description
stringlengths
171
4k
code
stringlengths
94
3.98k
normalized_code
stringlengths
57
4.99k
There is a city that can be represented as a square grid with corner points in $(0, 0)$ and $(10^6, 10^6)$. The city has $n$ vertical and $m$ horizontal streets that goes across the whole city, i. e. the $i$-th vertical streets goes from $(x_i, 0)$ to $(x_i, 10^6)$ and the $j$-th horizontal street goes from $(0, y_j)$ to $(10^6, y_j)$. All streets are bidirectional. Borders of the city are streets as well. There are $k$ persons staying on the streets: the $p$-th person at point $(x_p, y_p)$ (so either $x_p$ equal to some $x_i$ or $y_p$ equal to some $y_j$, or both). Let's say that a pair of persons form an inconvenient pair if the shortest path from one person to another going only by streets is strictly greater than the Manhattan distance between them. Calculate the number of inconvenient pairs of persons (pairs $(x, y)$ and $(y, x)$ are the same pair). Let's recall that Manhattan distance between points $(x_1, y_1)$ and $(x_2, y_2)$ is $|x_1 - x_2| + |y_1 - y_2|$. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 1000$) — the number of test cases. The first line of each test case contains three integers $n$, $m$ and $k$ ($2 \le n, m \le 2 \cdot 10^5$; $2 \le k \le 3 \cdot 10^5$) — the number of vertical and horizontal streets and the number of persons. The second line of each test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($0 = x_1 < x_2 < \dots < x_{n - 1} < x_n = 10^6$) — the $x$-coordinates of vertical streets. The third line contains $m$ integers $y_1, y_2, \dots, y_m$ ($0 = y_1 < y_2 < \dots < y_{m - 1} < y_m = 10^6$) — the $y$-coordinates of horizontal streets. Next $k$ lines contains description of people. The $p$-th line contains two integers $x_p$ and $y_p$ ($0 \le x_p, y_p \le 10^6$; $x_p \in \{x_1, \dots, x_n\}$ or $y_p \in \{y_1, \dots, y_m\}$) — the coordinates of the $p$-th person. All points are distinct. It guaranteed that sum of $n$ doesn't exceed $2 \cdot 10^5$, sum of $m$ doesn't exceed $2 \cdot 10^5$ and sum of $k$ doesn't exceed $3 \cdot 10^5$. -----Output----- For each test case, print the number of inconvenient pairs. -----Examples----- Input 2 2 2 4 0 1000000 0 1000000 1 0 1000000 1 999999 1000000 0 999999 5 4 9 0 1 2 6 1000000 0 4 8 1000000 4 4 2 5 2 2 6 3 1000000 1 3 8 5 8 8 8 6 8 Output 2 5 -----Note----- The second test case is pictured below: For example, points $3$ and $4$ form an inconvenient pair, since the shortest path between them (shown red and equal to $7$) is greater than its Manhattan distance (equal to $5$). Points $3$ and $5$ also form an inconvenient pair: the shortest path equal to $1000001$ (shown green) is greater than the Manhattan distance equal to $999999$. But points $5$ and $9$ don't form an inconvenient pair, since the shortest path (shown purple) is equal to its Manhattan distance.
import sys from sys import stdin tt = int(stdin.readline()) ANS = [] for loop in range(tt): n, m, k = map(int, stdin.readline().split()) x = list(map(int, stdin.readline().split())) y = list(map(int, stdin.readline().split())) xs = set(x) ys = set(y) Xxy = [] Yyx = [] for i in range(k): tx, ty = map(int, stdin.readline().split()) if tx not in xs: Xxy.append((tx, ty)) elif ty not in ys: Yyx.append((ty, tx)) Xxy.sort() Xxy.reverse() Xans = 0 dic = {} for tx in x: num = 0 while len(Xxy) > 0 and Xxy[-1][0] < tx: num += 1 tup = tx, Xxy[-1][1] if not tup in dic: dic[tup] = 0 dic[tup] += 1 del Xxy[-1] Xans += num * (num - 1) // 2 for tup in dic: Xans -= dic[tup] * (dic[tup] - 1) // 2 Yyx.sort() Yyx.reverse() Yans = 0 dic = {} for ty in y: num = 0 while len(Yyx) > 0 and Yyx[-1][0] < ty: num += 1 tup = ty, Yyx[-1][1] if not tup in dic: dic[tup] = 0 dic[tup] += 1 del Yyx[-1] Yans += num * (num - 1) // 2 for tup in dic: Yans -= dic[tup] * (dic[tup] - 1) // 2 ANS.append(str(Xans + Yans)) print("\n".join(ANS))
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR NUMBER VAR NUMBER NUMBER VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER FOR VAR VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR NUMBER VAR NUMBER NUMBER VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER FOR VAR VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
There is a city that can be represented as a square grid with corner points in $(0, 0)$ and $(10^6, 10^6)$. The city has $n$ vertical and $m$ horizontal streets that goes across the whole city, i. e. the $i$-th vertical streets goes from $(x_i, 0)$ to $(x_i, 10^6)$ and the $j$-th horizontal street goes from $(0, y_j)$ to $(10^6, y_j)$. All streets are bidirectional. Borders of the city are streets as well. There are $k$ persons staying on the streets: the $p$-th person at point $(x_p, y_p)$ (so either $x_p$ equal to some $x_i$ or $y_p$ equal to some $y_j$, or both). Let's say that a pair of persons form an inconvenient pair if the shortest path from one person to another going only by streets is strictly greater than the Manhattan distance between them. Calculate the number of inconvenient pairs of persons (pairs $(x, y)$ and $(y, x)$ are the same pair). Let's recall that Manhattan distance between points $(x_1, y_1)$ and $(x_2, y_2)$ is $|x_1 - x_2| + |y_1 - y_2|$. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 1000$) — the number of test cases. The first line of each test case contains three integers $n$, $m$ and $k$ ($2 \le n, m \le 2 \cdot 10^5$; $2 \le k \le 3 \cdot 10^5$) — the number of vertical and horizontal streets and the number of persons. The second line of each test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($0 = x_1 < x_2 < \dots < x_{n - 1} < x_n = 10^6$) — the $x$-coordinates of vertical streets. The third line contains $m$ integers $y_1, y_2, \dots, y_m$ ($0 = y_1 < y_2 < \dots < y_{m - 1} < y_m = 10^6$) — the $y$-coordinates of horizontal streets. Next $k$ lines contains description of people. The $p$-th line contains two integers $x_p$ and $y_p$ ($0 \le x_p, y_p \le 10^6$; $x_p \in \{x_1, \dots, x_n\}$ or $y_p \in \{y_1, \dots, y_m\}$) — the coordinates of the $p$-th person. All points are distinct. It guaranteed that sum of $n$ doesn't exceed $2 \cdot 10^5$, sum of $m$ doesn't exceed $2 \cdot 10^5$ and sum of $k$ doesn't exceed $3 \cdot 10^5$. -----Output----- For each test case, print the number of inconvenient pairs. -----Examples----- Input 2 2 2 4 0 1000000 0 1000000 1 0 1000000 1 999999 1000000 0 999999 5 4 9 0 1 2 6 1000000 0 4 8 1000000 4 4 2 5 2 2 6 3 1000000 1 3 8 5 8 8 8 6 8 Output 2 5 -----Note----- The second test case is pictured below: For example, points $3$ and $4$ form an inconvenient pair, since the shortest path between them (shown red and equal to $7$) is greater than its Manhattan distance (equal to $5$). Points $3$ and $5$ also form an inconvenient pair: the shortest path equal to $1000001$ (shown green) is greater than the Manhattan distance equal to $999999$. But points $5$ and $9$ don't form an inconvenient pair, since the shortest path (shown purple) is equal to its Manhattan distance.
def solve(points, ver, hor): sol = 0 points.sort() i = 0 for x in sorted(ver): curr, total = {}, 0 while i < len(points) and points[i][0] <= x: if points[i][0] < x: total += 1 curr[points[i][1]] = curr.get(points[i][1], 0) + 1 i += 1 for v in curr.values(): sol += v * (total - v) points.sort(key=lambda x: x[1]) i = 0 for y in sorted(hor): curr, total = {}, 0 while i < len(points) and points[i][1] <= y: if points[i][1] < y: total += 1 curr[points[i][0]] = curr.get(points[i][0], 0) + 1 i += 1 for v in curr.values(): sol += v * (total - v) return sol // 2 t = int(input()) for _ in range(t): n, m, k = map(int, input().split()) ver = list(map(int, input().split())) hor = list(map(int, input().split())) points = [tuple(map(int, input().split())) for _ in range(k)] print(solve(points, ver, hor))
FUNC_DEF ASSIGN VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR DICT NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR IF VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR DICT NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR IF VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR VAR RETURN BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
There is a city that can be represented as a square grid with corner points in $(0, 0)$ and $(10^6, 10^6)$. The city has $n$ vertical and $m$ horizontal streets that goes across the whole city, i. e. the $i$-th vertical streets goes from $(x_i, 0)$ to $(x_i, 10^6)$ and the $j$-th horizontal street goes from $(0, y_j)$ to $(10^6, y_j)$. All streets are bidirectional. Borders of the city are streets as well. There are $k$ persons staying on the streets: the $p$-th person at point $(x_p, y_p)$ (so either $x_p$ equal to some $x_i$ or $y_p$ equal to some $y_j$, or both). Let's say that a pair of persons form an inconvenient pair if the shortest path from one person to another going only by streets is strictly greater than the Manhattan distance between them. Calculate the number of inconvenient pairs of persons (pairs $(x, y)$ and $(y, x)$ are the same pair). Let's recall that Manhattan distance between points $(x_1, y_1)$ and $(x_2, y_2)$ is $|x_1 - x_2| + |y_1 - y_2|$. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 1000$) — the number of test cases. The first line of each test case contains three integers $n$, $m$ and $k$ ($2 \le n, m \le 2 \cdot 10^5$; $2 \le k \le 3 \cdot 10^5$) — the number of vertical and horizontal streets and the number of persons. The second line of each test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($0 = x_1 < x_2 < \dots < x_{n - 1} < x_n = 10^6$) — the $x$-coordinates of vertical streets. The third line contains $m$ integers $y_1, y_2, \dots, y_m$ ($0 = y_1 < y_2 < \dots < y_{m - 1} < y_m = 10^6$) — the $y$-coordinates of horizontal streets. Next $k$ lines contains description of people. The $p$-th line contains two integers $x_p$ and $y_p$ ($0 \le x_p, y_p \le 10^6$; $x_p \in \{x_1, \dots, x_n\}$ or $y_p \in \{y_1, \dots, y_m\}$) — the coordinates of the $p$-th person. All points are distinct. It guaranteed that sum of $n$ doesn't exceed $2 \cdot 10^5$, sum of $m$ doesn't exceed $2 \cdot 10^5$ and sum of $k$ doesn't exceed $3 \cdot 10^5$. -----Output----- For each test case, print the number of inconvenient pairs. -----Examples----- Input 2 2 2 4 0 1000000 0 1000000 1 0 1000000 1 999999 1000000 0 999999 5 4 9 0 1 2 6 1000000 0 4 8 1000000 4 4 2 5 2 2 6 3 1000000 1 3 8 5 8 8 8 6 8 Output 2 5 -----Note----- The second test case is pictured below: For example, points $3$ and $4$ form an inconvenient pair, since the shortest path between them (shown red and equal to $7$) is greater than its Manhattan distance (equal to $5$). Points $3$ and $5$ also form an inconvenient pair: the shortest path equal to $1000001$ (shown green) is greater than the Manhattan distance equal to $999999$. But points $5$ and $9$ don't form an inconvenient pair, since the shortest path (shown purple) is equal to its Manhattan distance.
import sys input = sys.stdin.readline def solve(): n, m, k = map(int, input().split()) X = list(map(int, input().split())) Y = list(map(int, input().split())) P = [list(map(int, input().split())) for _ in range(k)] P.sort(key=lambda x: x[0]) ans = 0 j = 0 for i in range(n): cnt = 0 tmp = {} while j < k and P[j][0] <= X[i]: if P[j][0] == X[i]: j += 1 continue if P[j][1] not in tmp: tmp[P[j][1]] = 0 tmp[P[j][1]] += 1 cnt += 1 j += 1 ans += cnt * (cnt - 1) // 2 for key in tmp: ans -= tmp[key] * (tmp[key] - 1) // 2 j = 0 P.sort(key=lambda x: x[1]) for i in range(m): cnt = 0 tmp = {} while j < k and P[j][1] <= Y[i]: if P[j][1] == Y[i]: j += 1 continue if P[j][0] not in tmp: tmp[P[j][0]] = 0 tmp[P[j][0]] += 1 cnt += 1 j += 1 ans += cnt * (cnt - 1) // 2 for key in tmp: ans -= tmp[key] * (tmp[key] - 1) // 2 return ans for _ in range(int(input())): print(solve())
IMPORT ASSIGN VAR VAR FUNC_DEF ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR DICT WHILE VAR VAR VAR VAR NUMBER VAR VAR IF VAR VAR NUMBER VAR VAR VAR NUMBER IF VAR VAR NUMBER VAR ASSIGN VAR VAR VAR NUMBER NUMBER VAR VAR VAR NUMBER NUMBER VAR NUMBER VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER FOR VAR VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR DICT WHILE VAR VAR VAR VAR NUMBER VAR VAR IF VAR VAR NUMBER VAR VAR VAR NUMBER IF VAR VAR NUMBER VAR ASSIGN VAR VAR VAR NUMBER NUMBER VAR VAR VAR NUMBER NUMBER VAR NUMBER VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER FOR VAR VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR
There is a city that can be represented as a square grid with corner points in $(0, 0)$ and $(10^6, 10^6)$. The city has $n$ vertical and $m$ horizontal streets that goes across the whole city, i. e. the $i$-th vertical streets goes from $(x_i, 0)$ to $(x_i, 10^6)$ and the $j$-th horizontal street goes from $(0, y_j)$ to $(10^6, y_j)$. All streets are bidirectional. Borders of the city are streets as well. There are $k$ persons staying on the streets: the $p$-th person at point $(x_p, y_p)$ (so either $x_p$ equal to some $x_i$ or $y_p$ equal to some $y_j$, or both). Let's say that a pair of persons form an inconvenient pair if the shortest path from one person to another going only by streets is strictly greater than the Manhattan distance between them. Calculate the number of inconvenient pairs of persons (pairs $(x, y)$ and $(y, x)$ are the same pair). Let's recall that Manhattan distance between points $(x_1, y_1)$ and $(x_2, y_2)$ is $|x_1 - x_2| + |y_1 - y_2|$. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 1000$) — the number of test cases. The first line of each test case contains three integers $n$, $m$ and $k$ ($2 \le n, m \le 2 \cdot 10^5$; $2 \le k \le 3 \cdot 10^5$) — the number of vertical and horizontal streets and the number of persons. The second line of each test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($0 = x_1 < x_2 < \dots < x_{n - 1} < x_n = 10^6$) — the $x$-coordinates of vertical streets. The third line contains $m$ integers $y_1, y_2, \dots, y_m$ ($0 = y_1 < y_2 < \dots < y_{m - 1} < y_m = 10^6$) — the $y$-coordinates of horizontal streets. Next $k$ lines contains description of people. The $p$-th line contains two integers $x_p$ and $y_p$ ($0 \le x_p, y_p \le 10^6$; $x_p \in \{x_1, \dots, x_n\}$ or $y_p \in \{y_1, \dots, y_m\}$) — the coordinates of the $p$-th person. All points are distinct. It guaranteed that sum of $n$ doesn't exceed $2 \cdot 10^5$, sum of $m$ doesn't exceed $2 \cdot 10^5$ and sum of $k$ doesn't exceed $3 \cdot 10^5$. -----Output----- For each test case, print the number of inconvenient pairs. -----Examples----- Input 2 2 2 4 0 1000000 0 1000000 1 0 1000000 1 999999 1000000 0 999999 5 4 9 0 1 2 6 1000000 0 4 8 1000000 4 4 2 5 2 2 6 3 1000000 1 3 8 5 8 8 8 6 8 Output 2 5 -----Note----- The second test case is pictured below: For example, points $3$ and $4$ form an inconvenient pair, since the shortest path between them (shown red and equal to $7$) is greater than its Manhattan distance (equal to $5$). Points $3$ and $5$ also form an inconvenient pair: the shortest path equal to $1000001$ (shown green) is greater than the Manhattan distance equal to $999999$. But points $5$ and $9$ don't form an inconvenient pair, since the shortest path (shown purple) is equal to its Manhattan distance.
import sys from _collections import defaultdict input = sys.stdin.readline T = int(input()) for iii in range(T): n, m, k = map(int, input().split()) mitix = set() mitiy = set() x = list(map(int, input().split())) for i in range(n): mitix.add(x[i]) y = list(map(int, input().split())) for i in range(m): mitiy.add(y[i]) px = [] py = [] ans = 0 for i in range(k): X, Y = map(int, input().split()) if X in mitix: if Y in mitiy: pass else: px.append((X, Y)) else: py.append((X, Y)) px.sort(key=lambda x: x[1], reverse=True) for i in range(m - 1): dic = defaultdict(int) while px and y[i] < px[-1][1] < y[i + 1]: a, b = px.pop() dic[a] += 1 xs = [dic[key] for key in dic] subans = 0 subans += sum(xs) ** 2 - sum(nod**2 for nod in xs) subans //= 2 ans += subans py.sort(key=lambda x: x[0], reverse=True) for i in range(n - 1): dic = defaultdict(int) while py and x[i] < py[-1][0] < x[i + 1]: a, b = py.pop() dic[b] += 1 ys = [dic[key] for key in dic] subans = 0 subans += sum(ys) ** 2 - sum(nod**2 for nod in ys) subans //= 2 ans += subans print(ans)
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR ASSIGN VAR NUMBER VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR ASSIGN VAR NUMBER VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
There is a city that can be represented as a square grid with corner points in $(0, 0)$ and $(10^6, 10^6)$. The city has $n$ vertical and $m$ horizontal streets that goes across the whole city, i. e. the $i$-th vertical streets goes from $(x_i, 0)$ to $(x_i, 10^6)$ and the $j$-th horizontal street goes from $(0, y_j)$ to $(10^6, y_j)$. All streets are bidirectional. Borders of the city are streets as well. There are $k$ persons staying on the streets: the $p$-th person at point $(x_p, y_p)$ (so either $x_p$ equal to some $x_i$ or $y_p$ equal to some $y_j$, or both). Let's say that a pair of persons form an inconvenient pair if the shortest path from one person to another going only by streets is strictly greater than the Manhattan distance between them. Calculate the number of inconvenient pairs of persons (pairs $(x, y)$ and $(y, x)$ are the same pair). Let's recall that Manhattan distance between points $(x_1, y_1)$ and $(x_2, y_2)$ is $|x_1 - x_2| + |y_1 - y_2|$. -----Input----- The first line contains a single integer $t$ ($1 \le t \le 1000$) — the number of test cases. The first line of each test case contains three integers $n$, $m$ and $k$ ($2 \le n, m \le 2 \cdot 10^5$; $2 \le k \le 3 \cdot 10^5$) — the number of vertical and horizontal streets and the number of persons. The second line of each test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($0 = x_1 < x_2 < \dots < x_{n - 1} < x_n = 10^6$) — the $x$-coordinates of vertical streets. The third line contains $m$ integers $y_1, y_2, \dots, y_m$ ($0 = y_1 < y_2 < \dots < y_{m - 1} < y_m = 10^6$) — the $y$-coordinates of horizontal streets. Next $k$ lines contains description of people. The $p$-th line contains two integers $x_p$ and $y_p$ ($0 \le x_p, y_p \le 10^6$; $x_p \in \{x_1, \dots, x_n\}$ or $y_p \in \{y_1, \dots, y_m\}$) — the coordinates of the $p$-th person. All points are distinct. It guaranteed that sum of $n$ doesn't exceed $2 \cdot 10^5$, sum of $m$ doesn't exceed $2 \cdot 10^5$ and sum of $k$ doesn't exceed $3 \cdot 10^5$. -----Output----- For each test case, print the number of inconvenient pairs. -----Examples----- Input 2 2 2 4 0 1000000 0 1000000 1 0 1000000 1 999999 1000000 0 999999 5 4 9 0 1 2 6 1000000 0 4 8 1000000 4 4 2 5 2 2 6 3 1000000 1 3 8 5 8 8 8 6 8 Output 2 5 -----Note----- The second test case is pictured below: For example, points $3$ and $4$ form an inconvenient pair, since the shortest path between them (shown red and equal to $7$) is greater than its Manhattan distance (equal to $5$). Points $3$ and $5$ also form an inconvenient pair: the shortest path equal to $1000001$ (shown green) is greater than the Manhattan distance equal to $999999$. But points $5$ and $9$ don't form an inconvenient pair, since the shortest path (shown purple) is equal to its Manhattan distance.
import sys input = sys.stdin.buffer.readline def process(X, Y, K): X_set = set(X) Y_set = set(Y) n1 = len(X) n2 = len(Y) h_only = [] v_only = [] answer = 0 for a, b in K: if a in X_set and b not in Y_set: h_only.append((a, b)) elif a not in X_set and b in Y_set: v_only.append((a, b)) h_only = sorted(h_only, key=lambda a: a[1]) v_only = sorted(v_only, key=lambda a: a[0]) index = 0 m1 = len(h_only) for i in range(1, n2): d = {} total = 0 y0 = Y[i - 1] y1 = Y[i] while index < m1 and h_only[index][1] < y1: a, b = h_only[index] if a not in d: d[a] = 0 d[a] += 1 total += 1 index += 1 pairs = total * (total - 1) // 2 for a in d: pairs -= d[a] * (d[a] - 1) // 2 answer += pairs m2 = len(v_only) index = 0 for i in range(1, n1): d = {} total = 0 x0 = X[i - 1] x1 = X[i] while index < m2 and v_only[index][0] < x1: a, b = v_only[index] if b not in d: d[b] = 0 d[b] += 1 total += 1 index += 1 pairs = total * (total - 1) // 2 for a in d: pairs -= d[a] * (d[a] - 1) // 2 answer += pairs return answer t = int(input()) for i in range(t): n, m, k = [int(x) for x in input().split()] X = [int(x) for x in input().split()] Y = [int(x) for x in input().split()] K = [] for j in range(k): a, b = [int(x) for x in input().split()] K.append([a, b]) print(process(X, Y, K))
IMPORT ASSIGN VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR WHILE VAR VAR VAR VAR NUMBER VAR ASSIGN VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER FOR VAR VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR WHILE VAR VAR VAR VAR NUMBER VAR ASSIGN VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER FOR VAR VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER NUMBER VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR LIST VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: MOD = 10**9 + 7 nums.sort() ans = 0 r = len(nums) - 1 for l in range(len(nums)): while l <= r and nums[l] + nums[r] > target: r -= 1 if l <= r: ans += 1 << r - l ans %= MOD return ans
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR BIN_OP NUMBER BIN_OP VAR VAR VAR VAR RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() right = len(nums) - 1 left = 0 ret = 0 while left < right: max_right = target - nums[left] while left < right and max_right < nums[right]: right -= 1 if left < right: ret += 2 ** (right - left) - 1 left += 1 for i in range(len(nums)): if nums[i] * 2 > target: break ret += 1 return ret % 1000000007
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR WHILE VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR BIN_OP BIN_OP NUMBER BIN_OP VAR VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER VAR VAR NUMBER RETURN BIN_OP VAR NUMBER VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() i, j = 0, len(nums) - 1 ans = 0 mod = 10**9 + 7 while i <= j: if nums[i] + nums[j] > target: j -= 1 else: ans += self.fast_pow_mod(2, j - i, mod) i += 1 return ans % mod def fast_pow_mod(self, a, b, m): ans = 1 while b != 0: if b & 1 == 1: ans = ans * a % m b >>= 1 a = a * a % m return ans
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR VAR NUMBER RETURN BIN_OP VAR VAR VAR FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR RETURN VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() lo, hi, ans = 0, len(nums) - 1, 0 while lo <= hi: if nums[lo] + nums[hi] > target: hi -= 1 continue ans += 2 ** (hi - lo) lo += 1 return ans % (10**9 + 7)
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR BIN_OP NUMBER BIN_OP VAR VAR VAR NUMBER RETURN BIN_OP VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: if not nums: return 0 nums.sort() res = 0 mod = 10**9 + 7 l, r = 0, len(nums) - 1 while l <= r: if nums[l] + nums[r] > target: r -= 1 else: res = (res + pow(2, r - l, mod)) % mod l += 1 return res
CLASS_DEF FUNC_DEF VAR VAR VAR IF VAR RETURN NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR VAR VAR NUMBER RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() m = 10**9 + 7 l = 0 r = len(nums) - 1 res = 0 while l <= r: while l <= r and nums[l] + nums[r] > target: r -= 1 if l <= r: res += 2 ** (r - l) l += 1 else: break return res % m
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR BIN_OP NUMBER BIN_OP VAR VAR VAR NUMBER RETURN BIN_OP VAR VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() s, e = 0, len(nums) - 1 mod = 10**9 + 7 result = 0 while s <= e: if nums[s] + nums[e] <= target: result += pow(2, e - s, mod) s += 1 else: e -= 1 return result % mod
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR VAR NUMBER VAR NUMBER RETURN BIN_OP VAR VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() n = len(nums) l, r = 0, n - 1 counts = 0 res = 0 while True: while l <= r and nums[r] + nums[l] > target: r -= 1 if l <= r: res += pow(2, r - l, 10**9 + 7) res %= 10**9 + 7 l += 1 else: break return res
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR NUMBER RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: sorted_nums = sorted(nums) res = 0 mod = 10**9 + 7 r = len(sorted_nums) - 1 for i, left in enumerate(sorted_nums): while left + sorted_nums[r] > target and i <= r: r -= 1 if i <= r: res += 2 ** (r - i) res %= mod return res
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR BIN_OP NUMBER BIN_OP VAR VAR VAR VAR RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: idx, res = len(nums) - 1, 0 nums.sort() for i in range(len(nums)): while nums[i] + nums[idx] > target and idx >= i: idx -= 1 if idx < i: break res += 2 ** (idx - i) return res % (10**9 + 7)
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR BIN_OP NUMBER BIN_OP VAR VAR RETURN BIN_OP VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() if nums[0] * 2 > target: return 0 MOD = 10**9 + 7 count = 0 left, right = 0, len(nums) - 1 while left <= right: if nums[left] + nums[right] > target: right -= 1 else: count = (count + (1 << right - left)) % MOD left += 1 return count
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR IF BIN_OP VAR NUMBER NUMBER VAR RETURN NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP NUMBER BIN_OP VAR VAR VAR VAR NUMBER RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: n = len(nums) nums.sort() p = [1] * (n + 1) for i in range(1, n + 1): p[i] = p[i - 1] << 1 res = 0 j = n - 1 for i in range(j + 1): while i <= j and nums[i] + nums[j] > target: j -= 1 if i > j: continue res += p[j - i] return res % (10**9 + 7)
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR VAR BIN_OP VAR VAR RETURN BIN_OP VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: low = 0 high = len(nums) - 1 nums.sort() if not nums: return 0 total = 0 while low <= high: if nums[low] + nums[high] <= target: total += pow(2, high - low, 10**9 + 7) low += 1 else: high -= 1 return total % (10**9 + 7)
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR IF VAR RETURN NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR NUMBER VAR NUMBER RETURN BIN_OP VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() N = len(nums) ans = 0 rgt = N - 1 for lft in range(N): if nums[lft] * 2 > target: break lo, hi = lft, N - 1 while lo + 1 < hi: m = (lo + hi) // 2 if nums[lft] + nums[m] <= target: lo = m else: hi = m if nums[lft] + nums[hi] > target: ans += 2 ** (lo - lft) else: ans += 2 ** (hi - lft) return ans % (10**9 + 7)
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER VAR ASSIGN VAR VAR VAR BIN_OP VAR NUMBER WHILE BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR BIN_OP NUMBER BIN_OP VAR VAR VAR BIN_OP NUMBER BIN_OP VAR VAR RETURN BIN_OP VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() mod = 10**9 + 7 n = len(nums) pre = [0] * n pre[0] = 1 res = 0 for i in range(1, n): pre[i] = pre[i - 1] * 2 % mod start, end = 0, n - 1 while start <= end: if nums[start] + nums[end] > target: end -= 1 else: res = (res + pre[end - start]) % mod start += 1 return res % mod
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR VAR VAR NUMBER RETURN BIN_OP VAR VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() left = 0 right = len(nums) - 1 mod = 10**9 + 7 out = 0 while left <= right: if nums[left] + nums[right] > target: right -= 1 elif nums[left] + nums[right] <= target: space = right - left out += pow(2, space) left += 1 return out % mod
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR FUNC_CALL VAR NUMBER VAR VAR NUMBER RETURN BIN_OP VAR VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: A = sorted(nums) r = len(A) - 1 l = 0 out = 0 while l <= r: if target - A[r] - A[l] < 0: r -= 1 else: out += 2 ** (r - l) % (10**9 + 7) l += 1 return out % (10**9 + 7)
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP BIN_OP VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR BIN_OP BIN_OP NUMBER BIN_OP VAR VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR NUMBER RETURN BIN_OP VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: a = nums a.sort() t = target while a and a[-1] > t: a.pop() ans = sum([(2 * x <= t) for x in a]) l, h = 0, len(a) - 1 M = 10**9 + 7 while l + 1 <= h: while l + 1 <= h and a[h] + a[l] > t: h -= 1 if l + 1 <= h and a[h] + a[l] <= t: ans += (1 << h - l) - 1 ans %= M l += 1 return ans
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR WHILE VAR VAR NUMBER VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP NUMBER VAR VAR VAR VAR ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER WHILE BIN_OP VAR NUMBER VAR WHILE BIN_OP VAR NUMBER VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR BIN_OP VAR VAR VAR VAR VAR VAR BIN_OP BIN_OP NUMBER BIN_OP VAR VAR NUMBER VAR VAR VAR NUMBER RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() left_idx = 0 right_idx = len(nums) - 1 res = 0 mod = 10**9 + 7 while left_idx <= right_idx: if nums[left_idx] + nums[right_idx] > target: right_idx -= 1 else: res += 1 << right_idx - left_idx res %= mod left_idx += 1 return res
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR BIN_OP NUMBER BIN_OP VAR VAR VAR VAR VAR NUMBER RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() mod = 10**9 + 7 sum, l, r = 0, 0, len(nums) - 1 while l <= r: if nums[l] + nums[r] > target: r -= 1 else: sum += (1 << r - l) % mod l += 1 return sum % mod
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR VAR VAR NUMBER NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR BIN_OP BIN_OP NUMBER BIN_OP VAR VAR VAR VAR NUMBER RETURN BIN_OP VAR VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() j = len(nums) - 1 ans = 0 for i, n in enumerate(nums): while j >= i and n + nums[j] > target: j -= 1 if j >= i: ans += 1 << j - i ans %= 1000000007 return ans
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR BIN_OP NUMBER BIN_OP VAR VAR VAR NUMBER RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: n, result, p1, p2, m = len(nums), 0, 0, len(nums) - 1, 1000000007 nums.sort() while p1 <= p2: if nums[p1] + nums[p2] <= target: result = (result + pow(2, p2 - p1, m)) % m p1 += 1 else: p2 -= 1 return result
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR FUNC_CALL VAR VAR NUMBER NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR VAR VAR NUMBER VAR NUMBER RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: MOD = 10**9 + 7 nums.sort() for ri in range(len(nums)): if nums[ri] + nums[0] > target: break le, ans = 0, 0 while le <= ri: if nums[le] + nums[ri] > target: ri -= 1 else: cnt = 2 ** (ri - le) ans = (ans + cnt) % MOD le += 1 return ans
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR NUMBER VAR ASSIGN VAR VAR NUMBER NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP NUMBER BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: MOD = 10**9 + 7 s = sorted(nums) powers = [1] for _ in s: powers.append(powers[-1] * 2) j = len(s) - 1 c = 0 for i, n in enumerate(s): while j > i and n + s[j] > target: j -= 1 if i <= j and s[i] + s[j] <= target: c += powers[j - i] return c % MOD
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST NUMBER FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR NUMBER IF VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR VAR BIN_OP VAR VAR RETURN BIN_OP VAR VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() i = 0 count = 0 j = len(nums) - 1 while i < len(nums) and nums[i] * 2 <= target: while i < j and nums[i] + nums[j] > target: j -= 1 count += 2 ** (j - i) i += 1 return count % (10**9 + 7)
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR FUNC_CALL VAR VAR BIN_OP VAR VAR NUMBER VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR BIN_OP NUMBER BIN_OP VAR VAR VAR NUMBER RETURN BIN_OP VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() low = 0 high = len(nums) - 1 total = 0 while low < len(nums): while high > low and nums[low] + nums[high] > target: high -= 1 s = nums[low] + nums[high] if s > target: break total += 2 ** (high - low) low += 1 high = max(high, low) return total % (10**9 + 7)
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR VAR IF VAR VAR VAR BIN_OP NUMBER BIN_OP VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN BIN_OP VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() res = 0 MOD = 10**9 + 7 p = 0 while p < len(nums): while p < len(nums) and nums[p] + nums[-1] > target: nums.pop() if len(nums) - p - 1 >= 0: res += pow(2, len(nums) - p - 1, MOD) p += 1 return res % MOD
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR WHILE VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR NUMBER VAR EXPR FUNC_CALL VAR IF BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR VAR NUMBER RETURN BIN_OP VAR VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
MOD = 10**9 + 7 class Solution: def numSubseq(self, nums: List[int], target: int) -> int: N = len(nums) if N == 1: return 1 if nums[0] * 2 <= target else 0 nums.sort() ret = 0 start = 0 end = N - 1 while start + 1 < end: mid = start + (end - start) // 2 if nums[mid] * 2 > target: end = mid else: start = mid if nums[end] * 2 > target: if nums[start] * 2 > target: return 0 ret += end else: return (2 ** (end + 1) - 1) % MOD start = 0 end = N - 1 while start < end: if nums[start] + nums[end] > target: end -= 1 continue ret = (ret + 2 ** (end - start) - 1) % MOD start += 1 return ret
ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER RETURN BIN_OP VAR NUMBER NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER VAR ASSIGN VAR VAR ASSIGN VAR VAR IF BIN_OP VAR VAR NUMBER VAR IF BIN_OP VAR VAR NUMBER VAR RETURN NUMBER VAR VAR RETURN BIN_OP BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP NUMBER BIN_OP VAR VAR NUMBER VAR VAR NUMBER RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() n = len(nums) left = 0 right = n - 1 res = 0 mod = 10**9 + 7 while left <= right: while left <= right and nums[right] + nums[left] > target: right -= 1 if right < left: return res res = (res + (1 << right - left)) % mod left += 1 return res
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER WHILE VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR RETURN VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP NUMBER BIN_OP VAR VAR VAR VAR NUMBER RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: M = 10**9 + 7 pows = [1] * (len(nums) + 1) for k in range(1, len(pows)): pows[k] = pows[k - 1] * 2 % M ans = 0 nums.sort() left = 0 right = len(nums) - 1 while left <= right: total = nums[left] + nums[right] if total <= target: ans += pows[right - left] if total > target: right -= 1 else: left += 1 return ans % M
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR IF VAR VAR VAR VAR BIN_OP VAR VAR IF VAR VAR VAR NUMBER VAR NUMBER RETURN BIN_OP VAR VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: ans = 0 mod = 10**9 + 7 nums.sort() temp = 0 def bina(i, low, high): ans = low - 1 while low <= high: mid = (low + high) // 2 if nums[i] + nums[mid] <= target: low = mid + 1 ans = mid else: high = mid - 1 return ans - i for i in range(len(nums)): if nums[i] * 2 > target: break ans = (ans + int(pow(2, bina(i, i, len(nums) - 1), mod))) % mod print(ans) return ans
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FUNC_DEF ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN BIN_OP VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() cnt = 0 for i, n in enumerate(nums): if n + n > target: break if n + nums[-1] <= target: R = len(nums) cnt += 2 ** (R - i - 1) continue L = i R = len(nums) - 1 while L < R: mid = L + (R - L) // 2 if n + nums[mid] <= target: L = mid + 1 else: R = mid cnt += 2 ** (R - i - 1) return cnt % (10**9 + 7)
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR IF BIN_OP VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR BIN_OP NUMBER BIN_OP BIN_OP VAR VAR NUMBER RETURN BIN_OP VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() left, right = 0, len(nums) - 1 count = 0 dp = [0] * (len(nums) + 1) for i in range(1, len(nums) + 1): dp[i] = 2 * dp[i - 1] + 1 while left <= right: while left <= right and nums[left] + nums[right] > target: right -= 1 count += dp[right - left + 1] while left <= right and nums[left] + nums[right] <= target: left += 1 count -= dp[right - left + 1] return count % (10**9 + 7) def totalS(self, N): if N < 2: return N return 2 * self.totalS(N - 1) + 1
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP NUMBER VAR BIN_OP VAR NUMBER NUMBER WHILE VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR VAR BIN_OP BIN_OP VAR VAR NUMBER WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR VAR BIN_OP BIN_OP VAR VAR NUMBER RETURN BIN_OP VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR FUNC_DEF IF VAR NUMBER RETURN VAR RETURN BIN_OP BIN_OP NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() ans = 0 l = 0 h = len(nums) - 1 MOD = 10**9 + 7 while l <= h: if nums[l] + nums[h] <= target: ans = (ans + pow(2, h - l, MOD)) % MOD l += 1 else: h -= 1 return ans
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR VAR VAR NUMBER VAR NUMBER RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: if not nums: return 0 nums.sort() MOD = 10**9 + 7 res = 0 j = len(nums) - 1 for i in range(len(nums)): while i <= j and nums[i] + nums[j] > target: j -= 1 if i <= j and nums[i] + nums[j] <= target: res = res + 2 ** (j - i) if res >= MOD: res -= MOD return res % MOD
CLASS_DEF FUNC_DEF VAR VAR VAR IF VAR RETURN NUMBER EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP NUMBER BIN_OP VAR VAR IF VAR VAR VAR VAR RETURN BIN_OP VAR VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def getCombination(self, start, endPos): mod = 10**9 + 7 count = pow(2, endPos - start) return count % mod def findPos(self, nums, target): start = 0 end = len(nums) - 1 while start <= end: medium = start + (end - start) // 2 sumv = nums[0] + nums[medium] if sumv > target: end = medium - 1 elif sumv == target: if medium == len(nums) - 1 or nums[medium + 1] != nums[medium]: return medium else: start = medium + 1 elif medium == len(nums) - 1 or nums[medium + 1] + nums[0] > target: return medium else: start = medium + 1 return end def numSubseq2(self, nums: List[int], target: int) -> int: mod = 10**9 + 7 nums.sort() start = 0 count = 0 endPos = self.findPos(nums, target) print(endPos) while start < len(nums) and start <= endPos and endPos > 0: if nums[endPos] + nums[start] <= target: count += pow(2, endPos - start) count = count % mod start += 1 else: endPos -= 1 return int(count % mod) def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() left, right = 0, len(nums) - 1 res = 0 md = 10**9 + 7 while left <= right: if nums[left] + nums[right] <= target: res = (res + pow(2, right - left, md)) % md left += 1 else: right -= 1 return res
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR RETURN BIN_OP VAR VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR RETURN VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER VAR NUMBER VAR RETURN VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FUNC_DEF VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR WHILE VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR NUMBER VAR NUMBER RETURN FUNC_CALL VAR BIN_OP VAR VAR VAR FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR VAR VAR NUMBER VAR NUMBER RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
p = 1000000007 def modSum(a, b): return (a + b) % p def modProd(a, b): return a * b % p def modPow(x, n): if n == 0: return 1 res = modPow(x, n // 2) res = modProd(res, res) if n % 2 == 1: res = modProd(res, x) return res class Solution: def numSubseq(self, arr: List[int], target: int) -> int: n = len(arr) arr.sort() i = 0 j = n - 1 res = 0 while i <= j: sum = arr[i] + arr[j] if sum > target: j -= 1 else: res = modSum(res, modPow(2, j - i)) i += 1 return res
ASSIGN VAR NUMBER FUNC_DEF RETURN BIN_OP BIN_OP VAR VAR VAR FUNC_DEF RETURN BIN_OP BIN_OP VAR VAR VAR FUNC_DEF IF VAR NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR NUMBER RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() n = len(nums) l, r, res = 0, n - 1, 0 dp = [1] * n for i in range(1, n): dp[i] = 2 * dp[i - 1] % 1000000007 while l <= r: while nums[l] + nums[r] > target and l <= r: r -= 1 if l <= r: res += 1 res += dp[r - l] - 1 l += 1 return res % 1000000007
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR BIN_OP BIN_OP NUMBER VAR BIN_OP VAR NUMBER NUMBER WHILE VAR VAR WHILE BIN_OP VAR VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER VAR BIN_OP VAR BIN_OP VAR VAR NUMBER VAR NUMBER RETURN BIN_OP VAR NUMBER VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: if nums is None and len(nums) == 0: return 0 nums.sort() mod = 10**9 + 7 ans = 0 left, right = 0, len(nums) - 1 while left <= right: if nums[left] + nums[right] > target: right -= 1 else: ans += pow(2, right - left, mod) left += 1 return ans % mod
CLASS_DEF FUNC_DEF VAR VAR VAR IF VAR NONE FUNC_CALL VAR VAR NUMBER RETURN NUMBER EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR VAR NUMBER RETURN BIN_OP VAR VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: MOD = 10**9 + 7 nums.sort() right = len(nums) - 1 count = 0 for i in range(len(nums)): while right > i and nums[right] > target - nums[i]: right -= 1 if right == i: if 2 * nums[i] <= target: count += 1 return count % MOD else: count += 2 ** (right - i) count %= MOD return count % MOD
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR NUMBER IF VAR VAR IF BIN_OP NUMBER VAR VAR VAR VAR NUMBER RETURN BIN_OP VAR VAR VAR BIN_OP NUMBER BIN_OP VAR VAR VAR VAR RETURN BIN_OP VAR VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: if not nums: return 0 nums.sort() res = 0 lo, hi = 0, len(nums) - 1 while lo <= hi: if nums[lo] + nums[hi] > target: hi -= 1 else: res += pow(2, hi - lo) lo += 1 return res % (pow(10, 9) + 7)
CLASS_DEF FUNC_DEF VAR VAR VAR IF VAR RETURN NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR NUMBER RETURN BIN_OP VAR BIN_OP FUNC_CALL VAR NUMBER NUMBER NUMBER VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, A: List[int], t: int) -> int: A, n = sorted(A), len(A) mod = 10**9 + 7 ret = 0 left, right = 0, n - 1 while left <= right: while right >= left and A[left] + A[right] > t: right -= 1 if right >= left and A[left] + A[right] <= t: ret += 2 ** (right - left) left += 1 return ret % mod
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER WHILE VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR BIN_OP NUMBER BIN_OP VAR VAR VAR NUMBER RETURN BIN_OP VAR VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: subsequences = 0 nums.sort() l, r = 0, len(nums) - 1 while l <= r: if nums[l] + nums[r] <= target: subsequences += 1 << r - l l += 1 else: subsequences += 1 if 2 * nums[r] <= target else 0 r -= 1 subsequences %= 1000000007 return subsequences
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR BIN_OP NUMBER BIN_OP VAR VAR VAR NUMBER VAR BIN_OP NUMBER VAR VAR VAR NUMBER NUMBER VAR NUMBER VAR NUMBER RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, arr: List[int], target: int) -> int: arr = sorted(arr) l = 0 r = len(arr) - 1 mod = 1000000007 ans = 0 while l <= r: if arr[l] + arr[r] > target: r -= 1 else: ans += pow(2, r - l) l += 1 return ans % mod
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR NUMBER RETURN BIN_OP VAR VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: N = len(nums) nums.sort() answer = 0 for i in range(N): current_num = nums[i] low = i + 1 high = N - 1 while low <= high: middle = (low + high) // 2 if current_num + nums[middle] > target: high = middle - 1 else: low = middle + 1 if current_num + nums[high] <= target: answer += 2 ** (high - i) return answer % (10**9 + 7)
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR BIN_OP NUMBER BIN_OP VAR VAR RETURN BIN_OP VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums = sorted(nums) left = 0 right = len(nums) - 1 result = 0 while True: while left <= right and nums[left] + nums[right] > target: right -= 1 if right < left: break print((left, right)) result += pow(2, right - left) left += 1 return result % (10**9 + 7)
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR NUMBER RETURN BIN_OP VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() l, r = 0, len(nums) - 1 re = 0 while l <= r: while r >= l and nums[l] + nums[r] > target: r -= 1 if r < l: break re += 2 ** (r - l) l += 1 return re % 1000000007
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR BIN_OP NUMBER BIN_OP VAR VAR VAR NUMBER RETURN BIN_OP VAR NUMBER VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() ret, l, r = 0, 0, len(nums) - 1 p, pw = [], 1 for d in range(len(nums)): p.append(pw) pw <<= 1 while l <= r: if nums[l] + nums[r] <= target: ret = (ret + p[r - l]) % (10**9 + 7) l += 1 else: r -= 1 return ret
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR LIST NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR NUMBER VAR NUMBER RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() count = 0 j = len(nums) - 1 for i in range(len(nums)): while (nums[i] + nums[j] > target) & (i < j): j -= 1 if (i > j) | (nums[i] * 2 > target): break count += 2 ** (j - i) return count % (10**9 + 7)
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR WHILE BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR VAR VAR NUMBER IF BIN_OP VAR VAR BIN_OP VAR VAR NUMBER VAR VAR BIN_OP NUMBER BIN_OP VAR VAR RETURN BIN_OP VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() cnt = 0 N = 10**9 + 7 D = [1] * (len(nums) + 1) def bisect(x, low, high): if high - low <= 1: if nums[high] <= x: return high else: return low mid = (low + high) // 2 if nums[mid] <= x: return bisect(x, mid, high) else: return bisect(x, low, mid) for idx in range(1, len(D)): D[idx] = D[idx - 1] * 2 n = len(nums) - 1 for idx, i in enumerate(nums): if i > target - i: break else: best = bisect(target - i, idx, n) n = best cnt += D[best - idx] return cnt % N
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_DEF IF BIN_OP VAR VAR NUMBER IF VAR VAR VAR RETURN VAR RETURN VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR RETURN FUNC_CALL VAR VAR VAR VAR RETURN FUNC_CALL VAR VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR BIN_OP VAR VAR RETURN BIN_OP VAR VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
MD = 10**9 + 7 class Solution: def numSubseq(self, nums: List[int], target: int) -> int: if nums is None or not nums: return 0 N = len(nums) nums.sort() start = 0 end = N - 1 ret = len([d for d in nums if d + d <= target]) while start < end: while start < end and nums[start] + nums[end] > target: end -= 1 if start < end: ret = (ret + self.fast_pow(2, MD, end - start) - 1) % MD start += 1 return ret def fast_pow(self, a, md, n): if n == 0: return 1 % md if n == 1: return a % md ret = self.fast_pow(a, md, n // 2) ret = ret * ret % md if n % 2 == 1: ret = ret * a % md return ret
ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER CLASS_DEF FUNC_DEF VAR VAR VAR IF VAR NONE VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR VAR VAR WHILE VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR FUNC_CALL VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER RETURN VAR VAR FUNC_DEF IF VAR NUMBER RETURN BIN_OP NUMBER VAR IF VAR NUMBER RETURN BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR RETURN VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() mod = 10**9 + 7 left = 0 right = len(nums) - 1 res = 0 while left <= right: if nums[left] + nums[right] > target: right -= 1 else: num_inside = right - left res = (res + pow(2, num_inside, mod)) % mod left += 1 return res
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR FUNC_CALL VAR NUMBER VAR VAR VAR VAR NUMBER RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() ans = 0 mod = 1000000007 st = 0 ed = len(nums) - 1 while st < ed: while nums[st] + nums[ed] > target: ed -= 1 if st < ed: ans += 2 ** (ed - st) - 1 ans %= mod st += 1 for i in range(len(nums)): if 2 * nums[i] <= target: ans += 1 return ans % mod
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR BIN_OP BIN_OP NUMBER BIN_OP VAR VAR NUMBER VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP NUMBER VAR VAR VAR VAR NUMBER RETURN BIN_OP VAR VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums = sorted(nums) l, r = 0, len(nums) - 1 MOD = 10**9 + 7 res = 0 while l <= r: if nums[l] + nums[r] > target: r -= 1 else: res = (res + (1 << r - l)) % MOD l += 1 return res
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP NUMBER BIN_OP VAR VAR VAR VAR NUMBER RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() le = len(nums) res = 0 mod = 10**9 + 7 for i in range(le): if nums[i] * 2 <= target: lo, hi = i, le - 1 while hi > lo: mid = (hi + lo + 1) // 2 if nums[i] + nums[mid] <= target: lo = mid else: hi = mid - 1 res += pow(2, lo - i, mod) res %= mod else: break return res
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER VAR ASSIGN VAR VAR VAR BIN_OP VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR VAR VAR RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: ans = 0 nums.sort() for i in range(len(nums)): if nums[i] * 2 > target: break l, r = i, len(nums) - 1 while l + 1 < r: mid = (l + r) // 2 if nums[i] + nums[mid] > target: r = mid else: l = mid if nums[i] + nums[r] <= target: ind = r else: ind = l ans += 2 ** (ind - i) return ans % (10**9 + 7)
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER VAR ASSIGN VAR VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR BIN_OP NUMBER BIN_OP VAR VAR RETURN BIN_OP VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: if not nums: return 0 nums.sort() MOD = 10**9 + 7 res = 0 i = 0 j = len(nums) - 1 h = dict() while i < len(nums): while i <= j and nums[i] + nums[j] > target: j -= 1 if i <= j and nums[i] + nums[j] <= target: if j - i not in h: h[j - i] = 2 ** (j - i) res = (res + h[j - i]) % MOD i += 1 if i > j: break return res
CLASS_DEF FUNC_DEF VAR VAR VAR IF VAR RETURN NUMBER EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR WHILE VAR FUNC_CALL VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR BIN_OP VAR VAR VAR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP NUMBER BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR VAR VAR NUMBER IF VAR VAR RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: a = nums a.sort() t = target while a and a[-1] > t: a.pop() ans = 0 l, h = 0, len(a) - 1 M = 10**9 + 7 while l <= h: while l <= h and a[h] + a[l] > t: h -= 1 if l <= h and a[h] + a[l] <= t: ans += 1 << h - l ans %= M l += 1 return ans
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR WHILE VAR VAR NUMBER VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER WHILE VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR BIN_OP NUMBER BIN_OP VAR VAR VAR VAR VAR NUMBER RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() right = len(nums) - 1 left = 0 ret = 0 while left < right: if nums[left] * 2 <= target: ret += 1 max_right = target - nums[left] while left < right and max_right < nums[right]: if nums[right] * 2 <= target: ret += 1 right -= 1 if left < right: ret += 2 ** (right - left) - 1 else: return ret % 1000000007 left += 1 if nums[right] * 2 <= target: ret += 1 return ret % 1000000007
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR WHILE VAR VAR VAR VAR VAR IF BIN_OP VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR BIN_OP BIN_OP NUMBER BIN_OP VAR VAR NUMBER RETURN BIN_OP VAR NUMBER VAR NUMBER IF BIN_OP VAR VAR NUMBER VAR VAR NUMBER RETURN BIN_OP VAR NUMBER VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: if not nums: return 0 res = 0 nums.sort() ln = len(nums) i = 0 j = ln - 1 md = pow(10, 9) + 7 while i <= j: if nums[i] + nums[j] <= target: res = (res + pow(2, j - i, md)) % md i += 1 else: j -= 1 return res
CLASS_DEF FUNC_DEF VAR VAR VAR IF VAR RETURN NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR NUMBER NUMBER NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR VAR VAR NUMBER VAR NUMBER RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums = sorted(nums) c = 10**9 + 7 left = 0 res = 0 right = len(nums) - 1 while left <= right: if nums[left] + nums[right] <= target: res = (res + pow(2, right - left)) % c left += 1 else: right -= 1 return res
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR VAR NUMBER VAR NUMBER RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() res = 0 mod = 10**9 + 7 left, right = 0, len(nums) - 1 for left in range(len(nums)): while left < right and nums[left] + nums[right] > target: right -= 1 if left <= right and nums[left] + nums[right] <= target: print((nums[left], nums[right])) res += pow(2, right - left, mod) res %= mod return res
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR BIN_OP VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR VAR VAR RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: MOD = 10**9 + 7 nums.sort() result = 0 for i in range(len(nums)): if nums[i] <= target // 2: left, right = i, len(nums) - 1 while left < right - 1: mid = (left + right) // 2 if nums[mid] <= target - nums[i]: left = mid else: right = mid - 1 if nums[i] + nums[right] <= target: result += 2 ** (right - i) elif nums[i] + nums[left] <= target: result += 2 ** (left - i) return result % MOD
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR VAR BIN_OP NUMBER BIN_OP VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR BIN_OP NUMBER BIN_OP VAR VAR RETURN BIN_OP VAR VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums = sorted(nums) res = 0 i1, i2 = 0, len(nums) - 1 while i1 <= i2: if nums[i1] + nums[i2] <= target: res += 2 ** (i2 - i1) i1 += 1 else: i2 -= 1 return res % (10**9 + 7)
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR BIN_OP NUMBER BIN_OP VAR VAR VAR NUMBER VAR NUMBER RETURN BIN_OP VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
MOD = 1000000007 class Solution: def numSubseq(self, nums, target): if not nums: return 0 nums = sorted(nums) n = len(nums) left, right = 0, n - 1 res = 0 while left <= right: if nums[left] + nums[right] <= target: res += 2 ** (right - left) res %= MOD left += 1 else: right -= 1 return res % MOD
ASSIGN VAR NUMBER CLASS_DEF FUNC_DEF IF VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR BIN_OP NUMBER BIN_OP VAR VAR VAR VAR VAR NUMBER VAR NUMBER RETURN BIN_OP VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def get_val(self, arr, i, m1, m2, target): if i == len(arr): return 0 x = m1 y = m2 ct = 0 if m1 + m2 < target: ct += 1 for j in range(i + 1, len(arr)): m1 = min(x, arr[j]) m2 = max(y, arr[j]) if m1 + m2 > target: continue ct += self.get_val(arr, j, m1, m2, target) return ct def get_smallest_idx(self, arr, i, j, x): if arr[i] > x: return -1 l = i h = j while l <= h: mid = int((l + h) / 2) if arr[mid] > x: h = mid - 1 elif mid == h or arr[mid + 1] > x: return mid else: l = mid + 1 def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() ct = 0 N = len(nums) j = N - 1 s = [(1) for i in range(N)] for i in range(1, N): s[i] = 2 * s[i - 1] for i in range(N): while j >= i and nums[i] + nums[j] > target: j -= 1 if j < i: return ct % (10**9 + 7) ct += s[j - i] return ct % (10**9 + 7)
CLASS_DEF FUNC_DEF IF VAR FUNC_CALL VAR VAR RETURN NUMBER ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER IF BIN_OP VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF BIN_OP VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR RETURN VAR FUNC_DEF IF VAR VAR VAR RETURN NUMBER ASSIGN VAR VAR ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR RETURN VAR ASSIGN VAR BIN_OP VAR NUMBER FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR BIN_OP NUMBER VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR RETURN BIN_OP VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR VAR BIN_OP VAR VAR RETURN BIN_OP VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums = sorted(nums) mod = int(1000000000.0 + 7) power = [1] * (len(nums) + 1) for i in range(1, len(nums)): power[i] = power[i - 1] * 2 % mod left, right = 0, len(nums) - 1 res = 0 while left <= right: while left <= right and nums[left] + nums[right] > target: right -= 1 if left > right: break res += power[right - left] left += 1 return res % mod
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR VAR BIN_OP VAR VAR VAR NUMBER RETURN BIN_OP VAR VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def __init__(self): mod = 1000000000.0 + 7 self.two_power = [0] * 100010 self.two_power[0] = 1 for i in range(1, len(self.two_power)): num = self.two_power[i - 1] * 2 if num > mod: num %= mod self.two_power[i] = num def numSubseq(self, nums: List[int], target: int) -> int: mod = 1000000000.0 + 7 nums = sorted(nums) sind = 0 eind = len(nums) - 1 ans = 0 while sind <= eind: if nums[sind] + nums[eind] > target: eind -= 1 else: ans += self.two_power[eind - sind] if ans > mod: ans %= mod sind += 1 return int(ans)
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR VAR ASSIGN VAR VAR VAR FUNC_DEF VAR VAR VAR ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR VAR BIN_OP VAR VAR IF VAR VAR VAR VAR VAR NUMBER RETURN FUNC_CALL VAR VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: sn = sorted(nums) ans = 0 mod = 1000000007 l = 0 r = len(nums) - 1 while l <= r: if sn[l] + sn[r] > target: r -= 1 continue u = int(pow(2, r - l)) ans = (ans + u) % mod l += 1 return ans
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
from itertools import combinations class Solution: def numSubseq(self, A, target) -> int: MOD = 10**9 + 7 N = len(A) A.sort() ans = 0 j = N - 1 for i in range(N): while i < j and A[i] + A[j] > target: j -= 1 if A[i] + A[j] <= target: ans += pow(2, j - i, MOD) ans %= MOD return ans
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR VAR VAR RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() result = 0 right_boundary = len(nums) - 1 for index, num in enumerate(nums): if num * 2 > target: break left = index right = right_boundary while left < right: mid = (left + right + 1) // 2 if nums[mid] + num <= target: left = mid else: right = mid - 1 right_boundary = left tail_length = right_boundary - index result += 1 << tail_length result %= 10**9 + 7 return result
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER VAR ASSIGN VAR VAR ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER IF BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP NUMBER VAR VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: MOD = 10**9 + 7 def numSubseq(self, nums: List[int], target: int) -> int: n = len(nums) nums.sort() count = 0 i, j = 0, n - 1 while i <= j: if nums[i] + nums[j] > target: j -= 1 continue len_ = j - i + 1 count += 2 ** (len_ - 1) i += 1 return count % self.__class__.MOD
CLASS_DEF ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP NUMBER BIN_OP VAR NUMBER VAR NUMBER RETURN BIN_OP VAR VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() i, j, count = 0, len(nums) - 1, 0 while i <= j: if nums[i] + nums[j] <= target: count += int(pow(2, j - i - 1) * 2) i += 1 else: j -= 1 return count % (pow(10, 9) + 7)
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR NUMBER VAR NUMBER RETURN BIN_OP VAR BIN_OP FUNC_CALL VAR NUMBER NUMBER NUMBER VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: def find_right(nums, j, target): if j == 1: return j - 1 i = 0 while i < j: mid = i + (j - i) // 2 if nums[mid] + nums[0] > target: j = mid else: i = mid + 1 return i - 1 n = len(nums) nums.sort() left = 0 right = find_right(nums, len(nums), target) MOD = 10**9 + 7 res = 0 while left <= right: if nums[left] + nums[right] <= target: res = (res + pow(2, right - left)) % MOD left += 1 else: right -= 1 return res
CLASS_DEF FUNC_DEF VAR VAR VAR FUNC_DEF IF VAR NUMBER RETURN BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR VAR NUMBER VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR VAR NUMBER VAR NUMBER RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: MODS = 10**9 + 7 def numSubseq(self, nums: List[int], target: int) -> int: N = len(nums) cal_map = [1] for ii in range(1, N): cal_map.append(cal_map[-1] * 2 % self.MODS) left, right, res = 0, N - 1, 0 nums.sort() while left < N: if nums[left] * 2 > target: break while right - 1 >= left and nums[left] > target - nums[right]: right -= 1 res += cal_map[right - left] left += 1 return res % self.MODS
CLASS_DEF ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR ASSIGN VAR VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR WHILE VAR VAR IF BIN_OP VAR VAR NUMBER VAR WHILE BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR VAR VAR VAR NUMBER VAR VAR BIN_OP VAR VAR VAR NUMBER RETURN BIN_OP VAR VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: N = 10**9 + 7 counts = Counter([num for num in nums if num < target]) nums = sorted(list(counts.keys())) total = sum(counts.values()) ans = 0 left, right = 0, len(nums) - 1 while left <= right: if nums[left] + nums[right] <= target: a = counts[nums[left]] total -= a ans = (ans + ((1 << a) - 1) * (1 << total)) % N left += 1 else: total -= counts[nums[right]] right -= 1 return ans
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP NUMBER VAR VAR VAR NUMBER VAR VAR VAR VAR VAR NUMBER RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: m = 10**9 + 7 ans = 0 i, j = 0, len(nums) - 1 nums.sort() pi, pj = -1, -1 while (pi, pj) != (i, j): pi, pj = i, j while j > i and nums[i] + nums[j] > target: j -= 1 while i <= j and nums[i] + nums[j] <= target: ans = (ans + 2 ** (j - i)) % m i += 1 return ans
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER NUMBER WHILE VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP NUMBER BIN_OP VAR VAR VAR VAR NUMBER RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def find_endindex(self, nums, ind, target): start = ind end = len(nums) - 1 while start < end: mid = (start + end) // 2 if nums[mid] + nums[ind] > target: end = mid else: start = mid + 1 if nums[start] + nums[ind] > target: start -= 1 return 2 ** (start - ind) def numSubseq(self, nums: List[int], target: int) -> int: nums2 = sorted(nums) result = 0 if nums2[0] > target: return result for i in range(len(nums2)): if nums2[i] * 2 <= target: res = self.find_endindex(nums2, i, target) result += res else: break return result % (10**9 + 7)
CLASS_DEF FUNC_DEF ASSIGN VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER RETURN BIN_OP NUMBER BIN_OP VAR VAR FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER VAR RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR RETURN BIN_OP VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() n = len(nums) total = 0 right = n - 1 for i in range(len(nums)): if nums[i] > target or right < i: break while right >= i and nums[i] + nums[right] > target: right -= 1 if right < i: break if nums[i] + nums[right] <= target: total = (total + 2 ** (right - i)) % (10**9 + 7) return int(total) % (10**9 + 7)
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP NUMBER BIN_OP VAR VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER RETURN BIN_OP FUNC_CALL VAR VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() print(nums) left = 0 right = len(nums) - 1 res = 0 while left < right: min_v = nums[left] max_v = nums[right] sum = min_v + max_v if sum <= target: count = right - left res = res + 2**count left += 1 else: right -= 1 if nums[left] * 2 <= target: res += 1 return res % (10**9 + 7)
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP NUMBER VAR VAR NUMBER VAR NUMBER IF BIN_OP VAR VAR NUMBER VAR VAR NUMBER RETURN BIN_OP VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() start = 0 end = len(nums) - 1 count = 0 while start <= end: if nums[start] + nums[end] > target: end -= 1 else: num_in_between = end - start count += 2**num_in_between count %= 10**9 + 7 start += 1 return count
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP NUMBER VAR VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR NUMBER RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums, target: int) -> int: n = len(nums) nums.sort() res = 0 mod = 10**9 + 7 last = n - 1 t = target / 2 f = [1] + [0] * (n - 1) for i in range(1, n): f[i] = f[i - 1] * 2 % mod i = 0 while i < n and nums[i] <= t: j = last while j >= i and nums[i] + nums[j] > target: j -= 1 last = j res += f[j - i] i += 1 return res % 1000000007
CLASS_DEF FUNC_DEF VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR VAR ASSIGN VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR BIN_OP VAR VAR VAR NUMBER RETURN BIN_OP VAR NUMBER VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() n = len(nums) ri = n - 1 ans = 0 for li, l in enumerate(nums): if l * 2 > target: break while nums[ri] + l > target: ri -= 1 ans = (ans + pow(2, ri - li, 1000000007)) % 1000000007 return ans
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER VAR WHILE BIN_OP VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR NUMBER NUMBER RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: MOD = 10**9 + 7 nums.sort() res = 0 l = 0 n = len(nums) pow2 = [1] for x in range(1, n + 1): pow2.append(pow2[-1] * 2 % MOD) j = n - 1 for i in range(n): while j and nums[i] + nums[j] > target: j -= 1 if i <= j and nums[i] + nums[j] <= target: res += pow2[j - i] res %= MOD return res MODULO = 10**9 + 7 nums.sort() res = 0 l = 0 n = len(nums) while l < n and nums[l] * 2 <= target: r = l while r < n and nums[l] + nums[r] <= target: r += 1 if l <= r < n: if l == r and nums[l] + nums[r] <= target: res += 1 elif l < r and nums[l] + nums[r - 1] <= target: res += 2 ** (r - l - 1) % MODULO elif r == n and nums[l] + nums[r - 1] <= target: r -= 1 res += 2 ** (r - l) % MODULO l += 1 return res % MODULO
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR RETURN VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR BIN_OP VAR VAR NUMBER VAR ASSIGN VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR IF VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR IF VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR BIN_OP BIN_OP NUMBER BIN_OP VAR VAR VAR VAR NUMBER RETURN BIN_OP VAR VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() n = len(nums) module = 10**9 + 7 ret = 0 lo, hi = 0, n - 1 while lo <= hi: if nums[lo] + nums[hi] > target: hi -= 1 else: ret += 1 << hi - lo lo += 1 return ret % module
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR BIN_OP NUMBER BIN_OP VAR VAR VAR NUMBER RETURN BIN_OP VAR VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() n = len(nums) res = 0 mod = 10**9 + 7 i, j = 0, n - 1 for i in range(n): while i <= j and nums[i] + nums[j] > target: j -= 1 if i <= j and nums[i] + nums[j] <= target: res += pow(2, j - i, mod) res %= mod return res
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR VAR VAR RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: MOD = 10**9 + 7 nums.sort() def bsearch(t, l, r): if l > r: return -1 while l < r: m = (l + r + 1) // 2 if nums[m] <= t: l = m else: r = m - 1 return l if nums[l] <= t else -1 res = 0 for i, n in enumerate(nums): ind = bsearch(target - n, 0, i - 1) must_have = pow(2, ind + 1, MOD) - 1 may_have = pow(2, max(0, i - ind - 1), MOD) res = (res + must_have * may_have) % MOD res = (res + sum(2 * n <= target for n in nums)) % MOD return res
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_DEF IF VAR VAR RETURN NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER IF VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR FUNC_CALL VAR BIN_OP NUMBER VAR VAR VAR VAR VAR RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: dic = dict() for x in nums: if x not in dic: dic[x] = 0 dic[x] += 1 hulu = sorted(list(dic.keys())) dahulu = [0] for x in hulu: dahulu.append(dahulu[-1] + dic[x]) dahulu = dahulu[1:] output = 0 start = 0 end = len(hulu) - 1 while start < len(hulu): while end >= start: if hulu[start] + hulu[end] <= target: output += (2 ** dic[hulu[start]] - 1) * 2 ** ( dahulu[end] - dahulu[start] ) break else: end -= 1 start += 1 return output % (10**9 + 7)
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FOR VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST NUMBER FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR FUNC_CALL VAR VAR WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR VAR NUMBER BIN_OP NUMBER BIN_OP VAR VAR VAR VAR VAR NUMBER VAR NUMBER RETURN BIN_OP VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() j = len(nums) - 1 flag = False ans = 0 for i in range(len(nums)): if flag: if nums[i] * 2 > target: break ans += 1 else: while j >= i and nums[j] + nums[i] > target: j -= 1 if j > i: ans += 2 ** (j - i) else: if nums[i] * 2 > target: break ans += 1 flag = True return ans % (10**9 + 7)
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR IF BIN_OP VAR VAR NUMBER VAR VAR NUMBER WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR BIN_OP NUMBER BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER RETURN BIN_OP VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: M = 10**9 + 7 ans = 0 nums.sort() left = 0 right = len(nums) - 1 while left <= right: total = nums[left] + nums[right] if total <= target: ans += pow(2, right - left, M) if total > target: right -= 1 else: left += 1 return ans % M
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR IF VAR VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR IF VAR VAR VAR NUMBER VAR NUMBER RETURN BIN_OP VAR VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() cnt = 0 mod = 10**9 + 7 if nums[-1] <= target // 2: return pow(2, len(nums), mod) - 1 end = len(nums) - 1 while end >= 0 and nums[0] + nums[end] > target: end -= 1 print(end) for start in range(len(nums)): while start <= end and nums[start] + nums[end] > target: end -= 1 if start > end: break print((start, end)) cnt += pow(2, end - start, mod) cnt %= mod return cnt
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER IF VAR NUMBER BIN_OP VAR NUMBER RETURN BIN_OP FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR NUMBER BIN_OP VAR NUMBER VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR VAR VAR RETURN VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() ans, left, right = 0, 0, len(nums) - 1 while right >= 0 and nums[right] + nums[left] > target: right -= 1 while right >= 0: complement = target - nums[right] if nums[right] <= complement: if right >= left: ans += (1 << right + 1) - 1 else: ans += (1 << left) - 1 break else: while nums[left] <= complement: left += 1 if left == right: ans += (1 << left + 1) - 2 break else: ans += ((1 << left) - 1) * (1 << right - left) right -= 1 return ans % (10**9 + 7)
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR NUMBER BIN_OP VAR VAR VAR VAR VAR VAR NUMBER WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR IF VAR VAR VAR IF VAR VAR VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER WHILE VAR VAR VAR VAR NUMBER IF VAR VAR VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER NUMBER VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP NUMBER BIN_OP VAR VAR VAR NUMBER RETURN BIN_OP VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums = sorted(nums) n = len(nums) count = 0 i, j = 0, n - 1 while i <= j: tot = nums[i] + nums[j] if tot <= target: count += int(2 ** (j - i)) i += 1 else: j -= 1 return count % int(1000000000.0 + 7)
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR IF VAR VAR VAR FUNC_CALL VAR BIN_OP NUMBER BIN_OP VAR VAR VAR NUMBER VAR NUMBER RETURN BIN_OP VAR FUNC_CALL VAR BIN_OP NUMBER NUMBER VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums = sorted(nums) mod = 10**9 + 7 i, n = 0, len(nums) pows = [0] * n p = 1 while i < n: pows[i] = p p = 2 * p i += 1 l, r = 0, n - 1 res = 0 while l <= r: if nums[l] + nums[r] <= target: res = (res + pows[r - l]) % mod l += 1 else: r -= 1 return int(res)
CLASS_DEF FUNC_DEF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP NUMBER VAR VAR NUMBER ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR VAR VAR NUMBER VAR NUMBER RETURN FUNC_CALL VAR VAR VAR
Given an array of integers nums and an integer target. Return the number of non-empty subsequences of nums such that the sum of the minimum and maximum element on it is less or equal than target. Since the answer may be too large, return it modulo 10^9 + 7.   Example 1: Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9) Example 2: Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6] Example 3: Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them don't satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61). Example 4: Input: nums = [5,2,4,1,7,6,8], target = 16 Output: 127 Explanation: All non-empty subset satisfy the condition (2^7 - 1) = 127   Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^6 1 <= target <= 10^6
class Solution: def numSubseq(self, nums: List[int], target: int) -> int: nums.sort() start = 0 end = len(nums) - 1 count = 0 while start <= end: if nums[start] + nums[end] <= target: count += 2 ** (end - start) % 1000000007 start += 1 else: end -= 1 for i in range(end + 1, len(nums)): if nums[i] * 2 <= target: count += 1 else: break return count % 1000000007
CLASS_DEF FUNC_DEF VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR BIN_OP BIN_OP NUMBER BIN_OP VAR VAR NUMBER VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER VAR VAR NUMBER RETURN BIN_OP VAR NUMBER VAR