description
stringlengths
171
4k
code
stringlengths
94
3.98k
normalized_code
stringlengths
57
4.99k
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = list(map(int, input().split())) if m <= n: print(n - m) else: memo = [0] * (m + 1) i = 0 while i <= n: memo[i] = n - i i = i + 1 i = n + 1 while i <= m: moves = None if i % 2 == 0: moves = 1 + memo[i // 2] else: moves = 2 + memo[(i + 1) // 2] memo[i] = moves i = i + 1 print(memo[m])
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR ASSIGN VAR NONE IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
def f(n, m): count = 0 while True: if m == n: return count elif m < n: return count + (n - m) elif m % 2 == 1: count += 1 m += 1 else: count += 1 m = m // 2 n, m = map(int, input().split()) print(f(n, m))
FUNC_DEF ASSIGN VAR NUMBER WHILE NUMBER IF VAR VAR RETURN VAR IF VAR VAR RETURN BIN_OP VAR BIN_OP VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
def find_path_count(x, y): if x == y: return 0 if x > y: return x - y paths = {x: 0} count = x * y max_t = 2 * y cur_i = -1 results = [] while True: new_items = {} cur_i += 1 for t, v in paths.items(): t1 = t - 1 t2 = t * 2 if t1 == y: res = v + 1 return res if t2 == y: res = v + 1 return res if t1 not in paths and t1 > 1: new_items[t1] = v + 1 if t2 not in paths: if t2 < y or t2 < max_t: if t2 > y: count = min(count, t2 - y + v) new_items[t2] = v + 1 paths = new_items if cur_i >= count: count x, y = map(int, input().split(" ")) print(find_path_count(x, y))
FUNC_DEF IF VAR VAR RETURN NUMBER IF VAR VAR RETURN BIN_OP VAR VAR ASSIGN VAR DICT VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR LIST WHILE NUMBER ASSIGN VAR DICT VAR NUMBER FOR VAR VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR IF VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER IF VAR VAR IF VAR VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR IF VAR VAR EXPR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = list(map(lambda x: int(x), input().split())) def twoButtons(n, m): ans = 0 while n != m: if m > n: ans += 1 if m % 2 == 0: m /= 2 else: m += 1 elif m < n: m += 1 ans += 1 return ans print(twoButtons(n, m))
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER RETURN VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
import sys initial = sys.stdin.read().split(" ") start = int(initial[0]) end = int(initial[1]) queue = [] dic = {} m = start count = 0 while m < end: m *= 2 count = count + 1 count = m - end + count if start > end: print(start - end) else: queue.append((start, 0)) while queue[0][0] != end: if queue[0][1] > count: break if queue[0][0] - 1 >= 0 and queue[0][0] <= m and not queue[0][0] - 1 in dic: queue.append((queue[0][0] - 1, queue[0][1] + 1)) dic[queue[0][0] - 1] = queue[0][1] if queue[0][0] * 2 <= m and not queue[0][0] * 2 in dic: queue.append((queue[0][0] * 2, queue[0][1] + 1)) dic[queue[0][0] * 2] = queue[0][1] queue.pop(0) print(queue[0][1])
IMPORT ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST ASSIGN VAR DICT ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR NUMBER WHILE VAR NUMBER NUMBER VAR IF VAR NUMBER NUMBER VAR IF BIN_OP VAR NUMBER NUMBER NUMBER NUMBER VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR NUMBER NUMBER IF BIN_OP VAR NUMBER NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER NUMBER
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
a, b = map(int, input().split()) cont = 0 while True: if a >= b: cont += a - b break else: cont += 1 if a * 2 == b: break else: b = [b // 2, b + 1][b % 2] print(cont)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER WHILE NUMBER IF VAR VAR VAR BIN_OP VAR VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR ASSIGN VAR LIST BIN_OP VAR NUMBER BIN_OP VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
import sys n, m = (int(i) for i in sys.stdin.readline().split()) factor_count = 0 factor = 1 to_add = 0 while n < m: n *= 2 factor *= 2 factor_count += 1 to_add_total = 0 to_add = n - m temp_factor = factor while to_add > 0 and temp_factor > 0: to_add_total += to_add // temp_factor to_add -= temp_factor * (to_add // temp_factor) temp_factor //= 2 to_add_total += to_add print(factor_count + to_add // factor + to_add_total)
IMPORT ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR WHILE VAR NUMBER VAR NUMBER VAR BIN_OP VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = map(int, input().split()) if m <= n: print(n - m) else: for i in range(1, m // n + 2): if n * 2**i >= m: a = i break if n * 2**a == m: print(a) else: ncount = 1 while n != m: if n > m / 2**a > n - 1: n *= 2 ncount += 1 a -= 1 b = 0 elif n - 1 > m / 2**a: n -= 1 ncount += 1 b = 0 else: b = 1 break if b == 0: print(ncount) else: print(ncount + a)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP VAR BIN_OP NUMBER VAR VAR ASSIGN VAR VAR IF BIN_OP VAR BIN_OP NUMBER VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR IF VAR BIN_OP VAR BIN_OP NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP VAR NUMBER BIN_OP VAR BIN_OP NUMBER VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
def bfs(n, m): queue = [[n, 0]] d = {} x = 2 * m while queue: q = queue.pop(0) v, k = q[0], q[1] if v == m: return k e = v - 1 if e > 0: if d.get(e) == None: d[e] = 0 queue.append([e, k + 1]) e = v * 2 if e <= x: if d.get(e) == None: d[e] = 0 queue.append([e, k + 1]) n, m = map(int, input().split()) if n >= m: print(n - m) else: print(bfs(n, m))
FUNC_DEF ASSIGN VAR LIST LIST VAR NUMBER ASSIGN VAR DICT ASSIGN VAR BIN_OP NUMBER VAR WHILE VAR ASSIGN VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR RETURN VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER IF FUNC_CALL VAR VAR NONE ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR LIST VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR IF FUNC_CALL VAR VAR NONE ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR LIST VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
def two_buttons(start, end): cache = get_cache(start) temp = start + 1 while end not in cache: if temp % 2 == 0: cache[temp] = 1 + cache[temp / 2] else: cache[temp] = 2 + cache[(temp + 1) / 2] temp += 1 return cache[end] def get_cache(start): cache = {i: (start - i) for i in range(1, start)} cache[start] = 0 return cache n, m = [int(e) for e in input().split()] print(two_buttons(n, m))
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP NUMBER VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR NUMBER RETURN VAR VAR FUNC_DEF ASSIGN VAR VAR BIN_OP VAR VAR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR NUMBER RETURN VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
a, b = [int(x) for x in input().split()] count = 0 if b > a: while b != a: if b < a: count += a - int(b) b = a break count += 1 if b % 2: b += 1 else: b = b / 2 print(count) else: print(a - b)
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF VAR VAR WHILE VAR VAR IF VAR VAR VAR BIN_OP VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = [int(a) for a in input().split()] amount = 0 if n > m: amount = n - m else: while m > n: if m % 2 == 0: m //= 2 else: m += 1 amount += 1 amount += n - m print(amount)
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR WHILE VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
def mi(m, n): if m == n: return 0 if m > n: return m - n if m <= 0 and n > 0: return -1 if n % 2 == 1: return 1 + mi(m, n + 1) else: return 1 + mi(m, n // 2) m, n = map(int, input().split()) print(mi(m, n))
FUNC_DEF IF VAR VAR RETURN NUMBER IF VAR VAR RETURN BIN_OP VAR VAR IF VAR NUMBER VAR NUMBER RETURN NUMBER IF BIN_OP VAR NUMBER NUMBER RETURN BIN_OP NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER RETURN BIN_OP NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
def f(): ans = 0 n, m = map(int, input().split()) while n != m: if n > m: ans += n - m break else: if m % 2 == 0: m /= 2 else: m += 1 ans += 1 print(int(ans)) f()
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR WHILE VAR VAR IF VAR VAR VAR BIN_OP VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
[n, m] = [int(_) for _ in input().split()] ans = 0 if n > m: ans = n - m else: lis = [(-1) for _ in range(2 * m + 1)] count = 0 lis[n] = count stepset = {n} while lis[m] == -1: count += 1 tempset = set([]) for x in stepset: y = 2 * x if 0 < y < 2 * m and lis[y] == -1: tempset.add(y) lis[y] = count y = x - 1 if 0 < y < 2 * m and lis[y] == -1: tempset.add(y) lis[y] = count stepset = tempset ans = lis[m] print(ans)
ASSIGN LIST VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR WHILE VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR LIST FOR VAR VAR ASSIGN VAR BIN_OP NUMBER VAR IF NUMBER VAR BIN_OP NUMBER VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF NUMBER VAR BIN_OP NUMBER VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = map(int, input().split()) if n > m: print(n - m) else: if m % 2 == 1: m += 1 r = 1 else: r = 0 nn, mm, mini = n, m, 0 a = [m] mini = 1000000 while a[-1] != 1: if mm % 2 == 1: mm += 1 l = mm // 2 a.append(l) mm = mm // 2 for i in range(len(a) - 1, -1, -1): if a[i] <= n: k = a[i] else: break i += 1 r += n - k while k != m: k *= 2 r += 1 if k not in a: k -= 1 r += 1 print(r)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR VAR VAR NUMBER ASSIGN VAR LIST VAR ASSIGN VAR NUMBER WHILE VAR NUMBER NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER VAR BIN_OP VAR VAR WHILE VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = map(int, input().split()) ans = 0 while 2 * n < m: n = 2 * n ans += 1 if n < m: if m == 2 * n: ans += 1 else: n = 2 * n ans += 1 u = ans + 1 while n != m: r = u x = 0 while r > 0 and n > m: l = 2**x if n - l < m: l = 2 ** (x - 1) n -= l break if n - l == m or r == 1: n = n - l break x += 1 r -= 1 ans += 1 if n == m: break elif n > m: ans = n - m print(ans)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER WHILE BIN_OP NUMBER VAR VAR ASSIGN VAR BIN_OP NUMBER VAR VAR NUMBER IF VAR VAR IF VAR BIN_OP NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR NUMBER VAR VAR ASSIGN VAR BIN_OP NUMBER VAR IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP NUMBER BIN_OP VAR NUMBER VAR VAR IF BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
x, y = map(int, input().split()) c = 0 for i in range(10000): if y > x: if y % 2 != 0: y = y + 1 c = c + 1 else: y = y // 2 c = c + 1 elif y < x: c = c + (x - y) print(c) break else: print(c) break
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
def sol(a, b): f = True c = 0 r = [] if b % 2: c += 1 b += 1 while b > 0 and not b % 2: r = [b // 2] + r b //= 2 if a < r[0]: return c + sol(a, r[0]) + sol(r[0], 2 * r[-1]) else: for i in range(len(r)): if a == r[i]: c += len(r) - i f = False break elif a < r[i]: c += a - r[i - 1] c += len(r) - (i - 1) f = False break if f: c += a - r[-1] c += 1 return c x, y = map(int, input().split()) if y <= x: print(x - y) else: print(sol(x, y))
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST IF BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER WHILE VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST BIN_OP VAR NUMBER VAR VAR NUMBER IF VAR VAR NUMBER RETURN BIN_OP BIN_OP VAR FUNC_CALL VAR VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER BIN_OP NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER IF VAR VAR VAR VAR BIN_OP VAR VAR BIN_OP VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR BIN_OP VAR VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = map(int, input().split()) t = [1] * m d = [(n, 0)] x = n + m while d: n, s = d.pop(0) if n >= m: x = min(x, s + n - m) elif t[n]: t[n] = 0 d.append((2 * n, s + 1)) if n > 1: d.append((n - 1, s + 1)) print(x)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR LIST VAR NUMBER ASSIGN VAR BIN_OP VAR VAR WHILE VAR ASSIGN VAR VAR FUNC_CALL VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP NUMBER VAR BIN_OP VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
def find_presses(n, m): presses = 0 while n < m: if m % 2 == 0: m //= 2 else: m += 1 presses += 1 print(presses + (n - m)) n, m = map(int, input().split(" ")) find_presses(n, m)
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = map(int, input().split()) q = 0 while n != m: m = [m // 2, m + 1][m & 1 or m < n] q += 1 print(q)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR LIST BIN_OP VAR NUMBER BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = [int(x) for x in input().split()] step = 0 if m == n or m < n: step = n - m else: while m > n: if m % 2 == 0: m = m / 2 step += 1 else: m = (m + 1) / 2 step += 2 if m < n or m == n: step += n - m print(int(step))
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR WHILE VAR VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR NUMBER IF VAR VAR VAR VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = map(int, input().split()) ans = 0 if n >= m: print(n - m) else: while n != m: if m < n: ans += n - m break elif m % 2 == 0: m = m // 2 ans += 1 else: m += 1 ans += 1 if n == m: break m = m // 2 ans += 1 print(ans)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR WHILE VAR VAR IF VAR VAR VAR BIN_OP VAR VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = map(int, input().split()) if n == m: print(0) if n > m: num = n - m print(num) def bfs(nohdepartida, nohdechegada): nivel = [] for i in range(10002): nivel.append(-1) fila = [] fila.append(n) nivel[n] = 0 while len(fila) > 0: nohtop = fila.pop() if nohtop == m: print(nivel[nohtop]) break if 2 * nohtop <= 10000: if nivel[2 * nohtop] == -1: nivel[2 * nohtop] = nivel[nohtop] + 1 fila.insert(0, 2 * nohtop) if nohtop > 1: if nivel[nohtop - 1] == -1: nivel[nohtop - 1] = nivel[nohtop] + 1 fila.insert(0, nohtop - 1) if m > n: bfs(n, m)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR LIST EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER WHILE FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR VAR VAR IF BIN_OP NUMBER VAR NUMBER IF VAR BIN_OP NUMBER VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER BIN_OP NUMBER VAR IF VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
inicial, final = list(map(int, input().split())) if inicial >= final: print(int(inicial - final)) else: retorno = 0 aux = final while aux > inicial: if not aux % 2 == 0: aux += 1 retorno += 1 aux = aux / 2 retorno += 1 retorno += inicial - aux print(int(retorno))
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = map(int, input().split()) ans = 0 while n != m: while n > m: m += 1 ans += 1 if m % 2 == 0 and n != m: m //= 2 ans += 1 elif n != m and m % 2: m += 1 m //= 2 ans += 2 print(ans)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR VAR WHILE VAR VAR VAR NUMBER VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = list(map(int, input().split())) cnt = 0 while n < m: if m % 2 == 1: m += 1 cnt += 1 else: m //= 2 cnt += 1 cnt += abs(m - n) print(cnt)
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
import sys ii = lambda: sys.stdin.readline().strip() idata = lambda: [int(x) for x in ii().split()] n, m = idata() if n >= m: print(n - m) else: n1, m1 = n, m count = 0 while n1 <= m1 // 2: if m1 % 2 == 1: m1 += 1 count += 1 m1 //= 2 count += 1 if n1 == m1: print(count) else: print(count + n1 - m1 // 2 + 1)
IMPORT ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER NUMBER
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = [int(p) for p in input().split()] sum = 0 if n >= m: sum += n - m else: sum = 0 while m > n: if m % 2 == 0: sum += 1 m = m // 2 elif m % 2 == 1: sum += 2 m = (m + 1) // 2 sum += n - m print(sum)
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
def num_steps(given, ideal): steps = 0 while given < ideal: if ideal % 2 == 0: ideal = ideal / 2 else: ideal += 1 steps += 1 return int(steps + (given - ideal)) inputs = [int(num) for num in input().split()] n = inputs[0] m = inputs[1] result = num_steps(n, m) print(result)
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER RETURN FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
class Queue: def __init__(self): self.list = [] def push(self, value): self.list.append(value) def pop(self): return self.list.pop(0) def top(self): return self.list[0] def empty(self): return len(self.list) == 0 n, m = map(int, input().split()) MAX_VALUE = 2 * max(n, m) q = Queue() q.push(n) count = [(0) for i in range(MAX_VALUE + 1)] while q.top() != m: u = q.pop() if u - 1 >= 0 and count[u - 1] == 0: count[u - 1] = count[u] + 1 q.push(u - 1) if u * 2 <= MAX_VALUE and count[u * 2] == 0: count[u * 2] = count[u] + 1 q.push(u * 2) print(count[m])
CLASS_DEF FUNC_DEF ASSIGN VAR LIST FUNC_DEF EXPR FUNC_CALL VAR VAR FUNC_DEF RETURN FUNC_CALL VAR NUMBER FUNC_DEF RETURN VAR NUMBER FUNC_DEF RETURN FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP NUMBER FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER WHILE FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR IF BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
def answer2(N, M, count): if M <= N: return count + N - M if M % 2 != 0: count += 1 M += 1 return answer2(N, M // 2, count + 1) N, M = map(int, input().split()) print(answer2(N, M, 0))
FUNC_DEF IF VAR VAR RETURN BIN_OP BIN_OP VAR VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER RETURN FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = map(int, input().split()) if m < n: print(n - m) elif m == n: print(0) else: count = 0 while m > n: if m & 1: m = int((m + 1) / 2) count += 1 else: m = int(m / 2) first = 1 count += 1 count += abs(m - n) print(count)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
def f(a, b): if b <= a: return a - b return 1 + b % 2 + f(a, (b + 1) // 2) a, b = map(int, input().split()) print(f(a, b))
FUNC_DEF IF VAR VAR RETURN BIN_OP VAR VAR RETURN BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
inS = input() nums = [int(i) for i in inS.split(" ")] n = nums[0] m = nums[1] dp_arr = [99999] * (10**4 + 1) dp_arr[n] = 0 for i in range(n, 0, -1): dp_arr[i] = n - i for i in range(1, len(dp_arr)): if i + 1 < len(dp_arr): dp_arr[i] = min(dp_arr[i], dp_arr[i + 1] + 1) if i * 2 < len(dp_arr): dp_arr[i * 2] = min(dp_arr[i * 2], dp_arr[i] + 1) print(dp_arr[m])
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER IF BIN_OP VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
import sys n, m = map(int, input().split()) count = 0 if m <= n: print(n - m) sys.exit(0) while n != m: if n < m: if m % 2 == 0: m = m / 2 else: m = m + 1 else: break count = count + 1 print(int(n - m + count))
IMPORT ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER WHILE VAR VAR IF VAR VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = map(int, input().split()) visit = [0] * (10**6 + 1) ls = [] ls.append((n, 0)) while len(ls): cur = list(ls.pop(0)) if cur[0] == m: print(cur[1]) break visit[cur[0]] = 1 if cur[0] - 1 > 0 and visit[cur[0] - 1] == 0: ls.append((cur[0] - 1, cur[1] + 1)) if cur[0] * 2 < 10**5 and visit[cur[0] * 2] == 0: ls.append((cur[0] * 2, cur[1] + 1))
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR LIST EXPR FUNC_CALL VAR VAR NUMBER WHILE FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER IF BIN_OP VAR NUMBER NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER NUMBER IF BIN_OP VAR NUMBER NUMBER BIN_OP NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER NUMBER
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = input(" ").split() n = int(n) m = int(m) n, m = m, n n = n m = m count = 0 while n - m != 0: if n < m or n == m: count = count + m - n n = 0 m = 0 break elif n > m: if n % 2 == 0: n = n / 2 count = count + 1 m = m else: n = n + 1 count = count + 1 m = m print(int(count))
ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE BIN_OP VAR VAR NUMBER IF VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
from sys import stdin def main(): n, m = stdin.readline().split(" ") print(solve(int(n), int(m))) class Node: def __init__(self, data, depth=0, l=None, r=None): self.data = data self.depth = depth self.left = l self.right = r def solve(n, m): queue = [] seen = set() queue.append(Node(n)) while len(queue) >= 0: temp = queue.pop(0) if temp.data == m: return temp.depth timesTwo = temp.data * 2 if timesTwo not in seen and temp.data < m: temp.left = Node(timesTwo, temp.depth + 1) queue.append(temp.left) seen.add(timesTwo) minusOne = temp.data - 1 if minusOne not in seen and minusOne >= 0: temp.right = Node(minusOne, temp.depth + 1) queue.append(temp.right) seen.add(minusOne) main()
FUNC_DEF ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR CLASS_DEF FUNC_DEF NUMBER NONE NONE ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR FUNC_DEF ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR WHILE FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER IF VAR VAR RETURN VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
a, b = list(map(int, input().split())) if a > b: print(a - b) else: c = 0 while a < b: if a != b and b % 2 == 0: b = b // 2 c += 1 else: b += 1 c += 1 c = a - b + c print(c)
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
import sys input = sys.stdin.readline def inp(): return int(input()) def insr(): s = input() return list(s[: len(s) - 1]) def invr(): return map(int, input().split()) n, m = invr() c = 0 while n != m: if m < n: m += 1 elif m % 2 == 0: m /= 2 elif m % 2 == 1: m = (m + 1) / 2 c += 1 c += 1 print(c)
IMPORT ASSIGN VAR VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR RETURN FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
import sys def minPress(startNumber, endNumber): numberList = [] visited = {} numberList.append([startNumber, 0]) visited[startNumber] = 0 minCount = sys.maxsize while len(numberList) != 0: nextVal = numberList.pop() if nextVal[0] >= endNumber: tempCount = nextVal[1] + nextVal[0] - endNumber if tempCount < minCount: minCount = tempCount else: if nextVal[0] * 2 <= endNumber * 2 and ( nextVal[0] * 2 not in visited or visited[nextVal[0] * 2] >= nextVal[1] + 1 ): visited[nextVal[0] * 2] = nextVal[1] + 1 numberList.append([nextVal[0] * 2, nextVal[1] + 1]) if nextVal[0] - 1 > 1 and ( nextVal[0] - 1 not in visited or visited[nextVal[0] * 2] >= nextVal[1] + 1 ): visited[nextVal[0] - 1] = nextVal[1] + 1 numberList.append([nextVal[0] - 1, nextVal[1] + 1]) return minCount startNumber, endNumber = [int(x) for x in sys.stdin.readline().split()] print(minPress(startNumber, endNumber))
IMPORT FUNC_DEF ASSIGN VAR LIST ASSIGN VAR DICT EXPR FUNC_CALL VAR LIST VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR WHILE FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR IF VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER VAR IF VAR VAR ASSIGN VAR VAR IF BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER VAR VAR BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR LIST BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER NUMBER IF BIN_OP VAR NUMBER NUMBER NUMBER BIN_OP VAR NUMBER NUMBER VAR VAR BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR LIST BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER NUMBER RETURN VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = map(int, input().split()) def problem2(n, m): if n == m: return "0" cont = 0 while n != m: if n > m: return cont + (n - m) if m % 2 == 0: m = m // 2 else: m += 1 cont += 1 if cont > 60: break return cont print(problem2(n, m))
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF IF VAR VAR RETURN STRING ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR RETURN BIN_OP VAR BIN_OP VAR VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER RETURN VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
ch = input() l = ch.split(" ") n = int(l[0]) m = int(l[1]) nb = 0 if n > m: nb = n - m else: a = n i = 0 while a < m: i = i + 1 a = 2 * a j = a - m c = 0 nb = i while j >= 2 and c < i: nb = nb + j % 2 j = j // 2 c = c + 1 nb = nb + j print(nb)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
def find_path_count(x, y): if x == y: return 0 paths = {x: 0} count = x * y max_t = 2 * y cur_i = -1 results = [] while True: new_items = {} cur_i += 1 for t, v in paths.items(): temps = t - 1, t * 2 for temp in temps: if temp == y: return v + 1 if temp not in paths: if temp > 1: if temp > y: count = min(count, temp - y + v + 1) continue new_items[temp] = v + 1 paths = new_items if cur_i >= count: return count x, y = map(int, input().split(" ")) print(find_path_count(x, y))
FUNC_DEF IF VAR VAR RETURN NUMBER ASSIGN VAR DICT VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR LIST WHILE NUMBER ASSIGN VAR DICT VAR NUMBER FOR VAR VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER FOR VAR VAR IF VAR VAR RETURN BIN_OP VAR NUMBER IF VAR VAR IF VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR IF VAR VAR RETURN VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
line = input().split() n = int(line[0]) m = int(line[1]) a = [] a += [n] i = 1 node = i level = 1 np = 0 visit = [0] * 10001 while len(a) > 0: if a[0] == m: print(visit[a[0]]) break else: temp = a[0] * 2 if temp < 10001 and visit[temp] == 0: a += [a[0] * 2] visit[temp] = visit[a[0]] + 1 temp = a[0] - 1 if temp > 0 and visit[temp] == 0: a += [a[0] - 1] visit[temp] = visit[a[0]] + 1 a.pop(0)
ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST VAR LIST VAR ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER WHILE FUNC_CALL VAR VAR NUMBER IF VAR NUMBER VAR EXPR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER NUMBER IF VAR NUMBER VAR VAR NUMBER VAR LIST BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER NUMBER IF VAR NUMBER VAR VAR NUMBER VAR LIST BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
a, b = map(int, input().split()) c = 0 while a != b: if a > b: c += a - b a = b elif b % 2: b = (b + 1) // 2 c += 2 else: b //= 2 c += 1 print(c)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR IF BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
a = list(map(int, input().split())) start = a[1] end = a[0] answer = 0 while end != start: if start < end: answer += end - start break if start % 2 == 0: start //= 2 else: start += 1 answer += 1 print(answer)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR BIN_OP VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
count = 0 m, n = [int(x) for x in input().split()] queue = [(m, 0)] visited = set([m]) minstep = float("inf") while queue: num, step = queue.pop(0) if num == n: if step < minstep: minstep = step if num > n: adder = num - n queue.append((n, step + adder)) else: for adder in [lambda x: x - 1, lambda x: x * 2]: ne = adder(num) if ne == n or ne not in visited and ne > 0: queue.append((ne, step + 1)) visited.add(ne) print(minstep)
ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST VAR NUMBER ASSIGN VAR FUNC_CALL VAR LIST VAR ASSIGN VAR FUNC_CALL VAR STRING WHILE VAR ASSIGN VAR VAR FUNC_CALL VAR NUMBER IF VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR VAR FOR VAR LIST BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
vhod = input() vhod_list = vhod.split() do = int(vhod_list[0]) posle = int(vhod_list[1]) kostilist = [] uroven = 0 fixprice = 0 maxuroven = 0 fixkostil = 0 shagi = 0 def search(do): global kostilist it = 0 while do < kostilist[it]: it += 1 if do == kostilist[it]: return do if it == 0: return kostilist[0] if do - kostilist[it] < do * 2 - kostilist[it]: return kostilist[it] else: return kostilist[it - 1] def recc(do, posle, kostilist): it = 0 global shagi while do != kostilist[it]: it += 1 if it == 0: return -1 while do != posle: if it > 0: if do * 2 == kostilist[it - 1]: shagi += 1 do *= 2 it -= 1 else: shagi += 2 do *= 2 do -= 1 it -= 1 if it == 0: if do * 2 == posle: shagi += 1 do = do * 2 else: shagi += 2 do = do * 2 - 1 return do def rekursivnoelezhat(do, posle): global kostilist global shagi fixprice = 0 while do != posle: fixprice = search(do) if fixprice < do: while do != fixprice: do -= 1 shagi += 1 elif fixprice == do: if fixprice == kostilist[0]: shagi += 1 do *= 2 else: do *= 2 shagi += 1 while do != fixprice: do -= 1 shagi += 1 if do == posle: return kostil = recc(do, posle, kostilist) if kostil == -1: shagi += 1 do *= 2 if do == posle + 1: shagi += 1 return elif kostil == posle: return else: do = kostil shagi += 1 do *= 2 def lezhat(do, posle): global kostilist global shagi novoeposle_1 = 0 if posle % 2 == 0: novoeposle_1 = posle while novoeposle_1 != 1: kostilist.append(int(novoeposle_1 / 2)) novoeposle_1 /= 2 if novoeposle_1 == 1: break if novoeposle_1 % 2 != 0: novoeposle_1 += 1 else: novoeposle_1 = posle + 1 while novoeposle_1 != 1: kostilist.append(int(novoeposle_1 / 2)) novoeposle_1 /= 2 if novoeposle_1 == 1: break if novoeposle_1 % 2 != 0: novoeposle_1 += 1 it = 0 if do > posle: while do > posle: do -= 1 it += 1 print(it) elif do == posle: print(0) else: rekursivnoelezhat(do, posle) print(shagi) lezhat(do, posle)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR NUMBER IF VAR VAR VAR RETURN VAR IF VAR NUMBER RETURN VAR NUMBER IF BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR VAR RETURN VAR VAR RETURN VAR BIN_OP VAR NUMBER FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR NUMBER IF VAR NUMBER RETURN NUMBER WHILE VAR VAR IF VAR NUMBER IF BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER IF BIN_OP VAR NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR WHILE VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR IF VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER WHILE VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR RETURN ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR NUMBER VAR NUMBER VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR NUMBER RETURN IF VAR VAR RETURN ASSIGN VAR VAR VAR NUMBER VAR NUMBER FUNC_DEF ASSIGN VAR NUMBER IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR WHILE VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR WHILE VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = map(int, input().split()) color = {} dist = {} def bfs(start): st = [start] color[start] = 1 dist[start] = 0 while st: v = st.pop(0) if v > 1 and v - 1 not in color.keys(): color[v - 1] = 1 dist[v - 1] = dist[v] + 1 st.append(v - 1) if v < m and v * 2 not in color.keys(): color[v * 2] = 1 dist[v * 2] = dist[v] + 1 st.append(v * 2) if m in color.keys(): print(dist[m]) break bfs(n)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR DICT FUNC_DEF ASSIGN VAR LIST VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER WHILE VAR ASSIGN VAR FUNC_CALL VAR NUMBER IF VAR NUMBER BIN_OP VAR NUMBER FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = map(int, input().split()) s = 0 if n > m: print(n - m) else: while n != m: if m % 2 == 0 and m / 2 > n / 2: m = m / 2 else: m = m + 1 s = s + 1 print(s)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR WHILE VAR VAR IF BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
def minpath(n, m, visited, q, d): while len(q) != 0: x = q.pop(0) visited[x] = True a = x * 2 if x != 1: b = x - 1 else: b = a if a in visited: d[a] = min(d[a], d[x] + 1) else: if a <= 10**4: q.append(a) d[a] = d[x] + 1 visited[a] = True if b in visited: d[b] = min(d[b], d[x] + 1) else: if b <= 10**4: q.append(b) d[b] = d[x] + 1 visited[b] = True if m in visited: return d[m] n, m = list(map(int, input().split())) visited = {} d = {} q = [] if m <= n: print(n - m) else: q.append(n) d[n] = 0 print(minpath(n, m, visited, q, d))
FUNC_DEF WHILE FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR IF VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR NUMBER IF VAR BIN_OP NUMBER NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR NUMBER IF VAR BIN_OP NUMBER NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR RETURN VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR DICT ASSIGN VAR LIST IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
class Node(object): def __init__(self, val, level): self.val = val self.level = level def solve(m, n): if m >= n: return m - n queue = [Node(m, 0)] visited = set([m]) count = 0 while queue: item = queue.pop(0) if item.val == n: return item.level if item.val - 1 >= 0 and item.val - 1 not in visited: visited.add(item.val - 1) queue.append(Node(item.val - 1, item.level + 1)) if item.val < n and item.val * 2 not in visited: visited.add(item.val * 2) queue.append(Node(item.val * 2, item.level + 1)) n, m = [int(val) for val in input().split(" ")] print(solve(n, m))
CLASS_DEF VAR FUNC_DEF ASSIGN VAR VAR ASSIGN VAR VAR FUNC_DEF IF VAR VAR RETURN BIN_OP VAR VAR ASSIGN VAR LIST FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR LIST VAR ASSIGN VAR NUMBER WHILE VAR ASSIGN VAR FUNC_CALL VAR NUMBER IF VAR VAR RETURN VAR IF BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
from sys import stdin inp = list(map(lambda s: s.strip(), stdin.readlines())) n, m = map(lambda x: int(x), inp[0].split()) def solve(n, m): if m < n: return n - m if m == n: return 0 if m % 2 == 1: return 2 + solve(n, m // 2 + 1) return 1 + solve(n, m // 2) print(solve(n, m))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR NUMBER FUNC_DEF IF VAR VAR RETURN BIN_OP VAR VAR IF VAR VAR RETURN NUMBER IF BIN_OP VAR NUMBER NUMBER RETURN BIN_OP NUMBER FUNC_CALL VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER RETURN BIN_OP NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
lst = [int(i) for i in input().split()] n = lst[0] m = lst[1] class Node: def __init__(self, val): self.val = val self.adj = [] nodes = [] max_node = 2 * max(m, n) + 1 for i in range(0, (max_node - 1) * 2 + 2): nodes.append(Node(i)) if max_node > 1: nodes[1].adj.append(nodes[2]) for i in range(2, max_node): nodes[i].adj.append(nodes[i - 1]) nodes[i].adj.append(nodes[2 * i]) visited = set() queue = [(nodes[n], 0)] path_len = 0 while len(queue) != 0: node, path_len = queue.pop(0) visited.add(node) if node.val == m: break for adj in node.adj: if adj not in visited: queue.append((adj, path_len + 1)) print(path_len)
ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER CLASS_DEF FUNC_DEF ASSIGN VAR VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP BIN_OP VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR BIN_OP NUMBER VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST VAR VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
def main(): n, m = map(int, input().split()) print(rec(n, m)) def rec(n, m): if m <= n: return n - m elif m % 2: return rec(n, m + 1) + 1 else: return rec(n, m // 2) + 1 main()
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_DEF IF VAR VAR RETURN BIN_OP VAR VAR IF BIN_OP VAR NUMBER RETURN BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER RETURN BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = list(map(int, input().split())) l = 0 if m == n: print("0") elif m < n: print(n - m) else: while m > n: if m % 2 == 0: l += 1 m /= 2 else: l += 1 m += 1 print(int(l + n - m))
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR STRING IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR WHILE VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = [int(x) for x in input().split()] if n >= m: print(n - m) if n < m: a = m red = 0 blue = 0 while a > n: if a % 2 == 0: red += 1 a = int(a / 2) else: red += 1 blue += 1 a = int((a + 1) / 2) blue += n - a print(blue + red)
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
import sys sys.setrecursionlimit(10000) def insertion(G, A): while A != []: s = A[0][0] i = A[0][1] del A[0] if s > 1 and (not s - 1 in G.keys() or G[s - 1] > i): G[s - 1] = i A = A + [[s - 1, i + 1]] if 2 * s <= 10000 and (not 2 * s in G.keys() or G[2 * s] > i): G[2 * s] = i A = A + [[2 * s, i + 1]] return G n, m = map(int, input().split()) G = dict() G[n] = 0 A = [[n, 1]] G = insertion(G, A) print(G[m])
IMPORT EXPR FUNC_CALL VAR NUMBER FUNC_DEF WHILE VAR LIST ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER VAR NUMBER IF VAR NUMBER BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR LIST LIST BIN_OP VAR NUMBER BIN_OP VAR NUMBER IF BIN_OP NUMBER VAR NUMBER BIN_OP NUMBER VAR FUNC_CALL VAR VAR BIN_OP NUMBER VAR VAR ASSIGN VAR BIN_OP NUMBER VAR VAR ASSIGN VAR BIN_OP VAR LIST LIST BIN_OP NUMBER VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR LIST LIST VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = map(int, input().split()) Q = [] sz = 0 inf = 1000000009 Q.append(n) D = [inf] * 20004 D[n] = 0 while sz < len(Q): x = Q[sz] sz += 1 if x + x <= 20000 and D[x + x] == inf: D[x + x] = D[x] + 1 Q.append(x + x) if x - 1 >= 1 and D[x - 1] == inf: D[x - 1] = D[x] + 1 Q.append(x - 1) print(D[m])
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST VAR NUMBER ASSIGN VAR VAR NUMBER WHILE VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = [int(k) for k in input().split()] cnt = 0 while n != m: if m > n: if m % 2 == 0: m = m // 2 cnt += 1 else: m += 1 cnt += 1 else: cnt += n - m n = m print(cnt)
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR BIN_OP VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
def shortest_path(n, m): queue = [n] visited = {} depth = {n: 0} while len(queue) != 0: num = queue.pop() if num == m: return depth[num] if num - 1 > 0 and not visited.get(num - 1, False): queue.insert(0, num - 1) visited[num - 1] = True depth[num - 1] = depth[num] + 1 if num < m and not visited.get(num * 2, False): queue.insert(0, num * 2) visited[num * 2] = True depth[num * 2] = depth[num] + 1 n, m = list(map(lambda s: int(s), input().split(" "))) print(shortest_path(n, m))
FUNC_DEF ASSIGN VAR LIST VAR ASSIGN VAR DICT ASSIGN VAR DICT VAR NUMBER WHILE FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR IF VAR VAR RETURN VAR VAR IF BIN_OP VAR NUMBER NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER IF VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = map(int, input().split()) if n > m: print(n - m) exit() r, c = 0, float("inf") while m != 1 and m != n: if m % 2: r += 1 m += 1 else: r += 1 m //= 2 if m < n: c = min(c, r + n - m) if m == n: print(r) else: print(c)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER FUNC_CALL VAR STRING WHILE VAR NUMBER VAR VAR IF BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
inp = input().split(" ") n = int(inp[0]) m = int(inp[1]) move = 0 while True: if n >= m: print(move + (n - m)) exit(0) if m % 2 == 0: m //= 2 move += 1 else: m = (m + 1) // 2 move += 2
ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR NUMBER
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = map(int, input().split()) if n >= m: print(n - m) else: dp = [float("inf")] * (2 * (m + 1)) dp[n] = 0 i = n - 1 while i >= 0: dp[i] = dp[i + 1] + 1 i -= 1 for i in range(1, m + 1): dp[2 * i] = min(dp[2 * i], dp[i] + 1) if dp[2 * i - 1] == float("inf"): dp[2 * i - 1] = dp[2 * i] + 1 print(dp[m])
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP LIST FUNC_CALL VAR STRING BIN_OP NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR FUNC_CALL VAR VAR BIN_OP NUMBER VAR BIN_OP VAR VAR NUMBER IF VAR BIN_OP BIN_OP NUMBER VAR NUMBER FUNC_CALL VAR STRING ASSIGN VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP VAR BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
inputs = input() split = inputs.split(" ") display = int(split[0]) goal = int(split[1]) visited = [display] queue = [(display, 1)] def main(): while queue: s, d = queue.pop(0) neighbors = [] if s > 0: neighbors.append(s - 1) if s <= goal: neighbors.append(s * 2) for neighbor in neighbors: if neighbor == goal: print(d) return if neighbor in visited: continue visited.append(neighbor) queue.append((neighbor, d + 1)) if display == goal: print(0) else: main()
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST VAR ASSIGN VAR LIST VAR NUMBER FUNC_DEF WHILE VAR ASSIGN VAR VAR FUNC_CALL VAR NUMBER ASSIGN VAR LIST IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR RETURN IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = map(int, input().split()) if n >= m: print(n - m) else: a = set() a.add(n) ans = 0 while m not in a: b = set() for i in a: if i - 1 >= n / 3: b.add(i - 1) if 2 * i < 2 * m: b.add(2 * i) ans += 1 a = b.difference(a) print(ans)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR FOR VAR VAR IF BIN_OP VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER IF BIN_OP NUMBER VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR BIN_OP NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = map(int, input().split()) if n >= m: print(n - m) else: ans1, ans2, tmp_m, tmp_n = 0, 0, m, n while tmp_n < m: tmp_n *= 2 ans1 += 1 ans1 += tmp_n - m while tmp_m > n: if tmp_m & 1: tmp_m += 1 else: tmp_m //= 2 ans2 += 1 ans2 += n - tmp_m print(min([ans1, ans2]))
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR VAR NUMBER NUMBER VAR VAR WHILE VAR VAR VAR NUMBER VAR NUMBER VAR BIN_OP VAR VAR WHILE VAR VAR IF BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR LIST VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, k = input().split() n = int(n) k = int(k) if n > k: print(n - k) elif n == k: print(n - k) else: pas = 0 while k > n: if k & 1: k += 1 k //= 2 pas += 2 else: k //= 2 pas += 1 if k < n: pas += n - k print(pas)
ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = [int(next) for next in input().split()] if m <= n: print(n - m) else: answer = 0 while n < m: if m % 2 == 1: m += 1 answer += 1 m //= 2 answer += 1 if n == m: print(answer) else: ans = 10000000000 nn = n i = 0 while nn > 0: tmp = i + answer while nn < m: nn *= 2 tmp += 1 tmp += nn - m ans = min(ans, tmp) i += 1 nn = n - i print(ans)
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR VAR WHILE VAR VAR VAR NUMBER VAR NUMBER VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
def best_value(value): if value % 2 == 0: return int(value / 2) else: return value + 1 n, m = [int(x) for x in input().split()] if n >= m: print(n - m) else: bestShot = m count = 0 while bestShot > n: bestShot = best_value(bestShot) count += 1 count += n - bestShot print(count)
FUNC_DEF IF BIN_OP VAR NUMBER NUMBER RETURN FUNC_CALL VAR BIN_OP VAR NUMBER RETURN BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
def main(): read_many = lambda type_: list(map(type_, input().split())) n, m = read_many(int) press = 0 while m > n: m = m + 1 if m % 2 == 1 else m // 2 press += 1 result = press + n - m print(result) main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
def getVals(type=str): return list(map(type, input().split())) def solve(x, y): if x >= y: return x - y ans = 0 while y != x: if x < y: if y & 1: y += 1 else: y >>= 1 else: y += 1 ans += 1 return ans x, y = getVals(int) print(solve(x, y))
FUNC_DEF VAR RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF IF VAR VAR RETURN BIN_OP VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR IF BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
import sys fast_reader = sys.stdin.readline fast_writer = sys.stdout.write def input(): return fast_reader().strip() def print(*argv): fast_writer(" ".join(str(i) for i in argv)) fast_writer("\n") for _ in range(1): n, m = map(int, input().split()) ans = 0 while m > n: if m % 2 == 0: m = m // 2 else: m += 1 ans += 1 print(ans + (n - m))
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
def Solve(n, m): moves = 0 while True: if m < n: return moves + n - m if m % 2 == 0: m = int(m / 2) else: m += 1 moves += 1 if m == n: return moves def main(): n, m = map(int, input().split()) print(Solve(n, m)) main()
FUNC_DEF ASSIGN VAR NUMBER WHILE NUMBER IF VAR VAR RETURN BIN_OP BIN_OP VAR VAR VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
import sys input = sys.stdin.readline n, m = map(int, sys.stdin.readline().split()) res = 0 while m != n: if m % 2 == 1 or m < n: m += 1 else: m = m // 2 res += 1 print(res)
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = map(int, input().split()) class SiteGame: def __init__(self, n, m): self.n = n self.m = m opirationNumber = 0 if m <= n: opirationNumber += n - m print(opirationNumber) return while True: if m % 2 == 1: m += 1 opirationNumber += 1 m = m // 2 opirationNumber += 1 if m <= n: break opirationNumber += n - m print(opirationNumber) SiteGame(n, m)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR CLASS_DEF FUNC_DEF ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER IF VAR VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR RETURN WHILE NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = map(int, input().split()) ans = [-1] * (n + m) for i in range(1, n + 1): ans[i] = n - i for i in range(n + 1, m + 1): if i % 2 == 0: ans[i] = 1 + ans[i // 2] else: ans[i] = 2 + ans[(i + 1) // 2] print(ans[m])
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP NUMBER VAR BIN_OP BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
x, y = [int(a) for a in input().split()] z = 0 if y < x: print(x - y) quit() else: while y > x: if y % 2 == 0: y = y / 2 z += 1 else: y += 1 z += 1 print(int(abs(z + x - y)))
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR WHILE VAR VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
r = lambda: map(int, input().split()) n, m = r() def func_exe(n, m): if n > m: return n - m elif m == n: return 0 elif m % 2 == 0: return 1 + func_exe(n, int(m / 2)) else: return 1 + func_exe(n, int(m + 1)) print(func_exe(n, m))
ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_DEF IF VAR VAR RETURN BIN_OP VAR VAR IF VAR VAR RETURN NUMBER IF BIN_OP VAR NUMBER NUMBER RETURN BIN_OP NUMBER FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER RETURN BIN_OP NUMBER FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = [int(i) for i in input().split()] count = 0 if n > m: print(n - m) else: while n < m: if m % 2 == 0: m /= 2 count += 1 else: m += 1 count += 1 count = int(abs(count + (n - m))) print(count)
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR WHILE VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
begin, want = map(int, input().split()) diff = want - begin if diff > 0: steps = 0 while want != begin: steps += 1 if want > begin: if want % 2 == 0: want = want / 2 else: want += 1 elif want < begin: want += 1 print(steps) elif diff < 0: print(abs(diff))
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR NUMBER IF VAR VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
start, target = map(int, input().split()) def recur(s, t, steps): if s > t: return steps + s - t elif s == t: return steps elif t & 1: return recur(s, t + 1, steps + 1) else: return recur(s, t // 2, steps + 1) print(recur(start, target, 0))
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF IF VAR VAR RETURN BIN_OP BIN_OP VAR VAR VAR IF VAR VAR RETURN VAR IF BIN_OP VAR NUMBER RETURN FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER RETURN FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = map(int, input().split()) distance = [-1] * 10000001 distance[n] = 0 q = [n] while len(q) > 0: u = q.pop(0) v = u * 2 x = u - 1 if distance[v] == -1 and v < m * 2: distance[v] = distance[u] + 1 q.append(v) if distance[x] == -1 and x > 0: distance[x] = distance[u] + 1 q.append(x) print(distance[m])
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR LIST VAR WHILE FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
inlet = input().split(" ") n, m = int(inlet[0]), int(inlet[1]) cont = 0 while m > n: if m // 2 != m / 2: cont += 1 m += 1 m = m // 2 cont += 1 if n >= m: print(n - m + cont) exit()
ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
import sys def read_input(): inp = [] for line in sys.stdin: d = line.split(" ") inp.append(int(d[0])) inp.append(int(d[1])) return inp def __read_input(): return [2, 10] def solve(n, m): i = 0 d = {} x = {} d.update({i: [n]}) x.update({n: i}) while x.get(m) == None or len(d[i]) == 0: d.update({(i + 1): []}) for k in d[i]: if k - 1 > 0 and x.get(k - 1) == None: d[i + 1].append(k - 1) x.update({(k - 1): i}) if k < m and x.get(2 * k) == None: d[i + 1].append(2 * k) x.update({(2 * k): i}) i += 1 print(i) inp = read_input() solve(inp[0], inp[1])
IMPORT FUNC_DEF ASSIGN VAR LIST FOR VAR VAR ASSIGN VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER RETURN VAR FUNC_DEF RETURN LIST NUMBER NUMBER FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR DICT ASSIGN VAR DICT EXPR FUNC_CALL VAR DICT VAR LIST VAR EXPR FUNC_CALL VAR DICT VAR VAR WHILE FUNC_CALL VAR VAR NONE FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR DICT BIN_OP VAR NUMBER LIST FOR VAR VAR VAR IF BIN_OP VAR NUMBER NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER NONE EXPR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR DICT BIN_OP VAR NUMBER VAR IF VAR VAR FUNC_CALL VAR BIN_OP NUMBER VAR NONE EXPR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP NUMBER VAR EXPR FUNC_CALL VAR DICT BIN_OP NUMBER VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = list(map(int, input().split())) if n == m: print(0) exit() x = set() q = [(n, 0)] s = 0 while len(q): w = q.pop(0) a = w[0] - 1, w[1] + 1 b = (w[0] * 2, w[1] + 1) if w[0] < m else (w[0] - 1, w[1] + 1) if a[0] == m: print(a[1]) break if b[0] == m: print(b[1]) break if a[0] not in x and a[0] > 1: x.add(a[0]) q.append(a) if b[0] not in x and 0 < b[0]: x.add(b[0]) q.append(b)
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER NUMBER IF VAR NUMBER VAR EXPR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER VAR EXPR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
a = [int(x) for x in input().split()] start = a[0] end = a[1] counter = 0 total = start while total < end: total *= 2 counter += 1 diff = total - end coeffs = [] coeff = 1 for i in range(0, counter + 1): coeffs.append(coeff) coeff *= 2 needed = [] for i in range(len(coeffs) - 1, -1, -1): needed.append(int(diff / coeffs[i])) diff -= needed[-1] * coeffs[i] print(sum(needed) + counter)
ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = [int(s) for s in input().split()] MAX_LIMIT = 10000 def get_min_clicks(): inputs, clicks = {n}, 0 while True: new_inputs = set() for element in inputs: if element == m: return clicks if element > 0: new_inputs.add(element - 1) if element < m: new_inputs.add(element * 2) under_target = [el for el in new_inputs if el < m] over_target = [el for el in new_inputs if el >= m] if len(over_target) > 1: over_target = [min(over_target)] inputs = set() inputs = inputs.union(under_target).union(over_target) clicks += 1 print(get_min_clicks())
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FUNC_DEF ASSIGN VAR VAR VAR NUMBER WHILE NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR VAR IF VAR VAR RETURN VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
nums = [int(i) for i in input().split()] a, b = nums def counter(n, m): count = 0 if m % 2: count += 1 m += 1 while m != n: if m > n: if m % 2 == 0: m //= 2 else: m += 1 count += 1 else: count += n - m m = n return count print(counter(a, b))
ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_DEF ASSIGN VAR NUMBER IF BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER WHILE VAR VAR IF VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR BIN_OP VAR VAR ASSIGN VAR VAR RETURN VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
from sys import stdout def main(): from sys import stdout n, m = map(int, input().split()) res = 0 while n != m: if n >= m: res += n - m n = m else: if m % 2 == 1: m += 1 res += 1 m = m / 2 res += 1 stdout.write(str(int(res))) main()
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
import sys def read_from_stdin(): n, m = input().split() return int(n), int(m) def write_to_stdout(res): sys.stdout.write("%d\n" % res) def half_the_number(number, n): count = 0 while number % 2 == 0 and number > n: new_number = number / 2 if int(new_number) * 2 == number: number = int(new_number) count += 1 else: break return number, count def get_answer(n, m): res = n count = 0 while m != n: if m % 2 == 0: m, count_half = half_the_number(m, n) count += count_half if m < n: count += n - m break else: m += 1 count += 1 return count def main(): n, m = read_from_stdin() res = get_answer(n, m) write_to_stdout(res) main()
IMPORT FUNC_DEF ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR RETURN FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_DEF EXPR FUNC_CALL VAR BIN_OP STRING VAR FUNC_DEF ASSIGN VAR NUMBER WHILE BIN_OP VAR NUMBER NUMBER VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF BIN_OP FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER RETURN VAR VAR FUNC_DEF ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR VAR NUMBER VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = [int(x) for x in input().split()] cnt = 0 rst = 0 if n >= m: rst = n - m else: while n != m: if m < n: m += 1 elif m % 2 != 0: m += 1 else: m /= 2 cnt += 1 rst = cnt print(rst)
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR WHILE VAR VAR IF VAR VAR VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
def f(a, b): while a < b: a = 2 * a return a def g(a, b): i = 0 while a < b: a = 2 * a i += 1 return i def judge(a, b): if a >= b: return a - b elif b % 2 == 0: if b == 2 * a: return 1 elif f(a, b) == b: return min(judge(a, b // 2) + 1, g(a, b)) else: return min(judge(a, b // 2) + 1, judge(a, f(a, b)) + f(a, b) - b) else: return judge(a, b + 1) + 1 x = input().split() n = int(x[0]) m = int(x[1]) print(judge(n, m))
FUNC_DEF WHILE VAR VAR ASSIGN VAR BIN_OP NUMBER VAR RETURN VAR FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP NUMBER VAR VAR NUMBER RETURN VAR FUNC_DEF IF VAR VAR RETURN BIN_OP VAR VAR IF BIN_OP VAR NUMBER NUMBER IF VAR BIN_OP NUMBER VAR RETURN NUMBER IF FUNC_CALL VAR VAR VAR VAR RETURN FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER FUNC_CALL VAR VAR VAR RETURN FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR RETURN BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
s, t = map(int, input().split()) c = 0 while True: if t < s: print(s - t + c) quit() else: if t == s: print(c) quit() if t % 2 == 0: c += 1 t //= 2 else: c += 2 t //= 2 t += 1
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER WHILE NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR IF BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
n, m = [int(n) for n in input().split()] if m == n: print(0) exit() h = [] e = n, 0 h.append(e) res = 0 while n != m: if m < n: m += 1 res += 1 continue if m % 2 == 0: m /= 2 res += 1 continue else: m += 1 m /= 2 res += 2 print(res)
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR NUMBER VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
instr = list(map(int, input().split(" "))) num = 0 while instr[0] < instr[1]: if instr[1] % 2: instr[1] += 1 else: instr[1] //= 2 num += 1 print(instr[0] - instr[1] + num)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR NUMBER WHILE VAR NUMBER VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER NUMBER VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER VAR
Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n. Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result? -----Input----- The first and the only line of the input contains two distinct integers n and m (1 ≀ n, m ≀ 10^4), separated by a space . -----Output----- Print a single number β€” the minimum number of times one needs to push the button required to get the number m out of number n. -----Examples----- Input 4 6 Output 2 Input 10 1 Output 9 -----Note----- In the first example you need to push the blue button once, and then push the red button once. In the second example, doubling the number is unnecessary, so we need to push the blue button nine times.
def knopki(n, m): if n == m: return "0" elif n > m: return n - m else: k = 0 while n < m: if m % 2 == 0: m //= 2 else: m += 1 k += 1 k += n - m return k x, y = [int(i) for i in input().split()] print(knopki(x, y))
FUNC_DEF IF VAR VAR RETURN STRING IF VAR VAR RETURN BIN_OP VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR BIN_OP VAR VAR RETURN VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR