ans = max(ans, i - rec[lst[i]]) else: rec[lst[i]] = i return ans
CLASS_DEF FUNC_DEF FOR VAR FUNC_CALL VAR NUMBER VAR VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): d = {} cursum = 0 mlen = 0 temp = [0] * n for i in range(n): temp[i] = arr1[i] - arr2[i] for i in range(n): cursum += temp[i] if cursum == 0: mlen = i + 1 if cursum not in d: d[cursum] = i if cursum in d: mlen = max(mlen, i - d[cursum]) return mlen return mlen
CLASS_DEF FUNC_DEF ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR RETURN VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): counter = 0 max_len = 0 seen_count = {(0): -1} for i in range(len(arr1)): if arr1[i] == 0 and arr2[i] == 1: counter -= 1 elif arr1[i] == 1 and arr2[i] == 0: counter += 1 if seen_count.get(counter) != None: max_len = max(i - seen_count[counter], max_len) else: seen_count[counter] = i return max_len
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER IF VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER IF FUNC_CALL VAR VAR NONE ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): mx = 0 mp = dict() mp[0] = -1 sum = 0 for i in range(n): arr1[i] = arr1[i] - arr2[i] sum += arr1[i] if sum in mp: mx = max(mx, i - mp[sum]) else: mp[sum] = i return mx
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): arr = [] for i in range(n): arr.append(arr1[i] - arr2[i]) sm = 0 count = 0 mx = 0 d = dict() d[0] = -1 for i in range(n): sm += arr[i] if sm in d: mx = max(mx, i - d[sm]) if sm not in d: d[sm] = i return mx
CLASS_DEF FUNC_DEF ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): a = {(0): 0} s1 = 0 s2 = 0 ans = 0 for i in range(n): s1 += arr1[i] s2 += arr2[i] if s1 - s2 == 0: ans = i + 1 elif s1 - s2 in a: ans = max(ans, i - a[s1 - s2]) elif s1 - s2 not in a: a[s1 - s2] = i return ans
CLASS_DEF FUNC_DEF ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): diffArr = [(arr1[i] - arr2[i]) for i in range(len(arr1))] j = 0 prefSum = 0 maxLen = 0 st = {} while j < len(arr1): prefSum += diffArr[j] if prefSum == 0: maxLen = max(maxLen, j + 1) elif prefSum not in st: st[prefSum] = j else: maxLen = max(maxLen, j - st[prefSum]) j += 1 return maxLen
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP VAR VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT WHILE VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR NUMBER RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): total1 = total2 = 0 hmap = {(0): -1} ans = 0 for i in range(n): total1 += arr1[i] total2 += arr2[i] if total1 - total2 in hmap: ans = max(ans, i - hmap[total1 - total2]) else: hmap[total1 - total2] = i return ans
CLASS_DEF FUNC_DEF ASSIGN VAR VAR NUMBER ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, a1, a2, n): s = [] s1 = 0 s2 = 0 df = {(0): -1} dl = {} ans = 0 for i in range(n): s1 += a1[i] s2 += a2[i] if s1 == s2: ans = 1 s.append(s1 - s2) if s1 - s2 not in df.keys(): df[s1 - s2] = i else: dl[s1 - s2] = i for i in range(n): if s[i] in dl.keys(): ans = max(ans, dl[s[i]] - df[s[i]]) return ans
CLASS_DEF FUNC_DEF ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): arr = [] for i in range(n): arr.append(arr1[i] - arr2[i]) dic = {} s = 0 for i in range(n): s = s + arr[i] arr[i] = s for i in arr: dic[i] = -1 for i in range(n): if dic[arr[i]] == -1: dic[arr[i]] = i ans = 0 for i in range(n): if arr[i] == 0: ans = max(ans, i + 1) else: k = dic.get(arr[i], -1) if k != -1 and i != k: ans = max(ans, i - k) return ans
CLASS_DEF FUNC_DEF ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR FOR VAR VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): arr1[0] = arr1[0] - arr2[0] dic = {(0): 0} for i in range(1, n): arr1[i] = arr1[i] - arr2[i] arr1[i] = arr1[i] + arr1[i - 1] c = 0 for i in range(n): if arr1[i] == 0: c = i + 1 if arr1[i] in dic: b = abs(i - dic[arr1[i]]) c = max(c, b) else: dic[arr1[i]] = i return c
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR DICT NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): count = 0 mxVal = 0 s1 = 0 s2 = 0 dif = {} for i in range(n): s1 = s1 + arr1[i] s2 = s2 + arr2[i] diff = s1 - s2 if diff == 0: mxVal = i + 1 elif diff not in dif: dif[diff] = i else: count = i - dif[diff] mxVal = max(mxVal, count) return mxVal
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): arr3 = [] pre_sum = 0 res = 0 length = 0 m = {} for i in range(n): arr3.append(arr1[i] - arr2[i]) for i in range(n): pre_sum += arr3[i] if pre_sum == 0: res = i + 1 if pre_sum in m: length = i - m[pre_sum] if length > res: res = length if pre_sum not in m: m[pre_sum] = i return res
CLASS_DEF FUNC_DEF ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR VAR VAR RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, A, B, n): sumA = [0] sumB = [0] length = len(A) ans = 0 for i in range(length): sumA.append(sumA[-1] + A[i]) sumB.append(sumB[-1] + B[i]) diff = [(sumAi - sumBi) for sumAi, sumBi in zip(sumA, sumB)] diff_pos = {} for pos, d in enumerate(diff): if d in diff_pos: diff_pos[d].append(pos) else: diff_pos[d] = [pos] ans = 0 for k in diff_pos: if len(diff_pos[k]) >= 2: if ans < diff_pos[k][-1] - diff_pos[k][0]: ans = diff_pos[k][-1] - diff_pos[k][0] return ans
CLASS_DEF FUNC_DEF ASSIGN VAR LIST NUMBER ASSIGN VAR LIST NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR DICT FOR VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR LIST VAR ASSIGN VAR NUMBER FOR VAR VAR IF FUNC_CALL VAR VAR VAR NUMBER IF VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER RETURN VAR
Given two binary arrays arr1[] and arr2[] of same size N. Find length of the longest common span [i, j] where j>=i such that arr1[i] + arr1[i+1] + …. + arr1[j] = arr2[i] + arr2[i+1] + …. + arr2[j]. Example 1: Input: N = 6 Arr1[] = {0, 1, 0, 0, 0, 0} Arr2[] = {1, 0, 1, 0, 0, 1} Output: 4 Explanation: The longest span with same sum is from index 1 to 4 following zero based indexing. Your Task: You don't need to read input or print anything. Complete the function longestCommonSum() which takes two arrays arr1, arr2 and integer n as input parameters and returns the length of the longest common span. Expected Time Complexity: O(N) Expected Auxiliary Space: O(N) Constraints: 1 <= N <= 10^{5} 0 <= Arr1[i], Arr2[i] <= 1
class Solution: def longestCommonSum(self, arr1, arr2, n): pre1 = 0 pre2 = 0 diff = {} diff[0] = -1 ma = 0 for i in range(n): pre1 += arr1[i] pre2 += arr2[i] if pre1 - pre2 not in diff: diff[pre1 - pre2] = i else: ma = max(ma, i - diff[pre1 - pre2]) return ma
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT ASSIGN VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR RETURN VAR
Given an array containing N integers and a positive integer K, find the length of the longest sub array with sum of the elements divisible by the given value K. Example 1: Input: A[] = {2, 7, 6, 1, 4, 5} K = 3 Output: 4 Explanation:The subarray is {7, 6, 1, 4} with sum 18, which is divisible by 3. Example 2: Input: A[] = {-2, 2, -5, 12, -11, -1, 7} K = 3 Output: 5 Explanation: The subarray is {2,-5,12,-11,-1} with sum -3, which is divisible by 3. Your Task: The input is already taken care of by the driver code. You only need to complete the function longSubarrWthSumDivByK() that takes an array (arr), sizeOfArray (n), positive integer K, and return the length of the longest subarray which has sum divisible by K. The driver code takes care of the printing. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1<=N,K<=10^{6} -10^{5}<=A[i]<=10^{5}
class Solution: def longSubarrWthSumDivByK(self, arr, n, K): hashTable = {(0): -1} _sum = 0 ans = 0 for i in range(n): _sum += arr[i] modulus = _sum % K if modulus in hashTable: ans = max(ans, i - hashTable[modulus]) else: hashTable[modulus] = i return ans
CLASS_DEF FUNC_DEF ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR
Given an array containing N integers and a positive integer K, find the length of the longest sub array with sum of the elements divisible by the given value K. Example 1: Input: A[] = {2, 7, 6, 1, 4, 5} K = 3 Output: 4 Explanation:The subarray is {7, 6, 1, 4} with sum 18, which is divisible by 3. Example 2: Input: A[] = {-2, 2, -5, 12, -11, -1, 7} K = 3 Output: 5 Explanation: The subarray is {2,-5,12,-11,-1} with sum -3, which is divisible by 3. Your Task: The input is already taken care of by the driver code. You only need to complete the function longSubarrWthSumDivByK() that takes an array (arr), sizeOfArray (n), positive integer K, and return the length of the longest subarray which has sum divisible by K. The driver code takes care of the printing. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1<=N,K<=10^{6} -10^{5}<=A[i]<=10^{5}
class Solution: def longSubarrWthSumDivByK(self, arr, n, K): mp = dict() mp[0] = -1 Sum = 0 max_len = 0 for i in range(n): Sum += arr[i] rem = Sum % K if rem < 0: rem += K if rem not in mp: mp[rem] = i else: max_len = max(max_len, i - mp[rem]) return max_len
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER VAR VAR IF VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR RETURN VAR
Given an array containing N integers and a positive integer K, find the length of the longest sub array with sum of the elements divisible by the given value K. Example 1: Input: A[] = {2, 7, 6, 1, 4, 5} K = 3 Output: 4 Explanation:The subarray is {7, 6, 1, 4} with sum 18, which is divisible by 3. Example 2: Input: A[] = {-2, 2, -5, 12, -11, -1, 7} K = 3 Output: 5 Explanation: The subarray is {2,-5,12,-11,-1} with sum -3, which is divisible by 3. Your Task: The input is already taken care of by the driver code. You only need to complete the function longSubarrWthSumDivByK() that takes an array (arr), sizeOfArray (n), positive integer K, and return the length of the longest subarray which has sum divisible by K. The driver code takes care of the printing. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1<=N,K<=10^{6} -10^{5}<=A[i]<=10^{5}
class Solution: def longSubarrWthSumDivByK(self, arr, n, K): prefix = [0] for i in range(n): prefix.append(prefix[-1] + arr[i]) res = 0 remain = {} for i in range(n + 1): remai = prefix[i] % K if remai not in remain: remain[remai] = i else: res = max(res, i - remain[remai]) return res
CLASS_DEF FUNC_DEF ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER ASSIGN VAR DICT FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR RETURN VAR
Given an array containing N integers and a positive integer K, find the length of the longest sub array with sum of the elements divisible by the given value K. Example 1: Input: A[] = {2, 7, 6, 1, 4, 5} K = 3 Output: 4 Explanation:The subarray is {7, 6, 1, 4} with sum 18, which is divisible by 3. Example 2: Input: A[] = {-2, 2, -5, 12, -11, -1, 7} K = 3 Output: 5 Explanation: The subarray is {2,-5,12,-11,-1} with sum -3, which is divisible by 3. Your Task: The input is already taken care of by the driver code. You only need to complete the function longSubarrWthSumDivByK() that takes an array (arr), sizeOfArray (n), positive integer K, and return the length of the longest subarray which has sum divisible by K. The driver code takes care of the printing. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1<=N,K<=10^{6} -10^{5}<=A[i]<=10^{5}
class Solution: def longSubarrWthSumDivByK(self, arr, n, K): total = 0 maximum = 0 dict1 = dict() for i in range(n): total += arr[i] if total % K == 0: maximum = max(maximum, i + 1) if total % K in dict1: maximum = max(maximum, i - dict1[total % K]) else: dict1[total % K] = i return maximum
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR VAR VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR RETURN VAR
Given an array containing N integers and a positive integer K, find the length of the longest sub array with sum of the elements divisible by the given value K. Example 1: Input: A[] = {2, 7, 6, 1, 4, 5} K = 3 Output: 4 Explanation:The subarray is {7, 6, 1, 4} with sum 18, which is divisible by 3. Example 2: Input: A[] = {-2, 2, -5, 12, -11, -1, 7} K = 3 Output: 5 Explanation: The subarray is {2,-5,12,-11,-1} with sum -3, which is divisible by 3. Your Task: The input is already taken care of by the driver code. You only need to complete the function longSubarrWthSumDivByK() that takes an array (arr), sizeOfArray (n), positive integer K, and return the length of the longest subarray which has sum divisible by K. The driver code takes care of the printing. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1<=N,K<=10^{6} -10^{5}<=A[i]<=10^{5}
class Solution: def longSubarrWthSumDivByK(self, arr, n, K): d = {} curr = 0 res = 0 for i in range(n): curr += arr[i] curr %= K if curr == 0: res = max(res, i + 1) elif curr in d: res = max(res, i - d[curr]) else: d[curr] = i return res
CLASS_DEF FUNC_DEF ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR
Given an array containing N integers and a positive integer K, find the length of the longest sub array with sum of the elements divisible by the given value K. Example 1: Input: A[] = {2, 7, 6, 1, 4, 5} K = 3 Output: 4 Explanation:The subarray is {7, 6, 1, 4} with sum 18, which is divisible by 3. Example 2: Input: A[] = {-2, 2, -5, 12, -11, -1, 7} K = 3 Output: 5 Explanation: The subarray is {2,-5,12,-11,-1} with sum -3, which is divisible by 3. Your Task: The input is already taken care of by the driver code. You only need to complete the function longSubarrWthSumDivByK() that takes an array (arr), sizeOfArray (n), positive integer K, and return the length of the longest subarray which has sum divisible by K. The driver code takes care of the printing. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1<=N,K<=10^{6} -10^{5}<=A[i]<=10^{5}
class Solution: def longSubarrWthSumDivByK(self, arr, n, k): d = {} s = 0 ans = 0 d[0] = -1 for i in range(n): s += arr[i] if d.get(s % k, -2) == -2: d[s % k] = i else: ans = max(ans, i - d[s % k]) return ans
CLASS_DEF FUNC_DEF ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR IF FUNC_CALL VAR BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR RETURN VAR
Given an array containing N integers and a positive integer K, find the length of the longest sub array with sum of the elements divisible by the given value K. Example 1: Input: A[] = {2, 7, 6, 1, 4, 5} K = 3 Output: 4 Explanation:The subarray is {7, 6, 1, 4} with sum 18, which is divisible by 3. Example 2: Input: A[] = {-2, 2, -5, 12, -11, -1, 7} K = 3 Output: 5 Explanation: The subarray is {2,-5,12,-11,-1} with sum -3, which is divisible by 3. Your Task: The input is already taken care of by the driver code. You only need to complete the function longSubarrWthSumDivByK() that takes an array (arr), sizeOfArray (n), positive integer K, and return the length of the longest subarray which has sum divisible by K. The driver code takes care of the printing. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1<=N,K<=10^{6} -10^{5}<=A[i]<=10^{5}
class Solution: def longSubarrWthSumDivByK(self, arr, n, k): arr = [(i % k) for i in arr] a = [0] for i in arr: a.append((a[-1] + i) % k) m = 0 dic = {} for i in range(len(a)): if a[i] in dic: m = max(m, i - dic[a[i]]) else: dic[a[i]] = i return m
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR LIST NUMBER FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER ASSIGN VAR DICT FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR RETURN VAR
Given an array containing N integers and a positive integer K, find the length of the longest sub array with sum of the elements divisible by the given value K. Example 1: Input: A[] = {2, 7, 6, 1, 4, 5} K = 3 Output: 4 Explanation:The subarray is {7, 6, 1, 4} with sum 18, which is divisible by 3. Example 2: Input: A[] = {-2, 2, -5, 12, -11, -1, 7} K = 3 Output: 5 Explanation: The subarray is {2,-5,12,-11,-1} with sum -3, which is divisible by 3. Your Task: The input is already taken care of by the driver code. You only need to complete the function longSubarrWthSumDivByK() that takes an array (arr), sizeOfArray (n), positive integer K, and return the length of the longest subarray which has sum divisible by K. The driver code takes care of the printing. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1<=N,K<=10^{6} -10^{5}<=A[i]<=10^{5}
class Solution: def longSubarrWthSumDivByK(self, arr, n, k): pre = [0] for i in range(n): pre.append((pre[-1] + arr[i]) % k) a = [-1] * k ans = 0 for i in range(n + 1): if a[pre[i]] == -1: a[pre[i]] = i else: ans = max(ans, i - a[pre[i]]) return ans
CLASS_DEF FUNC_DEF ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR RETURN VAR
Given an array containing N integers and a positive integer K, find the length of the longest sub array with sum of the elements divisible by the given value K. Example 1: Input: A[] = {2, 7, 6, 1, 4, 5} K = 3 Output: 4 Explanation:The subarray is {7, 6, 1, 4} with sum 18, which is divisible by 3. Example 2: Input: A[] = {-2, 2, -5, 12, -11, -1, 7} K = 3 Output: 5 Explanation: The subarray is {2,-5,12,-11,-1} with sum -3, which is divisible by 3. Your Task: The input is already taken care of by the driver code. You only need to complete the function longSubarrWthSumDivByK() that takes an array (arr), sizeOfArray (n), positive integer K, and return the length of the longest subarray which has sum divisible by K. The driver code takes care of the printing. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1<=N,K<=10^{6} -10^{5}<=A[i]<=10^{5}
class Solution: def longSubarrWthSumDivByK(self, arr, n, K): if K == 1: return n a = [] a.append(arr[0] % K) for i in range(1, n): a.append((a[i - 1] + arr[i]) % K) d = {} maxi = -999 for i in range(n): if a[i] == 0: maxi = max(maxi, i + 1) elif a[i] not in d.keys(): d[a[i]] = i elif i - d[a[i]] > maxi: maxi = i - d[a[i]] if maxi == -999: return 0 return maxi
CLASS_DEF FUNC_DEF IF VAR NUMBER RETURN VAR ASSIGN VAR LIST EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR VAR FUNC_CALL VAR ASSIGN VAR VAR VAR VAR IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR IF VAR NUMBER RETURN NUMBER RETURN VAR
Given an array containing N integers and a positive integer K, find the length of the longest sub array with sum of the elements divisible by the given value K. Example 1: Input: A[] = {2, 7, 6, 1, 4, 5} K = 3 Output: 4 Explanation:The subarray is {7, 6, 1, 4} with sum 18, which is divisible by 3. Example 2: Input: A[] = {-2, 2, -5, 12, -11, -1, 7} K = 3 Output: 5 Explanation: The subarray is {2,-5,12,-11,-1} with sum -3, which is divisible by 3. Your Task: The input is already taken care of by the driver code. You only need to complete the function longSubarrWthSumDivByK() that takes an array (arr), sizeOfArray (n), positive integer K, and return the length of the longest subarray which has sum divisible by K. The driver code takes care of the printing. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1<=N,K<=10^{6} -10^{5}<=A[i]<=10^{5}
class Solution: def longSubarrWthSumDivByK(self, arr, n, K): c, lon = 0, 0 dic = {} for i in range(n): c += arr[i] if c % K == 0: lon = max(i + 1, lon) if c % K in dic: lon = max(i + 1 - dic[c % K], lon) if c not in dic: dic[c] = i + 1 if c % K not in dic: dic[c % K] = i + 1 return lon
CLASS_DEF FUNC_DEF ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR VAR VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP VAR NUMBER RETURN VAR
Given an array containing N integers and a positive integer K, find the length of the longest sub array with sum of the elements divisible by the given value K. Example 1: Input: A[] = {2, 7, 6, 1, 4, 5} K = 3 Output: 4 Explanation:The subarray is {7, 6, 1, 4} with sum 18, which is divisible by 3. Example 2: Input: A[] = {-2, 2, -5, 12, -11, -1, 7} K = 3 Output: 5 Explanation: The subarray is {2,-5,12,-11,-1} with sum -3, which is divisible by 3. Your Task: The input is already taken care of by the driver code. You only need to complete the function longSubarrWthSumDivByK() that takes an array (arr), sizeOfArray (n), positive integer K, and return the length of the longest subarray which has sum divisible by K. The driver code takes care of the printing. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1<=N,K<=10^{6} -10^{5}<=A[i]<=10^{5}
class Solution: def longSubarrWthSumDivByK(self, arr, n, k): d = [0] * n cu = 0 for i in range(n): cu = cu + arr[i] d[i] = cu m = {} ans = 0 for i in range(len(d)): q = d[i] % k if q in m: ans = max(ans, i - m[q]) else: m[q] = i if q == 0: ans = max(ans, i + 1) return ans
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER RETURN VAR
Given an array containing N integers and a positive integer K, find the length of the longest sub array with sum of the elements divisible by the given value K. Example 1: Input: A[] = {2, 7, 6, 1, 4, 5} K = 3 Output: 4 Explanation:The subarray is {7, 6, 1, 4} with sum 18, which is divisible by 3. Example 2: Input: A[] = {-2, 2, -5, 12, -11, -1, 7} K = 3 Output: 5 Explanation: The subarray is {2,-5,12,-11,-1} with sum -3, which is divisible by 3. Your Task: The input is already taken care of by the driver code. You only need to complete the function longSubarrWthSumDivByK() that takes an array (arr), sizeOfArray (n), positive integer K, and return the length of the longest subarray which has sum divisible by K. The driver code takes care of the printing. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1<=N,K<=10^{6} -10^{5}<=A[i]<=10^{5}
class Solution: def longSubarrWthSumDivByK(self, arr, n, K): x = [float("inf")] * K x[0] = -1 output = 0 cur = 0 for i, num in enumerate(arr): cur += num temp = cur % K if x[temp] == float("inf"): x[temp] = i else: output = max(i - x[temp], output) return output
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP LIST FUNC_CALL VAR STRING VAR ASSIGN VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR FUNC_CALL VAR STRING ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR RETURN VAR
Given an array containing N integers and a positive integer K, find the length of the longest sub array with sum of the elements divisible by the given value K. Example 1: Input: A[] = {2, 7, 6, 1, 4, 5} K = 3 Output: 4 Explanation:The subarray is {7, 6, 1, 4} with sum 18, which is divisible by 3. Example 2: Input: A[] = {-2, 2, -5, 12, -11, -1, 7} K = 3 Output: 5 Explanation: The subarray is {2,-5,12,-11,-1} with sum -3, which is divisible by 3. Your Task: The input is already taken care of by the driver code. You only need to complete the function longSubarrWthSumDivByK() that takes an array (arr), sizeOfArray (n), positive integer K, and return the length of the longest subarray which has sum divisible by K. The driver code takes care of the printing. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1<=N,K<=10^{6} -10^{5}<=A[i]<=10^{5}
class Solution: def longSubarrWthSumDivByK(self, arr, n, k): pfSum = [] a = 0 for i in range(n): a += arr[i] pfSum.append(a) dic = {} ans = 0 for i in range(n): val = pfSum[i] if val % k == 0: ans = max(ans, i + 1) if val % k not in dic: dic[val % k] = i else: ans = max(ans, i - dic[val % k]) return ans
CLASS_DEF FUNC_DEF ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR RETURN VAR
Given an array containing N integers and a positive integer K, find the length of the longest sub array with sum of the elements divisible by the given value K. Example 1: Input: A[] = {2, 7, 6, 1, 4, 5} K = 3 Output: 4 Explanation:The subarray is {7, 6, 1, 4} with sum 18, which is divisible by 3. Example 2: Input: A[] = {-2, 2, -5, 12, -11, -1, 7} K = 3 Output: 5 Explanation: The subarray is {2,-5,12,-11,-1} with sum -3, which is divisible by 3. Your Task: The input is already taken care of by the driver code. You only need to complete the function longSubarrWthSumDivByK() that takes an array (arr), sizeOfArray (n), positive integer K, and return the length of the longest subarray which has sum divisible by K. The driver code takes care of the printing. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1<=N,K<=10^{6} -10^{5}<=A[i]<=10^{5}
class Solution: def longSubarrWthSumDivByK(self, arr, n, k): prefix_sum = [0] * (n + 1) for i in range(1, n + 1): prefix_sum[i] = prefix_sum[i - 1] + arr[i - 1] max_len = 0 mod_map = {} for i in range(n + 1): mod = prefix_sum[i] % k if mod in mod_map: max_len = max(max_len, i - mod_map[mod]) else: mod_map[mod] = i return max_len
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR
Given an array containing N integers and a positive integer K, find the length of the longest sub array with sum of the elements divisible by the given value K. Example 1: Input: A[] = {2, 7, 6, 1, 4, 5} K = 3 Output: 4 Explanation:The subarray is {7, 6, 1, 4} with sum 18, which is divisible by 3. Example 2: Input: A[] = {-2, 2, -5, 12, -11, -1, 7} K = 3 Output: 5 Explanation: The subarray is {2,-5,12,-11,-1} with sum -3, which is divisible by 3. Your Task: The input is already taken care of by the driver code. You only need to complete the function longSubarrWthSumDivByK() that takes an array (arr), sizeOfArray (n), positive integer K, and return the length of the longest subarray which has sum divisible by K. The driver code takes care of the printing. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1<=N,K<=10^{6} -10^{5}<=A[i]<=10^{5}
class Solution: def longSubarrWthSumDivByK(self, arr, n, K): max_l = 0 mod_arr = [0] * n cur_sum = 0 maps = {} for i in range(n): cur_sum += arr[i] mod_arr[i] = (cur_sum % K + K) % K if mod_arr[i] == 0: max_l = i + 1 elif mod_arr[i] not in maps: maps[mod_arr[i]] = i elif max_l < i - maps[mod_arr[i]]: max_l = i - maps[mod_arr[i]] return max_l
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR IF VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR VAR IF VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR RETURN VAR
Given an array containing N integers and a positive integer K, find the length of the longest sub array with sum of the elements divisible by the given value K. Example 1: Input: A[] = {2, 7, 6, 1, 4, 5} K = 3 Output: 4 Explanation:The subarray is {7, 6, 1, 4} with sum 18, which is divisible by 3. Example 2: Input: A[] = {-2, 2, -5, 12, -11, -1, 7} K = 3 Output: 5 Explanation: The subarray is {2,-5,12,-11,-1} with sum -3, which is divisible by 3. Your Task: The input is already taken care of by the driver code. You only need to complete the function longSubarrWthSumDivByK() that takes an array (arr), sizeOfArray (n), positive integer K, and return the length of the longest subarray which has sum divisible by K. The driver code takes care of the printing. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1<=N,K<=10^{6} -10^{5}<=A[i]<=10^{5}
class Solution: def longSubarrWthSumDivByK(self, arr, n, K): d = {(0): -1} ans = 0 s = 0 k = K for i in range(n): s = s + arr[i] r = s % k if r not in d: d[r] = i else: ans = max(ans, i - d[r]) return ans
CLASS_DEF FUNC_DEF ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR RETURN VAR
Given an array containing N integers and a positive integer K, find the length of the longest sub array with sum of the elements divisible by the given value K. Example 1: Input: A[] = {2, 7, 6, 1, 4, 5} K = 3 Output: 4 Explanation:The subarray is {7, 6, 1, 4} with sum 18, which is divisible by 3. Example 2: Input: A[] = {-2, 2, -5, 12, -11, -1, 7} K = 3 Output: 5 Explanation: The subarray is {2,-5,12,-11,-1} with sum -3, which is divisible by 3. Your Task: The input is already taken care of by the driver code. You only need to complete the function longSubarrWthSumDivByK() that takes an array (arr), sizeOfArray (n), positive integer K, and return the length of the longest subarray which has sum divisible by K. The driver code takes care of the printing. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1<=N,K<=10^{6} -10^{5}<=A[i]<=10^{5}
class Solution: def longSubarrWthSumDivByK(self, arr, n, k): d = {} sum = 0 mx = 0 rem = 0 for i in range(len(arr)): sum += arr[i] rem = sum % k if rem == 0: mx = max(mx, i + 1) if rem < 0: rem += k if rem in d.keys(): mx = max(mx, i - d[rem]) else: d[rem] = i return mx
CLASS_DEF FUNC_DEF ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR NUMBER VAR VAR IF VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR
Given an array containing N integers and a positive integer K, find the length of the longest sub array with sum of the elements divisible by the given value K. Example 1: Input: A[] = {2, 7, 6, 1, 4, 5} K = 3 Output: 4 Explanation:The subarray is {7, 6, 1, 4} with sum 18, which is divisible by 3. Example 2: Input: A[] = {-2, 2, -5, 12, -11, -1, 7} K = 3 Output: 5 Explanation: The subarray is {2,-5,12,-11,-1} with sum -3, which is divisible by 3. Your Task: The input is already taken care of by the driver code. You only need to complete the function longSubarrWthSumDivByK() that takes an array (arr), sizeOfArray (n), positive integer K, and return the length of the longest subarray which has sum divisible by K. The driver code takes care of the printing. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1<=N,K<=10^{6} -10^{5}<=A[i]<=10^{5}
class Solution: def longSubarrWthSumDivByK(self, arr, n, k): prerem = [0] * n res = 0 count, maxlen = 0, 0 for i in range(n): res += arr[i] prerem[i] = res % k d = {} d[0] = -1 for i in range(n): if prerem[i] not in d: d[prerem[i]] = i else: count = i - d[prerem[i]] maxlen = max(maxlen, count) return maxlen
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR ASSIGN VAR DICT ASSIGN VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR
Given an array containing N integers and a positive integer K, find the length of the longest sub array with sum of the elements divisible by the given value K. Example 1: Input: A[] = {2, 7, 6, 1, 4, 5} K = 3 Output: 4 Explanation:The subarray is {7, 6, 1, 4} with sum 18, which is divisible by 3. Example 2: Input: A[] = {-2, 2, -5, 12, -11, -1, 7} K = 3 Output: 5 Explanation: The subarray is {2,-5,12,-11,-1} with sum -3, which is divisible by 3. Your Task: The input is already taken care of by the driver code. You only need to complete the function longSubarrWthSumDivByK() that takes an array (arr), sizeOfArray (n), positive integer K, and return the length of the longest subarray which has sum divisible by K. The driver code takes care of the printing. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1<=N,K<=10^{6} -10^{5}<=A[i]<=10^{5}
class Solution: def longSubarrWthSumDivByK(self, arr, n, k): um = {} max_len = 0 curr_sum = 0 for i in range(n): curr_sum += arr[i] mod = (curr_sum % k + k) % k if mod == 0: max_len = i + 1 elif mod in um.keys(): if max_len < i - um[mod]: max_len = i - um[mod] else: um[mod] = i return max_len
CLASS_DEF FUNC_DEF ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR FUNC_CALL VAR IF VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR
Given an array containing N integers and a positive integer K, find the length of the longest sub array with sum of the elements divisible by the given value K. Example 1: Input: A[] = {2, 7, 6, 1, 4, 5} K = 3 Output: 4 Explanation:The subarray is {7, 6, 1, 4} with sum 18, which is divisible by 3. Example 2: Input: A[] = {-2, 2, -5, 12, -11, -1, 7} K = 3 Output: 5 Explanation: The subarray is {2,-5,12,-11,-1} with sum -3, which is divisible by 3. Your Task: The input is already taken care of by the driver code. You only need to complete the function longSubarrWthSumDivByK() that takes an array (arr), sizeOfArray (n), positive integer K, and return the length of the longest subarray which has sum divisible by K. The driver code takes care of the printing. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1<=N,K<=10^{6} -10^{5}<=A[i]<=10^{5}
class Solution: def longSubarrWthSumDivByK(self, arr, n, k): um = {} mod_arr = [(0) for i in range(n)] max_len = 0 curr_sum = 0 for i in range(n): curr_sum += arr[i] mod_arr[i] = curr_sum % k if mod_arr[i] == 0: max_len = i + 1 elif mod_arr[i] not in um: um[mod_arr[i]] = i elif max_len < i - um[mod_arr[i]]: max_len = i - um[mod_arr[i]] return max_len
CLASS_DEF FUNC_DEF ASSIGN VAR DICT ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR IF VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR VAR IF VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR RETURN VAR
Given an array containing N integers and a positive integer K, find the length of the longest sub array with sum of the elements divisible by the given value K. Example 1: Input: A[] = {2, 7, 6, 1, 4, 5} K = 3 Output: 4 Explanation:The subarray is {7, 6, 1, 4} with sum 18, which is divisible by 3. Example 2: Input: A[] = {-2, 2, -5, 12, -11, -1, 7} K = 3 Output: 5 Explanation: The subarray is {2,-5,12,-11,-1} with sum -3, which is divisible by 3. Your Task: The input is already taken care of by the driver code. You only need to complete the function longSubarrWthSumDivByK() that takes an array (arr), sizeOfArray (n), positive integer K, and return the length of the longest subarray which has sum divisible by K. The driver code takes care of the printing. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1<=N,K<=10^{6} -10^{5}<=A[i]<=10^{5}
class Solution: def longSubarrWthSumDivByK(self, arr, n, K): sumi = 0 d = {(0): 0} maxi = 0 for i in range(len(arr)): sumi = sumi + arr[i] remainder = sumi % K if remainder in d: re = i + 1 - d[remainder] maxi = max(maxi, re) else: d[remainder] = i + 1 return maxi
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER RETURN VAR
Given an array containing N integers and a positive integer K, find the length of the longest sub array with sum of the elements divisible by the given value K. Example 1: Input: A[] = {2, 7, 6, 1, 4, 5} K = 3 Output: 4 Explanation:The subarray is {7, 6, 1, 4} with sum 18, which is divisible by 3. Example 2: Input: A[] = {-2, 2, -5, 12, -11, -1, 7} K = 3 Output: 5 Explanation: The subarray is {2,-5,12,-11,-1} with sum -3, which is divisible by 3. Your Task: The input is already taken care of by the driver code. You only need to complete the function longSubarrWthSumDivByK() that takes an array (arr), sizeOfArray (n), positive integer K, and return the length of the longest subarray which has sum divisible by K. The driver code takes care of the printing. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1<=N,K<=10^{6} -10^{5}<=A[i]<=10^{5}
class Solution: def longSubarrWthSumDivByK(self, arr, n, k): if n == 1: return 1 if arr[0] % k == 0 else 0 mp = dict() ans = 0 sm = 0 for i in range(n): sm += arr[i] mod = (sm % k + k) % k if mod == 0: ans = i + 1 if mod not in mp: mp[mod] = i elif ans < i - mp[mod]: ans = i - mp[mod] return ans
CLASS_DEF FUNC_DEF IF VAR NUMBER RETURN BIN_OP VAR NUMBER VAR NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR IF VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR RETURN VAR
Given an array containing N integers and a positive integer K, find the length of the longest sub array with sum of the elements divisible by the given value K. Example 1: Input: A[] = {2, 7, 6, 1, 4, 5} K = 3 Output: 4 Explanation:The subarray is {7, 6, 1, 4} with sum 18, which is divisible by 3. Example 2: Input: A[] = {-2, 2, -5, 12, -11, -1, 7} K = 3 Output: 5 Explanation: The subarray is {2,-5,12,-11,-1} with sum -3, which is divisible by 3. Your Task: The input is already taken care of by the driver code. You only need to complete the function longSubarrWthSumDivByK() that takes an array (arr), sizeOfArray (n), positive integer K, and return the length of the longest subarray which has sum divisible by K. The driver code takes care of the printing. Expected Time Complexity: O(N). Expected Auxiliary Space: O(N). Constraints: 1<=N,K<=10^{6} -10^{5}<=A[i]<=10^{5}
class Solution: def longSubarrWthSumDivByK(self, arr, n, k): if k == 1: return n p = [] r = [] p.append(arr[0]) r.append(arr[0] % k) for i in range(1, len(arr)): p.append(p[i - 1] + arr[i]) r.append(p[i] % k) d = {} m = 0 for i in range(len(r)): if r[i] != 0: if r[i] not in d.keys(): d[r[i]] = i else: m = max(m, i - d[r[i]]) else: m = max(m, i + 1) return m
CLASS_DEF FUNC_DEF IF VAR NUMBER RETURN VAR ASSIGN VAR LIST ASSIGN VAR LIST EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER IF VAR VAR FUNC_CALL VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER RETURN VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints: List[int], k: int) -> int: size = len(cardPoints) - k minSum = float("inf") cur = 0 left = 0 for i, v in enumerate(cardPoints): cur += v if i - left + 1 > size: cur -= cardPoints[left] left += 1 if i - left + 1 == size: minSum = min(minSum, cur) return sum(cardPoints) - minSum
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR VAR VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN BIN_OP FUNC_CALL VAR VAR VAR VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints: List[int], k: int) -> int: left, right = [0], [0] for i in range(k): left.append(left[-1] + cardPoints[i]) right.append(right[-1] + cardPoints[len(cardPoints) - 1 - i]) res = 0 for i in range(k + 1): x = left[i] + right[k - i] res = max(res, x) return res
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR VAR LIST NUMBER LIST NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints: List[int], k: int) -> int: n = len(cardPoints) pre = [0] * (n + 1) for i in range(n): pre[i + 1] = pre[i] + cardPoints[i] max_val = -1 for i in range(k + 1): max_val = max(max_val, pre[i] + pre[n] - pre[n - k + i]) return max_val
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR RETURN VAR VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints: List[int], k: int) -> int: right_index = len(cardPoints) - k curr_max = sum(cardPoints[right_index:]) curr_sum = curr_max for left_index in range(0, k): curr_sum -= cardPoints[right_index] right_index += 1 curr_sum += cardPoints[left_index] if curr_sum > curr_max: curr_max = curr_sum return curr_max
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR VAR VAR VAR VAR NUMBER VAR VAR VAR IF VAR VAR ASSIGN VAR VAR RETURN VAR VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints: List[int], k: int) -> int: s = sum(cardPoints[:k]) res = s for i in range(1, k + 1): s += cardPoints[-i] - cardPoints[k - i] res = max(res, s) return res
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints: List[int], k: int) -> int: n = len(cardPoints) cum_sum = [(0) for i in range(n)] cum_sum[0] = cardPoints[0] rev_sum = [(0) for i in range(n)] rev_sum[0] = cardPoints[-1] for i in range(1, n): cum_sum[i] = cum_sum[i - 1] + cardPoints[i] rev_sum[i] = rev_sum[i - 1] + cardPoints[n - i - 1] max_sum = max(cum_sum[k - 1], rev_sum[k - 1]) for i in range(1, k): max_sum = max(max_sum, cum_sum[i - 1] + rev_sum[k - i - 1]) return max_sum
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER RETURN VAR VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints: List[int], k: int) -> int: forwardSum = [m for m in cardPoints] backwardSum = cardPoints.copy() backwardSum.append(0) for c in range(1, len(cardPoints)): forwardSum[c] = forwardSum[c - 1] + forwardSum[c] for l in range(len(cardPoints) - 2, 0, -1): backwardSum[l] = backwardSum[l + 1] + backwardSum[l] maximum = 0 for i in range(k - 1, -2, -1): if i != -1: maximum = max( maximum, forwardSum[i] + backwardSum[len(backwardSum) - 1 - (k - 1 - i)], ) else: maximum = max(maximum, backwardSum[len(backwardSum) - 1 - k]) return maximum
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR RETURN VAR VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints: List[int], k: int) -> int: remainCnt = len(cardPoints) - k if remainCnt == 0: return sum(cardPoints) minRemainSum = float("inf") curr = 0 cnt = 0 for i in range(len(cardPoints)): cnt += 1 curr += cardPoints[i] if cnt == remainCnt: minRemainSum = min(minRemainSum, curr) curr -= cardPoints[i + 1 - cnt] cnt -= 1 return sum(cardPoints) - minRemainSum
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR IF VAR NUMBER RETURN FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR VAR NUMBER RETURN BIN_OP FUNC_CALL VAR VAR VAR VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints: List[int], k: int) -> int: j = len(cardPoints) - 1 ms = 0 for i in range(k): ms += cardPoints[j] j -= 1 cand = ms for i in range(k): cand += cardPoints[i] - cardPoints[j + 1] j += 1 ms = max(cand, ms) return ms
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints: List[int], k: int) -> int: pre = [cardPoints[0]] n = len(cardPoints) for i in range(1, n): pre.append(pre[-1] + cardPoints[i]) if k == n: return pre[-1] s = pre[-1] cur_s = pre[n - k - 1] l = 0 r = n - k + l - 1 ans = s - pre[n - k - 1] while l != len(cardPoints) - (n - k): cur_s -= cardPoints[l] l += 1 r += 1 cur_s += cardPoints[r] ans = max(ans, s - cur_s) return ans
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR LIST VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR IF VAR VAR RETURN VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER WHILE VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR RETURN VAR VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints: List[int], k: int) -> int: total = sum(cardPoints) nk = len(cardPoints) - k if nk == 0: return total current = sum(cardPoints[0:nk]) max_score = current for i in range(1, k + 1): current = current - cardPoints[i - 1] + cardPoints[nk + i - 1] max_score = min(max_score, current) return total - max_score
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR IF VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN BIN_OP VAR VAR VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, A: List[int], k: int) -> int: su = sum(A[:k]) n = len(A) res = su for i in range(k): su -= A[k - i - 1] su += A[n - i - 1] res = max(res, su) return res
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints: List[int], k: int) -> int: score = 0 l = k prefix = [0] for i in range(len(cardPoints)): prefix.append(prefix[-1] + cardPoints[i]) for i in range(k + 1): score = max(score, prefix[l] + prefix[-1] - prefix[-1 - i]) l -= 1 return score
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR NUMBER VAR BIN_OP NUMBER VAR VAR NUMBER RETURN VAR VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints: List[int], k: int) -> int: left = [0] * (k + 1) right = [0] * (k + 1) for i in range(k): left[i + 1] = left[i] + cardPoints[i] right[i + 1] = right[i] + cardPoints[-i - 1] return max(left[j] + right[k - j] for j in range(k + 1))
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR BIN_OP VAR NUMBER RETURN FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints: List[int], k: int) -> int: n = len(cardPoints) - k current = 0 for i in range(n): current += cardPoints[i] result = current for i in range(1, k + 1): current -= cardPoints[i - 1] current += cardPoints[i + n - 1] result = min(result, current) return sum(cardPoints) - result
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN BIN_OP FUNC_CALL VAR VAR VAR VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints: List[int], k: int) -> int: answer = 0 left = [0] * len(cardPoints) right = [0] * len(cardPoints) for i in range(len(cardPoints)): if i == 0: left[0] = cardPoints[0] else: left[i] = left[i - 1] + cardPoints[i] for i in range(len(cardPoints) - 1, -1, -1): if i == len(cardPoints) - 1: right[-1] = cardPoints[-1] else: right[i] = right[i + 1] + cardPoints[i] for i in range(k + 1): if i == 0: Sum = right[-k] elif i == k: Sum = left[k - 1] else: Sum = left[k - i - 1] + right[-i] answer = max(answer, Sum) return answer
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR VAR IF VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints: List[int], k: int) -> int: totalPoints, window = sum(cardPoints), len(cardPoints) - k i, j, Sum, Min = 0, 0, 0, totalPoints while j < len(cardPoints): Sum += cardPoints[j] if j - i + 1 > window: Sum -= cardPoints[i] i += 1 if j - i + 1 == window: Min = min(Min, Sum) j += 1 return totalPoints - Min
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER NUMBER NUMBER VAR WHILE VAR FUNC_CALL VAR VAR VAR VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR VAR VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER RETURN BIN_OP VAR VAR VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints: List[int], k: int) -> int: f, b = [0], [0] for n in cardPoints: f.append(f[-1] + n) for n in cardPoints[::-1]: b.append(b[-1] + n) allCombo = [(f[i] + b[k - i]) for i in range(k + 1)] return max(allCombo)
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR VAR LIST NUMBER LIST NUMBER FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR FOR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER RETURN FUNC_CALL VAR VAR VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints: List[int], k: int) -> int: if not cardPoints or k == 0: return 0 for i in range(1, len(cardPoints)): cardPoints[i] += cardPoints[i - 1] if k == len(cardPoints): return cardPoints[-1] ans = cardPoints[k - 1] for i in range(1, k + 1): print(i) ans = max(ans, cardPoints[k - i] + cardPoints[-1] - cardPoints[-i]) print(cardPoints[k - i], cardPoints[-1] - cardPoints[-i]) return max(ans, cardPoints[-1] - cardPoints[-(k + 1)])
CLASS_DEF FUNC_DEF VAR VAR VAR IF VAR VAR NUMBER RETURN NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER IF VAR FUNC_CALL VAR VAR RETURN VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR NUMBER VAR VAR RETURN FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints: List[int], k: int) -> int: ans = 0 curSum = 0 n = len(cardPoints) for i in range(n - k, n + k): curSum += cardPoints[i % n] if i >= n: curSum -= cardPoints[(i - k) % n] ans = max(ans, curSum) return ans
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR IF VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints: List[int], k: int) -> int: cardLen = len(cardPoints) frontSum = [0] for num in cardPoints: frontSum.append(frontSum[-1] + num) backSum = [(0) for _ in range(cardLen + 1)] for i in range(cardLen - 1, -1, -1): backSum[i] = cardPoints[i] + backSum[i + 1] ans = frontSum[k] for i in range(k): ans = max(ans, frontSum[i] + backSum[-(k - i) - 1]) return ans
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST NUMBER FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER RETURN VAR VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints: List[int], k: int) -> int: if not cardPoints or len(cardPoints) == 0: return 0 window = len(cardPoints) - k res = float("inf") s = 0 for i in range(window): s += cardPoints[i] res = min(s, res) for i in range(window, len(cardPoints)): print(cardPoints[i], s, i) s -= cardPoints[i - window] s += cardPoints[i] res = min(s, res) return sum(cardPoints) - res
CLASS_DEF FUNC_DEF VAR VAR VAR IF VAR FUNC_CALL VAR VAR NUMBER RETURN NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN BIN_OP FUNC_CALL VAR VAR VAR VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints: List[int], k: int) -> int: ans = total = sum(cardPoints[:k]) for i in range(1, k + 1): total -= cardPoints[k - i] total += cardPoints[-1 - i + 1] ans = max(ans, total) return ans
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR VAR BIN_OP VAR VAR VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints: List[int], k: int) -> int: min_len = len(cardPoints) - k curr_sum = 0 min_val = 0 for start in range(len(cardPoints) - min_len + 1): if start == 0: curr_sum = sum(cardPoints[start : start + min_len]) min_val = curr_sum else: curr_sum = ( curr_sum - cardPoints[start - 1] + cardPoints[start + min_len - 1] ) if min_val > curr_sum: min_val = curr_sum return sum(cardPoints) - min_val
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR RETURN BIN_OP FUNC_CALL VAR VAR VAR VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints: List[int], k: int) -> int: n = len(cardPoints) - k min = 0 window = 0 all = 0 for i in range(n): window += cardPoints[i] all += cardPoints[i] min = window for x in range(k): all += cardPoints[x + n] window -= cardPoints[x] window += cardPoints[x + n] if window < min: min = window return all - min
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR VAR RETURN BIN_OP VAR VAR VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, l: List[int], k: int) -> int: length = len(l) if k == length: return sum(l) elif k == 0: return 0 k = length - k v = curr_min = sum(l[:k]) for i in range(k, length): v = v - l[i - k] + l[i] curr_min = min(curr_min, v) return sum(l) - curr_min
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR RETURN FUNC_CALL VAR VAR IF VAR NUMBER RETURN NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN BIN_OP FUNC_CALL VAR VAR VAR VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints: List[int], k: int) -> int: max_score = 0 curr_score = 0 init_hand = cardPoints[len(cardPoints) - k :] max_score = sum(init_hand) curr_score = max_score for i in range(k): curr_score -= init_hand[i] curr_score += cardPoints[i] if curr_score > max_score: max_score = curr_score return max_score
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR RETURN VAR VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints: List[int], k: int) -> int: length = len(cardPoints) total = sum(cardPoints) if k == length: return total curr = 0 temp = 2**31 - 1 left = 0 for right in range(length): curr += cardPoints[right] if right - left + 1 < length - k: continue print(right, curr) temp = min(temp, curr) curr -= cardPoints[left] left += 1 return total - temp
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR RETURN VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR NUMBER RETURN BIN_OP VAR VAR VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints, k: int) -> int: N = len(cardPoints) preS, afterS = [0] * (N + 1), [0] * (N + 1) ans = 0 for i in range(1, N + 1): preS[i] = preS[i - 1] + cardPoints[i - 1] for j in range(1, N + 1): afterS[j] = afterS[j - 1] + cardPoints[N - j] for l in range(k + 1): ans = max(ans, preS[l] + afterS[k - l]) return ans
CLASS_DEF FUNC_DEF VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR RETURN VAR VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints: List[int], k: int) -> int: n = len(cardPoints) - k l, r, res, count = 0, 0, sum(cardPoints[:n]), 0 while r < len(cardPoints): count += cardPoints[r] if r >= n: count -= cardPoints[l] l += 1 res = min(res, count) r += 1 return sum(cardPoints) - res
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER NUMBER FUNC_CALL VAR VAR VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER RETURN BIN_OP FUNC_CALL VAR VAR VAR VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints: List[int], k: int) -> int: if len(cardPoints) < k: return 0 if len(cardPoints) == k: return sum(cardPoints) n = len(cardPoints) res, cur = sum(cardPoints[:k]), sum(cardPoints[:k]) for i in range(k): cur += cardPoints[n - i - 1] - cardPoints[k - 1 - i] res = max(res, cur) return res
CLASS_DEF FUNC_DEF VAR VAR VAR IF FUNC_CALL VAR VAR VAR RETURN NUMBER IF FUNC_CALL VAR VAR VAR RETURN FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, p: List[int], k: int) -> int: s = sum(p) if k == len(p): return s n = len(p) for i in range(1, len(p)): p[i] += p[i - 1] return s - min(p[n + i - k - 1] - (p[i - 1] if i else 0) for i in range(k + 1))
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER RETURN BIN_OP VAR FUNC_CALL VAR BIN_OP VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER VAR VAR BIN_OP VAR NUMBER NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints: List[int], k: int) -> int: n = len(cardPoints) sums = [0] * (n + 1) for i in range(1, n + 1): sums[i] = sums[i - 1] + cardPoints[i - 1] ans = float("inf") for i in range(k + 1): ans = min(ans, sums[i + n - k] - sums[i]) print((sums, ans)) return sums[-1] - ans
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR RETURN BIN_OP VAR NUMBER VAR VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints: List[int], k: int) -> int: total = [(0) for _ in range(len(cardPoints))] total[0] = cardPoints[0] for i in range(1, len(cardPoints)): total[i] = total[i - 1] + cardPoints[i] max_sum = 0 for i in range(k + 1): left = total[k - i - 1] if k - i > 0 else 0 right = total[-1] - total[len(cardPoints) - i - 1] if left + right > max_sum: max_sum = left + right return max_sum
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR RETURN VAR VAR
There are several cards arranged in a row, and each card has an associated number of points The points are given in the integer array cardPoints. In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards. Your score is the sum of the points of the cards you have taken. Given the integer array cardPoints and the integer k, return the maximum score you can obtain.   Example 1: Input: cardPoints = [1,2,3,4,5,6,1], k = 3 Output: 12 Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12. Example 2: Input: cardPoints = [2,2,2], k = 2 Output: 4 Explanation: Regardless of which two cards you take, your score will always be 4. Example 3: Input: cardPoints = [9,7,7,9,7,7,9], k = 7 Output: 55 Explanation: You have to take all the cards. Your score is the sum of points of all cards. Example 4: Input: cardPoints = [1,1000,1], k = 1 Output: 1 Explanation: You cannot take the card in the middle. Your best score is 1. Example 5: Input: cardPoints = [1,79,80,1,1,1,200,1], k = 3 Output: 202   Constraints: 1 <= cardPoints.length <= 10^5 1 <= cardPoints[i] <= 10^4 1 <= k <= cardPoints.length
class Solution: def maxScore(self, cardPoints: List[int], k: int) -> int: n = len(cardPoints) runningsum = 0 start = end = 0 total = sum(cardPoints) minsum = float("inf") while end < len(cardPoints): runningsum += cardPoints[end] if end - start + 1 > n - k: runningsum -= cardPoints[start] start += 1 if end - start + 1 == n - k: minsum = min(minsum, runningsum) end += 1 return total - minsum
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR STRING WHILE VAR FUNC_CALL VAR VAR VAR VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER RETURN BIN_OP VAR VAR VAR