description
stringlengths
171
4k
code
stringlengths
94
3.98k
normalized_code
stringlengths
57
4.99k
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
def main(): n = int(input()) num = int(input()) string = str(num) if n % 2: half = n // 2 if string[half] == "0": i = half - 1 j = half + 1 while i >= 0 and string[i] == "0": i -= 1 while j < n and string[j] == "0": j += 1 print( min( int(max(string[:i], "0")) + int(max(string[i:], "0")), int(max(string[:j], "0")) + int(max(string[j:], "0")), ) ) else: print( min( int(string[: n // 2 + 1]) + int(string[n // 2 + 1 :]), int(string[: n // 2]) + int(string[n // 2 :]), ) ) else: half = n // 2 if string[half] == "0": i = half - 1 j = half + 1 while i >= 0 and string[i] == "0": i -= 1 while j < n and string[j] == "0": j += 1 print( min( int(max(string[:i], "0")) + int(max(string[i:], "0")), int(max(string[:j], "0")) + int(max(string[j:], "0")), ) ) else: print(int(string[: n // 2]) + int(string[n // 2 :])) main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER VAR VAR STRING VAR NUMBER WHILE VAR VAR VAR VAR STRING VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR VAR STRING FUNC_CALL VAR FUNC_CALL VAR VAR VAR STRING BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR VAR STRING FUNC_CALL VAR FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER FUNC_CALL VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER VAR VAR STRING VAR NUMBER WHILE VAR VAR VAR VAR STRING VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR VAR STRING FUNC_CALL VAR FUNC_CALL VAR VAR VAR STRING BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR VAR STRING FUNC_CALL VAR FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
from sys import stdin, stdout l = int(stdin.readline()) s = stdin.readline() mn = int(-1) sum = int() i = l // 2 while 0 < i and i < l: if s[i] == "0": i += 1 continue a = int(s[:i]) b = int(s[i:]) sum = a + b if mn == -1 or mn > sum: mn = sum else: break i += 1 i = l // 2 while 0 < i and i < l: if s[i] == "0": i -= 1 continue a = int(s[:i]) b = int(s[i:]) sum = a + b if mn == -1 or mn > sum: mn = sum else: break i -= 1 stdout.write(str(mn)) stdout.write("\n")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE NUMBER VAR VAR VAR IF VAR VAR STRING VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE NUMBER VAR VAR VAR IF VAR VAR STRING VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER VAR VAR ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
len = int(input()) s = input() ans = int(s) for i in range((len - 1) // 2, 0, -1): if s[i] != "0": ans = min(ans, int(s[:i]) + int(s[i:])) break for i in range(len // 2 + 1, len): if s[i] != "0": ans = min(ans, int(s[:i]) + int(s[i:])) break if len % 2 == 0 and s[len // 2] != "0": i = len // 2 ans = min(ans, int(s[:i]) + int(s[i:])) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER NUMBER NUMBER IF VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR IF VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
k = int(input()) p = input() if k % 2 == 0: m = int(k // 2) c = m d = m if int(p[m]) == 0: while c <= k - 1: if int(p[c]) != 0: break c += 1 while int(p[d]) == 0: d -= 1 if c == k: print(int(p[:d]) + int(p[d:])) elif int(p[:c]) + int(p[c:]) > int(p[:d]) + int(p[d:]): print(int(p[:d]) + int(p[d:])) else: print(int(p[:c]) + int(p[c:])) else: print(int(p[:m]) + int(p[m:])) elif k % 2 != 0: m = int(k // 2) c = m d = m if k == 3: print(11) elif int(p[m]) == 0: while c <= k - 1: if int(p[c]) != 0: break c += 1 while int(p[d]) == 0: d -= 1 if c == k: print(int(p[:d]) + int(p[d:])) elif int(p[:c]) + int(p[c:]) > int(p[:d]) + int(p[d:]): print(int(p[:d]) + int(p[d:])) else: print(int(p[:c]) + int(p[c:])) elif int(p[:m]) + int(p[m:]) > int(p[: m + 1]) + int(p[m + 1 :]): print(int(p[: m + 1]) + int(p[m + 1 :])) elif int(p[: m + 1]) + int(p[m + 1 :]) > int(p[:m]) + int(p[m:]): print(int(p[:m]) + int(p[m:]))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR IF FUNC_CALL VAR VAR VAR NUMBER WHILE VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER WHILE FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR VAR NUMBER WHILE VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER WHILE FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
l = int(input()) n = str(input()) m = l // 2 while n[m] == "0": m -= 1 x = int(n[0:m]) + int(n[m:l]) if m > 0 else int(n) m = (l + 1) // 2 while m < l and n[m] == "0": m += 1 if m < l: x = min([x, int(n[0:m]) + int(n[m:l])]) print(x)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR STRING VAR NUMBER ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER WHILE VAR VAR VAR VAR STRING VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR LIST VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
n = int(input()) s = input() res = int(s) center = int(n / 2) q1 = s[:center] q2 = s[center:] if q2[0] != "0": res = min(res, int(q1) + int(q2)) else: while s[center] == "0" and center < n - 1: center += 1 q1 = s[:center] q2 = s[center:] if q2[0] != "0": res = min(res, int(q1) + int(q2)) center = int(n / 2) while s[center] == "0" and center > 1: center -= 1 q1 = s[:center] q2 = s[center:] if q2[0] != "0": res = min(res, int(q1) + int(q2)) center = int(n / 2) + 1 if center < n: q1 = s[:center] q2 = s[center:] if q2[0] != "0": res = min(res, int(q1) + int(q2)) else: while s[center] == "0" and center < n - 1: center += 1 q1 = s[:center] q2 = s[center:] if q2[0] != "0": res = min(res, int(q1) + int(q2)) center = int(n / 2) + 1 while s[center] == "0" and center > 1: center -= 1 q1 = s[:center] q2 = s[center:] if q2[0] != "0": res = min(res, int(q1) + int(q2)) center = int(n / 2) - 1 if center > 0: q1 = s[:center] q2 = s[center:] if q2[0] != "0": res = min(res, int(q1) + int(q2)) else: while s[center] == "0" and center < n - 1: center += 1 q1 = s[:center] q2 = s[center:] if q2[0] != "0": res = min(res, int(q1) + int(q2)) center = int(n / 2) - 1 while s[center] == "0" and center > 1: center -= 1 q1 = s[:center] q2 = s[center:] if q2[0] != "0": res = min(res, int(q1) + int(q2)) print(res)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR WHILE VAR VAR STRING VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER WHILE VAR VAR STRING VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR WHILE VAR VAR STRING VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER WHILE VAR VAR STRING VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER IF VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR WHILE VAR VAR STRING VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER WHILE VAR VAR STRING VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
import sys n = int(sys.stdin.readline(40)) buff = sys.stdin.readline(n) length = len(buff) maxlen = 100005 ans = 1e1000 minList = [] for i in range(1, length): if buff[i] != "0": tmp = max(i, length - i) + 1 if tmp < maxlen: minList = [i] maxlen = tmp elif tmp == maxlen: minList.append(i) maxlen = tmp for i in minList: A = int(buff[0:i]) B = int(buff[i:]) ans = min(ans, A + B) print(ans)
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR NUMBER IF VAR VAR ASSIGN VAR LIST VAR ASSIGN VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
def main(): length = int(input("")) number = input("") sol = half(number, length, 0, 0) if sol != None: print(int(sol[0]) + int(sol[1])) def half(number, length, target, i): if target == 0: target = length // 2 fHalf = number[:target] lHalf = number[target:] while lHalf[0] == "0": if i % 2 == 0: target = target - i else: target = target + i fHalf = number[:target] lHalf = number[target:] i = i + 1 sols = check(number, length, target, i) if sols != None: return sols def check(number, length, target, i): fHalf = number[:target] lHalf = number[target:] if number[target] >= fHalf[0] and length % 2 != 0 and target < length / 2: j = 0 while fHalf[:j] == lHalf[:j]: j = j + 1 if j * 2 >= length: j = 0 return number[:target], number[target:] break if fHalf[:j] < lHalf[:j] and not (j > len(fHalf) or j > len(lHalf)): half(number, length, target + 1, i) break if not (fHalf[:j] < lHalf[:j] and not (j > len(fHalf) or j > len(lHalf))): return number[:target], number[target:] elif (len(fHalf) == 1 or len(lHalf) == 1) and length > 4 and lHalf[-1] != "0": if i % 2 == 0: target = target - i else: target = target + i fHalf2 = number[:target] lHalf2 = number[target:] if int(lHalf) + int(fHalf) > int(lHalf2) + int(fHalf2): return fHalf2, lHalf2 else: return fHalf, lHalf else: print(int(fHalf) + int(lHalf)) main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER NUMBER IF VAR NONE EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER FUNC_DEF IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR WHILE VAR NUMBER STRING IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR NONE RETURN VAR FUNC_DEF ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR IF VAR VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER RETURN VAR VAR VAR VAR IF VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER VAR IF VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR RETURN VAR VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR NUMBER VAR NUMBER STRING IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR IF BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR RETURN VAR VAR RETURN VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
n = int(input()) num = input() upperInd = n // 2 while num[upperInd : upperInd + 1] == "0": upperInd -= 1 if upperInd == 0: moveUp = int(num) else: moveUp = int(num[0:upperInd]) + int(num[upperInd:n]) lowerInd = n - n // 2 while lowerInd < n and num[lowerInd : lowerInd + 1] == "0": lowerInd += 1 if lowerInd == n: moveDown = int(num) else: moveDown = int(num[0:lowerInd]) + int(num[lowerInd:n]) print(int(min(moveUp, moveDown)))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR BIN_OP VAR NUMBER STRING VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER WHILE VAR VAR VAR VAR BIN_OP VAR NUMBER STRING VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
n = int(input()) s = input() print( min( int(s[:i]) + int(s[i:]) for i in sorted( (i for i in range(1, n) if s[i] != "0"), key=lambda i: abs(i - n / 2) )[:4] ) )
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR NUMBER VAR VAR VAR STRING FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
l = int(input()) s = input() ans = int(s) for i in range(max(1, l // 2 - 2), l): if s[i] != "0": ans = min(ans, int(s[:i]) + int(s[i:])) if i >= l // 2 + 2: break for i in range(min(l - 1, l // 2 + 2), 0, -1): if s[i] != "0": ans = min(ans, int(s[:i]) + int(s[i:])) if i <= l // 2 - 2: break print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR NUMBER NUMBER VAR IF VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR BIN_OP BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR NUMBER NUMBER NUMBER NUMBER IF VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR BIN_OP BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
n = int(input()) m = input() mi = 100001 for i in range(1, n): if m[i] != "0": mi = min(mi, max(i, n - i) - min(i, n - i)) res = -1 for i in range(1, n): if m[i] != "0" and mi == max(i, n - i) - min(i, n - i): if res == -1: res = int(m[:i]) + int(m[i:]) else: res = min(res, int(m[:i]) + int(m[i:])) print(res)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR STRING VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
l = int(input()) n = int(input()) min_sum = -1 n_str = str(n) l = len(n_str) // 2 r = (len(n_str) + 1) // 2 while True: if n_str[l] == "0" and n_str[r] == "0": l -= 1 r += 1 continue elif n_str[l] != "0" and n_str[r] != "0": a = int(n_str[:l]) + int(n_str[l:]) b = int(n_str[:r]) + int(n_str[r:]) if a > b: min_sum = b else: min_sum = a break elif n_str[l] == "0": min_sum = int(n_str[:r]) + int(n_str[r:]) break elif n_str[r] == "0": min_sum = int(n_str[:l]) + int(n_str[l:]) break print(min_sum)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER WHILE NUMBER IF VAR VAR STRING VAR VAR STRING VAR NUMBER VAR NUMBER IF VAR VAR STRING VAR VAR STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF VAR VAR STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
import sys input = sys.stdin.readline def calc(s, i): p1 = s[:i] p2 = s[i:] return int(p1) + int(p2) n = int(input()) s = input().strip() if n == 2: print(int(s[0]) + int(s[1])) else: res = int(s) cnt = 0 for i in range((n - 1) // 2, 0, -1): if s[i] != "0": res = min(res, calc(s, i)) cnt += 1 if cnt >= 3: break for i in range((n - 1) // 2, n): if s[i] != "0": res = min(res, calc(s, i)) cnt += 1 if cnt >= 6: break print(res)
IMPORT ASSIGN VAR VAR FUNC_DEF ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR RETURN BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER NUMBER NUMBER IF VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR IF VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
l = int(input()) num = input() pos = l // 2 ans = -1 c = 0 while pos >= 0 and c < 2: if pos + 1 < l and num[pos + 1] != "0": if ans == -1: ans = int(num[: pos + 1]) + int(num[pos + 1 :]) else: ans = min(ans, int(num[: pos + 1]) + int(num[pos + 1 :])) c += 1 pos -= 1 pos = l // 2 + 1 while pos < l - 1: if num[pos + 1] != "0": if ans == -1: ans = int(num[: pos + 1]) + int(num[pos + 1 :]) else: ans = min(ans, int(num[: pos + 1]) + int(num[pos + 1 :])) break pos += 1 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER VAR NUMBER IF BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER STRING IF VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER WHILE VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER STRING IF VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
L = int(input()) S = input() x1, x2 = int(L / 2), int((L + 1) / 2) ans = 10**100005 while True: flag = False if S[x1] != "0": flag = True s1 = int(S[:x1]) s2 = int(S[x1:]) ans = min(ans, s1 + s2) if S[x2] != "0": flag = True s1 = int(S[:x2]) s2 = int(S[x2:]) ans = min(ans, s1 + s2) if flag: print(ans) break x1 = x1 - 1 x2 = x2 + 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER WHILE NUMBER ASSIGN VAR NUMBER IF VAR VAR STRING ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR IF VAR VAR STRING ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR IF VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
l = int(input()) n = input() res = 0 mn = int(n) find = False for i in range(l // 2, l): if find and i > l // 2 + 3: break if n[i] != "0": mn = min(mn, int(n[:i]) + int(n[i:])) find = True for i in range(l // 2, 0, -1): if n[i] != "0": mn = min(mn, int(n[:i]) + int(n[i:])) break print(mn)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER IF VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
p = int(input()) n = int(input()) s = str(n) c = n k = p // 2 while k < p and s[k] == "0": k += 1 if k < p: y = int(s[k:]) x = int(s[:k]) c = min(c, x + y) k = p // 2 k += 1 while k < p and s[k] == "0": k += 1 if k < p: y = int(s[k:]) x = int(s[:k]) c = min(c, x + y) k = p // 2 k -= 1 while k > 0 and s[k] == "0": k -= 1 if k > 0: y = int(s[k:]) x = int(s[:k]) c = min(c, x + y) print(c)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR VAR VAR STRING VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER WHILE VAR VAR VAR VAR STRING VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER WHILE VAR NUMBER VAR VAR STRING VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
n = int(input()) x = input() num = x[n // 2] num2 = x[(n + 1) // 2] ans = -1 if num == "0": p = n // 2 k = p while p >= 0 and x[p] == "0": p -= 1 while k < n and x[k] == "0": k += 1 n1 = 0 if len(x[:p]) > 0: n1 = int(x[:p]) n2 = 0 if len(x[p:]) > 0: n2 = int(x[p:]) nn1 = 0 if len(x[:k]) > 0: nn1 = int(x[:k]) nn2 = 0 if len(x[k:]) > 0: nn2 = int(x[k:]) best = min(n1 + n2, nn1 + nn2) if ans == -1: ans = best else: ans = min(ans, best) else: n1 = int(x[: n // 2]) n2 = int(x[n // 2 :]) best = n1 + n2 if ans == -1: ans = best else: ans = min(ans, best) if num2 == "0": p = (n + 1) // 2 k = p while p >= 0 and x[p] == "0": p -= 1 while k < n and x[k] == "0": k += 1 n1 = 0 if len(x[:p]) > 0: n1 = int(x[:p]) n2 = 0 if len(x[p:]) > 0: n2 = int(x[p:]) nn1 = 0 if len(x[:k]) > 0: nn1 = int(x[:k]) nn2 = 0 if len(x[k:]) > 0: nn2 = int(x[k:]) best = min(n1 + n2, nn1 + nn2) if ans == -1: ans = best else: ans = min(ans, best) else: n1 = int(x[: (n + 1) // 2]) n2 = int(x[(n + 1) // 2 :]) best = n1 + n2 if ans == -1: ans = best else: ans = min(ans, best) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER IF VAR STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR WHILE VAR NUMBER VAR VAR STRING VAR NUMBER WHILE VAR VAR VAR VAR STRING VAR NUMBER ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR WHILE VAR NUMBER VAR VAR STRING VAR NUMBER WHILE VAR VAR VAR VAR STRING VAR NUMBER ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
n = int(input()) s = input() res = int(s) for i in range(-1, 2): mid = n // 2 + i while mid > 0 and mid < n and s[mid] == "0": mid += -1 if i < 0 else 1 if mid > 0 and mid < n: res = min(res, int(s[:mid]) + int(s[mid:])) print(res)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR WHILE VAR NUMBER VAR VAR VAR VAR STRING VAR VAR NUMBER NUMBER NUMBER IF VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
l = int(input()) n = input() minx = int(n) for i in {l // 2 - 1, l // 2, l // 2 + 1, l // 2 + 2}: if n[:i] != "" and n[i:] != "" and n[i:][0] != "0": minx = min(minx, int(n[:i]) + int(n[i:])) for i in range(l // 2, -1, -1): if n[:i] != "" and n[i:] != "": if n[i] != "0": minx = min(minx, int(n[:i]) + int(n[i:])) break for i in range(l // 2, l): if n[:i] != "" and n[i:] != "": if n[i] != "0": minx = min(minx, int(n[:i]) + int(n[i:])) break print(minx)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR BIN_OP BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER BIN_OP BIN_OP VAR NUMBER NUMBER BIN_OP BIN_OP VAR NUMBER NUMBER IF VAR VAR STRING VAR VAR STRING VAR VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR STRING VAR VAR STRING IF VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR STRING VAR VAR STRING IF VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
l = int(input()) n = input() index1 = l // 2 index2 = l // 2 if not l % 2 else l // 2 + 1 while True: num1 = n[:index1] num2 = n[index1:] num3 = n[:index2] num4 = n[index2:] if num1[0] == "0" or num2[0] == "0": if num3[0] == "0" or num4[0] == "0": index1 -= 1 index2 += 1 else: print(int(num3) + int(num4)) break elif num3[0] == "0" or num4[0] == "0": print(int(num1) + int(num2)) break else: print(min(int(num1) + int(num2), int(num3) + int(num4))) break
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER BIN_OP BIN_OP VAR NUMBER NUMBER WHILE NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER STRING VAR NUMBER STRING IF VAR NUMBER STRING VAR NUMBER STRING VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER STRING VAR NUMBER STRING EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
n = int(input()) s = input() a = int(s) s = list(s) tt = 10 ** max(0, n // 2 - 2) ans = a for i in range(max(0, n // 2 - 2), min(n, n // 2 + 3)): a1 = a // tt a2 = a % tt if a2 * 10 // tt > 0: ans = min(ans, a1 + a2) tt *= 10 s.reverse() if ans == a: i = n // 2 while i <= len(s) and s[i - 1] == "0": i += 1 tt = 10**i a1 = a // tt a2 = a % tt if a2 * 10 // tt > 0: ans = min(ans, a1 + a2) i = n // 2 while i > 0 and s[i - 1] == "0": i -= 1 tt = 10**i a1 = a // tt a2 = a % tt if a2 * 10 // tt > 0: ans = min(ans, a1 + a2) print(int(ans))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP NUMBER FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR NUMBER NUMBER FUNC_CALL VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF BIN_OP BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER STRING VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF BIN_OP BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR NUMBER STRING VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF BIN_OP BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
n = int(input()) s = input() dt = [n + 10] * n for i in range(n): if i > 0 and s[i] != "0": dt[i] = max([i, n - i]) mn = min(dt) ans = int(s) for i in range(n): if dt[i] == mn: ans = min([ans, int(s[:i]) + int(s[i:])]) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST BIN_OP VAR NUMBER VAR FOR VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR VAR STRING ASSIGN VAR VAR FUNC_CALL VAR LIST VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR LIST VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
import sys def IO(): import sys sys.stdout = open("output.txt", "w") sys.stdin = open("input.txt", "r") def main(): l = int(input()) n = str(input()) i = l // 2 - 1 lidx = -1 while i >= 0: if n[i + 1] != "0": lidx = i break i -= 1 ridx = l i = l // 2 + 1 while i < l: if n[i] != "0": ridx = i break i += 1 option1 = int() if lidx != -1: option1 = int(n[0 : lidx + 1]) + int(n[lidx + 1 :]) option2 = int() if ridx < l: option2 = int(n[0:ridx]) + int(n[ridx:]) if l == 2: print(int(n[0]) + int(n[1])) elif lidx == -1: print(option2) elif ridx == l: print(option1) else: print(min(option1, option2)) main()
IMPORT FUNC_DEF IMPORT ASSIGN VAR FUNC_CALL VAR STRING STRING ASSIGN VAR FUNC_CALL VAR STRING STRING FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER IF VAR BIN_OP VAR NUMBER STRING ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER WHILE VAR VAR IF VAR VAR STRING ASSIGN VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR IF VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR IF VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
def ab(n, p, q): ans = -1 x = min(len(p), len(q)) if q[0] != "0": ans = int(p) + int(q) return ans for i in range(x - 1): if p[len(p) - i - 1] != "0" and q[i + 1] != "0": return min( int(p[: len(p) - 1 - i]) + int(p[len(p) - 1 - i :] + q), int(p + q[: i + 1]) + int(q[i + 1 :]), ) if p[len(p) - 1 - i] != "0": return int(p[: len(p) - 1 - i]) + int(p[len(p) - 1 - i :] + q) if q[i + 1] != "0": return int(p + q[: i + 1]) + int(q[i + 1 :]) return int("9" * n) t = 1 while t: t -= 1 n = int(input()) s = input() if n % 2 == 0: p = s[: n // 2] q = s[n // 2 :] print(ab(n, p, q)) else: p = s[: n // 2 + 1] q = s[n // 2 + 1 :] p1 = s[: n // 2] q1 = s[n // 2 :] print(min(ab(n, p, q), ab(n, p1, q1)))
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER STRING VAR BIN_OP VAR NUMBER STRING RETURN FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR STRING RETURN BIN_OP FUNC_CALL VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR IF VAR BIN_OP VAR NUMBER STRING RETURN BIN_OP FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER RETURN FUNC_CALL VAR BIN_OP STRING VAR ASSIGN VAR NUMBER WHILE VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
l = int(input()) a = input() check = [] for i in range(l - 1): if a[i + 1] != "0": check.append([abs(i + 1 - (l - i - 1)), i]) check.sort() ans = -1 d = check[0][0] for i in check: if i[0] != d: break if ans == -1: ans = int(a[: i[1] + 1]) + int(a[i[1] + 1 :]) else: ans = min(ans, int(a[: i[1] + 1]) + int(a[i[1] + 1 :])) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER STRING EXPR FUNC_CALL VAR LIST FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR VAR IF VAR NUMBER VAR IF VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
n = int(input()) s = str(input()) ans = int(s) mid = n // 2 if n % 2 == 0: mid -= 1 c = int(s[mid]) d = int(s[mid + 1]) if c != 0 or d != 0: if c != 0 and mid > 0: ans = int(s[:mid]) + int(s[mid:n]) if d != 0 and mid + 1 < n: tmp = int(s[: mid + 1]) + int(s[mid + 1 : n]) ans = min(ans, tmp) print(ans) else: posl = -2 posr = -2 for i in range(mid, 0, -1): if int(s[i]) != 0: posl = i break for i in range(mid, n): if int(s[i]) != 0: posr = i break if posl > 0: ans = min(ans, int(s[:posl]) + int(s[posl:n])) if posr > 0: ans = min(ans, int(s[:posr]) + int(s[posr:n])) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR NUMBER VAR NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR IF VAR NUMBER BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER IF FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
n = int(input()) s = str(input()) sLen = len(s) def getSum(ss, cut): num1 = int(ss[0 : int(cut)]) num2 = int(ss[cut:]) ans = num1 + num2 return ans split1 = -1 for i in range(int(sLen / 2) - 1, -1, -1): if s[i + 1] != "0": split1 = i + 1 break split2 = -1 for i in range(int(sLen / 2), sLen - 1, 1): if s[i + 1] != "0": split2 = i + 1 break ans1, ans2, ans = 0, 0, 0 if split1 != -1: ans1 = getSum(s, split1) if split2 != -1: ans2 = getSum(s, split2) if split1 == -1 or split2 == -1: if split1 == -1: ans = ans2 elif split2 == -1: ans = ans1 elif split1 != -1 and split2 != -1: ans = min(ans1, ans2) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR RETURN VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER NUMBER IF VAR BIN_OP VAR NUMBER STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER IF VAR BIN_OP VAR NUMBER STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR IF VAR NUMBER ASSIGN VAR VAR IF VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
import sys inp = sys.stdin.readlines() a = int(inp[0].strip()) numb = str(inp[1].strip()) mind = len(numb) n = len(numb) lst = [] for i in range(1, n): if not numb[i] == "0": mind = min(mind, max(i, n - i)) mind += 1 for i in range(1, n): if max(i, n - i) <= mind: if not numb[i] == "0": lst.append(int(numb[:i]) + int(numb[i:])) print(min(lst))
IMPORT ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF FUNC_CALL VAR VAR BIN_OP VAR VAR VAR IF VAR VAR STRING EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
length = int(input()) number = list(filter(lambda x: x, input())) def make_num(tab): if tab: return int("".join(tab) if tab else "0") if tab[0] != "0" else float("inf") return 0 def solve(number, n): current_min = float("inf") for index_right, digit_right in enumerate(number[n // 2 :]): if digit_right != "0": break index_right += n // 2 for index_left, digit_left in enumerate(reversed(number[: n // 2])): if digit_left != "0": break index_left = n // 2 - index_left - 1 current_min = min( make_num(number[index_right:]) + make_num(number[:index_right]), make_num(number[index_left:]) + make_num(number[:index_left]), ) for i in range(1, 4): try: current_min = min( make_num(number[index_right + i :]) + make_num(number[: index_right + i]), current_min, ) except: break for i in range(1, 4): try: current_min = min( make_num(number[index_right - i :]) + make_num(number[: index_right - i]), current_min, ) except: break for i in range(1, 4): try: current_min = min( make_num(number[index_left + i :]) + make_num(number[: index_left + i]), current_min, ) except: break for i in range(1, 4): try: current_min = min( make_num(number[index_left - i :]) + make_num(number[: index_left - i]), current_min, ) except: break return current_min print(solve(number, length))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_DEF IF VAR RETURN VAR NUMBER STRING FUNC_CALL VAR VAR FUNC_CALL STRING VAR STRING FUNC_CALL VAR STRING RETURN NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR STRING FOR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR STRING VAR BIN_OP VAR NUMBER FOR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR STRING ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR RETURN VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
n = int(input()) l = str(input()) def summ(l1, l2): l1.reverse() l2.reverse() n_ = max(len(l1), len(l2)) k = n_ - min(len(l1), len(l2)) l1.extend(["0"] * k) l2.extend(["0"] * k) l3 = [] re = 0 for i in range(n_): x = int(l1[i]) + int(l2[i]) + re l3.append(x % 10) re = x // 10 if re == 1: l3.append(re) l3.reverse() kq = "" for i in l3: kq += str(i) return kq def com(r1, r2): g = len(r1) h = len(r2) if g > h: return r2 elif h > g: return r1 else: for i in range(g): if int(r1[i]) == int(r2[i]): continue elif int(r1[i]) < int(r2[i]): return r1 elif int(r1[i]) > int(r2[i]): return r2 return r1 if n % 2 == 0: l1 = list(l[: n // 2]) l2 = list(l[n // 2 :]) if l2[0] != "0": print(summ(l1, l2)) elif l2[0] == "0": inde = n // 2 q = "9" * n kq_ = "9" * n for i in range(n // 2, n): if l[i] != "0": inde = i break if inde != n // 2: l2 = list(l[inde:]) l1 = list(l[:inde]) q = summ(l1, l2) inde = n // 2 for i in range(n // 2, 0, -1): if l[i] != "0": inde = i break if inde != n // 2: l2 = list(l[inde:]) l1 = list(l[:inde]) kq_ = summ(l1, l2) print(com(q, kq_)) else: l1 = list(l[: n // 2]) l2 = list(l[n // 2 :]) r1 = "9" * n r2 = "9" * n fi = "9" * n se = "9" * n if l2[0] != "0": r1 = summ(l1, l2) elif l2[0] == "0": inde = n // 2 kq = "9" * n kq_ = "9" * n for i in range(n // 2, n): if l[i] != "0": inde = i break if inde != n // 2: l2 = list(l[inde:]) l1 = list(l[:inde]) kq = summ(l1, l2) inde = n // 2 for i in range(n // 2, 0, -1): if l[i] != "0": inde = i break if inde != n // 2: l2 = list(l[inde:]) l1 = list(l[:inde]) kq_ = summ(l1, l2) fi = com(kq, kq_) v1 = list(l[: n // 2 + 1]) v2 = list(l[n // 2 + 1 :]) if v2[0] != "0": r2 = summ(v1, v2) elif v2[0] == "0": inde = n // 2 + 1 kq = "9" * n kq_ = "9" * n for i in range(n // 2 + 1, n): if l[i] != "0": inde = i break if inde != n // 2 + 1: v2 = list(l[inde:]) v1 = list(l[:inde]) kq = summ(v1, v2) inde = n // 2 + 1 for i in range(n // 2 + 1, 0, -1): if l[i] != "0": inde = i break if inde != n // 2 + 1: v2 = list(l[inde:]) v1 = list(l[:inde]) kq_ = summ(v1, v2) se = com(kq, kq_) r1 = com(r1, r2) r1 = com(r1, fi) r1 = com(r1, se) print(r1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP LIST STRING VAR EXPR FUNC_CALL VAR BIN_OP LIST STRING VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR STRING FOR VAR VAR VAR FUNC_CALL VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR RETURN VAR IF VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR RETURN VAR IF FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR RETURN VAR RETURN VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR NUMBER STRING EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP STRING VAR ASSIGN VAR BIN_OP STRING VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR STRING ASSIGN VAR VAR IF VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR STRING ASSIGN VAR VAR IF VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP STRING VAR ASSIGN VAR BIN_OP STRING VAR ASSIGN VAR BIN_OP STRING VAR ASSIGN VAR BIN_OP STRING VAR IF VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP STRING VAR ASSIGN VAR BIN_OP STRING VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR STRING ASSIGN VAR VAR IF VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR STRING ASSIGN VAR VAR IF VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER IF VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER STRING ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP STRING VAR ASSIGN VAR BIN_OP STRING VAR FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR IF VAR VAR STRING ASSIGN VAR VAR IF VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER NUMBER NUMBER IF VAR VAR STRING ASSIGN VAR VAR IF VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
l = int(input()) n_str = input() foundr = 0 foundl = 0 ans = int(n_str) for i in range(l // 2, l): if n_str[i] == "0": continue elif foundr == 0: foundr = 1 ans = int(n_str[0:i]) + int(n_str[i:l]) else: ans = min(ans, int(n_str[0:i]) + int(n_str[i:l])) foundr = foundr + 1 if foundr > 1: break for i in range(l // 2 - 1, 0, -1): if n_str[i] == "0": continue else: foundl += 1 ans = min(ans, int(n_str[0:i]) + int(n_str[i:l])) if foundl > 1: break print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR STRING IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER NUMBER NUMBER IF VAR VAR STRING VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
n = int(input()) s = input() h = (n + 1) // 2 ans = pow(10, 100000) + 9 for i in range(h, n): if s[i] != "0": ans = min(ans, int(s[:i]) + int(s[i:])) break for i in range(h, 0, -1): if s[i] != "0": ans = min(ans, int(s[:i]) + int(s[i:])) break h -= 1 if h > 0: for i in range(h, n): if s[i] != "0": ans = min(ans, int(s[:i]) + int(s[i:])) break for i in range(h, 0, -1): if s[i] != "0": ans = min(ans, int(s[:i]) + int(s[i:])) break print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER IF VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER IF VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
L = int(input()) n = str(input()) def breakleft(n, split): for i in range(split): if n[split - i] != "0": return int(n[: split - i]) + int(n[split - i :]) return int(n) def breakright(n, split): global L for i in range(L - split): if n[split + i] != "0": return int(n[: split + i]) + int(n[split + i :]) return int(n) half = L // 2 r = L % 2 if r == 0: print(min(breakleft(n, half), breakright(n, half))) else: print(min(breakleft(n, half + 1), breakright(n, half)))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF FOR VAR FUNC_CALL VAR VAR IF VAR BIN_OP VAR VAR STRING RETURN BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR RETURN FUNC_CALL VAR VAR FUNC_DEF FOR VAR FUNC_CALL VAR BIN_OP VAR VAR IF VAR BIN_OP VAR VAR STRING RETURN BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR RETURN FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
n = int(input()) a = str(input()) if n == 1: print(a) else: b, c = 0, 0 res = 1e1000 pos1 = int(n / 2) pos2 = int(n / 2) pos3 = int(n / 2) + 1 pos4 = int(n / 2) - 1 while pos1 < n and a[pos1] == "0": pos1 += 1 while pos3 < n and a[pos3] == "0": pos3 += 1 while pos2 >= 0 and a[pos2] == "0": pos2 -= 1 while pos4 >= 0 and a[pos4] == "0": pos4 -= 1 if pos1 < n and a[pos1] != "0": b = int(a[0:pos1]) if pos1 != n - 1: c = int(a[pos1:]) else: c = int(a[n - 1]) res = min(res, b + c) if pos2 >= 0 and a[pos2] != "0": if pos2 != 0: b = int(a[0:pos2]) else: b = 0 c = int(a[pos2:]) res = min(res, b + c) if pos3 < n and a[pos3] != "0": b = int(a[0:pos3]) if pos3 != n - 1: c = int(a[pos3:]) else: c = int(a[n - 1]) res = min(res, b + c) if pos4 >= 0 and a[pos4] != "0": if pos4 != 0: b = int(a[0:pos4]) else: b = 0 c = int(a[pos4:]) res = min(res, b + c) print(int(res))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER WHILE VAR VAR VAR VAR STRING VAR NUMBER WHILE VAR VAR VAR VAR STRING VAR NUMBER WHILE VAR NUMBER VAR VAR STRING VAR NUMBER WHILE VAR NUMBER VAR VAR STRING VAR NUMBER IF VAR VAR VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR IF VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR IF VAR NUMBER VAR VAR STRING IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR IF VAR VAR VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR IF VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR IF VAR NUMBER VAR VAR STRING IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
n = int(input()) s = input() resp = 10 ** (n + 1) cnt = 0 for i in range(n // 2, 0, -1): if s[i] != "0": cnt += 1 s2 = s[:i] s3 = s[i:] if len(s2) >= 1 and len(s3) >= 1: resp = min(resp, int(s2) + int(s3)) if cnt == 2: break cnt = 0 for i in range(n // 2, n): if s[i] != "0": cnt += 1 s2 = s[:i] s3 = s[i:] if len(s2) >= 1 and len(s3) >= 1: resp = min(resp, int(s2) + int(s3)) if cnt == 2: break print(resp)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR STRING VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR STRING VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
n = eval(input()) s = input() l = n // 2 Sum = 0 kk = 1 for i in range(l, n): if s[i] != "0": if Sum == 0: Sum = int(s[i:]) + int(s[0:i]) else: Sum = min(Sum, int(s[i:]) + int(s[0:i])) kk += 1 if kk == 3: break kk = 1 for i in range(l, 0, -1): if s[i] != "0": if Sum == 0: Sum = int(s[i:]) + int(s[0:i]) else: Sum = min(Sum, int(s[i:]) + int(s[0:i])) kk += 1 if kk == 3: break print(Sum)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR STRING IF VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR NUMBER VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER IF VAR VAR STRING IF VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR NUMBER VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
n = int(input()) s = input() inn = -1 ind = -1 for i in range(n // 2, -1, -1): if s[i] != "0": inn = i break for i in range(n // 2 + 1, n): if s[i] != "0": ind = i break if inn > 0 and ind < n and inn != -1 and ind != -1: ans = min(int(s[:inn]) + int(s[inn:]), int(s[:ind]) + int(s[ind:])) elif inn == 0 or inn == -1: ans = int(s[:ind]) + int(s[ind:]) elif ind == 0 or ind == -1: ans = int(s[:inn]) + int(s[inn:]) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR STRING ASSIGN VAR VAR FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR IF VAR VAR STRING ASSIGN VAR VAR IF VAR NUMBER VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
n = int(input()) s = input() p = len(s) // 2 i, j = 1, 0 while p + i < len(s) and s[p + i] == "0": i += 1 while p - j >= 0 and s[p - j] == "0": j += 1 s1, s2 = s[: i + p], s[i + p :] s3, s4 = s[: p - j], s[p - j :] n1, n2 = 0, 0 if s1 != "": n1 += int(s1) if s2 != "": n1 += int(s2) if s3 != "": n2 += int(s3) if s4 != "": n2 += int(s4) if n1 < n2: print(n1) else: print(n2)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER WHILE BIN_OP VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR STRING VAR NUMBER WHILE BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR STRING VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR NUMBER NUMBER IF VAR STRING VAR FUNC_CALL VAR VAR IF VAR STRING VAR FUNC_CALL VAR VAR IF VAR STRING VAR FUNC_CALL VAR VAR IF VAR STRING VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
n = int(input()) s = input() i1 = n // 2 i2 = i1 + 1 while i1 > 0 and s[i1] == "0": i1 -= 1 while i2 < n and s[i2] == "0": i2 += 1 if i1 == 0: print(int(s[0:i2]) + int(s[i2:n])) elif i2 == n: print(int(s[0:i1]) + int(s[i1:n])) else: s1 = int(s[0:i1]) s2 = int(s[0:i2]) p1 = int(s[i1:n]) p2 = int(s[i2:n]) ans1 = s1 + p1 ans2 = s2 + p2 print(min(ans1, ans2))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER VAR VAR STRING VAR NUMBER WHILE VAR VAR VAR VAR STRING VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
def sum(str, i): if i <= 0 or i == len(str): return int(str) return int(str[0:i]) + int(str[i : len(str)]) def main(): n = int(input()) str = input() middle = int(len(str) / 2) result = int(str) for i in range(middle, -1, -1): if str[i] != "0": result = min(result, sum(str, i)) break for i in range(middle + 1, len(str)): if str[i] != "0": result = min(result, sum(str, i)) break print(result) main()
FUNC_DEF IF VAR NUMBER VAR FUNC_CALL VAR VAR RETURN FUNC_CALL VAR VAR RETURN BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER IF VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
def spt(s, lLen): a = int(n[0:lLen]) b = int(n[lLen:]) return a + b l = int(input()) n = input() half = l // 2 for lLen in range(half, l): temp1 = -1 temp2 = -1 if n[lLen] != "0": temp1 = spt(n, lLen) if n[l - lLen] != "0": temp2 = spt(n, l - lLen) if temp1 != -1 and temp2 != -1: ans = min(temp1, temp2) print(ans) exit(0) if temp1 != -1: ans = temp1 print(ans) exit(0) if temp2 != -1: ans = temp2 print(ans) exit(0)
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR BIN_OP VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR IF VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
def main(): n = int(input()) a = input() b = [] for i in range(1, n): if a[i] != "0": b.append(max(i, n - i)) b.sort() ans = float("inf") for i in b[0 : min(len(b), 5)]: if a[i] != "0": ans = min(ans, int(a[0:i]) + int(a[i:n])) if a[n - i] != "0": ans = min(ans, int(a[0 : n - i]) + int(a[n - i : n])) print(ans) main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING FOR VAR VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER IF VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR IF VAR BIN_OP VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
from sys import stdin input = stdin.readline n = int(input()) s = input() m = 10**10**5 p = [] for i in range(n // 2, 0, -1): if s[i] == "0": continue p.append(i) break for i in range(n // 2 + 1, n): if s[i] == "0": continue p.append(i) break for i in p: m = min(m, int(s[i:]) + int(s[:i])) print(m)
ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP NUMBER BIN_OP NUMBER NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR STRING EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR IF VAR VAR STRING EXPR FUNC_CALL VAR VAR FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
m = int(input()) n = input() l = m // 2 while l > 0 and n[l] == "0": l -= 1 r = m // 2 + 1 while r < m and n[r] == "0": r += 1 a = None if r < m: a = int(n[:r]) + int(n[r:]) b = None if l > 0: b = int(n[:l]) + int(n[l:]) if a and b: print(min(a, b)) else: print(a or b)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER VAR VAR STRING VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER WHILE VAR VAR VAR VAR STRING VAR NUMBER ASSIGN VAR NONE IF VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NONE IF VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
l = int(input()) number = str(input()) def sum(a, b): result = [0] * (max(len(a), len(b)) + 1) memory = 0 for i in range(1, max(len(a), len(b)) + 1): current = memory memory = 0 if i <= len(a): current += int(a[-i]) if i <= len(b): current += int(b[-i]) if current >= 10: current = current % 10 memory = 1 result[-i] = current result[0] = memory return result if result[0] != 0 else result[1:] def a_less_then_b(a, b): if len(a) < len(b): return True if len(a) > len(b): return False for i in range(0, len(a)): if a[i] < b[i]: return True if a[i] > b[i]: return False return False minimum = [9] * l def update_minimum(middle_left, middle_right): global minimum while number[middle_left] == "0": middle_left -= 1 while middle_right < l and number[middle_right] == "0": middle_right += 1 current = sum(number[:middle_left], number[middle_left:]) if a_less_then_b(current, minimum): minimum = current if middle_right < l and number[middle_right] != "0": current = sum(number[:middle_right], number[middle_right:]) if a_less_then_b(current, minimum): minimum = current if l % 2 == 0: update_minimum(l // 2, l // 2) else: update_minimum(l // 2, l // 2) update_minimum(l // 2 + 1, l // 2 + 1) print("".join(map(str, minimum)))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR NUMBER VAR RETURN VAR NUMBER NUMBER VAR VAR NUMBER FUNC_DEF IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR RETURN NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR RETURN NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR VAR VAR RETURN NUMBER IF VAR VAR VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FUNC_DEF WHILE VAR VAR STRING VAR NUMBER WHILE VAR VAR VAR VAR STRING VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR IF FUNC_CALL VAR VAR VAR ASSIGN VAR VAR IF VAR VAR VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR IF FUNC_CALL VAR VAR VAR ASSIGN VAR VAR IF BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER BIN_OP BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
l = int(input()) s = input() mid = l // 2 endfrom0 = mid + 1 beginforend = mid - 1 def so(i): if i == 0 or i == l: return int(s) return int(s[0:i]) + int(s[i:l]) while endfrom0 < l and s[endfrom0] == "0": endfrom0 += 1 while beginforend > -1 and s[beginforend] == "0": beginforend -= 1 if s[mid] != "0": print(min(so(mid), so(endfrom0), so(beginforend))) else: print(min(so(endfrom0), so(beginforend)))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_DEF IF VAR NUMBER VAR VAR RETURN FUNC_CALL VAR VAR RETURN BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR WHILE VAR VAR VAR VAR STRING VAR NUMBER WHILE VAR NUMBER VAR VAR STRING VAR NUMBER IF VAR VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
L = int(input()) S = input() arr = [] for i in range(1, L): if S[i] != "0": arr.append((abs(L - i - i), i)) arr.sort() if len(arr) >= 2: print( min( [ int(S[: arr[0][1]]) + int(S[arr[0][1] :]), int(S[: arr[1][1]]) + int(S[arr[1][1] :]), ] ) ) else: print(int(S[: arr[0][1]]) + int(S[arr[0][1] :]))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR LIST BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER FUNC_CALL VAR VAR VAR NUMBER NUMBER BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER FUNC_CALL VAR VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER FUNC_CALL VAR VAR VAR NUMBER NUMBER
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
len = int(input()) str = input() mid = len // 2 - 1 ans = int(str) lcnt = 2 for i in range(mid, -1, -1): if str[i + 1] != "0": sum = int(str[: i + 1]) + int(str[i + 1 :]) if sum < ans: ans = sum lcnt -= 1 if lcnt == 0: break rcnt = 2 for i in range(mid + 1, len - 1): if str[i + 1] != "0": sum = int(str[: i + 1]) + int(str[i + 1 :]) if sum < ans: ans = sum rcnt -= 1 if rcnt == 0: break print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER IF VAR BIN_OP VAR NUMBER STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
l = int(input()) n = input() ans = int("1" + "0" * 10**5) if l % 2 == 0: k = l // 2 left = k while n[left] == "0": left -= 1 right = k while right < l and n[right] == "0": right += 1 if left > 0: ans = min(int(n[:left]) + int(n[left:]), ans) if right < l: ans = min(int(n[:right]) + int(n[right:]), ans) else: for k in range(l // 2, l // 2 + 2): left = k while n[left] == "0": left -= 1 right = k while right < l and n[right] == "0": right += 1 if left > 0: ans = min(int(n[:left]) + int(n[left:]), ans) if right < l: ans = min(int(n[:right]) + int(n[right:]), ans) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP STRING BIN_OP STRING BIN_OP NUMBER NUMBER IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR STRING VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR VAR VAR STRING VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR WHILE VAR VAR STRING VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR VAR VAR STRING VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
n = int(input()) s = input() result = int(s) mid = int(n / 2) count = 0 i = 0 while count < 4: index = mid + i if index > n - 1: break if s[index] != "0": result = min(int(s[:index]) + int(s[index:]), result) count += 1 index2 = mid - i if index2 > 0 and s[index2] != "0": result = min(int(s[:index2]) + int(s[index2:]), result) count += 1 i += 1 print(result)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR BIN_OP VAR NUMBER IF VAR VAR STRING ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER VAR VAR STRING ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
l = int(input()) S = input() pos = l // 2 res = int(S) if pos != 0 and S[pos] != "0": left = int(S[0:pos:1]) right = int(S[pos:]) res = left + right pos = l // 2 - 1 while pos > 0: if S[pos] == "0": pos -= 1 else: left = int(S[0:pos:1]) right = int(S[pos:]) res = min(res, left + right) break pos = l // 2 + 1 while pos < l: if S[pos] == "0": pos += 1 else: left = int(S[0:pos:1]) right = int(S[pos:]) res = min(left + right, res) break print(res)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER WHILE VAR NUMBER IF VAR VAR STRING VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER WHILE VAR VAR IF VAR VAR STRING VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
n = int(input()) s = input() mv = n + 1 for i in range(1, n): if s[i] != "0": mv = min(mv, max(i, n - i)) lst = [] for i in range(1, n): if s[i] != "0": l = max(i, n - i) if l == mv or l == mv + 1: lst.append(i) res = int(s) for i in lst: a = int(s[0:i]) b = int(s[i:n]) res = min(res, a + b) print(res)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR IF VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
L = int(input()) n = input() ans = int(n) def v(k): if k[0] == "0": return False return True if L % 2 == 0: for i in range(L // 2): split1 = L // 2 + i split2 = L // 2 - i if n[split1] != "0": sum1 = int(n[:split1]) + int(n[split1:]) if ans > sum1: ans = sum1 if n[split2] != "0": sum2 = int(n[:split2]) + int(n[split2:]) if ans > sum2: ans = sum2 break if n[split2] != "0": sum2 = int(n[:split2]) + int(n[split2:]) if ans > sum2: ans = sum2 break else: for i in range(L // 2): split1 = L // 2 + i + 1 split2 = L // 2 - i if n[split1] != "0": sum1 = int(n[:split1]) + int(n[split1:]) if ans > sum1: ans = sum1 split1 = -1 if n[split2] != "0": sum2 = int(n[:split2]) + int(n[split2:]) if ans > sum2: ans = sum2 break if n[split2] != "0": sum2 = int(n[:split2]) + int(n[split2:]) if ans > sum2: ans = sum2 break print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_DEF IF VAR NUMBER STRING RETURN NUMBER RETURN NUMBER IF BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR IF VAR VAR STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR VAR STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR VAR STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR IF VAR VAR STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER IF VAR VAR STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR VAR STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
n = int(input()) s = input() best = [] b = 10**9 for i in range(n - 1): if s[i + 1] == "0": continue x = max(i + 1, n - i - 1) if x < b: best = [] b = x if x == b: best.append(i + 1) res = int(s) for i in best: res = min(res, int(s[0:i]) + int(s[i:])) print(res)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR BIN_OP NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR ASSIGN VAR LIST ASSIGN VAR VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
n = int(input()) y = input() pek = int def int(x): if x == "": return 0 else: return pek(x) if n % 2 == 0: mul1 = 0 mul2 = n - 1 for i in range(n // 2, n): mul1 = i if y[i] == "0": continue else: break for i in range(n // 2 - 1, -1, -1): mul2 = i if y[i] == "0": continue else: break if mul1 == n - 1 and y[mul1] == "0": mul1 = mul2 m = min(int(y[mul1:n]) + int(y[0:mul1]), int(y[mul2:n]) + int(y[0:mul2])) print(m) else: res1 = res2 = 0 if True: mul1 = 0 mul2 = n - 1 for i in range(n // 2, n): mul1 = i if y[i] == "0": continue else: break for i in range(n // 2 - 1, -1, -1): mul2 = i if y[i] == "0": continue else: break if mul1 == n - 1 and y[mul1] == "0": mul1 = mul2 res1 = min(int(y[mul1:n]) + int(y[0:mul1]), int(y[mul2:n]) + int(y[0:mul2])) if True: mul1 = 0 mul2 = n - 1 for i in range(n // 2 + 1, n): mul1 = i if y[i] == "0": continue else: break for i in range(n // 2, -1, -1): mul2 = i if y[i] == "0": continue else: break if mul1 == n - 1 and y[mul1] == "0": mul1 = mul2 res2 = min(int(y[mul1:n]) + int(y[0:mul1]), int(y[mul2:n]) + int(y[0:mul2])) print(min(res1, res2))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_DEF IF VAR STRING RETURN NUMBER RETURN FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR IF VAR VAR STRING FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER NUMBER NUMBER ASSIGN VAR VAR IF VAR VAR STRING IF VAR BIN_OP VAR NUMBER VAR VAR STRING ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER IF NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR IF VAR VAR STRING FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER NUMBER NUMBER ASSIGN VAR VAR IF VAR VAR STRING IF VAR BIN_OP VAR NUMBER VAR VAR STRING ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR NUMBER VAR IF NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR ASSIGN VAR VAR IF VAR VAR STRING FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR IF VAR VAR STRING IF VAR BIN_OP VAR NUMBER VAR VAR STRING ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
n = int(input()) x = input() ans = -1 options = [] for i in range(len(x)): if x[i] != "0": options.append(i) start = len(options) - 1 for i in range(len(options)): if options[i] >= n // 2: start = i break for i in range(3): for ind in [start + i, start - i]: if ind < 0 or ind >= len(options): continue pos = options[ind] if pos <= 0 or pos >= n: continue option = int(x[:pos]) + int(x[pos:]) if ans == -1 or option < ans: ans = option print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER FOR VAR LIST BIN_OP VAR VAR BIN_OP VAR VAR IF VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
n, s, a = int(input()), input(), 9**9 for i in range(1, n): if s[i] != "0": if max(a, n - a) > max(i, n - i): a = i elif max(a, n - a) == max(i, n - i) and int(s[:a]) + int(s[a:]) > int( s[:i] ) + int(s[i:]): a = i print(int(s[:a]) + int(s[a:]))
ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR STRING IF FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR IF FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
n = int(input()) a = input() m = int(a) P = 10 ** (n // 2 + 1) p = P A = int(a[: n // 2]) B = int(a[n // 2 :]) kek = a[n // 2 :] if kek[0] != "0": m = min(m, A + B) C = A D = B if n % 2 == 0: P //= 10 k = 0 for i in range(n // 2, n): if a[i] != "0": m = min(int(a[:i]) + int(a[i:]), m) break for i in range(n // 2 - 1, 0, -1): if a[i] != "0": m = min(int(a[:i]) + int(a[i:]), m) break for i in range(n // 2, n - 1): if k > 5: break A *= 10 A += int(a[i]) P //= 10 B %= P k += 1 if A + B >= m: break if a[i + 1] == "0": continue m = A + B A = C B = D P = p // 10 if n % 2 == 0: P //= 10 for i in range(n // 2 - 1, 0, -1): if k > 10: break P *= 10 B += int(a[i]) * P A //= 10 k += 1 if A + B >= m: break if a[i] == "0": continue m = A + B print(m)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP NUMBER BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER IF VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR STRING ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER NUMBER NUMBER IF VAR VAR STRING ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER IF VAR NUMBER VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR VAR VAR NUMBER IF BIN_OP VAR VAR VAR IF VAR BIN_OP VAR NUMBER STRING ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER NUMBER NUMBER IF VAR NUMBER VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR VAR VAR VAR NUMBER VAR NUMBER IF BIN_OP VAR VAR VAR IF VAR VAR STRING ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
n, s = int(input()), input() h = n // 2 ans = 3 * 10**100000 i = h while i < n - 1 and s[i] == "0": i += 1 if not (i >= n - 1 and s[i] == "0"): ans = min(ans, int(s[:i]) + int(s[i:])) i = min(h + 1, n - 1) while i < n - 1 and s[i] == "0": i += 1 if not (i >= n - 1 and s[i] == "0"): ans = min(ans, int(s[:i]) + int(s[i:])) i = h - 1 while s[i] == "0": i -= 1 if i > 0: ans = min(ans, int(s[:i]) + int(s[i:])) print(ans)
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP NUMBER BIN_OP NUMBER NUMBER ASSIGN VAR VAR WHILE VAR BIN_OP VAR NUMBER VAR VAR STRING VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER WHILE VAR BIN_OP VAR NUMBER VAR VAR STRING VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR STRING VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
n = int(input()) s = input() l, r = n // 2, (n + 1) // 2 ans = int(s) while True: flag = False if s[l] != "0": flag = True num1, num2 = int(s[:l]), int(s[l:]) ans = min(ans, num1 + num2) if s[r] != "0": flag = True num1, num2 = int(s[:r]), int(s[r:]) ans = min(ans, num1 + num2) if flag: break l = l - 1 r = r + 1 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE NUMBER ASSIGN VAR NUMBER IF VAR VAR STRING ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR IF VAR VAR STRING ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR IF VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
l = int(input()) n = input() pos = len(n) // 2 while pos < len(n) and n[pos] == "0": pos += 1 ans = -1 if pos < len(n): left = int(n[:pos]) right = int(n[pos:]) ans = left + right pos += 1 if pos < len(n) and n[pos] != "0": left = int(n[:pos]) right = int(n[pos:]) if ans == -1: ans = left + right else: ans = min(ans, left + right) pos = len(n) // 2 - 1 while 1 <= pos and n[pos] == "0": pos -= 1 if 1 <= pos: left = int(n[:pos]) right = int(n[pos:]) if ans == -1: ans = left + right else: ans = min(ans, left + right) pos -= 1 if 1 <= pos and n[pos] != "0": left = int(n[:pos]) right = int(n[pos:]) if ans == -1: ans = left + right else: ans = min(ans, left + right) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR STRING VAR NUMBER ASSIGN VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER WHILE NUMBER VAR VAR VAR STRING VAR NUMBER IF NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR NUMBER IF NUMBER VAR VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
l = int(input()) n = input() mn = int(n) mid1 = l // 2 mid2 = l // 2 while n[mid1] == "0": mid1 -= 1 while mid2 < l and n[mid2] == "0": mid2 += 1 if mid2 == l: mid2 = l // 2 while n[mid2] == "0": mid2 -= 1 for i in range(mid2 - 1, min(l - 1, mid2 + 1)): if n[i + 1] == "0": continue a1 = int(n[: i + 1]) a2 = int(n[i + 1 :]) mn = min(mn, a1 + a2) for i in range(max(0, mid1 - 1), min(l - 1, mid1 + 1)): if n[i + 1] == "0": continue a1 = int(n[: i + 1]) a2 = int(n[i + 1 :]) mn = min(mn, a1 + a2) print(mn)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR STRING VAR NUMBER WHILE VAR VAR VAR VAR STRING VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR STRING VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
l = int(input()) n = input() mi = int(n) for A in range(l // 2 - 1, l // 2 + 2): if A > 0 and A < len(n) and n[:A][0] != "0" and n[A:][0] != "0": a = int(n[:A]) b = int(n[A:]) mi = min(mi, a + b) if mi == int(n): i = l // 2 while n[i] == "0": i -= 1 if i > 0: mi = min(mi, int(n[:i]) + int(n[i:])) i = l // 2 while i < len(n) and n[i] == "0": i += 1 if i < len(n) and n[i] != "0": mi = min(mi, int(n[:i]) + int(n[i:])) print(mi)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER BIN_OP BIN_OP VAR NUMBER NUMBER IF VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR NUMBER STRING VAR VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR IF VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR STRING VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR STRING VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
def calc(s, pos): A = s[0:pos] B = s[pos:] return int(A) + int(B) n = input() s = input() n = int(n) result = int(s) n2 = n // 2 ctr = 0 for i in range(n // 2, 0, -1): if s[i] == "0": continue ctr += 1 if ctr == 4: break val = calc(s, i) result = min(result, val) ctr = 0 for i in range(n // 2, n, 1): if s[i] == "0": continue ctr += 1 if ctr == 4: break val = calc(s, i) result = min(result, val) print(result)
FUNC_DEF ASSIGN VAR VAR NUMBER VAR ASSIGN VAR VAR VAR RETURN BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR STRING VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR STRING VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
n = int(input()) s = input() lens = [] for i in range(len(s) - 1): if s[i + 1] != "0": lens.append((i, max(i + 1, len(s) - i - 1))) mnlen = len(s) + 1 for a, b in lens: mnlen = min(mnlen, b) ans = int("9" * (len(s) + 1)) for a, b in lens: if b == mnlen or b == mnlen + 1: ans = min(ans, int(s[: a + 1]) + int(s[a + 1 :])) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER STRING EXPR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP STRING BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR VAR VAR IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
l = int(input()) n = input() def solve(ind, d): global ans if ind < 1 or ind >= l: return if n[ind] == "0": if d == 0: return while 1 <= ind < l and n[ind] == "0": ind += d if ind < 1 or ind >= l: return if n[ind] == "0": return res = int(n[:ind]) + int(n[ind:]) try: ans = min(ans, res) except: ans = res inds = [] for i in range(l // 2 - 3, l // 2 + 3): if 1 <= i < l: inds += [i] for i in range(len(inds)): if i == 0: d = -1 elif i == len(inds) - 1: d = 1 else: d = 0 solve(inds[i], d) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_DEF IF VAR NUMBER VAR VAR RETURN IF VAR VAR STRING IF VAR NUMBER RETURN WHILE NUMBER VAR VAR VAR VAR STRING VAR VAR IF VAR NUMBER VAR VAR RETURN IF VAR VAR STRING RETURN ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER BIN_OP BIN_OP VAR NUMBER NUMBER IF NUMBER VAR VAR VAR LIST VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
n = int(input()) s = input() a = s a = "0" + s s = [int(i) for i in s] s = [0] + s p = [] if n % 2 is 0: i = n // 2 + 1 while i <= n and s[i] == 0: i += 1 if i <= n and s[i] != 0: p.append(i) i = n // 2 while i >= 1 and s[i] == 0: i -= 1 if i > 1 and s[i] != 0: p.append(i) if n % 2 is 1: i = n // 2 + 1 + 1 while i <= n and s[i] == 0: i += 1 if i <= n and s[i] != 0: p.append(i) i = n // 2 + 1 while i >= 1 and s[i] == 0: i -= 1 if i > 1 and s[i] != 0: p.append(i) ans = [] for i in p: ans.append(int(a[1:i]) + int(a[i:])) print(min(ans))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP STRING VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR LIST IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER WHILE VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER VAR VAR NUMBER VAR NUMBER IF VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER NUMBER NUMBER WHILE VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER WHILE VAR NUMBER VAR VAR NUMBER VAR NUMBER IF VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
a = input() a = int(a) c = input() b = str(c) l = int(a / 2) while l >= 1: if b[l] == "0": l -= 1 else: break r = int(a / 2) + 1 while r < a: if b[r] == "0": r += 1 else: break if l == 0: print(str(int(b[:r]) + int(b[r:]))) elif r == a: print(str(int(b[:l]) + int(b[l:]))) else: print(str(min(int(b[:r]) + int(b[r:]), int(b[:l]) + int(b[l:]))))
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER WHILE VAR NUMBER IF VAR VAR STRING VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER WHILE VAR VAR IF VAR VAR STRING VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
def main(): n = int(input()) x = input() mid = n // 2 cnt = 0 ans = None for i in range(mid + 2): j = mid + i if j < n and x[j] != "0": val = int(x[:j]) + int(x[j:]) cnt += 1 if ans is None: ans = val else: ans = min(ans, val) j = mid - i if j > 0 and x[j] != "0": val = int(x[:j]) + int(x[j:]) cnt += 1 if ans is None: ans = val else: ans = min(ans, val) if cnt >= 7: break print(ans) main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NONE FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR VAR VAR VAR STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR NONE ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER VAR VAR STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR NONE ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
n = int(input()) num = input() def mn(a, b): x = int(num[:a]) + int(num[a:]) y = int(num[:b]) + int(num[b:]) if x < y: return a else: return b if n & 1 > 0: idx = mn(n // 2, n // 2 + 1) else: idx = n // 2 lead_a = 0 lead_b = 0 i = idx while i < n: if num[i] == "0": lead_a += 1 if i == n - 1: lead_a = n else: break i += 1 i = idx - 1 while i >= 0: if num[i] == "0": lead_b += 1 else: break i -= 1 if lead_a == n: idx -= lead_b + 1 elif idx - lead_b - 1 == 0: idx += lead_a else: idx = mn(idx + lead_a, idx - lead_b - 1) ans = int(num[:idx]) + int(num[idx:]) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR RETURN VAR RETURN VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR IF VAR VAR STRING VAR NUMBER IF VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER IF VAR VAR STRING VAR NUMBER VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
n = int(input()) s = input() a = "" b = "" ans = 0 l = r = n // 2 while r < len(s) and s[r] == "0": r = r + 1 while l >= 0 and s[l] == "0": l = l - 1 if l > 0: a = s[:l] b = s[l:] if ans == 0: ans = int(a) + int(b) else: ans = min(ans, int(a) + int(b)) if r < len(s): a = s[:r] b = s[r:] if ans == 0: ans = int(a) + int(b) else: ans = min(ans, int(a) + int(b)) if l == r and l + 1 != len(s): a = s[: l + 1] b = s[l + 1 :] ans = min(ans, int(a) + int(b)) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
import sys def IO(): import sys sys.stdout = open("output.txt", "w") sys.stdin = open("input.txt", "r") def main(): l = int(input()) n = input() pos = [i for i in range(1, l) if n[i] != "0"] pos = sorted(pos, key=lambda i: abs(i - l // 2)) ans = float("inf") for i in range(min(6, len(pos))): ans = min(ans, int(n[0 : pos[i]]) + int(n[pos[i] :])) print(ans) main()
IMPORT FUNC_DEF IMPORT ASSIGN VAR FUNC_CALL VAR STRING STRING ASSIGN VAR FUNC_CALL VAR STRING STRING FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR NUMBER VAR VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
l = int(input()) n = input() if l % 2 == 1: m = l // 2 for i in range(0, l - m): variants = [] if n[m - i] != "0": variants.append(int(n[: m - i]) + int(n[m - i :])) if n[m + i + 1] != "0": variants.append(int(n[: m + i + 1]) + int(n[m + i + 1 :])) if variants: print(min(variants)) exit(0) else: m = l // 2 for i in range(0, l - m): variants = [] if n[m - i] != "0": variants.append(int(n[: m - i]) + int(n[m - i :])) if n[m + i] != "0": variants.append(int(n[: m + i]) + int(n[m + i :])) if variants: print(min(variants)) exit(0)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR ASSIGN VAR LIST IF VAR BIN_OP VAR VAR STRING EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR IF VAR BIN_OP BIN_OP VAR VAR NUMBER STRING EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR ASSIGN VAR LIST IF VAR BIN_OP VAR VAR STRING EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR IF VAR BIN_OP VAR VAR STRING EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR IF VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
l = int(input()) s = input() ans = -1 cp = int((l - 1) / 2) dist = 1 if l % 2 == 1: dist = 0 while ans == -1: if s[cp + 1] != "0": ans = int(s[: cp + 1]) + int(s[cp + 1 :]) if cp + dist < l and s[cp + dist] != "0": if ans == -1: ans = int(s[: cp + dist]) + int(s[cp + dist :]) else: ans = min(ans, int(s[: cp + dist]) + int(s[cp + dist :])) cp -= 1 dist += 2 if ans != -1: if cp >= 0 and s[cp + 1] != "0": ans = min(ans, int(s[: cp + 1]) + int(s[cp + 1 :])) if cp + dist < l and s[cp + dist] != "0": ans = min(ans, int(s[: cp + dist]) + int(s[cp + dist :])) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER IF VAR BIN_OP VAR NUMBER STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR STRING IF VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR NUMBER VAR NUMBER IF VAR NUMBER IF VAR NUMBER VAR BIN_OP VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
_ = input() num = input() ansi = len(num) - 1 leni = len(num) for i in range(leni): if i == 0 or num[i] == "0": continue ansi = min(ansi, max(i, leni - i)) l = [] for i in range(leni): if i == 0 or num[i] == "0": continue tk = max(i, leni - i) if tk == ansi or tk - 1 == ansi: l.append(int(num[0:i]) + int(num[i:])) mini = l[0] for i in l: if i < mini: mini = i print(mini)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR VAR STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR IF VAR VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR NUMBER FOR VAR VAR IF VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
Dima worked all day and wrote down on a long paper strip his favorite number $n$ consisting of $l$ digits. Unfortunately, the strip turned out to be so long that it didn't fit in the Dima's bookshelf. To solve the issue, Dima decided to split the strip into two non-empty parts so that each of them contains a positive integer without leading zeros. After that he will compute the sum of the two integers and write it down on a new strip. Dima wants the resulting integer to be as small as possible, because it increases the chances that the sum will fit it in the bookshelf. Help Dima decide what is the minimum sum he can obtain. -----Input----- The first line contains a single integer $l$ ($2 \le l \le 100\,000$) — the length of the Dima's favorite number. The second line contains the positive integer $n$ initially written on the strip: the Dima's favorite number. The integer $n$ consists of exactly $l$ digits and it does not contain leading zeros. Dima guarantees, that there is at least one valid way to split the strip. -----Output----- Print a single integer — the smallest number Dima can obtain. -----Examples----- Input 7 1234567 Output 1801 Input 3 101 Output 11 -----Note----- In the first example Dima can split the number $1234567$ into integers $1234$ and $567$. Their sum is $1801$. In the second example Dima can split the number $101$ into integers $10$ and $1$. Their sum is $11$. Note that it is impossible to split the strip into "1" and "01" since the numbers can't start with zeros.
l = int(input()) s = input() s = str(s) if l % 2 == 0: i = l // 2 i1 = i - 1 while i1 >= 0: if s[i1] != "0": break i1 = i1 - 1 i2 = i while i2 < l: if s[i2] != "0": break i2 = i2 + 1 s1 = 0 s1 = str(s1) i3 = 0 while i3 < i1: s1 = s1 + s[i3] i3 = i3 + 1 s2 = 0 s2 = str(s2) i3 = i1 while i3 < l: s2 = s2 + s[i3] i3 = i3 + 1 i3 = 0 s3 = 0 s3 = str(s3) while i3 < i2: s3 = s3 + s[i3] i3 = i3 + 1 s4 = 0 s4 = str(s4) i3 = i2 while i3 < l: s4 = s4 + s[i3] i3 = i3 + 1 s11 = int(s1) + int(s2) s22 = int(s3) + int(s4) if s11 < s22: print(s11) else: print(s22) else: i = l // 2 if s[i] == "0": i1 = i - 1 while i1 >= 0: if s[i1] != "0": break i1 = i1 - 1 i2 = i + 1 while i2 < l: if s[i2] != "0": break i2 = i2 + 1 s1 = 0 s1 = str(s1) i3 = 0 while i3 < i1: s1 = s1 + s[i3] i3 = i3 + 1 s2 = 0 s2 = str(s2) i3 = i1 while i3 < l: s2 = s2 + s[i3] i3 = i3 + 1 i3 = 0 s3 = 0 s3 = str(s3) while i3 < i2: s3 = s3 + s[i3] i3 = i3 + 1 s4 = 0 s4 = str(s4) i3 = i2 while i3 < l: s4 = s4 + s[i3] i3 = i3 + 1 s11 = int(s1) + int(s2) s22 = int(s3) + int(s4) if s11 < s22: print(s11) else: print(s22) else: i = l // 2 s11 = 0 s22 = 0 if s[i + 1] != "0": i1 = 0 s1 = 0 s1 = str(s1) while i1 <= i: s1 = s1 + s[i1] i1 = i1 + 1 i1 = i + 1 s2 = 0 s2 = str(s2) while i1 < l: s2 = s2 + s[i1] i1 = i1 + 1 s11 = int(s2) + int(s1) i1 = 0 s1 = 0 s1 = str(s1) while i1 < i: s1 = s1 + s[i1] i1 = i1 + 1 i1 = i s2 = 0 s2 = str(s2) while i1 < l: s2 = s2 + s[i1] i1 = i1 + 1 s22 = int(s1) + int(s2) if s[i + 1] != 0: print(min(s11, s22)) else: print(s22)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER IF VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR IF VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER IF VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR IF VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR BIN_OP VAR NUMBER STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Vus the Cossack has $n$ real numbers $a_i$. It is known that the sum of all numbers is equal to $0$. He wants to choose a sequence $b$ the size of which is $n$ such that the sum of all numbers is $0$ and each $b_i$ is either $\lfloor a_i \rfloor$ or $\lceil a_i \rceil$. In other words, $b_i$ equals $a_i$ rounded up or down. It is not necessary to round to the nearest integer. For example, if $a = [4.58413, 1.22491, -2.10517, -3.70387]$, then $b$ can be equal, for example, to $[4, 2, -2, -4]$. Note that if $a_i$ is an integer, then there is no difference between $\lfloor a_i \rfloor$ and $\lceil a_i \rceil$, $b_i$ will always be equal to $a_i$. Help Vus the Cossack find such sequence! -----Input----- The first line contains one integer $n$ ($1 \leq n \leq 10^5$) — the number of numbers. Each of the next $n$ lines contains one real number $a_i$ ($|a_i| < 10^5$). It is guaranteed that each $a_i$ has exactly $5$ digits after the decimal point. It is guaranteed that the sum of all the numbers is equal to $0$. -----Output----- In each of the next $n$ lines, print one integer $b_i$. For each $i$, $|a_i-b_i|<1$ must be met. If there are multiple answers, print any. -----Examples----- Input 4 4.58413 1.22491 -2.10517 -3.70387 Output 4 2 -2 -4 Input 5 -6.32509 3.30066 -0.93878 2.00000 1.96321 Output -6 3 -1 2 2 -----Note----- The first example is explained in the legend. In the second example, we can round the first and fifth numbers up, and the second and third numbers down. We can round the fourth number neither up, nor down.
n = int(input()) a = [] m = [] for i in range(n): x = float(input()) y = [int(x), x - int(x)] if x < 0 and y[1] != 0: y[0] -= 1 a.append(y) sum = 0 for i in range(n): sum += a[i][0] for i in range(n): if sum < 0 and a[i][1] != 0: a[i][0] += 1 sum += 1 for i in range(n): print(a[i][0])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FUNC_CALL VAR VAR BIN_OP VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR NUMBER NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR VAR NUMBER NUMBER VAR VAR NUMBER NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER
Vus the Cossack has $n$ real numbers $a_i$. It is known that the sum of all numbers is equal to $0$. He wants to choose a sequence $b$ the size of which is $n$ such that the sum of all numbers is $0$ and each $b_i$ is either $\lfloor a_i \rfloor$ or $\lceil a_i \rceil$. In other words, $b_i$ equals $a_i$ rounded up or down. It is not necessary to round to the nearest integer. For example, if $a = [4.58413, 1.22491, -2.10517, -3.70387]$, then $b$ can be equal, for example, to $[4, 2, -2, -4]$. Note that if $a_i$ is an integer, then there is no difference between $\lfloor a_i \rfloor$ and $\lceil a_i \rceil$, $b_i$ will always be equal to $a_i$. Help Vus the Cossack find such sequence! -----Input----- The first line contains one integer $n$ ($1 \leq n \leq 10^5$) — the number of numbers. Each of the next $n$ lines contains one real number $a_i$ ($|a_i| < 10^5$). It is guaranteed that each $a_i$ has exactly $5$ digits after the decimal point. It is guaranteed that the sum of all the numbers is equal to $0$. -----Output----- In each of the next $n$ lines, print one integer $b_i$. For each $i$, $|a_i-b_i|<1$ must be met. If there are multiple answers, print any. -----Examples----- Input 4 4.58413 1.22491 -2.10517 -3.70387 Output 4 2 -2 -4 Input 5 -6.32509 3.30066 -0.93878 2.00000 1.96321 Output -6 3 -1 2 2 -----Note----- The first example is explained in the legend. In the second example, we can round the first and fifth numbers up, and the second and third numbers down. We can round the fourth number neither up, nor down.
n = int(input()) arr = [float(input()) for _ in range(n)] arr2 = [int(arr[i]) for i in range(n)] diff = sum(arr2) if diff == 0: for i in range(n): print(arr2[i]) elif diff < 0: cnt = 0 for i in range(n): if arr[i] > 0: if cnt < abs(diff): if arr[i] != arr2[i]: print(arr2[i] + 1) cnt += 1 else: print(arr2[i]) else: print(arr2[i]) else: print(arr2[i]) else: cnt = 0 for i in range(n): if arr[i] > 0: print(arr2[i]) elif cnt < diff: if arr[i] != arr2[i]: print(arr2[i] - 1) cnt += 1 else: print(arr2[i]) else: print(arr2[i])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR IF VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR
Vus the Cossack has $n$ real numbers $a_i$. It is known that the sum of all numbers is equal to $0$. He wants to choose a sequence $b$ the size of which is $n$ such that the sum of all numbers is $0$ and each $b_i$ is either $\lfloor a_i \rfloor$ or $\lceil a_i \rceil$. In other words, $b_i$ equals $a_i$ rounded up or down. It is not necessary to round to the nearest integer. For example, if $a = [4.58413, 1.22491, -2.10517, -3.70387]$, then $b$ can be equal, for example, to $[4, 2, -2, -4]$. Note that if $a_i$ is an integer, then there is no difference between $\lfloor a_i \rfloor$ and $\lceil a_i \rceil$, $b_i$ will always be equal to $a_i$. Help Vus the Cossack find such sequence! -----Input----- The first line contains one integer $n$ ($1 \leq n \leq 10^5$) — the number of numbers. Each of the next $n$ lines contains one real number $a_i$ ($|a_i| < 10^5$). It is guaranteed that each $a_i$ has exactly $5$ digits after the decimal point. It is guaranteed that the sum of all the numbers is equal to $0$. -----Output----- In each of the next $n$ lines, print one integer $b_i$. For each $i$, $|a_i-b_i|<1$ must be met. If there are multiple answers, print any. -----Examples----- Input 4 4.58413 1.22491 -2.10517 -3.70387 Output 4 2 -2 -4 Input 5 -6.32509 3.30066 -0.93878 2.00000 1.96321 Output -6 3 -1 2 2 -----Note----- The first example is explained in the legend. In the second example, we can round the first and fifth numbers up, and the second and third numbers down. We can round the fourth number neither up, nor down.
def main(): n = int(input()) i = 0 ng = [] tp = [] tg = 0 while i < n: str = input() x, y = [int(t) for t in str.split(".")] if y != 0: tg += x if x >= 0 and str[0] != "-" else x - 1 ng.append(x if x >= 0 and str[0] != "-" else x - 1) else: tg += x ng.append(x) tp.append(y) i += 1 i = 0 while i < n: if tp[i] == 0 or tg == 0: print(ng[i]) else: print(ng[i] + 1) tg += 1 i += 1 main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING IF VAR NUMBER VAR VAR NUMBER VAR NUMBER STRING VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER STRING VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR
Vus the Cossack has $n$ real numbers $a_i$. It is known that the sum of all numbers is equal to $0$. He wants to choose a sequence $b$ the size of which is $n$ such that the sum of all numbers is $0$ and each $b_i$ is either $\lfloor a_i \rfloor$ or $\lceil a_i \rceil$. In other words, $b_i$ equals $a_i$ rounded up or down. It is not necessary to round to the nearest integer. For example, if $a = [4.58413, 1.22491, -2.10517, -3.70387]$, then $b$ can be equal, for example, to $[4, 2, -2, -4]$. Note that if $a_i$ is an integer, then there is no difference between $\lfloor a_i \rfloor$ and $\lceil a_i \rceil$, $b_i$ will always be equal to $a_i$. Help Vus the Cossack find such sequence! -----Input----- The first line contains one integer $n$ ($1 \leq n \leq 10^5$) — the number of numbers. Each of the next $n$ lines contains one real number $a_i$ ($|a_i| < 10^5$). It is guaranteed that each $a_i$ has exactly $5$ digits after the decimal point. It is guaranteed that the sum of all the numbers is equal to $0$. -----Output----- In each of the next $n$ lines, print one integer $b_i$. For each $i$, $|a_i-b_i|<1$ must be met. If there are multiple answers, print any. -----Examples----- Input 4 4.58413 1.22491 -2.10517 -3.70387 Output 4 2 -2 -4 Input 5 -6.32509 3.30066 -0.93878 2.00000 1.96321 Output -6 3 -1 2 2 -----Note----- The first example is explained in the legend. In the second example, we can round the first and fifth numbers up, and the second and third numbers down. We can round the fourth number neither up, nor down.
n = int(input()) ar = [] a = [(0) for i in range(0, n)] for i in range(0, n): ar.append(input()) s = 0 for i in range(0, n): a[i] = float(ar[i]) // 1 s = s + a[i] i = 0 if s < 0: while s != 0: if float(ar[i]) != float(ar[i]) // 1: a[i] += 1 s += 1 i += 1 for i in range(0, n): a[i] = int(a[i]) print(a[i])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER WHILE VAR NUMBER IF FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR
Vus the Cossack has $n$ real numbers $a_i$. It is known that the sum of all numbers is equal to $0$. He wants to choose a sequence $b$ the size of which is $n$ such that the sum of all numbers is $0$ and each $b_i$ is either $\lfloor a_i \rfloor$ or $\lceil a_i \rceil$. In other words, $b_i$ equals $a_i$ rounded up or down. It is not necessary to round to the nearest integer. For example, if $a = [4.58413, 1.22491, -2.10517, -3.70387]$, then $b$ can be equal, for example, to $[4, 2, -2, -4]$. Note that if $a_i$ is an integer, then there is no difference between $\lfloor a_i \rfloor$ and $\lceil a_i \rceil$, $b_i$ will always be equal to $a_i$. Help Vus the Cossack find such sequence! -----Input----- The first line contains one integer $n$ ($1 \leq n \leq 10^5$) — the number of numbers. Each of the next $n$ lines contains one real number $a_i$ ($|a_i| < 10^5$). It is guaranteed that each $a_i$ has exactly $5$ digits after the decimal point. It is guaranteed that the sum of all the numbers is equal to $0$. -----Output----- In each of the next $n$ lines, print one integer $b_i$. For each $i$, $|a_i-b_i|<1$ must be met. If there are multiple answers, print any. -----Examples----- Input 4 4.58413 1.22491 -2.10517 -3.70387 Output 4 2 -2 -4 Input 5 -6.32509 3.30066 -0.93878 2.00000 1.96321 Output -6 3 -1 2 2 -----Note----- The first example is explained in the legend. In the second example, we can round the first and fifth numbers up, and the second and third numbers down. We can round the fourth number neither up, nor down.
a = int(input()) ans = [] aller = [(0) for i in range(a)] for i in range(a): s = input() if s[0] == "-": s = s[1:] t = s.find(".") q = int(s[0:t]) m = s[t + 1 :] ans.append(-q) if len(m) == m.count("0"): aller[i] = 0 continue aller[i] = 1 else: t = s.find(".") q = int(s[0:t]) ans.append(q) m = s[t + 1 :] if len(m) == m.count("0"): aller[i] = 0 continue aller[i] = -1 alpha = sum(ans) for i in range(len(ans)): if alpha == 0: continue if aller[i] == 0: continue if aller[i] == 1 and alpha > 0: ans[i] -= 1 alpha -= 1 continue if aller[i] == -1 and alpha < 0: ans[i] += 1 alpha += 1 continue for i in range(len(ans)): print(ans[i])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR IF VAR NUMBER STRING ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR STRING ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR STRING ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER IF VAR VAR NUMBER IF VAR VAR NUMBER VAR NUMBER VAR VAR NUMBER VAR NUMBER IF VAR VAR NUMBER VAR NUMBER VAR VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
Vus the Cossack has $n$ real numbers $a_i$. It is known that the sum of all numbers is equal to $0$. He wants to choose a sequence $b$ the size of which is $n$ such that the sum of all numbers is $0$ and each $b_i$ is either $\lfloor a_i \rfloor$ or $\lceil a_i \rceil$. In other words, $b_i$ equals $a_i$ rounded up or down. It is not necessary to round to the nearest integer. For example, if $a = [4.58413, 1.22491, -2.10517, -3.70387]$, then $b$ can be equal, for example, to $[4, 2, -2, -4]$. Note that if $a_i$ is an integer, then there is no difference between $\lfloor a_i \rfloor$ and $\lceil a_i \rceil$, $b_i$ will always be equal to $a_i$. Help Vus the Cossack find such sequence! -----Input----- The first line contains one integer $n$ ($1 \leq n \leq 10^5$) — the number of numbers. Each of the next $n$ lines contains one real number $a_i$ ($|a_i| < 10^5$). It is guaranteed that each $a_i$ has exactly $5$ digits after the decimal point. It is guaranteed that the sum of all the numbers is equal to $0$. -----Output----- In each of the next $n$ lines, print one integer $b_i$. For each $i$, $|a_i-b_i|<1$ must be met. If there are multiple answers, print any. -----Examples----- Input 4 4.58413 1.22491 -2.10517 -3.70387 Output 4 2 -2 -4 Input 5 -6.32509 3.30066 -0.93878 2.00000 1.96321 Output -6 3 -1 2 2 -----Note----- The first example is explained in the legend. In the second example, we can round the first and fifth numbers up, and the second and third numbers down. We can round the fourth number neither up, nor down.
pos = [0] * (10**5 + 1) neg = [0] * (10**5 + 1) positive = [] negitive = [] n = int(input()) for i in range(n): a = float(input()) if a >= 0: positive.append([int(a), i]) if a != int(a): pos[len(positive) - 1] = 1 if a < 0: negitive.append([int(a), i]) if a != int(a): neg[len(negitive) - 1] = 1 a, b = 0, 0 for i in range(len(positive)): a += positive[i][0] for i in range(len(negitive)): b += negitive[i][0] it = 0 while a < abs(b): if pos[it]: positive[it][0] += 1 a += 1 it += 1 it = 0 while abs(b) < a: if neg[it]: negitive[it][0] -= 1 b -= 1 it += 1 stock = [] for i in range(len(negitive)): stock.append(negitive[i]) for i in range(len(positive)): stock.append(positive[i]) stock.sort(key=lambda x: x[1]) for i in range(n): print(stock[i][0])
ASSIGN VAR BIN_OP LIST NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR LIST FUNC_CALL VAR VAR VAR IF VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR LIST FUNC_CALL VAR VAR VAR IF VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR NUMBER NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR NUMBER NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER
Vus the Cossack has $n$ real numbers $a_i$. It is known that the sum of all numbers is equal to $0$. He wants to choose a sequence $b$ the size of which is $n$ such that the sum of all numbers is $0$ and each $b_i$ is either $\lfloor a_i \rfloor$ or $\lceil a_i \rceil$. In other words, $b_i$ equals $a_i$ rounded up or down. It is not necessary to round to the nearest integer. For example, if $a = [4.58413, 1.22491, -2.10517, -3.70387]$, then $b$ can be equal, for example, to $[4, 2, -2, -4]$. Note that if $a_i$ is an integer, then there is no difference between $\lfloor a_i \rfloor$ and $\lceil a_i \rceil$, $b_i$ will always be equal to $a_i$. Help Vus the Cossack find such sequence! -----Input----- The first line contains one integer $n$ ($1 \leq n \leq 10^5$) — the number of numbers. Each of the next $n$ lines contains one real number $a_i$ ($|a_i| < 10^5$). It is guaranteed that each $a_i$ has exactly $5$ digits after the decimal point. It is guaranteed that the sum of all the numbers is equal to $0$. -----Output----- In each of the next $n$ lines, print one integer $b_i$. For each $i$, $|a_i-b_i|<1$ must be met. If there are multiple answers, print any. -----Examples----- Input 4 4.58413 1.22491 -2.10517 -3.70387 Output 4 2 -2 -4 Input 5 -6.32509 3.30066 -0.93878 2.00000 1.96321 Output -6 3 -1 2 2 -----Note----- The first example is explained in the legend. In the second example, we can round the first and fifth numbers up, and the second and third numbers down. We can round the fourth number neither up, nor down.
from sys import stdin input = stdin.readline n = int(input()) a = [] for i in range(n): b, c = map(str, input().split(".")) k = int(b) if c == "0" * 5 + "\n": a.append([k, k]) elif k > 0: a.append([k, k + 1]) elif k < 0: a.append([k - 1, k]) elif b[0] == "-": a.append([-1, 0]) else: a.append([0, 1]) ba = 0 for i in a: ba += i[1] ans = [] for i in a: if ba > 0 and i[0] != i[1]: ba -= 1 ans.append(i[0]) else: ans.append(i[1]) for i in ans: print(i)
ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR IF VAR BIN_OP BIN_OP STRING NUMBER STRING EXPR FUNC_CALL VAR LIST VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR LIST VAR BIN_OP VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR LIST BIN_OP VAR NUMBER VAR IF VAR NUMBER STRING EXPR FUNC_CALL VAR LIST NUMBER NUMBER EXPR FUNC_CALL VAR LIST NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR VAR NUMBER ASSIGN VAR LIST FOR VAR VAR IF VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR
Vus the Cossack has $n$ real numbers $a_i$. It is known that the sum of all numbers is equal to $0$. He wants to choose a sequence $b$ the size of which is $n$ such that the sum of all numbers is $0$ and each $b_i$ is either $\lfloor a_i \rfloor$ or $\lceil a_i \rceil$. In other words, $b_i$ equals $a_i$ rounded up or down. It is not necessary to round to the nearest integer. For example, if $a = [4.58413, 1.22491, -2.10517, -3.70387]$, then $b$ can be equal, for example, to $[4, 2, -2, -4]$. Note that if $a_i$ is an integer, then there is no difference between $\lfloor a_i \rfloor$ and $\lceil a_i \rceil$, $b_i$ will always be equal to $a_i$. Help Vus the Cossack find such sequence! -----Input----- The first line contains one integer $n$ ($1 \leq n \leq 10^5$) — the number of numbers. Each of the next $n$ lines contains one real number $a_i$ ($|a_i| < 10^5$). It is guaranteed that each $a_i$ has exactly $5$ digits after the decimal point. It is guaranteed that the sum of all the numbers is equal to $0$. -----Output----- In each of the next $n$ lines, print one integer $b_i$. For each $i$, $|a_i-b_i|<1$ must be met. If there are multiple answers, print any. -----Examples----- Input 4 4.58413 1.22491 -2.10517 -3.70387 Output 4 2 -2 -4 Input 5 -6.32509 3.30066 -0.93878 2.00000 1.96321 Output -6 3 -1 2 2 -----Note----- The first example is explained in the legend. In the second example, we can round the first and fifth numbers up, and the second and third numbers down. We can round the fourth number neither up, nor down.
n = int(input()) i = 0 b = [] c = [] res = 0 while i < n: s = input() z = s.find(".") if z == -1 or s[z : z + 6] == ".00000": r = float(s) r = int(r) c.append(0) else: r = int(s[0:z]) if s[0:1] == "-": c.append(-1) else: c.append(1) b.append(r) res = res + r i = i + 1 i = 0 while res > 0: while c[i] != -1: i = i + 1 b[i] = b[i] - 1 i = i + 1 res = res - 1 i = 0 while res < 0: while c[i] != 1: i = i + 1 b[i] = b[i] + 1 i = i + 1 res = res + 1 i = 0 while i < n: print(b[i]) i = i + 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING IF VAR NUMBER VAR VAR BIN_OP VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR IF VAR NUMBER NUMBER STRING EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER WHILE VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER WHILE VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER
Vus the Cossack has $n$ real numbers $a_i$. It is known that the sum of all numbers is equal to $0$. He wants to choose a sequence $b$ the size of which is $n$ such that the sum of all numbers is $0$ and each $b_i$ is either $\lfloor a_i \rfloor$ or $\lceil a_i \rceil$. In other words, $b_i$ equals $a_i$ rounded up or down. It is not necessary to round to the nearest integer. For example, if $a = [4.58413, 1.22491, -2.10517, -3.70387]$, then $b$ can be equal, for example, to $[4, 2, -2, -4]$. Note that if $a_i$ is an integer, then there is no difference between $\lfloor a_i \rfloor$ and $\lceil a_i \rceil$, $b_i$ will always be equal to $a_i$. Help Vus the Cossack find such sequence! -----Input----- The first line contains one integer $n$ ($1 \leq n \leq 10^5$) — the number of numbers. Each of the next $n$ lines contains one real number $a_i$ ($|a_i| < 10^5$). It is guaranteed that each $a_i$ has exactly $5$ digits after the decimal point. It is guaranteed that the sum of all the numbers is equal to $0$. -----Output----- In each of the next $n$ lines, print one integer $b_i$. For each $i$, $|a_i-b_i|<1$ must be met. If there are multiple answers, print any. -----Examples----- Input 4 4.58413 1.22491 -2.10517 -3.70387 Output 4 2 -2 -4 Input 5 -6.32509 3.30066 -0.93878 2.00000 1.96321 Output -6 3 -1 2 2 -----Note----- The first example is explained in the legend. In the second example, we can round the first and fifth numbers up, and the second and third numbers down. We can round the fourth number neither up, nor down.
from sys import stdin, stdout n = int(input()) negitives = [] positives = [] for i in range(2): negitives.append([]) positives.append([]) sums = 0 answer = [0] * n for i in range(n): x = [float(x) for x in input().split()][0] if x < 0: if abs(int(x) - x) >= 10**-6: negitives[1].append((i, x)) sums += int(x) answer[i] = int(x) else: negitives[0].append((i, x)) sums += int(x) answer[i] = int(x) if x > 0: if abs(int(x) - x) >= 10**-6: positives[1].append((i, x)) sums += int(x) answer[i] = int(x) else: positives[0].append((i, x)) sums += int(x) answer[i] = int(x) if sums > 0: for i in range(sums): answer[negitives[1][i][0]] -= 1 elif sums < 0: for i in range(abs(sums)): answer[positives[1][i][0]] += 1 for i in range(n): print(answer[i])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR LIST EXPR FUNC_CALL VAR LIST ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR NUMBER IF VAR NUMBER IF FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR BIN_OP NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER IF FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR BIN_OP NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER NUMBER IF VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
Vus the Cossack has $n$ real numbers $a_i$. It is known that the sum of all numbers is equal to $0$. He wants to choose a sequence $b$ the size of which is $n$ such that the sum of all numbers is $0$ and each $b_i$ is either $\lfloor a_i \rfloor$ or $\lceil a_i \rceil$. In other words, $b_i$ equals $a_i$ rounded up or down. It is not necessary to round to the nearest integer. For example, if $a = [4.58413, 1.22491, -2.10517, -3.70387]$, then $b$ can be equal, for example, to $[4, 2, -2, -4]$. Note that if $a_i$ is an integer, then there is no difference between $\lfloor a_i \rfloor$ and $\lceil a_i \rceil$, $b_i$ will always be equal to $a_i$. Help Vus the Cossack find such sequence! -----Input----- The first line contains one integer $n$ ($1 \leq n \leq 10^5$) — the number of numbers. Each of the next $n$ lines contains one real number $a_i$ ($|a_i| < 10^5$). It is guaranteed that each $a_i$ has exactly $5$ digits after the decimal point. It is guaranteed that the sum of all the numbers is equal to $0$. -----Output----- In each of the next $n$ lines, print one integer $b_i$. For each $i$, $|a_i-b_i|<1$ must be met. If there are multiple answers, print any. -----Examples----- Input 4 4.58413 1.22491 -2.10517 -3.70387 Output 4 2 -2 -4 Input 5 -6.32509 3.30066 -0.93878 2.00000 1.96321 Output -6 3 -1 2 2 -----Note----- The first example is explained in the legend. In the second example, we can round the first and fifth numbers up, and the second and third numbers down. We can round the fourth number neither up, nor down.
n = int(input()) a = [(0) for i in range(n)] _sum = 0 for i in range(n): num = float(input()) a[i] = num _sum += int(num) i = 0 while _sum > 0 and i < n: if abs(a[i] - int(a[i])) > 1e-05 and a[i] < 0: a[i] -= 1 _sum -= 1 i += 1 i = 0 while _sum < 0 and i < n: if abs(a[i] - int(a[i])) > 1e-05 and a[i] > 0: a[i] += 1 _sum += 1 i += 1 for i in range(n): print(int(a[i]))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR NUMBER VAR VAR IF FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER VAR VAR IF FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Vus the Cossack has $n$ real numbers $a_i$. It is known that the sum of all numbers is equal to $0$. He wants to choose a sequence $b$ the size of which is $n$ such that the sum of all numbers is $0$ and each $b_i$ is either $\lfloor a_i \rfloor$ or $\lceil a_i \rceil$. In other words, $b_i$ equals $a_i$ rounded up or down. It is not necessary to round to the nearest integer. For example, if $a = [4.58413, 1.22491, -2.10517, -3.70387]$, then $b$ can be equal, for example, to $[4, 2, -2, -4]$. Note that if $a_i$ is an integer, then there is no difference between $\lfloor a_i \rfloor$ and $\lceil a_i \rceil$, $b_i$ will always be equal to $a_i$. Help Vus the Cossack find such sequence! -----Input----- The first line contains one integer $n$ ($1 \leq n \leq 10^5$) — the number of numbers. Each of the next $n$ lines contains one real number $a_i$ ($|a_i| < 10^5$). It is guaranteed that each $a_i$ has exactly $5$ digits after the decimal point. It is guaranteed that the sum of all the numbers is equal to $0$. -----Output----- In each of the next $n$ lines, print one integer $b_i$. For each $i$, $|a_i-b_i|<1$ must be met. If there are multiple answers, print any. -----Examples----- Input 4 4.58413 1.22491 -2.10517 -3.70387 Output 4 2 -2 -4 Input 5 -6.32509 3.30066 -0.93878 2.00000 1.96321 Output -6 3 -1 2 2 -----Note----- The first example is explained in the legend. In the second example, we can round the first and fifth numbers up, and the second and third numbers down. We can round the fourth number neither up, nor down.
n = int(input()) a = [] d = 0 p = [] q = [] for i in range(n): s = float(input()) if s < 0 and s % 1 != 0: k = int(s // 1) + 1 a.append(k) d += k p.append(i) elif s > 0 and s % 1 != 0: k = int(s // 1) a.append(k) d += k q.append(i) else: k = int(s // 1) a.append(k) d += k if d > 0: i = 0 while d > 0: a[p[i]] -= 1 i += 1 d -= 1 elif d < 0: i = 0 while d < 0: a[q[i]] += 1 d += 1 i += 1 print(*a, sep="\n")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF VAR NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR IF VAR NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR STRING
Vus the Cossack has $n$ real numbers $a_i$. It is known that the sum of all numbers is equal to $0$. He wants to choose a sequence $b$ the size of which is $n$ such that the sum of all numbers is $0$ and each $b_i$ is either $\lfloor a_i \rfloor$ or $\lceil a_i \rceil$. In other words, $b_i$ equals $a_i$ rounded up or down. It is not necessary to round to the nearest integer. For example, if $a = [4.58413, 1.22491, -2.10517, -3.70387]$, then $b$ can be equal, for example, to $[4, 2, -2, -4]$. Note that if $a_i$ is an integer, then there is no difference between $\lfloor a_i \rfloor$ and $\lceil a_i \rceil$, $b_i$ will always be equal to $a_i$. Help Vus the Cossack find such sequence! -----Input----- The first line contains one integer $n$ ($1 \leq n \leq 10^5$) — the number of numbers. Each of the next $n$ lines contains one real number $a_i$ ($|a_i| < 10^5$). It is guaranteed that each $a_i$ has exactly $5$ digits after the decimal point. It is guaranteed that the sum of all the numbers is equal to $0$. -----Output----- In each of the next $n$ lines, print one integer $b_i$. For each $i$, $|a_i-b_i|<1$ must be met. If there are multiple answers, print any. -----Examples----- Input 4 4.58413 1.22491 -2.10517 -3.70387 Output 4 2 -2 -4 Input 5 -6.32509 3.30066 -0.93878 2.00000 1.96321 Output -6 3 -1 2 2 -----Note----- The first example is explained in the legend. In the second example, we can round the first and fifth numbers up, and the second and third numbers down. We can round the fourth number neither up, nor down.
a = [] n = int(input()) for _ in range(n): a.append(float(input())) ns = 0 ps = 0 for i in range(n): if a[i] < 0: ns += int(a[i]) else: ps += int(a[i]) cha = ps + ns if cha == 0: for i in range(n): print(int(a[i])) elif cha < 0: i = 0 while cha != 0 and i < n: if a[i] - int(a[i]) != 0 and a[i] > 0: a[i] = int(a[i]) + 1 cha += 1 i += 1 for i in range(n): print(int(a[i])) else: i = 0 while cha != 0 and i < n: if a[i] - int(a[i]) != 0 and a[i] < 0: a[i] = int(a[i]) - 1 cha -= 1 i += 1 for i in range(n): print(int(a[i]))
ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER VAR VAR IF BIN_OP VAR VAR FUNC_CALL VAR VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER WHILE VAR NUMBER VAR VAR IF BIN_OP VAR VAR FUNC_CALL VAR VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Vus the Cossack has $n$ real numbers $a_i$. It is known that the sum of all numbers is equal to $0$. He wants to choose a sequence $b$ the size of which is $n$ such that the sum of all numbers is $0$ and each $b_i$ is either $\lfloor a_i \rfloor$ or $\lceil a_i \rceil$. In other words, $b_i$ equals $a_i$ rounded up or down. It is not necessary to round to the nearest integer. For example, if $a = [4.58413, 1.22491, -2.10517, -3.70387]$, then $b$ can be equal, for example, to $[4, 2, -2, -4]$. Note that if $a_i$ is an integer, then there is no difference between $\lfloor a_i \rfloor$ and $\lceil a_i \rceil$, $b_i$ will always be equal to $a_i$. Help Vus the Cossack find such sequence! -----Input----- The first line contains one integer $n$ ($1 \leq n \leq 10^5$) — the number of numbers. Each of the next $n$ lines contains one real number $a_i$ ($|a_i| < 10^5$). It is guaranteed that each $a_i$ has exactly $5$ digits after the decimal point. It is guaranteed that the sum of all the numbers is equal to $0$. -----Output----- In each of the next $n$ lines, print one integer $b_i$. For each $i$, $|a_i-b_i|<1$ must be met. If there are multiple answers, print any. -----Examples----- Input 4 4.58413 1.22491 -2.10517 -3.70387 Output 4 2 -2 -4 Input 5 -6.32509 3.30066 -0.93878 2.00000 1.96321 Output -6 3 -1 2 2 -----Note----- The first example is explained in the legend. In the second example, we can round the first and fifth numbers up, and the second and third numbers down. We can round the fourth number neither up, nor down.
n = int(input()) arr = [] brr = [] for i in range(n): x = float(input()) if x < 0 and int(x) != x: arr.append(int(x) - 1) brr.append(x) elif x > 0 and int(x) != x: arr.append(int(x) + 1) brr.append(x) else: arr.append(int(x)) brr.append(x) s = sum(arr) if s == 0: print(*arr, sep="\n") elif s > 0: i = 0 while s != 0: if arr[i] > 0 and abs(brr[i] - arr[i]) != 0: arr[i] -= 1 s = sum(arr) i += 1 print(*arr, sep="\n") else: i = 0 while s != 0: if arr[i] < 0 and abs(brr[i] - arr[i]) != 0: arr[i] += 1 s = sum(arr) i += 1 print(*arr, sep="\n")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF VAR NUMBER FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR NUMBER FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR STRING IF VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER IF VAR VAR NUMBER FUNC_CALL VAR BIN_OP VAR VAR VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR STRING ASSIGN VAR NUMBER WHILE VAR NUMBER IF VAR VAR NUMBER FUNC_CALL VAR BIN_OP VAR VAR VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR STRING
Vus the Cossack has $n$ real numbers $a_i$. It is known that the sum of all numbers is equal to $0$. He wants to choose a sequence $b$ the size of which is $n$ such that the sum of all numbers is $0$ and each $b_i$ is either $\lfloor a_i \rfloor$ or $\lceil a_i \rceil$. In other words, $b_i$ equals $a_i$ rounded up or down. It is not necessary to round to the nearest integer. For example, if $a = [4.58413, 1.22491, -2.10517, -3.70387]$, then $b$ can be equal, for example, to $[4, 2, -2, -4]$. Note that if $a_i$ is an integer, then there is no difference between $\lfloor a_i \rfloor$ and $\lceil a_i \rceil$, $b_i$ will always be equal to $a_i$. Help Vus the Cossack find such sequence! -----Input----- The first line contains one integer $n$ ($1 \leq n \leq 10^5$) — the number of numbers. Each of the next $n$ lines contains one real number $a_i$ ($|a_i| < 10^5$). It is guaranteed that each $a_i$ has exactly $5$ digits after the decimal point. It is guaranteed that the sum of all the numbers is equal to $0$. -----Output----- In each of the next $n$ lines, print one integer $b_i$. For each $i$, $|a_i-b_i|<1$ must be met. If there are multiple answers, print any. -----Examples----- Input 4 4.58413 1.22491 -2.10517 -3.70387 Output 4 2 -2 -4 Input 5 -6.32509 3.30066 -0.93878 2.00000 1.96321 Output -6 3 -1 2 2 -----Note----- The first example is explained in the legend. In the second example, we can round the first and fifth numbers up, and the second and third numbers down. We can round the fourth number neither up, nor down.
n = int(input()) d = [] p = 0 m = 0 for i in range(n): s = float(input()) d.append(s) if s > 0: p = p + int(s) else: m = m + int(s) a = p + m s = d[::1] s.sort() if a == 0: for i in d: print(int(i)) elif a > 0: for i in d: if i >= 0: print(int(i)) elif i == int(i): print(int(i)) elif a > 0: a = a - 1 print(int(i) - 1) else: print(int(i)) else: for i in d: if i < 0: print(int(i)) elif i == int(i): print(int(i)) elif a < 0: a = a + 1 print(int(i) + 1) else: print(int(i))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR IF VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER FOR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
Vus the Cossack has $n$ real numbers $a_i$. It is known that the sum of all numbers is equal to $0$. He wants to choose a sequence $b$ the size of which is $n$ such that the sum of all numbers is $0$ and each $b_i$ is either $\lfloor a_i \rfloor$ or $\lceil a_i \rceil$. In other words, $b_i$ equals $a_i$ rounded up or down. It is not necessary to round to the nearest integer. For example, if $a = [4.58413, 1.22491, -2.10517, -3.70387]$, then $b$ can be equal, for example, to $[4, 2, -2, -4]$. Note that if $a_i$ is an integer, then there is no difference between $\lfloor a_i \rfloor$ and $\lceil a_i \rceil$, $b_i$ will always be equal to $a_i$. Help Vus the Cossack find such sequence! -----Input----- The first line contains one integer $n$ ($1 \leq n \leq 10^5$) — the number of numbers. Each of the next $n$ lines contains one real number $a_i$ ($|a_i| < 10^5$). It is guaranteed that each $a_i$ has exactly $5$ digits after the decimal point. It is guaranteed that the sum of all the numbers is equal to $0$. -----Output----- In each of the next $n$ lines, print one integer $b_i$. For each $i$, $|a_i-b_i|<1$ must be met. If there are multiple answers, print any. -----Examples----- Input 4 4.58413 1.22491 -2.10517 -3.70387 Output 4 2 -2 -4 Input 5 -6.32509 3.30066 -0.93878 2.00000 1.96321 Output -6 3 -1 2 2 -----Note----- The first example is explained in the legend. In the second example, we can round the first and fifth numbers up, and the second and third numbers down. We can round the fourth number neither up, nor down.
n = int(input()) dig = [] dec = 0 z = 0 for _ in range(n): x = float(input()) dec += round(x - int(x), 5) dig.append([int(x), round(x - int(x), 5)]) c = round(dec) f = -1 if c > 0 else 1 for i in range(n): if c * (dig[i][0] + dig[i][1]) > 0 and c != 0 and dig[i][1] != 0: dig[i][0] += -f c += f print(*[dig[i][0] for i in range(n)])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR LIST FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER NUMBER VAR NUMBER VAR VAR NUMBER NUMBER VAR VAR NUMBER VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER VAR FUNC_CALL VAR VAR
Vus the Cossack has $n$ real numbers $a_i$. It is known that the sum of all numbers is equal to $0$. He wants to choose a sequence $b$ the size of which is $n$ such that the sum of all numbers is $0$ and each $b_i$ is either $\lfloor a_i \rfloor$ or $\lceil a_i \rceil$. In other words, $b_i$ equals $a_i$ rounded up or down. It is not necessary to round to the nearest integer. For example, if $a = [4.58413, 1.22491, -2.10517, -3.70387]$, then $b$ can be equal, for example, to $[4, 2, -2, -4]$. Note that if $a_i$ is an integer, then there is no difference between $\lfloor a_i \rfloor$ and $\lceil a_i \rceil$, $b_i$ will always be equal to $a_i$. Help Vus the Cossack find such sequence! -----Input----- The first line contains one integer $n$ ($1 \leq n \leq 10^5$) — the number of numbers. Each of the next $n$ lines contains one real number $a_i$ ($|a_i| < 10^5$). It is guaranteed that each $a_i$ has exactly $5$ digits after the decimal point. It is guaranteed that the sum of all the numbers is equal to $0$. -----Output----- In each of the next $n$ lines, print one integer $b_i$. For each $i$, $|a_i-b_i|<1$ must be met. If there are multiple answers, print any. -----Examples----- Input 4 4.58413 1.22491 -2.10517 -3.70387 Output 4 2 -2 -4 Input 5 -6.32509 3.30066 -0.93878 2.00000 1.96321 Output -6 3 -1 2 2 -----Note----- The first example is explained in the legend. In the second example, we can round the first and fifth numbers up, and the second and third numbers down. We can round the fourth number neither up, nor down.
from sys import stdin def solve(): N = int(stdin.readline()) A = [] neg_0 = set() pos_0 = set() ignore = set() for i in range(N): x = float(stdin.readline()) if x == int(x): ignore.add(i) elif int(x) == 0: if x >= 0: pos_0.add(i) else: neg_0.add(i) A.append(int(x)) S = sum(A) if S > 0: i = 0 while i < N and S > 0: if i in ignore: i += 1 continue if A[i] == 0: if i in neg_0: A[i] -= 1 S -= 1 i += 1 continue if A[i] > 0: i += 1 continue A[i] -= 1 i += 1 S -= 1 elif S < 0: i = 0 while i < N and S < 0: if i in ignore: i += 1 continue if A[i] == 0: if i in pos_0: A[i] += 1 S += 1 i += 1 continue if A[i] < 0: i += 1 continue A[i] += 1 i += 1 S += 1 print("\n".join(map(str, A))) solve()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER IF VAR VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR NUMBER VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER IF VAR VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR NUMBER VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR
Vus the Cossack has $n$ real numbers $a_i$. It is known that the sum of all numbers is equal to $0$. He wants to choose a sequence $b$ the size of which is $n$ such that the sum of all numbers is $0$ and each $b_i$ is either $\lfloor a_i \rfloor$ or $\lceil a_i \rceil$. In other words, $b_i$ equals $a_i$ rounded up or down. It is not necessary to round to the nearest integer. For example, if $a = [4.58413, 1.22491, -2.10517, -3.70387]$, then $b$ can be equal, for example, to $[4, 2, -2, -4]$. Note that if $a_i$ is an integer, then there is no difference between $\lfloor a_i \rfloor$ and $\lceil a_i \rceil$, $b_i$ will always be equal to $a_i$. Help Vus the Cossack find such sequence! -----Input----- The first line contains one integer $n$ ($1 \leq n \leq 10^5$) — the number of numbers. Each of the next $n$ lines contains one real number $a_i$ ($|a_i| < 10^5$). It is guaranteed that each $a_i$ has exactly $5$ digits after the decimal point. It is guaranteed that the sum of all the numbers is equal to $0$. -----Output----- In each of the next $n$ lines, print one integer $b_i$. For each $i$, $|a_i-b_i|<1$ must be met. If there are multiple answers, print any. -----Examples----- Input 4 4.58413 1.22491 -2.10517 -3.70387 Output 4 2 -2 -4 Input 5 -6.32509 3.30066 -0.93878 2.00000 1.96321 Output -6 3 -1 2 2 -----Note----- The first example is explained in the legend. In the second example, we can round the first and fifth numbers up, and the second and third numbers down. We can round the fourth number neither up, nor down.
n = int(input()) a = [float(input()) for i in range(n)] b = a.copy() s = 0 for i in range(0, n): b[i] = int(b[i]) s = s + b[i] if s != 0: for i in range(0, n): if s == 0: break if b[i] != a[i]: if s < 0 and b[i] >= 0 and a[i] >= 0: b[i] = b[i] + 1 s = s + 1 elif s > 0 and b[i] < 0 and a[i] < 0: b[i] = b[i] - 1 s = s - 1 for i in range(0, n): print(b[i])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR IF VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR NUMBER IF VAR VAR VAR VAR IF VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR VAR VAR
Vus the Cossack has $n$ real numbers $a_i$. It is known that the sum of all numbers is equal to $0$. He wants to choose a sequence $b$ the size of which is $n$ such that the sum of all numbers is $0$ and each $b_i$ is either $\lfloor a_i \rfloor$ or $\lceil a_i \rceil$. In other words, $b_i$ equals $a_i$ rounded up or down. It is not necessary to round to the nearest integer. For example, if $a = [4.58413, 1.22491, -2.10517, -3.70387]$, then $b$ can be equal, for example, to $[4, 2, -2, -4]$. Note that if $a_i$ is an integer, then there is no difference between $\lfloor a_i \rfloor$ and $\lceil a_i \rceil$, $b_i$ will always be equal to $a_i$. Help Vus the Cossack find such sequence! -----Input----- The first line contains one integer $n$ ($1 \leq n \leq 10^5$) — the number of numbers. Each of the next $n$ lines contains one real number $a_i$ ($|a_i| < 10^5$). It is guaranteed that each $a_i$ has exactly $5$ digits after the decimal point. It is guaranteed that the sum of all the numbers is equal to $0$. -----Output----- In each of the next $n$ lines, print one integer $b_i$. For each $i$, $|a_i-b_i|<1$ must be met. If there are multiple answers, print any. -----Examples----- Input 4 4.58413 1.22491 -2.10517 -3.70387 Output 4 2 -2 -4 Input 5 -6.32509 3.30066 -0.93878 2.00000 1.96321 Output -6 3 -1 2 2 -----Note----- The first example is explained in the legend. In the second example, we can round the first and fifth numbers up, and the second and third numbers down. We can round the fourth number neither up, nor down.
numbers = [] d = [] s = 0 for i in range(int(input())): n = input() if n[len(n) - 5 :] == "00000": num = int(n[: len(n) - 6]) numbers.append(num) s += num d.append(0) elif n[0] == "-": num = int(n[: len(n) - 6]) - 1 numbers.append(num) s += num d.append(-1) else: num = int(n[: len(n) - 6]) numbers.append(num) s += num d.append(1) if s == 0: for i in numbers: print(i) else: for i in range(len(numbers)): if s < 0: if d[i] != 0: s += 1 print(numbers[i] + 1) else: print(numbers[i]) else: print(numbers[i])
ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER STRING ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER IF VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR
Vus the Cossack has $n$ real numbers $a_i$. It is known that the sum of all numbers is equal to $0$. He wants to choose a sequence $b$ the size of which is $n$ such that the sum of all numbers is $0$ and each $b_i$ is either $\lfloor a_i \rfloor$ or $\lceil a_i \rceil$. In other words, $b_i$ equals $a_i$ rounded up or down. It is not necessary to round to the nearest integer. For example, if $a = [4.58413, 1.22491, -2.10517, -3.70387]$, then $b$ can be equal, for example, to $[4, 2, -2, -4]$. Note that if $a_i$ is an integer, then there is no difference between $\lfloor a_i \rfloor$ and $\lceil a_i \rceil$, $b_i$ will always be equal to $a_i$. Help Vus the Cossack find such sequence! -----Input----- The first line contains one integer $n$ ($1 \leq n \leq 10^5$) — the number of numbers. Each of the next $n$ lines contains one real number $a_i$ ($|a_i| < 10^5$). It is guaranteed that each $a_i$ has exactly $5$ digits after the decimal point. It is guaranteed that the sum of all the numbers is equal to $0$. -----Output----- In each of the next $n$ lines, print one integer $b_i$. For each $i$, $|a_i-b_i|<1$ must be met. If there are multiple answers, print any. -----Examples----- Input 4 4.58413 1.22491 -2.10517 -3.70387 Output 4 2 -2 -4 Input 5 -6.32509 3.30066 -0.93878 2.00000 1.96321 Output -6 3 -1 2 2 -----Note----- The first example is explained in the legend. In the second example, we can round the first and fifth numbers up, and the second and third numbers down. We can round the fourth number neither up, nor down.
n = int(input()) v, a = [0] * n, [0] * n for i in range(n): v[i] = float(input()) if abs(v[i]) - int(abs(v[i])) > 0.0: a[i] = 1 if v[i] >= 0.0: v[i] = int(v[i]) else: v[i] = int(v[i]) - 1 else: v[i] = int(v[i]) s = sum(v) i = 0 while i < n and s < 0: if a[i]: v[i] += 1 s += 1 i += 1 for i in range(n): print(v[i])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP LIST NUMBER VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR IF BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
Vus the Cossack has $n$ real numbers $a_i$. It is known that the sum of all numbers is equal to $0$. He wants to choose a sequence $b$ the size of which is $n$ such that the sum of all numbers is $0$ and each $b_i$ is either $\lfloor a_i \rfloor$ or $\lceil a_i \rceil$. In other words, $b_i$ equals $a_i$ rounded up or down. It is not necessary to round to the nearest integer. For example, if $a = [4.58413, 1.22491, -2.10517, -3.70387]$, then $b$ can be equal, for example, to $[4, 2, -2, -4]$. Note that if $a_i$ is an integer, then there is no difference between $\lfloor a_i \rfloor$ and $\lceil a_i \rceil$, $b_i$ will always be equal to $a_i$. Help Vus the Cossack find such sequence! -----Input----- The first line contains one integer $n$ ($1 \leq n \leq 10^5$) — the number of numbers. Each of the next $n$ lines contains one real number $a_i$ ($|a_i| < 10^5$). It is guaranteed that each $a_i$ has exactly $5$ digits after the decimal point. It is guaranteed that the sum of all the numbers is equal to $0$. -----Output----- In each of the next $n$ lines, print one integer $b_i$. For each $i$, $|a_i-b_i|<1$ must be met. If there are multiple answers, print any. -----Examples----- Input 4 4.58413 1.22491 -2.10517 -3.70387 Output 4 2 -2 -4 Input 5 -6.32509 3.30066 -0.93878 2.00000 1.96321 Output -6 3 -1 2 2 -----Note----- The first example is explained in the legend. In the second example, we can round the first and fifth numbers up, and the second and third numbers down. We can round the fourth number neither up, nor down.
n = int(input()) arr = [(0) for i in range(n)] flag = [(0) for i in range(n)] for i in range(n): arr[i] = float(input()) if int(arr[i]) == arr[i]: flag[i] = 1 if flag[i] == 0 and arr[i] < 0: arr[i] = int(arr[i]) - 1 else: arr[i] = int(arr[i]) suma = sum(arr) for i in range(n): if suma != 0: if flag[i] == 0: arr[i] += 1 suma += 1 else: break for i in arr: print(i)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR NUMBER IF VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR NUMBER IF VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR
Vus the Cossack has $n$ real numbers $a_i$. It is known that the sum of all numbers is equal to $0$. He wants to choose a sequence $b$ the size of which is $n$ such that the sum of all numbers is $0$ and each $b_i$ is either $\lfloor a_i \rfloor$ or $\lceil a_i \rceil$. In other words, $b_i$ equals $a_i$ rounded up or down. It is not necessary to round to the nearest integer. For example, if $a = [4.58413, 1.22491, -2.10517, -3.70387]$, then $b$ can be equal, for example, to $[4, 2, -2, -4]$. Note that if $a_i$ is an integer, then there is no difference between $\lfloor a_i \rfloor$ and $\lceil a_i \rceil$, $b_i$ will always be equal to $a_i$. Help Vus the Cossack find such sequence! -----Input----- The first line contains one integer $n$ ($1 \leq n \leq 10^5$) — the number of numbers. Each of the next $n$ lines contains one real number $a_i$ ($|a_i| < 10^5$). It is guaranteed that each $a_i$ has exactly $5$ digits after the decimal point. It is guaranteed that the sum of all the numbers is equal to $0$. -----Output----- In each of the next $n$ lines, print one integer $b_i$. For each $i$, $|a_i-b_i|<1$ must be met. If there are multiple answers, print any. -----Examples----- Input 4 4.58413 1.22491 -2.10517 -3.70387 Output 4 2 -2 -4 Input 5 -6.32509 3.30066 -0.93878 2.00000 1.96321 Output -6 3 -1 2 2 -----Note----- The first example is explained in the legend. In the second example, we can round the first and fifth numbers up, and the second and third numbers down. We can round the fourth number neither up, nor down.
n = int(input()) mas = [] checker = [] tmp = "" for i in range(n): num = input() for ind, item in enumerate(num): if item != ".": tmp = tmp + item else: if tmp == "-0": mas.append("-0") else: mas.append(int(tmp)) tmp = "" for j in range(ind + 1, len(num)): if num[j] != "0": checker.append(True) break if j == len(num) - 1 and num[j] == "0": checker.append(False) break summa = 0 for item in mas: if item == "-0": summa += 0 else: summa += item if summa != 0: if summa > 0: for ind, item in enumerate(mas): if checker[ind]: if item == "-0": mas[ind] = -1 summa -= 1 elif item < 0: mas[ind] -= 1 summa -= 1 if summa == 0: break elif summa < 0: for ind, item in enumerate(mas): if checker[ind]: if item == "-0": continue elif item >= 0: mas[ind] += 1 summa += 1 if summa == 0: break for item in mas: if item == "-0": print(0) else: print(item)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FOR VAR VAR FUNC_CALL VAR VAR IF VAR STRING ASSIGN VAR BIN_OP VAR VAR IF VAR STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR STRING FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR STRING EXPR FUNC_CALL VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR STRING EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR STRING VAR NUMBER VAR VAR IF VAR NUMBER IF VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR VAR IF VAR STRING ASSIGN VAR VAR NUMBER VAR NUMBER IF VAR NUMBER VAR VAR NUMBER VAR NUMBER IF VAR NUMBER IF VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR VAR IF VAR STRING IF VAR NUMBER VAR VAR NUMBER VAR NUMBER IF VAR NUMBER FOR VAR VAR IF VAR STRING EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
Vus the Cossack has $n$ real numbers $a_i$. It is known that the sum of all numbers is equal to $0$. He wants to choose a sequence $b$ the size of which is $n$ such that the sum of all numbers is $0$ and each $b_i$ is either $\lfloor a_i \rfloor$ or $\lceil a_i \rceil$. In other words, $b_i$ equals $a_i$ rounded up or down. It is not necessary to round to the nearest integer. For example, if $a = [4.58413, 1.22491, -2.10517, -3.70387]$, then $b$ can be equal, for example, to $[4, 2, -2, -4]$. Note that if $a_i$ is an integer, then there is no difference between $\lfloor a_i \rfloor$ and $\lceil a_i \rceil$, $b_i$ will always be equal to $a_i$. Help Vus the Cossack find such sequence! -----Input----- The first line contains one integer $n$ ($1 \leq n \leq 10^5$) — the number of numbers. Each of the next $n$ lines contains one real number $a_i$ ($|a_i| < 10^5$). It is guaranteed that each $a_i$ has exactly $5$ digits after the decimal point. It is guaranteed that the sum of all the numbers is equal to $0$. -----Output----- In each of the next $n$ lines, print one integer $b_i$. For each $i$, $|a_i-b_i|<1$ must be met. If there are multiple answers, print any. -----Examples----- Input 4 4.58413 1.22491 -2.10517 -3.70387 Output 4 2 -2 -4 Input 5 -6.32509 3.30066 -0.93878 2.00000 1.96321 Output -6 3 -1 2 2 -----Note----- The first example is explained in the legend. In the second example, we can round the first and fifth numbers up, and the second and third numbers down. We can round the fourth number neither up, nor down.
n = int(input()) a = [] b = [] for i in range(0, n): a.append(float(input())) for i in range(0, n): b.append(int(a[i])) if a[i] > 0 and a[i] % 1 != 0: b[i] += 1 s = sum(b) if s > 0: i = 0 while s > 0 and i < n: if a[i] % 1 != 0: b[i] -= 1 s -= 1 i += 1 elif s < 0: i = 0 while s < 0 and i < n: if a[i] % 1 != 0: b[i] -= 1 s -= 1 i += 1 for i in b: print(i)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR IF VAR VAR NUMBER BIN_OP VAR VAR NUMBER NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER VAR VAR IF BIN_OP VAR VAR NUMBER NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER VAR VAR IF BIN_OP VAR VAR NUMBER NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR