description
stringlengths
171
4k
code
stringlengths
94
3.98k
normalized_code
stringlengths
57
4.99k
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) a = sorted(map(int, input().split())) c = 1 i = n // 2 s = a[i] while i < n - 1 and k > 0: t = min(a[i + 1] - s, k // c) s += t k -= t * c c += 1 i += 1 if k > 0: s += k // c print(s)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR WHILE VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR VAR VAR VAR BIN_OP VAR VAR VAR NUMBER VAR NUMBER IF VAR NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = [int(i) for i in input().split()] l = [int(i) for i in input().split()] l.sort() med = l[n // 2] for i in range(n // 2 + 1, n): diff = l[i] - l[i - 1] if diff > 0: if k >= diff * (i - n // 2): med = l[i] k -= diff * (i - n // 2) else: if k >= i - n // 2: med = med + k // (i - n // 2) k -= k // (i - n // 2) * (i - n // 2) break num = n // 2 + 1 if k < num: print(med) else: print(med + k // num)
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR NUMBER IF VAR BIN_OP VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR BIN_OP VAR BIN_OP VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
a, b = map(int, input().split()) l = list(map(int, input().split())) l.sort() index = a // 2 + 1 count = 1 while b > 0: if index == a: l[a // 2] += b // (a // 2 + 1) break diff = l[index] - l[a // 2] if count * diff <= b: b -= count * diff count += 1 index += 1 l[a // 2] += diff else: l[a // 2] += b // count break print(l[a // 2])
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR VAR NUMBER VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) a = [int(x) for x in input().split()] a.sort() mid = (n - 1) // 2 while k > 0: i = mid while i < n and a[i] == a[mid]: i += 1 res = i - mid if res == 0: k -= a[mid + 1] if k >= 0: a[mid] = a[mid + 1] else: a[mid] += k break elif k >= res and i == n: val = k // res a[mid] += val break elif k >= res: val = a[i] - a[mid] mo = k // res if mo <= val: a[mid] += mo break else: for j in range(mid, i): a[j] += val k -= val * res else: break print(a[mid])
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER WHILE VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER VAR VAR BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR IF VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split(" ")) a = list(map(int, input().split(" "))) if n == 1: print(a[0] + k) else: a.sort() x = n // 2 if a[x] + k <= a[x + 1]: print(a[x] + k) else: nextelem = x + 1 countelem = 1 incer = 0 prev = a[x] while nextelem < n: diff = a[nextelem] - prev if k >= countelem * diff: k = k - countelem * diff incer = incer + diff prev = a[nextelem] nextelem = nextelem + 1 countelem = countelem + 1 else: break if k > 0: incer = incer + k // countelem print(a[x] + incer)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR IF VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) a = list(map(int, input().split())) a.sort() mid = int(n / 2) up = mid + 1 while k > 0: if up >= n: k -= n - mid a[mid] += 1 elif a[up] == a[mid]: up += 1 else: k -= up - mid a[mid] += 1 if k == 0: print(a[mid]) else: print(a[mid] - 1)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER IF VAR VAR VAR BIN_OP VAR VAR VAR VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER VAR BIN_OP VAR VAR VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
import sys input = sys.stdin.readline def judge(x): cnt = 0 for i in range(n // 2, n): cnt += max(x - a[i], 0) return cnt <= k def binary_search(): left, right = 1, 10**20 while left <= right: mid = (left + right) // 2 if judge(mid): left = mid + 1 else: right = mid - 1 return right n, k = map(int, input().split()) a = list(map(int, input().split())) a.sort() print(binary_search())
IMPORT ASSIGN VAR VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER RETURN VAR VAR FUNC_DEF ASSIGN VAR VAR NUMBER BIN_OP NUMBER NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) a = list(sorted(map(int, input().split()))) count = a[n // 2] num = 1 for i in range(n // 2 + 1, n): if (a[i] - count) * num <= k: k -= (a[i] - count) * num count = a[i] else: break num += 1 print(count + k // num)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR IF BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) arr = list(map(int, input().split())) if n == 1: print(arr[0] + k) exit(0) arr.sort() i = (n - 1) // 2 m = arr[i] cnt = 1 i += 1 while i < n: nxt = arr[i] if k < (nxt - m) * cnt: print(m + k // cnt) exit(0) k -= (nxt - m) * cnt m = nxt cnt += 1 i += 1 if k >= 0: print(m + k // cnt)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR VAR ASSIGN VAR NUMBER VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR VAR IF VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = [int(x) for x in input().split()] a = sorted([int(x) for x in input().split()]) med = len(a) // 2 look = med extra = 0 idiff = 0 last = a[med] while look < len(a) - 1: look += 1 idiff += 1 diff = a[look] - last last = a[look] chunk = idiff * diff if chunk <= k: k -= chunk extra += diff else: extra += k // idiff k = 0 if k > 0: extra += k // (idiff + 1) print(a[med] + extra)
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR WHILE VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR VAR VAR VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
def int_multiple(): return [int(c) for c in input().split()] def int_single(): return int(input()) def str_multiple(): return [c for c in input().split()] def str_single(): return input() n, k = int_multiple() l = int_multiple() l = sorted(l) mid = int(n / 2) l = l[mid:] acc = [] r = 0 for i in range(len(l)): r += l[i] acc.append(r) ans = 0 for i in reversed(range(len(l))): need = l[i] * (i + 1) hand = acc[i] + k if hand >= need: left = hand - need additional = int(left / (i + 1)) ans = l[i] + additional break print(ans)
FUNC_DEF RETURN FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
def median(l, n, k): l = l[n // 2 :] n = n // 2 + 1 diffs = [] for i in range(n - 1): diffs.append((l[i + 1] - l[i]) * (i + 1)) diff = sum(diffs) if diff <= k: k -= diff last = l[-1] + k // n k %= n return last else: t = 0 val = l[0] while t < n - 1: if diffs[t] <= k: val += diffs[t] // (t + 1) k -= diffs[t] t += 1 else: val += k // (t + 1) break if k == 0: break return val n, k = map(int, input().split()) l = list(map(int, input().split())) l.sort() print(median(l, n, k))
FUNC_DEF ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR VAR RETURN VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER WHILE VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR BIN_OP VAR VAR BIN_OP VAR NUMBER VAR VAR VAR VAR NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER IF VAR NUMBER RETURN VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
attributes = [int(x) for x in input().split()] ints = [int(x) for x in input().split()] ints.sort() length = len(ints) n = len(ints) // 2 - 1 r = n cont = True while cont == True: r += 1 t = ints[r] z = r + 1 while z < length and ints[z] == ints[r]: z += 1 if z != length: if (ints[z] - ints[r]) * (z - n - 1) <= attributes[1]: attributes[1] -= (ints[z] - ints[r]) * (z - n - 1) r = z - 1 else: print(ints[r] + attributes[1] // (z - n - 1)) cont = False else: print(ints[z - 1] + attributes[1] // (z - n - 1)) cont = False
ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR IF BIN_OP BIN_OP VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER VAR NUMBER BIN_OP BIN_OP VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = [int(x) for x in input().split()] a = [int(x) for x in input().split()] a.sort() ind, val = n // 2, 0 ans, ind1 = a[ind], 1 for i in range(ind + 1, n): val = (a[i] - a[i - 1]) * ind1 if k - val >= 0: k -= val ind1 += 1 ans = a[i] else: ans = a[i - 1] + k // ind1 k = 0 break if k != 0: ans += k // ind1 print(ans)
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR IF BIN_OP VAR VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) a = sorted(list(map(int, input().split()))) a = a[len(a) // 2 :] m = 1 while m < len(a) and k - (a[m] - a[0]) * m >= 0: k -= (a[m] - a[0]) * m a[0] = a[m] m += 1 a[0] += k // m print(a[0])
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR VAR NUMBER VAR NUMBER VAR BIN_OP BIN_OP VAR VAR VAR NUMBER VAR ASSIGN VAR NUMBER VAR VAR VAR NUMBER VAR NUMBER BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR NUMBER
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
a, b = map(int, input().split()) z = sorted(map(int, input().split())) def ok(mid): clk = 0 for i in range(a // 2, a): clk += max(0, mid - z[i]) if clk > b: return False return True def bin_s(): lo, hi, ans = 1, 2 * int(1000000000.0), 0 while lo <= hi: mid = (lo + hi) // 2 if ok(mid): ans = mid lo = mid + 1 else: hi = mid - 1 return ans print(bin_s())
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR IF VAR VAR RETURN NUMBER RETURN NUMBER FUNC_DEF ASSIGN VAR VAR VAR NUMBER BIN_OP NUMBER FUNC_CALL VAR NUMBER NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR EXPR FUNC_CALL VAR FUNC_CALL VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) a = list(map(int, input().split())) a.sort() p = [0] * (n // 2) m = n // 2 ans = a[m] s = 0 for i in range(m + 1, n): p[i - m - 1] = a[i] - a[i - 1] s += p[i - m - 1] * (i - m) if k < s: for i in range(m): r = p[i] * (i + 1) if k >= r: k -= r ans += p[i] else: ans += k // (i + 1) break else: k -= s ans = a[-1] ans += k // (m + 1) print(ans)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR IF VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
def mp(): return map(int, input().split()) n, k = mp() a = list(mp()) a.sort() l = 1 r = 10**20 while l + 1 < r: m = (l + r) // 2 s = 0 for i in range(n // 2, n): s += max(0, m - a[i]) if k < s: r = m else: l = m print(l)
FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER WHILE BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
def check(x): suma = 0 for i in range(n // 2, n): suma += x - a[i] if suma > k: return False if suma <= k: return True return False n, k = [int(x) for x in input().split()] a = list(map(int, input().split())) a.sort() l = 1 r = 2000000000 while l != r: mid = (l + r + 1) // 2 if check(mid): l = mid else: r = mid - 1 print(l)
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR VAR VAR IF VAR VAR RETURN NUMBER IF VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) A = sorted([int(x) for x in input().split()]) A += [2 * 10**9 + 1] mid = n // 2 i = mid result = -1 while k > 0: while A[i] == A[i + 1]: i += 1 d = A[i + 1] - A[i] if (i + 1 - mid) * d <= k: k -= (i + 1 - mid) * d i += 1 result = A[i] else: result = A[i] + k // (i + 1 - mid) k = 0 print(result)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR VAR LIST BIN_OP BIN_OP NUMBER BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR NUMBER WHILE VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR IF BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
a, b = map(int, input().split()) c = list(map(int, input().split())) c.sort() m = c[a // 2] n = c[a // 2] + b def check(mid): s = 0 for i in range(a // 2, a): if mid > c[i]: s += mid - c[i] else: break return s while m <= n: mid = (m + n) // 2 if check(mid) <= b: m = mid + 1 else: n = mid - 1 print(m - 1)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR VAR VAR BIN_OP VAR VAR VAR RETURN VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = list(map(int, input().split())) a = list(map(int, input().split())) a.sort() x = len(a) // 2 rem = 1 ans = a[x] while k > 0: if x + rem < len(a): if k >= rem * (a[x + rem] - a[x + rem - 1]): k -= rem * (a[x + rem] - a[x + rem - 1]) ans = a[x + rem] rem += 1 else: ans += k // rem k = 0 else: ans += k // rem k = 0 print(ans)
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR WHILE VAR NUMBER IF BIN_OP VAR VAR FUNC_CALL VAR VAR IF VAR BIN_OP VAR BIN_OP VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR BIN_OP VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR VAR NUMBER VAR BIN_OP VAR VAR ASSIGN VAR NUMBER VAR BIN_OP VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
import sys n, k = [int(i) for i in input().split()] data = [int(i) for i in input().split()] if n == 1: print(k + data[0]) sys.exit() data.sort() data = data[n // 2 :] n = n // 2 + 1 sumto = [data[0]] for i in range(1, n): sumto.append(sumto[-1] + data[i]) ans = n - 1 for i in range(1, n): am = i * data[i] - sumto[i - 1] if am > k: ans = i - 1 break am = ans * data[ans] - sumto[ans - 1] if ans == 0: am = 0 left = k - am extra = left // (ans + 1) print(data[ans] + extra)
IMPORT ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR LIST VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) s = sorted(map(int, input().split())) j = n // 2 i = n // 2 m = s[i] def meadian(i, j, m, s, k): while i < n - 1: t = (s[i + 1] - m) * (i + 1 - j) if t <= k: k -= t m = s[i + 1] else: break i += 1 return m + k // (i + 1 - j) print(meadian(i, j, m, s, k))
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR FUNC_DEF WHILE VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER VAR IF VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER VAR NUMBER RETURN BIN_OP VAR BIN_OP VAR BIN_OP BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) S = list(map(int, input().split())) S.sort() S = S[n // 2 :] ind = 0 while True: if ind == n // 2 or k < ind + 1: print(S[ind] + k // (n // 2 + 1)) break else: if S[ind] == S[ind + 1]: ind += 1 continue if (S[ind + 1] - S[ind]) * (ind + 1) <= k: k -= (S[ind + 1] - S[ind]) * (ind + 1) ind += 1 else: print(S[ind] + k // (ind + 1)) break
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER IF VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER IF BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR NUMBER
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
def solve(a, n, k): if n == 1: return a[0] + k a.sort() total = sum(a[n // 2 :]) + k avg = total // (n // 2 + 1) remain = total % (n // 2 + 1) element = n // 2 + 1 for i in range(n - 1, n // 2 - 1, -1): if a[i] <= avg + remain and a[i - 1] <= avg: return avg else: total -= a[i] element -= 1 avg = total // element remain = total % element return a[n // 2] + k n, k = map(int, input().split()) a = list(map(int, input().split())) print(solve(a, n, k))
FUNC_DEF IF VAR NUMBER RETURN BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR RETURN VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR RETURN BIN_OP VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
def solve(): n, k = list(map(int, input().split())) a = list(map(int, input().split())) a = sorted(a) median = int(n / 2) left = a[median] right = 2 * 1000 * 1000 * 1000 while left < right: middle = int((left + right + 1) / 2) need = 0 for i in range(median, n, 1): if a[i] < middle: need += middle - a[i] else: break if need > k: right = middle - 1 else: left = middle print(left) solve()
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP NUMBER NUMBER NUMBER NUMBER WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR VAR VAR VAR BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) a = sorted(list(map(int, input().split())))[n // 2 :] f = 1 i = 1 while k != 0 and i < len(a): r = a[i] - a[0] if r == 0: f += 1 i += 1 continue if f * r <= k: a[0] += r k -= r * f else: a[0] += k // f k = 0 f += 1 i += 1 print(a[0] + k // len(a))
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR NUMBER IF VAR NUMBER VAR NUMBER VAR NUMBER IF BIN_OP VAR VAR VAR VAR NUMBER VAR VAR BIN_OP VAR VAR VAR NUMBER BIN_OP VAR VAR ASSIGN VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) b = list(map(int, input().split())) b.sort() m = b[(n - 1) // 2] j = (n - 1) // 2 p = 1 while j < n - 1: if k >= p * (b[j + 1] - b[j]): m = b[j + 1] k += -p * (b[j + 1] - b[j]) p += 1 j += 1 else: break print(m + k // p)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = [int(i) for i in input().split()] ns = [int(i) for i in input().split()] ns2 = ns ns2.sort() meio = n // 2 ns2 = ns2[meio:] arrdif = [] arrdif.append(ns2[0]) for i, item in enumerate(ns2[1:]): arrdif.append(item - ns[i + meio]) for i, dif in enumerate(arrdif[1:]): if dif > 0: aux = dif * (i + 1) if k >= aux: k -= aux arrdif[0] += aux // (i + 1) else: arrdif[0] += k // (i + 1) k = 0 if k == 0: break if k > 0: arrdif[0] += k // len(arrdif) print(arrdif[0])
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR LIST EXPR FUNC_CALL VAR VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR FOR VAR VAR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER IF VAR NUMBER VAR NUMBER BIN_OP VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NUMBER
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) a = sorted(map(int, input().split())) if n == 1: print(k + a[0]) raise SystemExit d = [a[0]] + [(a[i + 1] - a[i]) for i in range(len(a) - 1)] for i in range(n // 2 + 1, n): if k <= 0: break e = min(k // (i - n // 2), d[i]) d[n // 2] += e d[i] -= e k -= e * (i - n // 2) d[n // 2] += k // (n - n // 2) r = 0 for i in range(n // 2 + 1): r += d[i] print(r)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP LIST VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR VAR VAR BIN_OP VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
def max_median(n, m, lst): j, r = n // 2, n // 2 + 1 while m and r < n: if lst[j] == lst[r]: r += 1 else: t = min(m, (lst[r] - lst[j]) * (r - j)) lst[j] += t // (r - j) m -= t if lst[j] == lst[n - 1]: return lst[j] + m // (n - j) return lst[j] + min(m, (lst[r] - lst[j]) * (r - j)) // (r - j) N, K = [int(i) for i in input().split()] a = [int(x) for x in input().split()] print(max_median(N, K, sorted(a)))
FUNC_DEF ASSIGN VAR VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR NUMBER NUMBER WHILE VAR VAR VAR IF VAR VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR VAR IF VAR VAR VAR BIN_OP VAR NUMBER RETURN BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR VAR RETURN BIN_OP VAR VAR BIN_OP FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
def get_from_str(string: str): return list(map(int, string.split(" "))) def test(string: str): param, data = string.split("\n") n, k = get_from_str(param) numbers = get_from_str(data) compute(n, k, numbers) def sort_numbers(list_of_numbers): return sorted(list_of_numbers) def find_bigger(numbers): first = numbers[0] if numbers[-1] == first: return False if numbers[1] > first: return 1 left = 0 right = len(numbers) while right - left > 1: center = (right + left) // 2 if numbers[center] > numbers[left]: right = center else: left = center if numbers[left] > first: return left else: return right def find_valid_area(numbers, k): first = numbers[0] if numbers[-1] == first: return k // len(numbers) left = 0 right = len(numbers) center = 0 while right - left > 1: center = (right + left) // 2 height = numbers[center] area = height * center - sum(numbers[:center]) if area > k: right = center else: left = center return (k + sum(numbers[:right])) // len(numbers[:right]) def compute(n, k, numbers): part_1 = sort_numbers(numbers) part_2 = part_1[n // 2 :] part_3 = [(item - part_2[0]) for item in part_2] inc = find_valid_area(part_3, k) med = part_2[0] + inc print(med) n_gl, k_gl = get_from_str(input()) numbers_gl = get_from_str(input()) compute(n_gl, k_gl, numbers_gl)
FUNC_DEF VAR RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR STRING FUNC_DEF VAR ASSIGN VAR VAR FUNC_CALL VAR STRING ASSIGN VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR VAR NUMBER IF VAR NUMBER VAR RETURN NUMBER IF VAR NUMBER VAR RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF VAR VAR VAR RETURN VAR RETURN VAR FUNC_DEF ASSIGN VAR VAR NUMBER IF VAR NUMBER VAR RETURN BIN_OP VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR RETURN BIN_OP BIN_OP VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().strip().split()) a = list(map(int, input().strip().split())) a.sort() median = a[n // 2] mid = n // 2 if n == 1: print(a[0] + k) else: if k <= a[mid + 1] - a[mid]: median += k else: median = a[mid + 1] k -= a[mid + 1] - a[mid] req = 0 f = 2 for i in range(mid + 1, n - 1): req = (a[i + 1] - a[i]) * f if k >= req: median = a[i + 1] else: median += k // f k -= req break k -= req f += 1 if k > 0: median += k // (mid + 1) print(median)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR IF VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) l = list(map(int, input().split())) l.sort() s = 0 c = 1 v = [] for i in range(n // 2 + 1, n): v.append(c * (l[i] - l[i - 1])) c += 1 ans = 0 for i in range(len(v)): if k > 0 and v[i] > 0: m = min(v[i], k) ans += m // (i + 1) k -= m if k > 0: ans += k // (len(v) + 1) print(ans + l[n // 2])
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR IF VAR NUMBER VAR BIN_OP VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR NUMBER
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
from sys import stdin def check(num, arr, k): i = len(arr) - 1 while i >= len(arr) // 2: if arr[i] >= num: pass else: k -= abs(num - arr[i]) i -= 1 if k >= 0: return True else: return False n, k = list(map(int, stdin.readline().split())) arr = list(map(int, stdin.readline().split())) arr.sort() middle = arr[n // 2] start = middle end = middle + k while True: if start >= end: if check(start + 1, arr, k): start += 1 break mid = (start + end) // 2 if check(mid, arr, k): start = mid + 1 else: end = mid - 1 if check(start, arr, k): print(start) else: print(start - 1)
FUNC_DEF ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR NUMBER IF VAR NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR VAR WHILE NUMBER IF VAR VAR IF FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, m = list(map(int, input().split())) a = list(map(int, input().split())) a.sort() a = a[n // 2 :] n = n // 2 + 1 n_inc = 1 while m > 0: while n_inc < n and a[n_inc - 1] == a[n_inc]: n_inc += 1 if n_inc == n: to_inc = m // n_inc else: to_inc = min(m // n_inc, a[n_inc] - a[n_inc - 1]) total_inc = n_inc * to_inc m -= total_inc a[n_inc - 1] += to_inc if n_inc == n or to_inc == 0: break print(a[n_inc - 1])
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER WHILE VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR VAR VAR BIN_OP VAR NUMBER VAR IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) a = sorted([int(x) for x in input().split()])[int(n / 2) :] n = len(a) l = a[0] h = a[n - 1] + k // n ans = 0 def find(m): moves = 0 for i in range(n): if m - a[i] > 0: moves += m - a[i] if moves > k: return False if moves > k: return False return True while l <= h: m = (l + h) // 2 if find(m): ans = max(ans, m) l = m + 1 else: h = m - 1 print(ans)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR VAR ASSIGN VAR NUMBER FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR NUMBER VAR BIN_OP VAR VAR VAR IF VAR VAR RETURN NUMBER IF VAR VAR RETURN NUMBER RETURN NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) a = list(map(int, input().split())) index = n // 2 a.sort() def f(x): if a[index] >= x: return True tmp = k for val in a[index:]: if val >= x: return True tmp -= x - val if tmp < 0: return False return True l = a[index] r = l + k ans = l while l <= r: mid = (l + r) // 2 if f(mid): ans = mid l = mid + 1 else: r = mid - 1 print(ans)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_DEF IF VAR VAR VAR RETURN NUMBER ASSIGN VAR VAR FOR VAR VAR VAR IF VAR VAR RETURN NUMBER VAR BIN_OP VAR VAR IF VAR NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) a = sorted(list(map(int, input().split()))) ind = n // 2 + 1 mid = n // 2 median = a[mid] while ind < n and a[ind] == median: ind += 1 while k >= ind - mid: median += 1 k -= ind - mid while ind < n and a[ind] == median: ind += 1 print(median)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR WHILE VAR VAR VAR VAR VAR VAR NUMBER WHILE VAR BIN_OP VAR VAR VAR NUMBER VAR BIN_OP VAR VAR WHILE VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
def f(tar, l, k): req = 0 for i in range(len(l)): req += max(0, tar - l[i]) if req <= k: return True else: return False n, k = map(int, input().split()) l = list(map(int, input().split())) l.sort() l = l[n // 2 :] low, high, ans = l[0], 10**18, 0 while low <= high: mid = low + (high - low) // 2 x = f(mid, l, k) if x: ans = max(ans, mid) low = mid + 1 else: high = mid - 1 print(ans)
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR IF VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER BIN_OP NUMBER NUMBER NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = [int(i) for i in input().split()] l = [int(i) for i in input().split()] l.sort() l = l[n // 2 :] while k != 0: mini = l[0] compte = l.count(mini) if compte == len(l): reste = k // len(l) l[0] += reste k = 0 break deux_mini = l[compte] diff = deux_mini - mini if k >= diff * compte: k -= diff * compte for i in range(compte): l[i] = deux_mini else: reste = k // compte l[0] += reste k = 0 break print(l[0])
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR NUMBER WHILE VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR VAR NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR NUMBER VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) a = list(map(int, input().split())) if n == 1: print(a[0] + k) else: a.sort() n = (n - 1) // 2 a = a[n:] med = a[0] for i in range(0, n): add = min((a[i + 1] - a[i]) * (i + 1), k) k -= add med += add // (i + 1) med += k // (n + 1) print(med)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR VAR VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
def check(x, a): moves = 0 for i in range(n // 2, n): if x - a[i] > 0: moves += x - a[i] if moves > k: return False if moves <= k: return True else: return False n, k = map(int, input().split()) a = [int(i) for i in input().split()] a = sorted(a) j = n // 2 r = n // 2 + 1 s = 1 b = 20000000000 while s != b: mid = (s + b) // 2 + 1 if check(mid, a): s = mid else: b = mid - 1 print(s)
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF BIN_OP VAR VAR VAR NUMBER VAR BIN_OP VAR VAR VAR IF VAR VAR RETURN NUMBER IF VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
import sys def main(): import sys input = sys.stdin.readline n, k = map(int, input().split()) arr = list(map(int, input().split())) arr.sort() arr.append(10**12) median = arr[n >> 1] i = n // 2 while i <= n - 1 and arr[i + 1] == median: i += 1 cnt = i + 1 - n // 2 while i <= n: i += 1 while i <= n - 1 and arr[i + 1] == arr[i]: i += 1 diff = arr[i] - median if diff * cnt > k: ans = median + k // cnt break else: median += diff k -= cnt * diff cnt = i + 1 - n // 2 print(ans) return 0 main()
IMPORT FUNC_DEF IMPORT ASSIGN VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER WHILE VAR VAR VAR NUMBER WHILE VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR RETURN NUMBER EXPR FUNC_CALL VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) m = [int(a) for a in input().split()] m.sort() del m[0 : n // 2] n = len(m) a = 1 while k > 0: if a < n and k - a * (m[a] - m[0]) >= 0: k = k - a * (m[a] - m[0]) m[0] += m[a] - m[0] a += 1 else: m[0] += k // a k = 0 print(m[0])
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR NUMBER IF VAR VAR BIN_OP VAR BIN_OP VAR BIN_OP VAR VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR BIN_OP VAR VAR VAR NUMBER VAR NUMBER BIN_OP VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER BIN_OP VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) s = list(map(int, input().split())) s.sort() t = s[-(n // 2)] - s[n // 2] if k <= t or n == 1: print(s[n // 2] + k) else: s = s[n // 2 :] ans = s[0] t = s[0] s = list(filter(lambda x: x <= k, map(lambda x: x - t, s))) t = s[0] i = 1 while i < len(s) and k >= 0: d = i if d * (s[i] - s[i - 1]) <= k: k -= d * (s[i] - s[i - 1]) ans += s[i] - s[i - 1] else: ans += k // d break i += 1 if i == len(s): ans += k // (d + 1) print(ans)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR IF BIN_OP VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) a = sorted(map(int, input().split())) a += [10**10] m = (n - 1) // 2 med = 0 sum1 = 0 for i in range(m, n): sum1 += a[i] c = min(a[i + 1], (k + sum1) // (i + 1 - m)) if c < a[i]: break if c > med: med = c print(med)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR LIST BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR NUMBER VAR IF VAR VAR VAR IF VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
length, moves = [int(x) for x in input().split()] inp = [int(x) for x in input().split()] middle = int((length + 1) / 2) ans = int() sameind = 0 counter = 0 inp.sort() while moves > sameind: for i in range(middle + sameind, length): if inp[i] == inp[middle + sameind - 1]: sameind += 1 if middle + sameind < length: nextdiff = inp[middle + sameind] - inp[middle + sameind - 1] if (sameind + 1) * nextdiff <= moves: moves -= (sameind + 1) * nextdiff counter += nextdiff else: counter += int(moves / (sameind + 1)) moves -= (sameind + 1) * int(moves / (sameind + 1)) else: counter += int(moves / (sameind + 1)) moves -= (sameind + 1) * int(moves / (sameind + 1)) sameind += 1 print(counter + inp[middle - 1])
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR WHILE VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR IF VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP BIN_OP VAR NUMBER VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR VAR VAR VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR NUMBER
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
def good(m, a, k): x = 0 for i in range(n // 2, n): if m - a[i] > 0: x += m - a[i] if x <= k: return 1 else: return 0 n, k = map(int, input().split()) a = list(map(int, input().split())) a.sort() l = 1 r = 10**11 while r > l + 1: m = (l + r) // 2 if good(m, a, k) == 1: l = m else: r = m print(l)
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF BIN_OP VAR VAR VAR NUMBER VAR BIN_OP VAR VAR VAR IF VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER WHILE VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) a = list(map(int, input().split())) a.sort() m = a[-1] s = 0 for i in a[n // 2 :]: s += m - i if s <= k: ma = (sum(a[n // 2 :]) + k) // (1 + n // 2) print(ma) else: a = a[n // 2 :] s = 0 li = 0 for i in range(len(a) - 1): if (a[i + 1] - a[i]) * (i + 1) + s > k: li = i break s += (a[i + 1] - a[i]) * (i + 1) print(((li + 1) * a[li] + (k - s)) // (1 + li))
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR BIN_OP VAR VAR BIN_OP NUMBER VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) a = list(map(int, input().split())) a.sort() id = n // 2 for i in range(n // 2, n - 1): if (a[i + 1] - a[i]) * (i + 1 - id) > k: print(a[i] + k // (i + 1 - id)) return else: k -= (a[i + 1] - a[i]) * (i + 1 - id) print(a[-1] + k // (n - id))
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER IF BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR NUMBER VAR RETURN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
import sys input = sys.stdin.readline n, k = map(int, input().split()) data = list(map(int, input().split())) data.sort() data = data[n // 2 :] now = data[0] cnt = 0 for i in data: if k - (i - now) * cnt >= 0: k -= (i - now) * cnt else: break now = i cnt += 1 if k > 0: now += k // cnt print(now)
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR BIN_OP BIN_OP VAR VAR VAR NUMBER VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR NUMBER IF VAR NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
from sys import stdin def ii(): return int(stdin.readline()) def mi(): return map(int, stdin.readline().split()) def li(): return list(mi()) n, k = mi() m = n // 2 a = li() a.sort() p = a[m] b = [] x = 1 for j in range(m + 1, n): y = a[j] - p p += min(y, k // x) k -= y * x if k >= 0: x += 1 else: break if k > 0: p += k // (m + 1) print(p)
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR IF VAR NUMBER VAR NUMBER IF VAR NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = [int(i) for i in input().split(" ")] a = sorted([int(i) for i in input().split(" ")]) ans = a[n // 2] tot = 0 for i in range(n // 2 + 1, n, 1): last = tot tot += (i - n // 2) * (a[i] - a[i - 1]) if tot >= k: ans = ans + (k - last) // (i - n // 2) break ans = a[i] if tot < k: ans = ans + (k - tot) // (n - n // 2) print(ans)
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) a = list(map(int, input().split())) a.sort() m = n // 2 p = m l = a[p] while True: if p < n - 1: if l < a[p + 1]: if k < p - m + 1: print(l) exit() k -= p - m + 1 l += 1 else: p += 1 else: print(l + k // (p - m + 1)) exit()
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR VAR WHILE NUMBER IF VAR BIN_OP VAR NUMBER IF VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) a = list(map(int, input().split())) a.sort() m = n // 2 p = a[m] t = k c = 1 for i in range(m + 1, n): d = a[i] - p r = t - c * d if r == 0: print(a[i]) exit() elif r < 0: print(a[i - 1] + t // c) exit() else: c += 1 p = a[i] t = r print(a[n - 1] + t // c)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = list(map(int, input().split())) a = list(map(int, input().split())) lo = 0 hi = 2000000000 def check(b, m, x): size = len(b) b.sort() need = 0 for i in range(size // 2, size): need += max(0, m - b[i]) if k >= need: return 1 return 0 while lo != hi: mid = (lo + hi + 1) // 2 if check(a, mid, k): lo = mid else: hi = mid - 1 print(hi)
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR IF VAR VAR RETURN NUMBER RETURN NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER IF FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) arr = list(map(int, input().split())) arr.sort() def solver(v, p): for i in range(n // 2, n): if arr[i] <= v: t = v - arr[i] p = p - t if p >= 0: return True else: return False start = 1 end = 10**14 while end - start > 1: mid = (start + end) // 2 if solver(mid, k) == True: start = mid else: end = mid if solver(start, k) == True: print(start) else: print(end)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_DEF FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR IF FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
l = input().split() n = int(l[0]) k = int(l[1]) l = input().split() li = [int(i) for i in l] li.append(1000000000000) li.sort() curr = n // 2 slot = 1 ans = li[curr] while 1: possible = (li[curr + 1] - li[curr]) * slot if k >= possible: ans = li[curr + 1] curr += 1 slot += 1 k -= possible else: ans += k // slot break print(ans)
ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR WHILE NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR IF VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) a = list(sorted(map(int, input().split())))[n // 2 :] n = len(a) def f(x): return sum(max(0, x - a[i]) for i in range(n)) l, r = a[0], 2 * 10**9 + 2 while r - l > 1: m = (l + r) // 2 if f(m) <= k: l = m else: r = m if f(r) <= k: print(r) else: print(l)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER BIN_OP BIN_OP NUMBER BIN_OP NUMBER NUMBER NUMBER WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
d = input().split(" ") d = [int(i) for i in d] a = input().split(" ") a = [int(i) for i in a] a = sorted(a) def can(m): sum = 0 for i in range(d[0] // 2, d[0]): if m > a[i]: sum += m - a[i] return d[1] >= sum l = 0 r = int(1e17) while r - l > 1: m = (r + l) // 2 if can(m): l = m else: r = m print(l)
ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER IF VAR VAR VAR VAR BIN_OP VAR VAR VAR RETURN VAR NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
temp = input() temp = temp.split(" ") n = int(temp[0]) k = int(temp[1]) temp = input() temp = temp.split(" ") a = [] for i in range(n): a.append(int(temp[i])) a.sort() mid = int(n / 2) move = 0 j = mid i = mid + 1 while i < n: if move + (a[i] - a[i - 1]) * (i - mid) <= k: move = move + (a[i] - a[i - 1]) * (i - mid) j = i else: break i += 1 left = k - move ans = a[j] ans += int(left / (j - mid + 1)) print(ans)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR IF BIN_OP VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
a, b = map(int, input().split()) A = list(map(int, input().split())) A.sort() m = a // 2 s = 0 s += A[m] k = 1 t = True m += 1 while t == True and m < a: if A[m] * k - s >= b: t = False else: s += A[m] k += 1 m += 1 q = A[m - 1] * k v = q - s b -= v e = b // k print(A[m - 1] + e)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER WHILE VAR NUMBER VAR VAR IF BIN_OP BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR NUMBER VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = list(map(int, input().split())) a = list(map(int, input().split())) a.sort() m = a[n // 2] c = 1 for i in range(n // 2 + 1, n): if k >= (a[i] - m) * c: k = k - (a[i] - m) * c m = a[i] c = c + 1 else: m = m + k // c k = 0 break print(m + k // c)
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR IF VAR BIN_OP BIN_OP VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, m = [int(x) for x in input().split()] s = [int(x) for x in input().split()] s.sort() k = (n - 1) // 2 ind = k + 1 med = s[k] while m >= 0: if ind == n: med += m // (ind - k) break m -= (s[ind] - med) * (ind - k) med = s[ind] ind += 1 if m < 0: ind -= 1 med -= -m // (ind - k) if -m % (ind - k): med -= 1 print(med)
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR WHILE VAR NUMBER IF VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR VAR NUMBER IF VAR NUMBER VAR NUMBER VAR BIN_OP VAR BIN_OP VAR VAR IF BIN_OP VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
from sys import stdin def iin(): return int(stdin.readline()) def lin(): return list(map(int, stdin.readline().split())) n, k = lin() a = lin() if n == 1: print(a[0] + k) else: a.sort() h = n // 2 ch1 = 0 ch2 = h + 1 for i in range(h + 1, n): if (a[i] - a[i - 1]) * (i - h) <= k: mn = (a[i] - a[i - 1]) * (i - h) k -= mn else: ch1 = 1 ch2 = i for j in range(h, i): a[j] = a[i - 1] break else: for j in range(h, n): a[j] = a[-1] rng = h + 1 if ch1: rng = ch2 - h su = k // rng if su: for i in range(h, h + rng): a[i] += su for i in range(k % rng): a[h + i] += 1 a.sort() print(a[h])
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR FOR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
[n, k] = list(map(int, input().split())) s = list(map(int, input().split())) s = sorted(s) sum = 0 pos = n // 2 for i in range(n // 2, n - 1): sum = sum + s[n - 1] - s[i] if k >= sum: res = s[n - 1] + (k - sum) // (n // 2 + 1) else: for i in range(n - 2, n // 2 - 1, -1): sum = sum - pos * (s[i + 1] - s[i]) if k >= sum: res = s[i] + (k - sum) // pos else: pos = pos - 1 continue print(res)
ASSIGN LIST VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) q = sorted(map(int, input().split()))[int(n / 2) : n] median = q[0] op = 1 for i in range(1, len(q)): if (q[i] - median) * op <= k: k -= (q[i] - median) * op median = q[i] else: break op += 1 print(median + int(k / op))
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR BIN_OP VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) a = list(map(int, input().split())) a.sort() med = a[n // 2] low = med high = 2 * 10**9 + 1 while low + 1 < high: mid = (low + high) // 2 total = 0 for el in a[n // 2 :]: if el < mid: total += mid - el if total > k: low, high = low, mid else: low, high = mid, high print(low)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER BIN_OP NUMBER NUMBER NUMBER WHILE BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) arr = list(map(int, input().split())) arr.sort() mid = n // 2 itr = 1 tot = 0 for i in range(mid + 1, n): if tot + (arr[i] - arr[i - 1]) * itr > k: break else: tot += (arr[i] - arr[i - 1]) * itr itr += 1 final = arr[mid + itr - 1] + (k - tot) // itr print(final)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF BIN_OP VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) a = sorted(list(map(int, input().split()))) s = n // 2 l = 1 r = int(10000000000.0) while l < r: m = (l + r + 1) // 2 cnt = 0 for i in range(s, n): cnt += max(0, m - a[i]) if cnt <= k: l = m else: r = m - 1 print(l)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
import sys input = sys.stdin.readline n, k = map(int, input().split()) A = sorted(map(int, input().split()), reverse=True) MIN = 1 MAX = max(A) + k while MIN != MAX: AVE = (MIN + MAX + 1) // 2 score = 0 for i in range(n // 2 + 1): if AVE > A[i]: score += AVE - A[i] if score > k: MAX = AVE - 1 else: MIN = AVE print(MIN)
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR VAR BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) arr = list(map(int, input().split())) arr.sort() mid = n // 2 def predicate(x): add = 0 for i in range(mid, n): add += max(x - arr[i], 0) return add <= k def bs(start, end): ans = None while start <= end: mid = start + end >> 1 if predicate(mid): ans = mid start = mid + 1 else: end = mid - 1 return ans ans = bs(0, 2 * pow(10, 9) + 100) print(ans)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER RETURN VAR VAR FUNC_DEF ASSIGN VAR NONE WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP NUMBER FUNC_CALL VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = (int(x) for x in input().split()) a = [int(x) for x in input().split()] a.sort() a = a[n // 2 :] + [10**10] for i in range(1, len(a)): prev = a[i - 1] curr = a[i] if (curr - prev) * i <= k: a[0] = curr k -= (curr - prev) * i else: val = k // i a[0] += val break print(a[0])
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER LIST BIN_OP NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR IF BIN_OP BIN_OP VAR VAR VAR VAR ASSIGN VAR NUMBER VAR VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR NUMBER
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) a = sorted(map(int, input().split()))[n // 2 :] i = 0 s = 0 while i < len(a): s += a[i] if a[i] * (i + 1) - s > k: break i += 1 k -= a[i - 1] * i - sum(a[:i]) print(a[i - 1] + k // i)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR VAR IF BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = list(map(int, input().split())) arr = sorted(list(map(int, input().split()))) median = arr[n // 2] jumps = [] for i in range(n // 2 + 1, n): jumps.append(arr[i] - arr[i - 1]) for i in range(len(jumps)): weight = i + 1 if weight * jumps[i] > k: this_jump = k // weight median += this_jump k -= this_jump * weight break k -= weight * jumps[i] median += jumps[i] weight = n // 2 + 1 median += k // weight print(median)
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = list(map(int, input().split())) a = list(map(int, input().split())) a.sort() r = k m = (n - 1) // 2 p = m + 1 v = a[m] while p < n: u = (p - m) * (a[p] - v) if u <= r: v = a[p] r -= u else: break p += 1 d = r // (p - m) u = d * (p - m) r -= u v = v + d print(v)
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) l = list(map(int, input().split())) l.sort() i = 0 s = 0 d = n // 2 + 1 res = l[n // 2] for j in range(n // 2 + 1, n): i += 1 if k >= i * (l[j] - l[j - 1]): s += i * (l[j] - l[j - 1]) k -= i * (l[j] - l[j - 1]) res += l[j] - l[j - 1] else: d = i break if k // d != 0: res += k // d print(res)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER IF VAR BIN_OP VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR IF BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) u = list(map(int, input().split())) u.sort() if n == 1: print(u[0] + k) exit() ans = u[n // 2] num = 1 for i in range(n // 2 + 1, n): if (u[i] - u[i - 1]) * (i - n // 2) <= k: k -= (u[i] - u[i - 1]) * (i - n // 2) ans = u[i] num += 1 else: break ans += k // num print(ans)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR IF BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
import sys n, k = list(map(int, sys.stdin.readline().strip().split())) a = list(map(int, sys.stdin.readline().strip().split())) m = n // 2 a.sort() d = 1 ans = a[m] if ans != a[n - 1]: while ans == a[m + d]: d = d + 1 else: d = n // 2 + 1 while d <= k and k > 0: k = k - d ans = ans + 1 if ans < a[n - 1]: while ans == a[m + d]: d = d + 1 else: d = n // 2 + 1 print(ans)
IMPORT ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR IF VAR VAR BIN_OP VAR NUMBER WHILE VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER WHILE VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR BIN_OP VAR NUMBER WHILE VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = [int(a) for a in input().split()] a = list(map(int, input().split())) m = n // 2 a.sort() l = 1 r = int(2000000000.0) while l != r: mid = (l + r + 1) // 2 tmp = 0 for i in range(m, n): if mid - a[i] > 0: tmp += mid - a[i] if tmp > k: r = mid - 1 if tmp <= k: l = mid print(l)
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR IF BIN_OP VAR VAR VAR NUMBER VAR BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) l = list(map(int, input().split())) l.sort() md = n // 2 lo = l[md] hi = int(10000000000.0) ans = l[md] while lo <= hi: mid = (lo + hi) // 2 reqk = 0 for i in range(n // 2, n): if l[i] < mid: reqk += mid - l[i] if reqk <= k: ans = mid lo = mid + 1 else: hi = mid - 1 print(ans)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR VAR VAR BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) l = list(map(int, input().split())) l.sort() same = 1 mid = n // 2 while k > 0: if same <= mid: diff = l[mid + same] - l[mid] temp = k k -= diff * same if k >= 0: l[mid] = l[mid + same] else: l[mid] = l[mid] + temp // same else: l[mid] = l[mid] + k // same k = 0 same += 1 print(l[mid])
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
def binarySearch(arr, l, r, x): mid = int(l + (r - l) / 2) if r >= l: if arr[mid] == x: return mid elif arr[mid] > x: return binarySearch(arr, l, mid - 1, x) else: return binarySearch(arr, mid + 1, r, x) else: return mid les, k = list(map(int, input().split())) nums = list(map(int, input().split())) nums.sort() nums = nums[les // 2 :] hbNum = 1 hbValue = nums[0] del nums[0] while k > 0: while len(nums) > 0 and hbValue == nums[0]: del nums[0] hbNum += 1 try: taller = (nums[0] - hbValue) * hbNum except: taller = "fuck" if taller != "fuck" and k >= taller: hbValue = nums[0] k -= taller else: hbValue += k // hbNum k = 0 print(hbValue)
FUNC_DEF ASSIGN VAR FUNC_CALL VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR IF VAR VAR VAR RETURN VAR IF VAR VAR VAR RETURN FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER VAR RETURN FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR RETURN VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER WHILE VAR NUMBER WHILE FUNC_CALL VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR VAR ASSIGN VAR STRING IF VAR STRING VAR VAR ASSIGN VAR VAR NUMBER VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
def check(mid): ans = 0 for i in range(n // 2 + 1): ans += max(0, mid - a[i]) if ans <= k: return True return False n, k = map(int, input().split()) a = sorted(list(map(int, input().split())), reverse=True) l, r = 1, 10**10 while l != r: mid = (l + r + 1) // 2 if check(mid): l = mid else: r = mid - 1 print(l)
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR IF VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER BIN_OP NUMBER NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) a = list(map(int, input().split())) a.sort() a.append(10**57) m = n // 2 for i in range(m, n): p = (i - m + 1) * (a[i + 1] - a[i]) if k < p: break k -= p print(a[i] + k // (i - m + 1))
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
def possible(l, mid, k, n): add = 0 for i in range(n // 2, n): if mid - l[i] > 0: add += mid - l[i] if add > k: return 1 if add <= k: return 0 else: return 1 n, m = map(int, input().split()) l = list(map(int, input().split())) low = 1 high = m + max(l) l.sort() while low <= high: mid = (low + high) // 2 if possible(l, mid, m, n) == 0: low = mid + 1 else: high = mid - 1 print(low - 1)
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF BIN_OP VAR VAR VAR NUMBER VAR BIN_OP VAR VAR VAR IF VAR VAR RETURN NUMBER IF VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = list(map(int, input().split())) arr = list(map(int, input().split())) arr.sort() st = n // 2 cur = arr[st] cnt = 1 f = 0 for i in range(st + 1, n): diff = arr[i] - cur if diff * cnt <= k: k -= diff * cnt cnt += 1 cur = arr[i] else: f = 1 break if f == 0: cur += k // (st + 1) else: cur += k // cnt print(cur)
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR VAR IF BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().strip().split()) numbers = list(map(int, input().strip().split())) numbers.sort() p = numbers[n // 2] s = 0 t = 0 for i in range(n // 2, n - 1): p1 = (k - s) // (i - n // 2 + 1) s = s + min(p1, numbers[i + 1] - p) * (i - n // 2 + 1) t = t + min(p1, numbers[i + 1] - p) if p1 < numbers[i + 1] - p: break p = numbers[i + 1] else: t = t + (k - s) // (n // 2 + 1) print(t + numbers[n // 2])
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR IF VAR BIN_OP VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR NUMBER
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = list(map(int, input().split())) arr = list(map(int, input().split())) arr.sort() idxAns = int(n / 2) ans = arr[idxAns] while k > 0: idx = idxAns + 1 while idx < n: if ans != arr[idx]: break idx += 1 if idx == n: x = n - idxAns ans += int(k / x) k = 0 else: minimum = min(k, (arr[idx] - ans) * (idx - idxAns)) if minimum == k and minimum == (arr[idx] - ans) * (idx - idxAns): ans += arr[idx] - ans elif minimum == (arr[idx] - ans) * (idx - idxAns): for i in range(idxAns, idx): arr[i] += arr[idx] - ans ans = arr[idxAns] else: ans += int(k / (idx - idxAns)) k -= minimum print(ans)
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR IF VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR VAR IF VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR IF VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) arr = list(map(int, input().split())) if n == 1: print(arr[0] + k) exit(0) arr.sort() mid = n // 2 piv = mid + 1 maxm = arr[mid] delta = arr[mid + 1] - arr[mid] while k >= delta: k -= delta maxm = arr[piv] piv += 1 if piv >= n: break delta = (piv - mid) * (arr[piv] - maxm) if piv != mid: maxm += k // (piv - mid) print(maxm)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR WHILE VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR VAR IF VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = list(map(int, input().split())) ai = list(map(int, input().split())) ai.sort() num = n // 2 num2 = num ans = ai[num] n2 = n - 1 while num != n2 and k > 0: num += 1 k -= (ai[num] - ai[num - 1]) * (num - num2) if k < 0: print(ai[num] + k // (num - num2)) else: print(ai[num] + k // (num - num2 + 1))
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR VAR NUMBER VAR NUMBER VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
from sys import exit, stdin, stdout n, k = map(int, stdin.readline().split()) a = list(map(int, stdin.readline().split())) a.sort() a = a[(n - 1) // 2 :] sums = [0] total = 0 for i in range((n + 1) // 2): total += a[i] sums.append(total) def doable(tgt): if a[0] >= tgt: return True ct = 0 hi = (n + 1) // 2 while ct + 1 < hi: mid = (ct + hi) // 2 if a[mid] < tgt: ct = mid else: hi = mid return tgt * (ct + 1) - sums[ct + 1] <= k lo = 1 hi = 10**15 while lo + 1 < hi: mid = (lo + hi) // 2 if doable(mid): lo = mid else: hi = mid stdout.write(str(lo) + "\n")
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR VAR VAR EXPR FUNC_CALL VAR VAR FUNC_DEF IF VAR NUMBER VAR RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER WHILE BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR RETURN BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER WHILE BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR STRING
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
from sys import stdin, stdout N, K = [int(x) for x in stdin.readline().split()] arr = [int(x) for x in stdin.readline().split()] arr.sort() half = N // 2 s = sum(arr[half:]) bound = s + K res = 0 for i in range(N - 1, N // 2 - 1, -1): if bound // (i - half + 1) > arr[i]: res = max(res, bound // (i - half + 1)) if i != N - 1 and res > arr[i + 1]: res = arr[i + 1] break else: bound -= arr[i] print(res)
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR NUMBER NUMBER NUMBER IF BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) a = list(map(int, input().split())) a.sort() l = 1 jog = 0 ans = 0 if n == 1: print(a[0] + k) else: for i in range(int((n - 1) / 2), n - 1): jog += l * (a[i + 1] - a[i]) if jog > k: jog -= l * (a[i + 1] - a[i]) ans = a[i] + int((k - jog) / l) break l += 1 if ans != 0: print(ans) else: ans = a[i + 1] + int((k - jog) / l) print(ans)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER VAR BIN_OP VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR IF VAR VAR VAR BIN_OP VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
def f(v, mid, N, K): last_max = v[N // 2] + mid cur = K - mid for i in range(N // 2 + 1, N): needed = last_max - v[i] if needed > 0: cur -= needed if cur < 0: return False else: break return True def main(): N, K = map(int, input().split()) v = list(map(int, input().split())) v.sort() s, e, mid, sol = 0, K, 0, 0 while s <= e: mid = s + (e - s) // 2 if f(v, mid, N, K): s = mid + 1 sol = mid else: e = mid - 1 print(v[N // 2] + sol) main()
FUNC_DEF ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR ASSIGN VAR BIN_OP VAR VAR VAR IF VAR NUMBER VAR VAR IF VAR NUMBER RETURN NUMBER RETURN NUMBER FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR VAR VAR NUMBER VAR NUMBER NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = list(map(int, input().split()))[:2] a = list(map(int, input().split())) a = sorted(a) b = a[n // 2 :] diff = [] for i in range(1, len(b)): di = i * (b[i] - b[i - 1]) diff.append(di) ans = b[0] for i in range(len(diff)): if k < diff[i]: ans = ans + k // (i + 1) k = 0 break else: k -= diff[i] ans = b[i + 1] ans = ans + k // len(b) print(ans)
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = map(int, input().split()) s = sorted(list(map(int, input().split()))) s[0 : n // 2] = [] med = 0 if n == 1: print(s[0] + k) else: i = 0 while k > (i + 1) * (s[i + 1] - s[i]): k = k - (i + 1) * (s[i + 1] - s[i]) i += 1 if i == n // 2: break med = s[i] + k // (i + 1) print(med)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER BIN_OP VAR NUMBER LIST ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER WHILE VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array $a$ of $n$ integers, where $n$ is odd. You can make the following operation with it: Choose one of the elements of the array (for example $a_i$) and increase it by $1$ (that is, replace it with $a_i + 1$). You want to make the median of the array the largest possible using at most $k$ operations. The median of the odd-sized array is the middle element after the array is sorted in non-decreasing order. For example, the median of the array $[1, 5, 2, 3, 5]$ is $3$. -----Input----- The first line contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$, $n$ is odd, $1 \le k \le 10^9$) — the number of elements in the array and the largest number of operations you can make. The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$). -----Output----- Print a single integer — the maximum possible median after the operations. -----Examples----- Input 3 2 1 3 5 Output 5 Input 5 5 1 2 1 1 1 Output 3 Input 7 7 4 1 2 4 3 4 4 Output 5 -----Note----- In the first example, you can increase the second element twice. Than array will be $[1, 5, 5]$ and it's median is $5$. In the second example, it is optimal to increase the second number and than increase third and fifth. This way the answer is $3$. In the third example, you can make four operations: increase first, fourth, sixth, seventh element. This way the array will be $[5, 1, 2, 5, 3, 5, 5]$ and the median will be $5$.
n, k = list(map(int, input().split())) a = list(map(int, input().split())) a.sort() mid = n // 2 count = 1 Sum = a[mid] res = a[mid] index = -1 for i in range(mid + 1, n): if count * a[i] - Sum <= k: count += 1 Sum += a[i] res = a[i] else: index = i break if index == -1: k = max(0, k - (count * a[-1] - Sum)) res += k // (mid + 1) print(res) else: k = max(0, k - (count * a[index - 1] - Sum)) res += k // (index - mid) print(res)
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR