description
stringlengths
171
4k
code
stringlengths
94
3.98k
normalized_code
stringlengths
57
4.99k
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
n = int(input()) answer = 0 sticks = input().split() for i in range(n): sticks[i] = int(sticks[i]) sticks.sort(reverse=True) i = 0 v = [] while i < n - 1: if abs(sticks[i] - sticks[i + 1]) < 2: v.append(min(sticks[i], sticks[i + 1])) i += 2 else: i += 1 v.sort(reverse=True) i = 0 while i < len(v) - 1: answer += v[i] * v[i + 1] i += 2 print(answer)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST WHILE VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
n = int(input()) c = [0] * 1000001 m = 0 for i in list(map(int, input().split())): c[i] += 1 if i > m: m = i n = m while m != 1: if c[m] % 2 == 1: if c[m - 1]: c[m] -= 1 c[m - 1] += 1 else: c[m] -= 1 m -= 1 pos = 0 s = 0 mem = 0 for pos in range(n, 0, -1): if mem and c[pos] >= 2: c[pos] -= 2 s += pos * mem mem = 0 s += pos * pos * (c[pos] // 4) if c[pos] % 4 >= 2: mem = pos print(s)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR WHILE VAR NUMBER IF BIN_OP VAR VAR NUMBER NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER IF VAR VAR VAR NUMBER VAR VAR NUMBER VAR BIN_OP VAR VAR ASSIGN VAR NUMBER VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
import sys def max_square(number_of_sticks, sticks): if number_of_sticks < 4: return 0 else: sticks.sort() sticks.reverse() max_sq = 0 max_stick = 0 i = 1 while i < len(sticks): if sticks[i - 1] - sticks[i] <= 1: if max_stick == 0: max_stick = sticks[i] i += 1 else: max_sq += max_stick * sticks[i] max_stick = 0 i += 1 i += 1 return max_sq first_line = int(sys.stdin.readline()) second_line = [int(i) for i in sys.stdin.readline().split()] sys.stdout.write(str(max_square(first_line, second_line)))
IMPORT FUNC_DEF IF VAR NUMBER RETURN NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER VAR BIN_OP VAR VAR VAR ASSIGN VAR NUMBER VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
n = int(input()) l = list(map(int, input().split())) l.sort(reverse=True) ans = 0 count = 0 temp = 1 i = 0 while i < n - 1: if l[i] == l[i + 1]: temp *= l[i] i += 2 count += 1 elif l[i] == l[i + 1] + 1: temp *= l[i + 1] i += 2 count += 1 else: i += 1 if count == 2: count = 0 ans += temp temp = 1 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
n = int(input()) a = [-1] a += [int(x) for x in input().split()] a.sort() l = 0 ans = 0 i = n while i >= 1: if a[i] == a[i - 1] or a[i] == a[i - 1] + 1: if l == 0: l = a[i - 1] else: ans += l * a[i - 1] l = 0 i -= 2 else: i -= 1 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST NUMBER VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER IF VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
def main(): n = int(input()) a = [int(x) for x in input().split()] b = [] area = 0 a.sort() for i in reversed(range(len(a))): if i > 0 and (a[i] == a[i - 1] or a[i] - 1 == a[i - 1]): b.append(a[i - 1]) a[i - 1] = -1 for i in range(int(len(b) / 2)): area += b[2 * i] * b[2 * i + 1] print(area) main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR BIN_OP NUMBER VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
n = int(input()) l = list(map(int, input().split())) l = sorted(l) l = l[::-1] k = 0 b = -1 for i in range(n - 1): if l[i] == l[i + 1] and b == -1: b = l[i] l[i + 1] = -1 if l[i] == l[i + 1] and b != -1: k += b * l[i] b = -1 l[i + 1] = -1 if l[i] == l[i + 1] + 1 and b == -1: b = l[i] - 1 l[i + 1] = -1 if l[i] == l[i + 1] + 1 and b != -1: k += b * (l[i] - 1) b = -1 l[i + 1] = -1 print(k)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR BIN_OP VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR BIN_OP VAR BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
n = int(input()) L = [int(x) for x in input().split()] L.sort(reverse=True) i = 0 while i < n - 1: if L[i] - 1 == L[i + 1]: L[i] -= 1 i += 1 elif L[i] == L[i + 1]: i += 1 i += 1 val = [] i = 0 while i < n - 1: if L[i] == L[i + 1]: val.append(L[i]) i += 1 i += 1 area = 0 n = len(val) i = 0 while i < n - 1: area += val[i] * val[i + 1] i += 2 print(area)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
n = int(input()) ls = list(map(int, input().split())) ls.sort(reverse=True) area = 0 pairs = [] i = 0 while i < len(ls) - 1: if ls[i] - ls[i + 1] > 1: i += 1 else: pairs.append(ls[i + 1]) i += 2 if len(pairs) == 2: area += pairs.pop() * pairs.pop() print(area)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER WHILE VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR NUMBER IF FUNC_CALL VAR VAR NUMBER VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
n = int(input()) l = [int(i) for i in input().split()] l.sort(reverse=True) ans = 0 area = 0 ignore_next = False for i in range(n - 1): if ignore_next: ignore_next = False continue l1 = l[i] l2 = l[i + 1] length = 0 if l1 == l2: length = l1 elif l1 == l2 + 1: length = l1 - 1 if length: if area: ans += area * length area = 0 else: area = length ignore_next = True print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR VAR IF VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR IF VAR VAR BIN_OP VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
import sys n = int(input()) a = list(map(int, input().split())) if n == 1: print(0) sys.exit() a.sort(reverse=True) d = {} i = 1 while i < len(a): if a[i] == a[i - 1] or a[i] == a[i - 1] - 1: if a[i] not in d: d[a[i]] = 0 d[a[i]] += 2 a[i] = 0 a[i - 1] = 0 i += 1 st = [] for i in d: st.append([i, d[i]]) if len(st) == 0: print(0) sys.exit() ans = st[0][0] * st[0][0] * (st[0][1] // 4) st[0][1] = st[0][1] % 4 i = 1 while i < len(st): if st[i - 1][1] != 0: ans += st[i - 1][0] * st[i][0] st[i - 1][1] -= 2 st[i][1] -= 2 ans += st[i][0] * st[i][0] * (st[i][1] // 4) st[i][1] = st[i][1] % 4 i += 1 print(ans)
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR DICT ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR LIST VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR NUMBER NUMBER BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR NUMBER NUMBER BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR VAR NUMBER NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER BIN_OP VAR VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
n = int(input()) l = [] inline = input().split() for i in range(n): l.append(int(inline[i])) l.sort() right_equal = 1 ans = 0 if len(l) >= 4: for i in range(len(l) - 2, -1, -1): if l[i] != l[i + 1]: if right_equal % 2 != 0: if l[i + 1] - l[i] == 1: l[i + 1] -= 1 right_equal = 2 else: l.pop(i + 1) else: right_equal = 1 else: right_equal += 1 if len(l) >= 4: if l[0] != l[1]: l.pop(0) flag = 1 for i in range(len(l) - 2, -1, -2): if flag == 1: c = l[i] else: ans += c * l[i] c = 0 flag = 1 - flag print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER NUMBER IF BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER IF FUNC_CALL VAR VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR NUMBER ASSIGN VAR VAR VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
n = int(input()) s = map(int, input().split()) s = list(reversed(sorted(s))) i = 1 k = [] while i < n: if s[i - 1] - s[i] == 1: k.append(s[i]) i += 1 elif s[i - 1] == s[i]: k.append(s[i]) i += 1 i += 1 ans = 0 for i in range(1, len(k), 2): ans += k[i] * k[i - 1] print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR LIST WHILE VAR VAR IF BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
n = int(input()) lis = sorted(map(int, input().split())) fi = se = ans = 0 i = n - 1 while i > 0: if fi == 0: if lis[i] == lis[i - 1]: fi = lis[i] i -= 1 elif lis[i] == lis[i - 1] + 1: fi = lis[i - 1] i -= 1 elif se == 0: if lis[i] == lis[i - 1]: se = lis[i] i -= 1 elif lis[i] == lis[i - 1] + 1: se = lis[i - 1] i -= 1 i -= 1 if fi > 0 and se > 0: ans += fi * se fi = 0 se = 0 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER IF VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER IF VAR VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER IF VAR VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER VAR NUMBER VAR BIN_OP VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
from sys import stdin, stdout __author__ = "vks" n = int(stdin.readline()) sticks = [int(i) for i in stdin.readline().split()] sticks.sort() square = 0 n -= 1 while n > 0: a = 0 b = 0 while n > 0 and abs(sticks[n] - sticks[n - 1]) > 1: n -= 1 if n > 0: a = min(sticks[n], sticks[n - 1]) n -= 2 while n > 0 and abs(sticks[n] - sticks[n - 1]) > 1: n -= 1 if n > 0: b = min(sticks[n], sticks[n - 1]) n -= 2 square += a * b stdout.write(str(square) + "\n")
ASSIGN VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER VAR NUMBER WHILE VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER WHILE VAR NUMBER FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR STRING
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
n = int(input()) lst = [] lst.extend(map(int, input().split())) tarea = 0 lst.sort() lst = lst[::-1] lst.append(0) i = 0 mark = 0 ar = [] while i != n: if lst[i] - lst[i + 1] <= 1: ar.append(lst[i + 1]) mark += 1 i += 2 else: i += 1 if mark == 2: tarea = tarea + ar[0] * ar[1] ar = [] mark = 0 print(tarea)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST EXPR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST WHILE VAR VAR IF BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
from sys import stdin, stdout def rectangular(n, array): sum = 0 i = n - 2 crutch = 0 if n < 4: return 0 array.sort() while i > -1: if array[i + 1] - array[i] <= 1: if crutch == 0: crutch = array[i] i -= 1 else: sum += crutch * array[i] crutch = 0 i -= 1 i -= 1 return sum n = int(stdin.readline()) array = [int(i) for i in stdin.readline().split()] print(rectangular(n, array))
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER RETURN NUMBER EXPR FUNC_CALL VAR WHILE VAR NUMBER IF BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER VAR BIN_OP VAR VAR VAR ASSIGN VAR NUMBER VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
n = int(input()) l = [int(i) for i in input().split()] l = sorted(l) rr = [] new = l[::-1] io = 0 f = 0 while io < len(new) - 1: if new[io] - new[io + 1] <= 1: rr.append(new[io]) rr.append(new[io + 1]) io += 2 continue else: io += 1 if len(rr) >= 4: q = len(rr) % 4 if q != 0: rr = rr[:-q] i = 0 while i < len(rr): f += min(rr[i], rr[i + 1]) * min(rr[i + 2], rr[i + 3]) i += 4 print(f)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
sux = 0 two = 0 x = int(input()) s = list(map(int, input().split(" "))) t = [0] * 1000001 for i in s: t[i] += 1 for i in range(len(t) - 1, 0, -1): if t[i] % 2 == 1 and t[i - 1] > 0: t[i] -= 1 t[i - 1] += 1 elif t[i] % 2 == 1 and t[i] > 0: t[i] -= 1 for i in range(len(t) - 1, 0, -1): if two != 0 and t[i] != 0: sux += i * two two = 0 t[i] -= 2 if t[i] % 4 == 0: sux += t[i] // 4 * i * i else: sux += t[i] // 4 * i * i if two != 0: sux += i * two two = 0 else: two = i print(sux)
ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER IF BIN_OP VAR VAR NUMBER NUMBER VAR VAR NUMBER VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR NUMBER VAR VAR NUMBER VAR BIN_OP VAR VAR ASSIGN VAR NUMBER VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR IF VAR NUMBER VAR BIN_OP VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
n = int(input()) ai = list(map(int, input().split())) ai.sort() ans = 0 prev = 0 sticks = [] i = n - 2 while i > -1: if ai[i + 1] <= ai[i] + 1: sticks += [ai[i]] i -= 1 i -= 1 for i in range(1, len(sticks), 2): ans += sticks[i] * sticks[i - 1] print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER IF VAR BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER VAR LIST VAR VAR VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
n = int(input()) arr = list(sorted(map(int, input().split()), reverse=True)) dstick = list() idx = 0 while idx + 1 < n: if arr[idx] == arr[idx + 1] or arr[idx] - 1 == arr[idx + 1]: dstick.append(arr[idx + 1]) idx += 2 else: idx += 1 if len(dstick) & 1 == 1: dstick.pop() ans = 0 for i in range(0, len(dstick) - 1, 2): ans += dstick[i] * dstick[i + 1] print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE BIN_OP VAR NUMBER VAR IF VAR VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER IF BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
import sys input = sys.stdin.readline def ceil(x): if x != int(x): x = int(x) + 1 return x def swaparr(arr, a, b): temp = arr[a] arr[a] = arr[b] arr[b] = temp def gcd(a, b): if b == 0: return a return gcd(b, a % b) def nCr(n, k): if k > n - k: k = n - k res = 1 for i in range(k): res = res * (n - i) res = res / (i + 1) return int(res) def upper_bound(a, x, lo=0, hi=None): if hi == None: hi = len(a) while lo < hi: mid = (lo + hi) // 2 if a[mid] < x: lo = mid + 1 else: hi = mid return lo def primefs(n): primes = {} while n % 2 == 0 and n > 0: primes[2] = primes.get(2, 0) + 1 n = n // 2 for i in range(3, int(n**0.5) + 2, 2): while n % i == 0 and n > 0: primes[i] = primes.get(i, 0) + 1 n = n // i if n > 2: primes[n] = primes.get(n, 0) + 1 return primes def power(x, y, p): res = 1 x = x % p if x == 0: return 0 while y > 0: if y & 1 == 1: res = res * x % p y = y >> 1 x = x * x % p return res def swap(a, b): temp = a a = b b = temp return a, b def find(x, link): p = x while p != link[p]: p = link[p] while x != p: nex = link[x] link[x] = p x = nex return p def union(x, y, link, size): x = find(x, link) y = find(y, link) if size[x] < size[y]: x, y = swap(x, y) if x != y: size[x] += size[y] link[y] = x def sieve(n): prime = [(True) for i in range(n + 1)] p = 2 while p * p <= n: if prime[p] == True: for i in range(p * p, n + 1, p): prime[i] = False p += 1 return prime MAXN = int(100000.0 + 5) def spf_sieve(): spf[1] = 1 for i in range(2, MAXN): spf[i] = i for i in range(4, MAXN, 2): spf[i] = 2 for i in range(3, ceil(MAXN**0.5), 2): if spf[i] == i: for j in range(i * i, MAXN, i): if spf[j] == j: spf[j] = i def factoriazation(x): ret = {} while x != 1: ret[spf[x]] = ret.get(spf[x], 0) + 1 x = x // spf[x] return ret def int_array(): return list(map(int, input().strip().split())) def float_array(): return list(map(float, input().strip().split())) def str_array(): return input().strip().split() MOD = int(1000000000.0) + 7 CMOD = 998244353 INF = float("inf") NINF = -float("inf") n = int(input()) a = sorted(int_array(), reverse=1) x = 0 this = [] for i in a: if not this: this.append(i) elif this[-1] == i: this.append(i) elif len(this) == 2: this.append(i) elif this[-1] == i + 1: this[-1] -= 1 this.append(i) else: this.pop() this.append(i) if len(this) == 4: x += this[0] * this[-1] this = [] print(x)
IMPORT ASSIGN VAR VAR FUNC_DEF IF VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR FUNC_DEF IF VAR NUMBER RETURN VAR RETURN FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_DEF IF VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER RETURN FUNC_CALL VAR VAR FUNC_DEF NUMBER NONE IF VAR NONE ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR DICT WHILE BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR NUMBER BIN_OP FUNC_CALL VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE BIN_OP VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER RETURN NUMBER WHILE VAR NUMBER IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR RETURN VAR VAR FUNC_DEF ASSIGN VAR VAR WHILE VAR VAR VAR ASSIGN VAR VAR VAR WHILE VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR FUNC_DEF ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE BIN_OP VAR VAR VAR IF VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR BIN_OP NUMBER NUMBER FUNC_DEF ASSIGN VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR FUNC_DEF ASSIGN VAR DICT WHILE VAR NUMBER ASSIGN VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR VAR RETURN VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR VAR IF VAR EXPR FUNC_CALL VAR VAR IF VAR NUMBER VAR EXPR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR LIST EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
ans = 0 n = 0 n = int(input("")) l = input("") st = [] for x in l.split(" "): st.append(int(x)) st.sort() i = n - 1 while i >= 3: if st[i] > st[i - 1] + 1: i = i - 1 continue l = st[i - 1] i = i - 2 while i > 0 and st[i] > st[i - 1] + 1: i = i - 1 if i == 0: break b = st[i - 1] ans = ans + l * b i = i - 2 print(ans)
ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR LIST FOR VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER IF VAR VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER VAR VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
n = input() l = list(map(int, input().split())) a, b = 0, 0 result = 0 for i in sorted(l, reverse=True): if a == 0 or a > i + 1: a = i elif b == 0: a, b = 0, i else: result += i * b a, b = 0, 0 print(result)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR VAR IF VAR NUMBER ASSIGN VAR VAR NUMBER VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
n = int(input()) l = list(map(int, input().split())) l.sort(reverse=True) i = 0 ans = [] while i < n: if i < n - 1 and l[i] - l[i + 1] <= 1: ans.append(l[i + 1]) i += 1 i += 1 tem = len(ans) if tem <= 1: print(0) else: i = 0 s = 0 while i < tem - 1: s += ans[i] * ans[i + 1] i += 2 print(s)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST WHILE VAR VAR IF VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
def main(): input() res, it = 0, iter(sorted(map(int, input().split()), reverse=True)) try: while True: a, b, c, d = next(it), next(it), next(it), next(it) while a > b + 1: a, b, c, d = b, c, d, next(it) while c > d + 1: c, d = d, next(it) res += b * d except StopIteration: print(res) main()
FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR NUMBER WHILE NUMBER ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR WHILE VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR VAR VAR VAR FUNC_CALL VAR VAR WHILE VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
from sys import stdin as inp __author__ = "Dmitry Petrushin" __version__ = "3.4" def rectangles(lengths): n_max = 10**6 + 2 sticks = [(0) for _ in range(n_max)] tmp = list() for length in lengths: sticks[length] += 1 for i in range(n_max - 2, 1, -1): for _ in range((sticks[i + 1] % 2 + sticks[i]) // 2): tmp.append(i) if sticks[i] > 0: sticks[i] += sticks[i + 1] % 2 result = 0 for i in range(1, len(tmp), 2): result += tmp[i - 1] * tmp[i] return result def main(): N = inp.readline() lengths = list(map(int, inp.readline().split())) print(rectangles(lengths)) main()
ASSIGN VAR STRING ASSIGN VAR STRING FUNC_DEF ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FOR VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
n = int(input()) sticks = sorted(map(int, input().split()), key=lambda x: -x) area = 0 pairs = [] pos = 0 while pos < n - 1: a, b = sticks[pos], sticks[pos + 1] if a - b <= 1: if len(pairs) == 0: pairs.append(b) else: area += pairs.pop() * b pos += 1 pos += 1 print(area)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
import sys def otb(l): i = 0 while i < n - 1: if l[i] - 1 == l[i + 1]: l[i] -= 1 i += 1 elif l[i] == l[i + 1]: i += 1 i += 1 znach = [] i = 0 while i < n - 1: if l[i] == l[i + 1]: znach.append(l[i]) i += 1 i += 1 return znach def ploshad(n, znach): summa = 0 n = len(znach) for i in range(0, n - 1, 2): summa += znach[i] * znach[i + 1] sys.stdout.write(str(summa)) n = int(sys.stdin.readline()) l = [] l = [int(j) for j in sys.stdin.readline().split()] l.sort(reverse=True) znach = otb(l) ploshad(n, znach)
IMPORT FUNC_DEF ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
m = {} n = int(input()) data = input().split() for i in data: if -int(i) not in m: m[-int(i)] = 1 else: m[-int(i)] += 1 ant = 0 ans = 0 for i in sorted(m): if m[i] > 1: if ant != 0: ans += ant * i m[i] -= 2 ant = 0 ans += m[i] // 4 * (i * i) m[i] %= 4 if m[i] > 1: if ant == 0: ant = i else: ans += i * ant ant = 0 if m[i] % 2 == 1 and i + 1 in m: m[i + 1] += 1 print(ans)
ASSIGN VAR DICT ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR FOR VAR VAR IF FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER IF VAR NUMBER VAR BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR VAR VAR NUMBER IF VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER NUMBER BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
x, y = 0, 0 n = int(input()) n -= 1 l = list(map(int, input().split())) l.sort() t = 0 while n > 0: if l[n] - l[n - 1] <= 1: if not x: x = l[n] - l[n] + l[n - 1] n -= 1 else: y = l[n] - l[n] + l[n - 1] t += x * y x, y = 0, 0 n -= 1 n -= 1 print(t)
ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR NUMBER IF BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER IF VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR ASSIGN VAR VAR NUMBER NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
x = int(input()) L = [int(i) for i in input().split()] L.sort() L = L[::-1] a = 0 c = 0 A = [] while len(L) >= 2: if L[0] == L[1] or L[0] == L[1] + 1: A.append(L[1]) L.pop(0) L.pop(0) else: L.pop(0) try: while c < len(A): a += A[c] * A[c + 1] c += 2 print(a) except IndexError: print(a)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST WHILE FUNC_CALL VAR VAR NUMBER IF VAR NUMBER VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
am = int(input()) arr = list(map(int, input().split())) arr.sort() counted = [0] * 1000000 for i in range(am): counted[arr[i] - 1] += 1 fl = True l = 0 lAdded = 0 haveL = [] haveAm = [] for i in range(len(counted) - 1, -1, -1): if counted[i] != 0: if fl: haveL += [i, i - 1] haveAm += [counted[i] - counted[i] % 2, counted[i] % 2] l = i lAdded = counted[i] % 2 fl = False elif l - i == 1: haveL += [i - 1] haveAm[-1] += counted[i] if haveAm[-1] % 2 == 1: haveAm[-1] -= 1 haveAm += [1] else: haveAm += [0] l = i else: haveL += [i, i - 1] haveAm += [counted[i] - counted[i] % 2, counted[i] % 2] l = i haveTot = [] for i in range(len(haveL)): if haveAm[i] != 0: haveTot += [haveL[i] + 1] * (haveAm[i] // 2) totArea = 0 haveTot.sort(reverse=True) for i in range(0, len(haveTot) // 2 * 2, 2): totArea += haveTot[i] * haveTot[i + 1] print(totArea)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR VAR NUMBER IF VAR VAR LIST VAR BIN_OP VAR NUMBER VAR LIST BIN_OP VAR VAR BIN_OP VAR VAR NUMBER BIN_OP VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP VAR VAR NUMBER VAR LIST BIN_OP VAR NUMBER VAR NUMBER VAR VAR IF BIN_OP VAR NUMBER NUMBER NUMBER VAR NUMBER NUMBER VAR LIST NUMBER VAR LIST NUMBER ASSIGN VAR VAR VAR LIST VAR BIN_OP VAR NUMBER VAR LIST BIN_OP VAR VAR BIN_OP VAR VAR NUMBER BIN_OP VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR BIN_OP LIST BIN_OP VAR VAR NUMBER BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
n = int(input()) rects = [int(s) for s in input().split()] rects.sort() sumsquare = 0 stash = [] i = len(rects) - 1 while i > 0: if rects[i] - rects[i - 1] == 1 or rects[i] == rects[i - 1]: if len(stash) == 2: sumsquare += stash[0] * stash[1] stash.clear() stash.append(rects[i - 1]) rects.pop() rects.pop() i -= 2 else: i -= 1 if len(stash) == 2: sumsquare += stash[0] * stash[1] stash.clear() print(sumsquare)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR NUMBER IF BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR VAR VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER IF FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
n = int(input()) l = list(map(int, input().split())) l.sort() side = [] i = n - 1 while i > 0: s = l[i] if s == l[i - 1]: side.append(s) i -= 2 elif s == l[i - 1] + 1: side.append(s - 1) i -= 2 else: i -= 1 side.sort() i = len(side) - 1 num = 0 while i > 0: num += side[i] * side[i - 1] i -= 2 print(num)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER ASSIGN VAR VAR VAR IF VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER IF VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
n = int(input()) s = input() a = [] for x in s.split(" "): a.append(int(x)) a.sort() ans = 0 k = 0 flag = 0 for i in range(n - 1, 0, -1): if flag: flag = 0 continue if a[i] == a[i - 1] or a[i] == a[i - 1] + 1: if k != 0: ans += k * a[i - 1] k = 0 else: k = a[i - 1] flag = 1 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR ASSIGN VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER IF VAR NUMBER VAR BIN_OP VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
n = int(input()) a = list(map(int, input().split())) a = sorted(a)[::-1] m = 0 total = 0 while True: flag1 = False flag2 = False for i in range(m, n - 1): if (a[i] == a[i + 1] or a[i] - a[i + 1] == 1) and a[i] != -1: flag1 = True x = a[i + 1] m = i + 2 break for i in range(m, n - 1): if (a[i] == a[i + 1] or a[i] - a[i + 1] == 1) and a[i] != -1: flag2 = True y = a[i + 1] m = i + 2 break if flag2 == True: total += x * y else: break print(total)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
n = int(input()) l = [int(i) for i in input().split()] l.sort(reverse=True) a = [] i = 0 while i < len(l) - 1: if l[i] == l[i + 1]: a.append(l[i]) i += 2 elif l[i] == l[i + 1] + 1: a.append(l[i] - 1) i += 2 else: i += 1 if len(a) % 2 != 0: a.append(0) s, i = 0, 0 while i < len(a): s += a[i] * a[i + 1] i += 2 print(s)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER WHILE VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR NUMBER VAR NUMBER IF BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER WHILE VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
def __starting_point(): input() data = sorted(map(int, input().split()), key=lambda x: -x) if len(data) < 4: print(0) return total = 0 i = 0 while i < len(data) - 3: if abs(data[i] - data[i + 1]) > 1: i += 1 continue success = False for j in range(i + 2, len(data) - 1): if abs(data[j] - data[j + 1]) > 1: continue success = True total += min(data[i], data[i + 1]) * min(data[j], data[j + 1]) i = j + 2 break if not success: i += 1 print(total) __starting_point()
FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
n = int(input()) lst = [*map(int, input().split())] lst = [*reversed(sorted(lst))] res, first = [], 1 ex = res.extend for i, x in enumerate(lst[1:]): if x != lst[0]: break first += 1 div, mod = first // 2, first % 2 ex([lst[0]] * div) prev, elem = mod, lst[0] count = 1 if n > first: item = lst[first] for i, x in enumerate(lst[first + 1 :]): if item == x: count += 1 else: div, mod = count // 2, count % 2 if elem - item == 1: if prev == 1 and mod == 1: div += 1 prev = 0 else: prev = max(mod, prev) else: prev = mod ex([item] * div) elem, item, count = item, x, 1 div, mod = count // 2, count % 2 if elem - item == 1: if prev == 1 and mod == 1: div += 1 ex([item] * div) result = 0 for i in range(1, len(res), 2): result += res[i] * res[i - 1] print(result)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR LIST NUMBER ASSIGN VAR VAR FOR VAR VAR FUNC_CALL VAR VAR NUMBER IF VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP LIST VAR NUMBER VAR ASSIGN VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR FOR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER IF BIN_OP VAR VAR NUMBER IF VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP LIST VAR VAR ASSIGN VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER IF BIN_OP VAR VAR NUMBER IF VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP LIST VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
In the evening, after the contest Ilya was bored, and he really felt like maximizing. He remembered that he had a set of n sticks and an instrument. Each stick is characterized by its length l_{i}. Ilya decided to make a rectangle from the sticks. And due to his whim, he decided to make rectangles in such a way that maximizes their total area. Each stick is used in making at most one rectangle, it is possible that some of sticks remain unused. Bending sticks is not allowed. Sticks with lengths a_1, a_2, a_3 and a_4 can make a rectangle if the following properties are observed: a_1 ≤ a_2 ≤ a_3 ≤ a_4 a_1 = a_2 a_3 = a_4 A rectangle can be made of sticks with lengths of, for example, 3 3 3 3 or 2 2 4 4. A rectangle cannot be made of, for example, sticks 5 5 5 7. Ilya also has an instrument which can reduce the length of the sticks. The sticks are made of a special material, so the length of each stick can be reduced by at most one. For example, a stick with length 5 can either stay at this length or be transformed into a stick of length 4. You have to answer the question — what maximum total area of the rectangles can Ilya get with a file if makes rectangles from the available sticks? -----Input----- The first line of the input contains a positive integer n (1 ≤ n ≤ 10^5) — the number of the available sticks. The second line of the input contains n positive integers l_{i} (2 ≤ l_{i} ≤ 10^6) — the lengths of the sticks. -----Output----- The first line of the output must contain a single non-negative integer — the maximum total area of the rectangles that Ilya can make from the available sticks. -----Examples----- Input 4 2 4 4 2 Output 8 Input 4 2 2 3 5 Output 0 Input 4 100003 100004 100005 100006 Output 10000800015
n = int(input()) l = list(map(int, input().split())) m = {} m2 = set() for i in range(1, 10**6 + 1): m[i] = 0 for i in range(n): m[l[i]] += 1 m2.add(l[i]) if l[i] >= 2: m2.add(l[i] - 1) m1 = [] for i in range(10**6, 1, -1): if m[i] % 2 == 1 and m[i - 1] > 0: m[i] -= 1 m[i - 1] += 1 elif m[i] % 2 == 1: m[i] -= 1 for i in m2: if m[i] != 0: m1.append(i) m1.sort(reverse=True) cnt = 0 for i in range(len(m1)): cnt += m[m1[i]] // 4 * m1[i] ** 2 if m[m1[i]] % 4 == 2 and i != len(m1) - 1: m[m1[i + 1]] -= 2 cnt += m1[i + 1] * m1[i] print(cnt)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP NUMBER NUMBER NUMBER NUMBER IF BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER IF BIN_OP VAR VAR NUMBER NUMBER VAR VAR NUMBER FOR VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR NUMBER BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR VAR NUMBER NUMBER VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
You have to restore the wall. The wall consists of $N$ pillars of bricks, the height of the $i$-th pillar is initially equal to $h_{i}$, the height is measured in number of bricks. After the restoration all the $N$ pillars should have equal heights. You are allowed the following operations: put a brick on top of one pillar, the cost of this operation is $A$; remove a brick from the top of one non-empty pillar, the cost of this operation is $R$; move a brick from the top of one non-empty pillar to the top of another pillar, the cost of this operation is $M$. You cannot create additional pillars or ignore some of pre-existing pillars even if their height becomes $0$. What is the minimal total cost of restoration, in other words, what is the minimal total cost to make all the pillars of equal height? -----Input----- The first line of input contains four integers $N$, $A$, $R$, $M$ ($1 \le N \le 10^{5}$, $0 \le A, R, M \le 10^{4}$) — the number of pillars and the costs of operations. The second line contains $N$ integers $h_{i}$ ($0 \le h_{i} \le 10^{9}$) — initial heights of pillars. -----Output----- Print one integer — the minimal cost of restoration. -----Examples----- Input 3 1 100 100 1 3 8 Output 12 Input 3 100 1 100 1 3 8 Output 9 Input 3 100 100 1 1 3 8 Output 4 Input 5 1 2 4 5 5 3 6 5 Output 4 Input 5 1 2 2 5 5 3 6 5 Output 3
def f(h): numofh = 0 numofl = 0 for i in li: if i < h: numofl += h - i else: numofh += i - h if numofh > numofl: return m * numofl + (numofh - numofl) * r else: return m * numofh + (numofl - numofh) * a def binary_search(low, high): if low > high: return mid = (low + high) // 2 if f(mid - 1) < f(mid): return binary_search(low, mid - 1) if f(mid + 1) < f(mid): return binary_search(mid + 1, high) return mid n, a, r, m = map(int, input().split()) l = input().split() li = [int(i) for i in l] m = min(a + r, m) print(f(binary_search(0, 10**10)))
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR IF VAR VAR RETURN BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR RETURN BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR FUNC_DEF IF VAR VAR RETURN ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR RETURN FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR RETURN FUNC_CALL VAR BIN_OP VAR NUMBER VAR RETURN VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP NUMBER NUMBER
You have to restore the wall. The wall consists of $N$ pillars of bricks, the height of the $i$-th pillar is initially equal to $h_{i}$, the height is measured in number of bricks. After the restoration all the $N$ pillars should have equal heights. You are allowed the following operations: put a brick on top of one pillar, the cost of this operation is $A$; remove a brick from the top of one non-empty pillar, the cost of this operation is $R$; move a brick from the top of one non-empty pillar to the top of another pillar, the cost of this operation is $M$. You cannot create additional pillars or ignore some of pre-existing pillars even if their height becomes $0$. What is the minimal total cost of restoration, in other words, what is the minimal total cost to make all the pillars of equal height? -----Input----- The first line of input contains four integers $N$, $A$, $R$, $M$ ($1 \le N \le 10^{5}$, $0 \le A, R, M \le 10^{4}$) — the number of pillars and the costs of operations. The second line contains $N$ integers $h_{i}$ ($0 \le h_{i} \le 10^{9}$) — initial heights of pillars. -----Output----- Print one integer — the minimal cost of restoration. -----Examples----- Input 3 1 100 100 1 3 8 Output 12 Input 3 100 1 100 1 3 8 Output 9 Input 3 100 100 1 1 3 8 Output 4 Input 5 1 2 4 5 5 3 6 5 Output 4 Input 5 1 2 2 5 5 3 6 5 Output 3
def calc(h): lo = hi = 0 for cur in arr: if cur < h: lo += h - cur else: hi += cur - h return m * min(lo, hi) + ((hi - lo) * r if hi >= lo else (lo - hi) * a) def solve(): le, ri = 0, 5 + 10**9 while le + 50 < ri: g, h = le + (ri - le) // 3, le + 2 * (ri - le) // 3 if calc(g) < calc(h): ri = h else: le = g ret = calc(le) for i in range(le, ri + 5): ret = min(ret, calc(i)) return ret n, a, r, m = map(int, input().split()) arr = list(map(int, input().split())) m = min(m, a + r) print(solve())
FUNC_DEF ASSIGN VAR VAR NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR RETURN BIN_OP BIN_OP VAR FUNC_CALL VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR FUNC_DEF ASSIGN VAR VAR NUMBER BIN_OP NUMBER BIN_OP NUMBER NUMBER WHILE BIN_OP VAR NUMBER VAR ASSIGN VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR BIN_OP BIN_OP NUMBER BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR RETURN VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR
You have to restore the wall. The wall consists of $N$ pillars of bricks, the height of the $i$-th pillar is initially equal to $h_{i}$, the height is measured in number of bricks. After the restoration all the $N$ pillars should have equal heights. You are allowed the following operations: put a brick on top of one pillar, the cost of this operation is $A$; remove a brick from the top of one non-empty pillar, the cost of this operation is $R$; move a brick from the top of one non-empty pillar to the top of another pillar, the cost of this operation is $M$. You cannot create additional pillars or ignore some of pre-existing pillars even if their height becomes $0$. What is the minimal total cost of restoration, in other words, what is the minimal total cost to make all the pillars of equal height? -----Input----- The first line of input contains four integers $N$, $A$, $R$, $M$ ($1 \le N \le 10^{5}$, $0 \le A, R, M \le 10^{4}$) — the number of pillars and the costs of operations. The second line contains $N$ integers $h_{i}$ ($0 \le h_{i} \le 10^{9}$) — initial heights of pillars. -----Output----- Print one integer — the minimal cost of restoration. -----Examples----- Input 3 1 100 100 1 3 8 Output 12 Input 3 100 1 100 1 3 8 Output 9 Input 3 100 100 1 1 3 8 Output 4 Input 5 1 2 4 5 5 3 6 5 Output 4 Input 5 1 2 2 5 5 3 6 5 Output 3
def find_cost(a, r, m, heights, x): inc, dec = [0, 0] for h in heights: if h >= x: dec += h - x else: inc += x - h if inc * dec == 0 or a + r <= m: return a * inc + r * dec if inc >= dec: return m * dec + (inc - dec) * a else: return m * inc + (dec - inc) * r def main(): n, a, r, m = [int(x) for x in input().split()] heights = [int(x) for x in input().split()] ans = int(1e18) right = int(1000000000.0) + 1 left = 0 while right - left > 2: m1 = left + (right - left) // 3 m2 = right - (right - left) // 3 cost_m1 = find_cost(a, r, m, heights, m1) cost_m2 = find_cost(a, r, m, heights, m2) if cost_m1 <= cost_m2: right = m2 else: left = m1 ans = min(cost_m1, cost_m2) print(ans) main()
FUNC_DEF ASSIGN VAR VAR LIST NUMBER NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER BIN_OP VAR VAR VAR RETURN BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR IF VAR VAR RETURN BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR RETURN BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR FUNC_DEF ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR NUMBER WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
You have to restore the wall. The wall consists of $N$ pillars of bricks, the height of the $i$-th pillar is initially equal to $h_{i}$, the height is measured in number of bricks. After the restoration all the $N$ pillars should have equal heights. You are allowed the following operations: put a brick on top of one pillar, the cost of this operation is $A$; remove a brick from the top of one non-empty pillar, the cost of this operation is $R$; move a brick from the top of one non-empty pillar to the top of another pillar, the cost of this operation is $M$. You cannot create additional pillars or ignore some of pre-existing pillars even if their height becomes $0$. What is the minimal total cost of restoration, in other words, what is the minimal total cost to make all the pillars of equal height? -----Input----- The first line of input contains four integers $N$, $A$, $R$, $M$ ($1 \le N \le 10^{5}$, $0 \le A, R, M \le 10^{4}$) — the number of pillars and the costs of operations. The second line contains $N$ integers $h_{i}$ ($0 \le h_{i} \le 10^{9}$) — initial heights of pillars. -----Output----- Print one integer — the minimal cost of restoration. -----Examples----- Input 3 1 100 100 1 3 8 Output 12 Input 3 100 1 100 1 3 8 Output 9 Input 3 100 100 1 1 3 8 Output 4 Input 5 1 2 4 5 5 3 6 5 Output 4 Input 5 1 2 2 5 5 3 6 5 Output 3
n, a, r, m = map(int, input().split()) h = list(map(int, input().split())) m = min(m, a + r) def get(M): up = 0 dw = 0 for e in h: if e > M: up += e - M else: dw += M - e ans = m * min(dw, up) if dw > up: ans += (dw - up) * a else: ans += (up - dw) * r return ans L = 0 R = int(1000000000.0) mn = int(1e18) while R - L > 10: M1 = L + (R - L) // 3 M2 = R - (R - L) // 3 V1 = get(M1) V2 = get(M2) mn = min(mn, V1) mn = min(mn, V2) if V1 < V2: R = M2 elif V2 < V1: L = M1 else: L = M1 R = M2 for it in range(L, R + 1): mn = min(mn, get(it)) print(mn)
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR RETURN VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
You have to restore the wall. The wall consists of $N$ pillars of bricks, the height of the $i$-th pillar is initially equal to $h_{i}$, the height is measured in number of bricks. After the restoration all the $N$ pillars should have equal heights. You are allowed the following operations: put a brick on top of one pillar, the cost of this operation is $A$; remove a brick from the top of one non-empty pillar, the cost of this operation is $R$; move a brick from the top of one non-empty pillar to the top of another pillar, the cost of this operation is $M$. You cannot create additional pillars or ignore some of pre-existing pillars even if their height becomes $0$. What is the minimal total cost of restoration, in other words, what is the minimal total cost to make all the pillars of equal height? -----Input----- The first line of input contains four integers $N$, $A$, $R$, $M$ ($1 \le N \le 10^{5}$, $0 \le A, R, M \le 10^{4}$) — the number of pillars and the costs of operations. The second line contains $N$ integers $h_{i}$ ($0 \le h_{i} \le 10^{9}$) — initial heights of pillars. -----Output----- Print one integer — the minimal cost of restoration. -----Examples----- Input 3 1 100 100 1 3 8 Output 12 Input 3 100 1 100 1 3 8 Output 9 Input 3 100 100 1 1 3 8 Output 4 Input 5 1 2 4 5 5 3 6 5 Output 4 Input 5 1 2 2 5 5 3 6 5 Output 3
def rn(): a = int(input()) return a def rl(): a = list(map(int, input().split())) return a def val(v, h, a, r, m): ls = 0 ms = 0 for i in h: if i < v: ls += v - i else: ms += i - v cost = min(ls, ms) * m if ls > ms: cost += (ls - ms) * a else: cost += (ms - ls) * r return cost def find(s, e, h, a, r, m): if s == e: return val(s, h, a, r, m) elif e == s + 1: return min(val(s, h, a, r, m), val(e, h, a, r, m)) md = s + (e - s) // 2 v1 = val(md - 1, h, a, r, m) v2 = val(md, h, a, r, m) v3 = val(md + 1, h, a, r, m) if v2 <= v3 and v2 <= v1: return v2 if v1 < v2: return find(s, md, h, a, r, m) else: return find(md, e, h, a, r, m) [n, a, r, m] = rl() h = rl() h.sort() if a + r < m: m = a + r ans = int(2e18) cs = [(0) for i in range(n)] s = h[0] e = h[-1] print(find(s, e, h, a, r, m))
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR RETURN VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR VAR IF VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR RETURN VAR FUNC_DEF IF VAR VAR RETURN FUNC_CALL VAR VAR VAR VAR VAR VAR IF VAR BIN_OP VAR NUMBER RETURN FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR VAR VAR IF VAR VAR VAR VAR RETURN VAR IF VAR VAR RETURN FUNC_CALL VAR VAR VAR VAR VAR VAR VAR RETURN FUNC_CALL VAR VAR VAR VAR VAR VAR VAR ASSIGN LIST VAR VAR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR
You have to restore the wall. The wall consists of $N$ pillars of bricks, the height of the $i$-th pillar is initially equal to $h_{i}$, the height is measured in number of bricks. After the restoration all the $N$ pillars should have equal heights. You are allowed the following operations: put a brick on top of one pillar, the cost of this operation is $A$; remove a brick from the top of one non-empty pillar, the cost of this operation is $R$; move a brick from the top of one non-empty pillar to the top of another pillar, the cost of this operation is $M$. You cannot create additional pillars or ignore some of pre-existing pillars even if their height becomes $0$. What is the minimal total cost of restoration, in other words, what is the minimal total cost to make all the pillars of equal height? -----Input----- The first line of input contains four integers $N$, $A$, $R$, $M$ ($1 \le N \le 10^{5}$, $0 \le A, R, M \le 10^{4}$) — the number of pillars and the costs of operations. The second line contains $N$ integers $h_{i}$ ($0 \le h_{i} \le 10^{9}$) — initial heights of pillars. -----Output----- Print one integer — the minimal cost of restoration. -----Examples----- Input 3 1 100 100 1 3 8 Output 12 Input 3 100 1 100 1 3 8 Output 9 Input 3 100 100 1 1 3 8 Output 4 Input 5 1 2 4 5 5 3 6 5 Output 4 Input 5 1 2 2 5 5 3 6 5 Output 3
import sys def solve(): input = sys.stdin.readline N, A, R, M = map(int, input().split()) H = [int(h) for h in input().split()] H.sort() tB = [0] * (N + 1) for i, h in enumerate(H): tB[i + 1] = tB[i] + h minCost = 10**20 for i in range(N): toAdd = H[i] * i - tB[i] toSub = tB[N] - tB[i + 1] - H[i] * (N - i - 1) if M >= A + R: minCost = min(minCost, A * toAdd + R * toSub) else: mN = min(toAdd, toSub) minCost = min(minCost, A * (toAdd - mN) + R * (toSub - mN) + M * mN) if M < A + R: sumH = sum(H) lcost = 0 hcost = 0 fH = sumH // N for i, h in enumerate(H): if h < fH: lcost += (fH - h) * M if h > fH + 1: hcost += (h - fH - 1) * M lcost += sumH % N * R hcost += (N - sumH % N) * A minCost = min(minCost, lcost) minCost = min(minCost, hcost) print(minCost) return 0 solve()
IMPORT FUNC_DEF ASSIGN VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR VAR BIN_OP VAR VAR IF VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR FOR VAR VAR FUNC_CALL VAR VAR IF VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR IF VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR RETURN NUMBER EXPR FUNC_CALL VAR
You have to restore the wall. The wall consists of $N$ pillars of bricks, the height of the $i$-th pillar is initially equal to $h_{i}$, the height is measured in number of bricks. After the restoration all the $N$ pillars should have equal heights. You are allowed the following operations: put a brick on top of one pillar, the cost of this operation is $A$; remove a brick from the top of one non-empty pillar, the cost of this operation is $R$; move a brick from the top of one non-empty pillar to the top of another pillar, the cost of this operation is $M$. You cannot create additional pillars or ignore some of pre-existing pillars even if their height becomes $0$. What is the minimal total cost of restoration, in other words, what is the minimal total cost to make all the pillars of equal height? -----Input----- The first line of input contains four integers $N$, $A$, $R$, $M$ ($1 \le N \le 10^{5}$, $0 \le A, R, M \le 10^{4}$) — the number of pillars and the costs of operations. The second line contains $N$ integers $h_{i}$ ($0 \le h_{i} \le 10^{9}$) — initial heights of pillars. -----Output----- Print one integer — the minimal cost of restoration. -----Examples----- Input 3 1 100 100 1 3 8 Output 12 Input 3 100 1 100 1 3 8 Output 9 Input 3 100 100 1 1 3 8 Output 4 Input 5 1 2 4 5 5 3 6 5 Output 4 Input 5 1 2 2 5 5 3 6 5 Output 3
from sys import stdin, stdout N, A, R, M = map(int, stdin.readline().split()) ha = list(map(int, stdin.readline().split())) def calc(v, ha, A, R, M): a = 0 r = 0 for h in ha: a += max(v - h, 0) r += max(h - v, 0) m = min(a, r) return min(a * A + r * R, m * M + (a - m) * A + (r - m) * R) def restorer_distance(N, A, R, M, ha): l = min(ha) r = max(ha) lans = 0 rans = 0 while l < r: lm = l + (r - l) // 3 rm = r - (r - l) // 3 lans = calc(lm, ha, A, R, M) rans = calc(rm, ha, A, R, M) if lans <= rans: r = rm - 1 else: l = lm + 1 return min(lans, rans) stdout.write(str(restorer_distance(N, A, R, M, ha)) + "\n")
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR VAR STRING
You have to restore the wall. The wall consists of $N$ pillars of bricks, the height of the $i$-th pillar is initially equal to $h_{i}$, the height is measured in number of bricks. After the restoration all the $N$ pillars should have equal heights. You are allowed the following operations: put a brick on top of one pillar, the cost of this operation is $A$; remove a brick from the top of one non-empty pillar, the cost of this operation is $R$; move a brick from the top of one non-empty pillar to the top of another pillar, the cost of this operation is $M$. You cannot create additional pillars or ignore some of pre-existing pillars even if their height becomes $0$. What is the minimal total cost of restoration, in other words, what is the minimal total cost to make all the pillars of equal height? -----Input----- The first line of input contains four integers $N$, $A$, $R$, $M$ ($1 \le N \le 10^{5}$, $0 \le A, R, M \le 10^{4}$) — the number of pillars and the costs of operations. The second line contains $N$ integers $h_{i}$ ($0 \le h_{i} \le 10^{9}$) — initial heights of pillars. -----Output----- Print one integer — the minimal cost of restoration. -----Examples----- Input 3 1 100 100 1 3 8 Output 12 Input 3 100 1 100 1 3 8 Output 9 Input 3 100 100 1 1 3 8 Output 4 Input 5 1 2 4 5 5 3 6 5 Output 4 Input 5 1 2 2 5 5 3 6 5 Output 3
from sys import stdin n, a, r, m = map(int, stdin.readline().split()) he = list(map(int, stdin.readline().split())) st = min(he) en = max(he) ans = 10**20 while st <= en: mid1 = st + (en - st) // 3 mid2 = en - (en - st) // 3 re = ad = 0 for i in he: re += max(0, i - mid1) ad += max(0, mid1 - i) if m < a + r: cost = min(re, ad) * m if re < ad: cost += (ad - re) * a else: cost += (re - ad) * r else: cost = re * r + ad * a re = ad = 0 for i in he: re += max(0, i - mid2) ad += max(0, mid2 - i) if m < a + r: cost1 = min(re, ad) * m if re < ad: cost1 += (ad - re) * a else: cost1 += (re - ad) * r else: cost1 = re * r + ad * a if cost > cost1: st = mid1 + 1 elif cost < cost1: en = mid2 - 1 else: st = mid1 + 1 en = mid2 - 1 ans = min(ans, cost1, cost) print(ans)
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP NUMBER NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR IF VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR VAR IF VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR IF VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR VAR IF VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
You have to restore the wall. The wall consists of $N$ pillars of bricks, the height of the $i$-th pillar is initially equal to $h_{i}$, the height is measured in number of bricks. After the restoration all the $N$ pillars should have equal heights. You are allowed the following operations: put a brick on top of one pillar, the cost of this operation is $A$; remove a brick from the top of one non-empty pillar, the cost of this operation is $R$; move a brick from the top of one non-empty pillar to the top of another pillar, the cost of this operation is $M$. You cannot create additional pillars or ignore some of pre-existing pillars even if their height becomes $0$. What is the minimal total cost of restoration, in other words, what is the minimal total cost to make all the pillars of equal height? -----Input----- The first line of input contains four integers $N$, $A$, $R$, $M$ ($1 \le N \le 10^{5}$, $0 \le A, R, M \le 10^{4}$) — the number of pillars and the costs of operations. The second line contains $N$ integers $h_{i}$ ($0 \le h_{i} \le 10^{9}$) — initial heights of pillars. -----Output----- Print one integer — the minimal cost of restoration. -----Examples----- Input 3 1 100 100 1 3 8 Output 12 Input 3 100 1 100 1 3 8 Output 9 Input 3 100 100 1 1 3 8 Output 4 Input 5 1 2 4 5 5 3 6 5 Output 4 Input 5 1 2 2 5 5 3 6 5 Output 3
N, A, R, M = map(int, input().split()) h = list(map(int, input().split())) if A * R == 0: print(0) return if M > A + R: def condition(num): test = 0 for i in range(N): if num > h[i]: test += A else: test -= R return 0 >= test start = 1 end = 10**10 while end - start > 1: test = (end + start) // 2 if condition(test): start = test else: end = test if condition(end): ans = 0 for i in range(N): if end > h[i]: ans += A * (end - h[i]) else: ans += R * (h[i] - end) print(ans) elif condition(start): ans = 0 for i in range(N): if start > h[i]: ans += A * (start - h[i]) else: ans += R * (h[i] - start) print(ans) else: print(R * sum(h)) else: H = sum(h) q = H // N test1 = 0 def condition1(num): count = 0 for i in range(N): count += int(h[i] < num) return 0 >= M * count - R * N start = 1 end = q while end - start > 1: test = (end + start) // 2 if condition1(test): start = test else: end = test if condition1(end): for i in range(N): if end > h[i]: test1 += M * (end - h[i]) test1 += R * (H - N * end) elif condition1(start): for i in range(N): if start > h[i]: test1 += M * (start - h[i]) test1 += R * (H - N * start) else: test1 = H * R test2 = 0 def condition2(num): count = 0 for i in range(N): count += int(h[i] > num) return 0 >= count * M - A * N start = q + 1 end = max(h) - 1 while end - start > 1: test = (end + start) // 2 if condition2(test): end = test else: start = test if condition2(start): for i in range(N): if h[i] >= start: test2 += M * (h[i] - start) test2 += A * (N * start - H) elif condition2(end): for i in range(N): if h[i] >= end: test2 += M * (h[i] - end) test2 += A * (N * end - H) else: test2 = A * (N * max(h) - H) print(min(test1, test2))
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN IF VAR BIN_OP VAR VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR VAR VAR RETURN NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR RETURN NUMBER BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR BIN_OP VAR BIN_OP VAR VAR IF FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR RETURN NUMBER BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR VAR IF FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You have to restore the wall. The wall consists of $N$ pillars of bricks, the height of the $i$-th pillar is initially equal to $h_{i}$, the height is measured in number of bricks. After the restoration all the $N$ pillars should have equal heights. You are allowed the following operations: put a brick on top of one pillar, the cost of this operation is $A$; remove a brick from the top of one non-empty pillar, the cost of this operation is $R$; move a brick from the top of one non-empty pillar to the top of another pillar, the cost of this operation is $M$. You cannot create additional pillars or ignore some of pre-existing pillars even if their height becomes $0$. What is the minimal total cost of restoration, in other words, what is the minimal total cost to make all the pillars of equal height? -----Input----- The first line of input contains four integers $N$, $A$, $R$, $M$ ($1 \le N \le 10^{5}$, $0 \le A, R, M \le 10^{4}$) — the number of pillars and the costs of operations. The second line contains $N$ integers $h_{i}$ ($0 \le h_{i} \le 10^{9}$) — initial heights of pillars. -----Output----- Print one integer — the minimal cost of restoration. -----Examples----- Input 3 1 100 100 1 3 8 Output 12 Input 3 100 1 100 1 3 8 Output 9 Input 3 100 100 1 1 3 8 Output 4 Input 5 1 2 4 5 5 3 6 5 Output 4 Input 5 1 2 2 5 5 3 6 5 Output 3
def cost(arr, target, a, r, m): c_add = 0 c_rem = 0 for hi in arr: if hi > target: c_rem += hi - target else: c_add += target - hi move_amount = min(c_add, c_rem) with_m = move_amount * m + (c_add - move_amount) * a + (c_rem - move_amount) * r wout_m = c_add * a + c_rem * r return min(with_m, wout_m) n, a, r, m = map(int, input().split()) h = list(map(int, input().split())) le = min(h) ri = max(h) while ri > le + 10: mid = (le + ri) // 2 cm = cost(h, mid, a, r, m) cn = cost(h, mid + 1, a, r, m) if cn <= cm: le = mid + 1 else: ri = mid print(min([cost(h, tar, a, r, m) for tar in range(le, ri + 1)]))
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR RETURN FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER
You have to restore the wall. The wall consists of $N$ pillars of bricks, the height of the $i$-th pillar is initially equal to $h_{i}$, the height is measured in number of bricks. After the restoration all the $N$ pillars should have equal heights. You are allowed the following operations: put a brick on top of one pillar, the cost of this operation is $A$; remove a brick from the top of one non-empty pillar, the cost of this operation is $R$; move a brick from the top of one non-empty pillar to the top of another pillar, the cost of this operation is $M$. You cannot create additional pillars or ignore some of pre-existing pillars even if their height becomes $0$. What is the minimal total cost of restoration, in other words, what is the minimal total cost to make all the pillars of equal height? -----Input----- The first line of input contains four integers $N$, $A$, $R$, $M$ ($1 \le N \le 10^{5}$, $0 \le A, R, M \le 10^{4}$) — the number of pillars and the costs of operations. The second line contains $N$ integers $h_{i}$ ($0 \le h_{i} \le 10^{9}$) — initial heights of pillars. -----Output----- Print one integer — the minimal cost of restoration. -----Examples----- Input 3 1 100 100 1 3 8 Output 12 Input 3 100 1 100 1 3 8 Output 9 Input 3 100 100 1 1 3 8 Output 4 Input 5 1 2 4 5 5 3 6 5 Output 4 Input 5 1 2 2 5 5 3 6 5 Output 3
import sys input = sys.stdin.readline def compress(string): string.append(-1) n = len(string) begin, end, cnt = 0, 1, 1 ans = [] while end < n: if string[begin] == string[end]: end, cnt = end + 1, cnt + 1 else: ans.append((string[begin], cnt)) begin, end, cnt = end, end + 1, 1 return ans n, a, r, m = map(int, input().split()) h = list(map(int, input().split())) h = sorted(h, reverse=True) sum_h = sum(h) ans = 0 ceil = -(-sum_h // n) tmp = 0 for i in range(n): diff = max(h[i] - ceil, 0) tmp += diff * m yojoh = sum_h - sum_h // n * n cost = (n - yojoh) * a ans = tmp + cost floor = sum_h // n tmp = 0 for i in range(n): diff = max(floor - h[i], 0) tmp += diff * m yojoh = sum_h - sum_h // n * n cost = yojoh * r ans = min(tmp + cost, ans) ans2 = 10**30 ptn = compress(h) add = [0] * len(ptn) add_cnt = [0] * len(ptn) red = [0] * len(ptn) red_cnt = [0] * len(ptn) cnt = 0 move_cnt = 0 height = 0 cost = 0 for i in range(len(ptn)): tmp_h, tmp_c = ptn[i] cost += cnt * abs(height - tmp_h) * r move_cnt += cnt * abs(height - tmp_h) red[i] = cost red_cnt[i] = move_cnt height = tmp_h cnt += tmp_c cnt = 0 height = 0 cost = 0 move_cnt = 0 ptn = ptn[::-1] for i in range(len(ptn)): tmp_h, tmp_c = ptn[i] cost += cnt * abs(height - tmp_h) * a move_cnt += cnt * abs(height - tmp_h) add[i] = cost add_cnt[i] = move_cnt height = tmp_h cnt += tmp_c add = add[::-1] add_cnt = add_cnt[::-1] for i in range(len(ptn)): ans2 = min(ans2, add[i] + red[i]) min_ = min(add_cnt[i], red_cnt[i]) cost = -min_ * (a + r) + min_ * m ans2 = min(ans2, add[i] + red[i] + cost) print(min(ans, ans2))
IMPORT ASSIGN VAR VAR FUNC_DEF EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR LIST WHILE VAR VAR IF VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR BIN_OP VAR NUMBER NUMBER RETURN VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You have to restore the wall. The wall consists of $N$ pillars of bricks, the height of the $i$-th pillar is initially equal to $h_{i}$, the height is measured in number of bricks. After the restoration all the $N$ pillars should have equal heights. You are allowed the following operations: put a brick on top of one pillar, the cost of this operation is $A$; remove a brick from the top of one non-empty pillar, the cost of this operation is $R$; move a brick from the top of one non-empty pillar to the top of another pillar, the cost of this operation is $M$. You cannot create additional pillars or ignore some of pre-existing pillars even if their height becomes $0$. What is the minimal total cost of restoration, in other words, what is the minimal total cost to make all the pillars of equal height? -----Input----- The first line of input contains four integers $N$, $A$, $R$, $M$ ($1 \le N \le 10^{5}$, $0 \le A, R, M \le 10^{4}$) — the number of pillars and the costs of operations. The second line contains $N$ integers $h_{i}$ ($0 \le h_{i} \le 10^{9}$) — initial heights of pillars. -----Output----- Print one integer — the minimal cost of restoration. -----Examples----- Input 3 1 100 100 1 3 8 Output 12 Input 3 100 1 100 1 3 8 Output 9 Input 3 100 100 1 1 3 8 Output 4 Input 5 1 2 4 5 5 3 6 5 Output 4 Input 5 1 2 2 5 5 3 6 5 Output 3
n, a, r, m = [int(x) for x in input().split()] height = [int(x) for x in input().split()] hmax = max(height) height.sort() def tellCost(h): cost = 0 add, remove = 0, 0 for i in range(n): if h > height[i]: add += abs(h - height[i]) else: remove += abs(h - height[i]) move = min(remove, add) if a + r >= m: cost += m * move if add > remove: cost += abs(add - remove) * a else: cost += abs(add - remove) * r else: cost += add * a cost += remove * r return cost s, e = 0, hmax while s < e: mid = (s + e) // 2 cost1, cost2 = tellCost(mid), tellCost(mid + 1) if cost2 > cost1: e = mid else: s = mid + 1 print(tellCost(s))
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR IF VAR VAR VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR VAR VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR RETURN VAR ASSIGN VAR VAR NUMBER VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
You have to restore the wall. The wall consists of $N$ pillars of bricks, the height of the $i$-th pillar is initially equal to $h_{i}$, the height is measured in number of bricks. After the restoration all the $N$ pillars should have equal heights. You are allowed the following operations: put a brick on top of one pillar, the cost of this operation is $A$; remove a brick from the top of one non-empty pillar, the cost of this operation is $R$; move a brick from the top of one non-empty pillar to the top of another pillar, the cost of this operation is $M$. You cannot create additional pillars or ignore some of pre-existing pillars even if their height becomes $0$. What is the minimal total cost of restoration, in other words, what is the minimal total cost to make all the pillars of equal height? -----Input----- The first line of input contains four integers $N$, $A$, $R$, $M$ ($1 \le N \le 10^{5}$, $0 \le A, R, M \le 10^{4}$) — the number of pillars and the costs of operations. The second line contains $N$ integers $h_{i}$ ($0 \le h_{i} \le 10^{9}$) — initial heights of pillars. -----Output----- Print one integer — the minimal cost of restoration. -----Examples----- Input 3 1 100 100 1 3 8 Output 12 Input 3 100 1 100 1 3 8 Output 9 Input 3 100 100 1 1 3 8 Output 4 Input 5 1 2 4 5 5 3 6 5 Output 4 Input 5 1 2 2 5 5 3 6 5 Output 3
n, a, r, m = map(int, input().split()) if m > a + r: m = a + r h = [int(i) for i in input().split()] def checker(height): above, below = 0, 0 for i in h: if i > height: above += i - height elif i < height: below += height - i if below > above: return above * m + (below - above) * a elif below < above: return below * m + (above - below) * r return below * m lo, hi = 0, 1000000000 while lo < hi: mid = (lo + (hi - 1)) // 2 mx = checker(mid) mx1 = checker(mid + 1) if mx < mx1: hi = mid else: lo = mid + 1 print(min(mx1, mx))
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR NUMBER NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR IF VAR VAR VAR BIN_OP VAR VAR IF VAR VAR RETURN BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR IF VAR VAR RETURN BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR RETURN BIN_OP VAR VAR ASSIGN VAR VAR NUMBER NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You have to restore the wall. The wall consists of $N$ pillars of bricks, the height of the $i$-th pillar is initially equal to $h_{i}$, the height is measured in number of bricks. After the restoration all the $N$ pillars should have equal heights. You are allowed the following operations: put a brick on top of one pillar, the cost of this operation is $A$; remove a brick from the top of one non-empty pillar, the cost of this operation is $R$; move a brick from the top of one non-empty pillar to the top of another pillar, the cost of this operation is $M$. You cannot create additional pillars or ignore some of pre-existing pillars even if their height becomes $0$. What is the minimal total cost of restoration, in other words, what is the minimal total cost to make all the pillars of equal height? -----Input----- The first line of input contains four integers $N$, $A$, $R$, $M$ ($1 \le N \le 10^{5}$, $0 \le A, R, M \le 10^{4}$) — the number of pillars and the costs of operations. The second line contains $N$ integers $h_{i}$ ($0 \le h_{i} \le 10^{9}$) — initial heights of pillars. -----Output----- Print one integer — the minimal cost of restoration. -----Examples----- Input 3 1 100 100 1 3 8 Output 12 Input 3 100 1 100 1 3 8 Output 9 Input 3 100 100 1 1 3 8 Output 4 Input 5 1 2 4 5 5 3 6 5 Output 4 Input 5 1 2 2 5 5 3 6 5 Output 3
N, A, R, M = map(int, input().split()) H = list(map(int, input().split())) def f(t): a = 0 r = 0 for h in H: r += max(h - t, 0) a += max(t - h, 0) m = min(a, r) return min(a * A + r * R, m * M + A * (a - m) + R * (r - m)) l = min(H) r = max(H) while r - l > 3: m1 = l + (r - l) // 3 m2 = r - (r - l) // 3 if f(m1) > f(m2): l = m1 else: r = m2 print(min(f(l), f(l + 1), f(l + 2), f(l + 3)))
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER
You have to restore the wall. The wall consists of $N$ pillars of bricks, the height of the $i$-th pillar is initially equal to $h_{i}$, the height is measured in number of bricks. After the restoration all the $N$ pillars should have equal heights. You are allowed the following operations: put a brick on top of one pillar, the cost of this operation is $A$; remove a brick from the top of one non-empty pillar, the cost of this operation is $R$; move a brick from the top of one non-empty pillar to the top of another pillar, the cost of this operation is $M$. You cannot create additional pillars or ignore some of pre-existing pillars even if their height becomes $0$. What is the minimal total cost of restoration, in other words, what is the minimal total cost to make all the pillars of equal height? -----Input----- The first line of input contains four integers $N$, $A$, $R$, $M$ ($1 \le N \le 10^{5}$, $0 \le A, R, M \le 10^{4}$) — the number of pillars and the costs of operations. The second line contains $N$ integers $h_{i}$ ($0 \le h_{i} \le 10^{9}$) — initial heights of pillars. -----Output----- Print one integer — the minimal cost of restoration. -----Examples----- Input 3 1 100 100 1 3 8 Output 12 Input 3 100 1 100 1 3 8 Output 9 Input 3 100 100 1 1 3 8 Output 4 Input 5 1 2 4 5 5 3 6 5 Output 4 Input 5 1 2 2 5 5 3 6 5 Output 3
n, a, r, m = [int(s) for s in input().split()] h = sorted([int(s) for s in input().split()]) add, rem = 0, sum(h) - min(h) * n ans, cur = rem * r, rem * r for i in range(1, n): dadd, drem = i, -(n - i) dcost, dh = dadd * min(m, a + r) + (drem - dadd) * r, h[i] - h[i - 1] if add <= rem and add + dadd * dh > rem + drem * dh: rdh = (rem - add) // (dadd - drem) ans = min(ans, cur + rdh * dcost) cur, add, rem = cur + dcost * dh, add + dadd * dh, rem + drem * dh if add <= rem: ans = min(ans, cur) cur = add * a ans = min(ans, cur) for i in range(n - 1, 0, -1): dadd, drem = -i, n - i dcost, dh = drem * min(m, a + r) + (dadd - drem) * a, h[i] - h[i - 1] if add >= rem and add + dadd * dh < rem + drem * dh: rdh = (add - rem) // (drem - dadd) ans = min(ans, cur + rdh * dcost) cur, add, rem = cur + dcost * dh, add + dadd * dh, rem + drem * dh if add >= rem: ans = min(ans, cur) print(ans)
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR BIN_OP VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR BIN_OP VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
You have to restore the wall. The wall consists of $N$ pillars of bricks, the height of the $i$-th pillar is initially equal to $h_{i}$, the height is measured in number of bricks. After the restoration all the $N$ pillars should have equal heights. You are allowed the following operations: put a brick on top of one pillar, the cost of this operation is $A$; remove a brick from the top of one non-empty pillar, the cost of this operation is $R$; move a brick from the top of one non-empty pillar to the top of another pillar, the cost of this operation is $M$. You cannot create additional pillars or ignore some of pre-existing pillars even if their height becomes $0$. What is the minimal total cost of restoration, in other words, what is the minimal total cost to make all the pillars of equal height? -----Input----- The first line of input contains four integers $N$, $A$, $R$, $M$ ($1 \le N \le 10^{5}$, $0 \le A, R, M \le 10^{4}$) — the number of pillars and the costs of operations. The second line contains $N$ integers $h_{i}$ ($0 \le h_{i} \le 10^{9}$) — initial heights of pillars. -----Output----- Print one integer — the minimal cost of restoration. -----Examples----- Input 3 1 100 100 1 3 8 Output 12 Input 3 100 1 100 1 3 8 Output 9 Input 3 100 100 1 1 3 8 Output 4 Input 5 1 2 4 5 5 3 6 5 Output 4 Input 5 1 2 2 5 5 3 6 5 Output 3
import sys input = sys.stdin.readline N, A, R, M = map(int, input().split()) H = list(map(int, input().split())) def get(l): over = 0 under = 0 for h in H: if h > l: over += h - l else: under += l - h if A + R <= M: return over * R + under * A elif over < under: return over * M + (under - over) * A else: return under * M + (over - under) * R l1 = -1 l2 = 10**9 + 1 ans = 10**18 while 2 < l2 - l1: m1 = (2 * l1 + l2) // 3 m2 = (l1 + 2 * l2) // 3 s_m1 = get(m1) s_m2 = get(m2) ans = min(ans, s_m1) ans = min(ans, s_m2) if s_m1 >= s_m2: l1 = m1 else: l2 = m2 for i in range(l1 - 5, l2 + 5): ans = min(ans, get(i)) print(ans)
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR IF BIN_OP VAR VAR VAR RETURN BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR IF VAR VAR RETURN BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR RETURN BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER WHILE NUMBER BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
You have to restore the wall. The wall consists of $N$ pillars of bricks, the height of the $i$-th pillar is initially equal to $h_{i}$, the height is measured in number of bricks. After the restoration all the $N$ pillars should have equal heights. You are allowed the following operations: put a brick on top of one pillar, the cost of this operation is $A$; remove a brick from the top of one non-empty pillar, the cost of this operation is $R$; move a brick from the top of one non-empty pillar to the top of another pillar, the cost of this operation is $M$. You cannot create additional pillars or ignore some of pre-existing pillars even if their height becomes $0$. What is the minimal total cost of restoration, in other words, what is the minimal total cost to make all the pillars of equal height? -----Input----- The first line of input contains four integers $N$, $A$, $R$, $M$ ($1 \le N \le 10^{5}$, $0 \le A, R, M \le 10^{4}$) — the number of pillars and the costs of operations. The second line contains $N$ integers $h_{i}$ ($0 \le h_{i} \le 10^{9}$) — initial heights of pillars. -----Output----- Print one integer — the minimal cost of restoration. -----Examples----- Input 3 1 100 100 1 3 8 Output 12 Input 3 100 1 100 1 3 8 Output 9 Input 3 100 100 1 1 3 8 Output 4 Input 5 1 2 4 5 5 3 6 5 Output 4 Input 5 1 2 2 5 5 3 6 5 Output 3
def solve_for_height( n, add_cost, remove_cost, move_cost, current_height, heights, cum_heights ): lo = 1 hi = n while lo <= hi: mid = (lo + hi) // 2 if heights[mid] <= current_height: lo = mid + 1 else: hi = mid - 1 add = (lo - 1) * current_height - cum_heights[lo - 1] remove = cum_heights[n] - cum_heights[lo - 1] - (n - lo + 1) * current_height if add > remove: ans = (add - remove) * add_cost + remove * move_cost else: ans = (remove - add) * remove_cost + add * move_cost return ans def main(): n, add_cost, remove_cost, move_cost = map(int, input().split()) move_cost = min(add_cost + remove_cost, move_cost) heights = [int(h) for h in input().split()] heights.sort() heights.insert(0, 0) cum_heights = [0] for index in range(1, n + 1): cum_heights.append(cum_heights[index - 1] + heights[index]) lo = 0 hi = heights[n] ans = cum_heights[n] * remove_cost while lo <= hi: mid1 = (lo + lo + hi) // 3 mid2 = (lo + hi + hi) // 3 cost1 = solve_for_height( n, add_cost, remove_cost, move_cost, mid1, heights, cum_heights ) cost2 = solve_for_height( n, add_cost, remove_cost, move_cost, mid2, heights, cum_heights ) ans = min(ans, min(cost1, cost2)) if cost1 < cost2: hi = mid2 - 1 else: lo = mid1 + 1 print(ans) main()
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
You have to restore the wall. The wall consists of $N$ pillars of bricks, the height of the $i$-th pillar is initially equal to $h_{i}$, the height is measured in number of bricks. After the restoration all the $N$ pillars should have equal heights. You are allowed the following operations: put a brick on top of one pillar, the cost of this operation is $A$; remove a brick from the top of one non-empty pillar, the cost of this operation is $R$; move a brick from the top of one non-empty pillar to the top of another pillar, the cost of this operation is $M$. You cannot create additional pillars or ignore some of pre-existing pillars even if their height becomes $0$. What is the minimal total cost of restoration, in other words, what is the minimal total cost to make all the pillars of equal height? -----Input----- The first line of input contains four integers $N$, $A$, $R$, $M$ ($1 \le N \le 10^{5}$, $0 \le A, R, M \le 10^{4}$) — the number of pillars and the costs of operations. The second line contains $N$ integers $h_{i}$ ($0 \le h_{i} \le 10^{9}$) — initial heights of pillars. -----Output----- Print one integer — the minimal cost of restoration. -----Examples----- Input 3 1 100 100 1 3 8 Output 12 Input 3 100 1 100 1 3 8 Output 9 Input 3 100 100 1 1 3 8 Output 4 Input 5 1 2 4 5 5 3 6 5 Output 4 Input 5 1 2 2 5 5 3 6 5 Output 3
def check(a, r, m, hhh, w): put = 0 rem = 0 for h in hhh: if w == h: continue if w > h: put += w - h else: rem += h - w ans = put * a + rem * r if put - rem >= 0: ans = min(ans, rem * m + (put - rem) * a) else: ans = min(ans, put * m + (rem - put) * r) return ans n, aa, rr, mm = map(int, input().split()) hhh = list(map(int, input().split())) l = min(hhh) r = max(hhh) for _ in range(50): m1 = (l * 2 + r) // 3 m2 = (l + r * 2) // 3 c1 = check(aa, rr, mm, hhh, m1) c2 = check(aa, rr, mm, hhh, m2) if c1 < c2: r = m2 else: l = m1 print(min(check(aa, rr, mm, hhh, w) for w in range(l, r + 1)))
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR IF VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR RETURN VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER
You have to restore the wall. The wall consists of $N$ pillars of bricks, the height of the $i$-th pillar is initially equal to $h_{i}$, the height is measured in number of bricks. After the restoration all the $N$ pillars should have equal heights. You are allowed the following operations: put a brick on top of one pillar, the cost of this operation is $A$; remove a brick from the top of one non-empty pillar, the cost of this operation is $R$; move a brick from the top of one non-empty pillar to the top of another pillar, the cost of this operation is $M$. You cannot create additional pillars or ignore some of pre-existing pillars even if their height becomes $0$. What is the minimal total cost of restoration, in other words, what is the minimal total cost to make all the pillars of equal height? -----Input----- The first line of input contains four integers $N$, $A$, $R$, $M$ ($1 \le N \le 10^{5}$, $0 \le A, R, M \le 10^{4}$) — the number of pillars and the costs of operations. The second line contains $N$ integers $h_{i}$ ($0 \le h_{i} \le 10^{9}$) — initial heights of pillars. -----Output----- Print one integer — the minimal cost of restoration. -----Examples----- Input 3 1 100 100 1 3 8 Output 12 Input 3 100 1 100 1 3 8 Output 9 Input 3 100 100 1 1 3 8 Output 4 Input 5 1 2 4 5 5 3 6 5 Output 4 Input 5 1 2 2 5 5 3 6 5 Output 3
N, A, R, M = list(map(int, input().split())) if M > A + R: M = A + R h = list(map(int, input().split())) def calc(final): adds = 0 removes = 0 for v in h: if v > final: removes += v - final else: adds += final - v moves = min(adds, removes) return M * moves + A * (adds - moves) + R * (removes - moves) lo = -1 hi = 10**9 + 1 while hi - lo > 1: test = (lo + hi) // 2 if calc(test) > calc(test + 1): lo = test else: hi = test print(calc(hi))
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
You have to restore the wall. The wall consists of $N$ pillars of bricks, the height of the $i$-th pillar is initially equal to $h_{i}$, the height is measured in number of bricks. After the restoration all the $N$ pillars should have equal heights. You are allowed the following operations: put a brick on top of one pillar, the cost of this operation is $A$; remove a brick from the top of one non-empty pillar, the cost of this operation is $R$; move a brick from the top of one non-empty pillar to the top of another pillar, the cost of this operation is $M$. You cannot create additional pillars or ignore some of pre-existing pillars even if their height becomes $0$. What is the minimal total cost of restoration, in other words, what is the minimal total cost to make all the pillars of equal height? -----Input----- The first line of input contains four integers $N$, $A$, $R$, $M$ ($1 \le N \le 10^{5}$, $0 \le A, R, M \le 10^{4}$) — the number of pillars and the costs of operations. The second line contains $N$ integers $h_{i}$ ($0 \le h_{i} \le 10^{9}$) — initial heights of pillars. -----Output----- Print one integer — the minimal cost of restoration. -----Examples----- Input 3 1 100 100 1 3 8 Output 12 Input 3 100 1 100 1 3 8 Output 9 Input 3 100 100 1 1 3 8 Output 4 Input 5 1 2 4 5 5 3 6 5 Output 4 Input 5 1 2 2 5 5 3 6 5 Output 3
import sys def input(): return sys.stdin.readline().strip() def list2d(a, b, c): return [([c] * b) for i in range(a)] def list3d(a, b, c, d): return [[([d] * c) for j in range(b)] for i in range(a)] def list4d(a, b, c, d, e): return [[[([e] * d) for j in range(c)] for j in range(b)] for i in range(a)] def ceil(x, y=1): return int(-(-x // y)) def INT(): return int(input()) def MAP(): return map(int, input().split()) def LIST(N=None): return list(MAP()) if N is None else [INT() for i in range(N)] def Yes(): print("Yes") def No(): print("No") def YES(): print("YES") def NO(): print("NO") INF = 10**18 MOD = 10**9 + 7 N, ad, rm, mv = MAP() A = LIST() def check(m): adcnt = rmcnt = 0 for a in A: if a < m: adcnt += m - a elif a > m: rmcnt += a - m diff = adcnt - rmcnt if diff >= 0: return rmcnt * min(ad + rm, mv) + diff * ad else: return adcnt * min(ad + rm, mv) + -diff * rm A.sort() low = -1 hi = 10**9 + 1 while low + 2 < hi: m1 = (low * 2 + hi) // 3 m2 = (low + hi * 2) // 3 res1 = check(m1) res2 = check(m2) if res1 <= res2: hi = m2 else: low = m1 ans = min(res1, res2) print(ans)
IMPORT FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN BIN_OP LIST VAR VAR VAR FUNC_CALL VAR VAR FUNC_DEF RETURN BIN_OP LIST VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FUNC_DEF RETURN BIN_OP LIST VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FUNC_DEF NUMBER RETURN FUNC_CALL VAR BIN_OP VAR VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF NONE RETURN VAR NONE FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_DEF EXPR FUNC_CALL VAR STRING FUNC_DEF EXPR FUNC_CALL VAR STRING FUNC_DEF EXPR FUNC_CALL VAR STRING FUNC_DEF EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR VAR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR IF VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER RETURN BIN_OP BIN_OP VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR RETURN BIN_OP BIN_OP VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER WHILE BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
You have to restore the wall. The wall consists of $N$ pillars of bricks, the height of the $i$-th pillar is initially equal to $h_{i}$, the height is measured in number of bricks. After the restoration all the $N$ pillars should have equal heights. You are allowed the following operations: put a brick on top of one pillar, the cost of this operation is $A$; remove a brick from the top of one non-empty pillar, the cost of this operation is $R$; move a brick from the top of one non-empty pillar to the top of another pillar, the cost of this operation is $M$. You cannot create additional pillars or ignore some of pre-existing pillars even if their height becomes $0$. What is the minimal total cost of restoration, in other words, what is the minimal total cost to make all the pillars of equal height? -----Input----- The first line of input contains four integers $N$, $A$, $R$, $M$ ($1 \le N \le 10^{5}$, $0 \le A, R, M \le 10^{4}$) — the number of pillars and the costs of operations. The second line contains $N$ integers $h_{i}$ ($0 \le h_{i} \le 10^{9}$) — initial heights of pillars. -----Output----- Print one integer — the minimal cost of restoration. -----Examples----- Input 3 1 100 100 1 3 8 Output 12 Input 3 100 1 100 1 3 8 Output 9 Input 3 100 100 1 1 3 8 Output 4 Input 5 1 2 4 5 5 3 6 5 Output 4 Input 5 1 2 2 5 5 3 6 5 Output 3
import sys def check(t): na, nr = 0, 0 for h in p: if h < t: na += t - h else: nr += h - t m = min(na, nr) return min(m * M + A * (na - m) + R * (nr - m), na * A + nr * R) N, A, R, M = map(int, sys.stdin.readline().split()) p = list(map(int, sys.stdin.readline().split())) ans = float("inf") lo, hi = min(p), max(p) while lo <= hi: mid = (lo + hi) // 2 a, b = check(mid), check(mid + 1) if a <= b: hi = mid - 1 ans = min(ans, a) else: lo = mid + 1 print(ans)
IMPORT FUNC_DEF ASSIGN VAR VAR NUMBER NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You have to restore the wall. The wall consists of $N$ pillars of bricks, the height of the $i$-th pillar is initially equal to $h_{i}$, the height is measured in number of bricks. After the restoration all the $N$ pillars should have equal heights. You are allowed the following operations: put a brick on top of one pillar, the cost of this operation is $A$; remove a brick from the top of one non-empty pillar, the cost of this operation is $R$; move a brick from the top of one non-empty pillar to the top of another pillar, the cost of this operation is $M$. You cannot create additional pillars or ignore some of pre-existing pillars even if their height becomes $0$. What is the minimal total cost of restoration, in other words, what is the minimal total cost to make all the pillars of equal height? -----Input----- The first line of input contains four integers $N$, $A$, $R$, $M$ ($1 \le N \le 10^{5}$, $0 \le A, R, M \le 10^{4}$) — the number of pillars and the costs of operations. The second line contains $N$ integers $h_{i}$ ($0 \le h_{i} \le 10^{9}$) — initial heights of pillars. -----Output----- Print one integer — the minimal cost of restoration. -----Examples----- Input 3 1 100 100 1 3 8 Output 12 Input 3 100 1 100 1 3 8 Output 9 Input 3 100 100 1 1 3 8 Output 4 Input 5 1 2 4 5 5 3 6 5 Output 4 Input 5 1 2 2 5 5 3 6 5 Output 3
from itertools import accumulate n, a, r, m = map(int, input().split()) m = min(a + r, m) ls = list(map(int, input().split())) ls.sort() acc = [0] + list(accumulate(ls)) ansls = [] sm = acc[-1] less = sm // n more = less + 1 flg = 0 for i in range(n + 1): if i == 0: minus = 0 plus = acc[n] else: minus = ls[i - 1] * (i - 1) - acc[i - 1] plus = acc[n] - acc[i] - ls[i - 1] * (n - i) if plus > minus: ansls.append(minus * m + (plus - minus) * r) else: ansls.append(plus * m + (minus - plus) * a) if i > 0 and less < ls[i - 1] and not flg: flg = 1 minus = less * (i - 1) - acc[i - 1] plus = acc[n] - acc[i - 1] - less * (n - i + 1) if plus > minus: ansls.append(minus * m + (plus - minus) * r) else: ansls.append(plus * m + (minus - plus) * a) if i > 0 and more < ls[i - 1] and flg == 1: flg = 2 minus = more * (i - 1) - acc[i - 1] plus = acc[n] - acc[i - 1] - more * (n - i + 1) if plus > minus: ansls.append(minus * m + (plus - minus) * r) else: ansls.append(plus * m + (minus - plus) * a) print(min(ansls))
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR IF VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR IF VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
You have to restore the wall. The wall consists of $N$ pillars of bricks, the height of the $i$-th pillar is initially equal to $h_{i}$, the height is measured in number of bricks. After the restoration all the $N$ pillars should have equal heights. You are allowed the following operations: put a brick on top of one pillar, the cost of this operation is $A$; remove a brick from the top of one non-empty pillar, the cost of this operation is $R$; move a brick from the top of one non-empty pillar to the top of another pillar, the cost of this operation is $M$. You cannot create additional pillars or ignore some of pre-existing pillars even if their height becomes $0$. What is the minimal total cost of restoration, in other words, what is the minimal total cost to make all the pillars of equal height? -----Input----- The first line of input contains four integers $N$, $A$, $R$, $M$ ($1 \le N \le 10^{5}$, $0 \le A, R, M \le 10^{4}$) — the number of pillars and the costs of operations. The second line contains $N$ integers $h_{i}$ ($0 \le h_{i} \le 10^{9}$) — initial heights of pillars. -----Output----- Print one integer — the minimal cost of restoration. -----Examples----- Input 3 1 100 100 1 3 8 Output 12 Input 3 100 1 100 1 3 8 Output 9 Input 3 100 100 1 1 3 8 Output 4 Input 5 1 2 4 5 5 3 6 5 Output 4 Input 5 1 2 2 5 5 3 6 5 Output 3
import sys input = sys.stdin.readline N, A, R, M = map(int, input().split()) al = list(map(int, input().split())) x0 = 0 x1 = 1 x2 = 3 x3 = max(al) def check(x): a = 0 r = 0 for z in al: if x > z: a += x - z else: r += z - x if M < A + R: m = min(a, r) return (a - m) * A + (r - m) * R + m * M return a * A + r * R while x3 - x0 > 2: x1 = (x0 * 2 + x3) // 3 x2 = (x0 + x3 * 2) // 3 if check(x1) <= check(x2): x3 = x2 else: x0 = x1 res = float("inf") for i in range(x0, x3 + 1): res = min(res, check(i)) print(res)
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR IF VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR VAR RETURN BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
You have to restore the wall. The wall consists of $N$ pillars of bricks, the height of the $i$-th pillar is initially equal to $h_{i}$, the height is measured in number of bricks. After the restoration all the $N$ pillars should have equal heights. You are allowed the following operations: put a brick on top of one pillar, the cost of this operation is $A$; remove a brick from the top of one non-empty pillar, the cost of this operation is $R$; move a brick from the top of one non-empty pillar to the top of another pillar, the cost of this operation is $M$. You cannot create additional pillars or ignore some of pre-existing pillars even if their height becomes $0$. What is the minimal total cost of restoration, in other words, what is the minimal total cost to make all the pillars of equal height? -----Input----- The first line of input contains four integers $N$, $A$, $R$, $M$ ($1 \le N \le 10^{5}$, $0 \le A, R, M \le 10^{4}$) — the number of pillars and the costs of operations. The second line contains $N$ integers $h_{i}$ ($0 \le h_{i} \le 10^{9}$) — initial heights of pillars. -----Output----- Print one integer — the minimal cost of restoration. -----Examples----- Input 3 1 100 100 1 3 8 Output 12 Input 3 100 1 100 1 3 8 Output 9 Input 3 100 100 1 1 3 8 Output 4 Input 5 1 2 4 5 5 3 6 5 Output 4 Input 5 1 2 2 5 5 3 6 5 Output 3
def read_int(): return int(input()) def read_ints(): return list(map(int, input().split(" "))) n, a, r, m = read_ints() h = list(read_ints()) h.sort() lo = h[0] hi = h[-1] s = [0] for i in h: s.append(s[-1] + i) ans = int(1e20) for i in range(n): target = h[i] inc = i * target - s[i] dec = s[n] - s[i + 1] - (n - i - 1) * target plan_a = inc * a + dec * r plan_b = (inc - dec) * a + dec * m if inc >= dec else inc * m + (dec - inc) * r ans = min(ans, min(plan_a, plan_b)) avg = s[n] // n for target in range(max(0, avg - 1), avg + 2): inc = 0 dec = 0 for i in h: if i > target: dec += i - target else: inc += target - i plan_a = inc * a + dec * r plan_b = (inc - dec) * a + dec * m if inc >= dec else inc * m + (dec - inc) * r ans = min(ans, min(plan_a, plan_b)) print(ans)
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR VAR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR LIST NUMBER FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
You have to restore the wall. The wall consists of $N$ pillars of bricks, the height of the $i$-th pillar is initially equal to $h_{i}$, the height is measured in number of bricks. After the restoration all the $N$ pillars should have equal heights. You are allowed the following operations: put a brick on top of one pillar, the cost of this operation is $A$; remove a brick from the top of one non-empty pillar, the cost of this operation is $R$; move a brick from the top of one non-empty pillar to the top of another pillar, the cost of this operation is $M$. You cannot create additional pillars or ignore some of pre-existing pillars even if their height becomes $0$. What is the minimal total cost of restoration, in other words, what is the minimal total cost to make all the pillars of equal height? -----Input----- The first line of input contains four integers $N$, $A$, $R$, $M$ ($1 \le N \le 10^{5}$, $0 \le A, R, M \le 10^{4}$) — the number of pillars and the costs of operations. The second line contains $N$ integers $h_{i}$ ($0 \le h_{i} \le 10^{9}$) — initial heights of pillars. -----Output----- Print one integer — the minimal cost of restoration. -----Examples----- Input 3 1 100 100 1 3 8 Output 12 Input 3 100 1 100 1 3 8 Output 9 Input 3 100 100 1 1 3 8 Output 4 Input 5 1 2 4 5 5 3 6 5 Output 4 Input 5 1 2 2 5 5 3 6 5 Output 3
def find(h, x): l = 0 r = len(h) - 1 while abs(r - l) > 1: c = (l + r) // 2 if h[c] > x: r = c elif h[c] < x: l = c elif h[c] == x: return c return l + 1 def function(height): global h if h.count(height) == 0: less = find(h, height) more = len(h) - less less_bricks = height * less - sum(h[0:less]) more_bricks = (height * more - sum(h[-1 : -len(h) + less - 1 : -1])) * -1 else: less = h.index(height) more = len(h) - less - h.count(height) less_bricks = height * less - sum(h[0:less]) more_bricks = ( height * more - sum(h[-1 : -len(h) + less + h.count(height) - 1 : -1]) ) * -1 if more_bricks >= less_bricks: cost = less_bricks * M + abs(more_bricks - less_bricks) * R else: cost = more_bricks * M + abs(more_bricks - less_bricks) * A return cost otv = [] probably = [] N, A, R, M = map(int, input().split()) h = list(map(int, input().split())) h.sort() height = h[0] if A + R < M: M = A + R left = h[0] right = h[-1] c = (left + right) // 2 flag = 0 if function(left) < function(left + 1): print(f"{function(left)}") flag = 1 elif function(right) < function(right - 1): print(f"{function(right)}") flag = 1 else: while flag == 0 and abs(left - right) > 2: if function(c - 1) < function(c): right = c elif function(c + 1) < function(c): left = c elif function(c) < function(c - 1) and function(c) < function(c + 1): break elif function(c - 1) == function(c): break c = (left + right) // 2 print(function(c))
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE FUNC_CALL VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR IF VAR VAR VAR ASSIGN VAR VAR IF VAR VAR VAR RETURN VAR RETURN BIN_OP VAR NUMBER FUNC_DEF IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR FUNC_CALL VAR VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR FUNC_CALL VAR VAR NUMBER BIN_OP BIN_OP BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR VAR RETURN VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR NUMBER FUNC_CALL VAR BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR IF FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
You have to restore the wall. The wall consists of $N$ pillars of bricks, the height of the $i$-th pillar is initially equal to $h_{i}$, the height is measured in number of bricks. After the restoration all the $N$ pillars should have equal heights. You are allowed the following operations: put a brick on top of one pillar, the cost of this operation is $A$; remove a brick from the top of one non-empty pillar, the cost of this operation is $R$; move a brick from the top of one non-empty pillar to the top of another pillar, the cost of this operation is $M$. You cannot create additional pillars or ignore some of pre-existing pillars even if their height becomes $0$. What is the minimal total cost of restoration, in other words, what is the minimal total cost to make all the pillars of equal height? -----Input----- The first line of input contains four integers $N$, $A$, $R$, $M$ ($1 \le N \le 10^{5}$, $0 \le A, R, M \le 10^{4}$) — the number of pillars and the costs of operations. The second line contains $N$ integers $h_{i}$ ($0 \le h_{i} \le 10^{9}$) — initial heights of pillars. -----Output----- Print one integer — the minimal cost of restoration. -----Examples----- Input 3 1 100 100 1 3 8 Output 12 Input 3 100 1 100 1 3 8 Output 9 Input 3 100 100 1 1 3 8 Output 4 Input 5 1 2 4 5 5 3 6 5 Output 4 Input 5 1 2 2 5 5 3 6 5 Output 3
n, a, r, m = map(int, input().split(" ")) h = list(map(int, input().split(" "))) def calCost(hi): cnta, cntr = 0, 0 for i in range(len(h)): cnta += max(0, hi - h[i]) cntr += max(0, h[i] - hi) if a + r > m: return ( min(cntr, cnta) * m + (cnta - min(cnta, cntr)) * a + (cntr - min(cnta, cntr)) * r ) return cnta * a + cntr * r def solve(): start, end = 0, max(h) while start < end: mid = (start + end) // 2 if calCost(mid) < calCost(mid + 1): end = mid else: start = mid + 1 return min(calCost(start), calCost(end)) print(solve())
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING FUNC_DEF ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR IF BIN_OP VAR VAR VAR RETURN BIN_OP BIN_OP BIN_OP FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP VAR FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP VAR FUNC_CALL VAR VAR VAR VAR RETURN BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR FUNC_DEF ASSIGN VAR VAR NUMBER FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR
You have to restore the wall. The wall consists of $N$ pillars of bricks, the height of the $i$-th pillar is initially equal to $h_{i}$, the height is measured in number of bricks. After the restoration all the $N$ pillars should have equal heights. You are allowed the following operations: put a brick on top of one pillar, the cost of this operation is $A$; remove a brick from the top of one non-empty pillar, the cost of this operation is $R$; move a brick from the top of one non-empty pillar to the top of another pillar, the cost of this operation is $M$. You cannot create additional pillars or ignore some of pre-existing pillars even if their height becomes $0$. What is the minimal total cost of restoration, in other words, what is the minimal total cost to make all the pillars of equal height? -----Input----- The first line of input contains four integers $N$, $A$, $R$, $M$ ($1 \le N \le 10^{5}$, $0 \le A, R, M \le 10^{4}$) — the number of pillars and the costs of operations. The second line contains $N$ integers $h_{i}$ ($0 \le h_{i} \le 10^{9}$) — initial heights of pillars. -----Output----- Print one integer — the minimal cost of restoration. -----Examples----- Input 3 1 100 100 1 3 8 Output 12 Input 3 100 1 100 1 3 8 Output 9 Input 3 100 100 1 1 3 8 Output 4 Input 5 1 2 4 5 5 3 6 5 Output 4 Input 5 1 2 2 5 5 3 6 5 Output 3
n, a, r, m = map(int, input().split()) h = list(map(int, input().split())) h.sort() prev = 0 aft = sum(h) mincost = -1 op1 = aft // n ne1 = 0 tm1 = 0 op2 = op1 + 1 ne2 = 0 tm2 = 0 for i in range(n): goal = h[i] if goal < op1: ne1 += op1 ne1 -= goal else: tm1 += goal tm1 -= op1 if goal < op2: ne2 += op2 ne2 -= goal else: tm2 += goal tm2 -= op2 ne = i * goal - prev tm = aft - (n - i) * goal mx = min(ne, tm) cost = 0 if m < a + r: ne -= mx tm -= mx cost += mx * m cost += ne * a cost += tm * r if mincost == -1: mincost = cost mincost = min(mincost, cost) prev += goal aft -= goal cost1 = ne1 * m + (tm1 - ne1) * r cost2 = tm2 * m + (ne2 - tm2) * a mincost = min(cost1, mincost) mincost = min(cost2, mincost) print(mincost)
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR IF VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR IF VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER IF VAR BIN_OP VAR VAR VAR VAR VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
You have to restore the wall. The wall consists of $N$ pillars of bricks, the height of the $i$-th pillar is initially equal to $h_{i}$, the height is measured in number of bricks. After the restoration all the $N$ pillars should have equal heights. You are allowed the following operations: put a brick on top of one pillar, the cost of this operation is $A$; remove a brick from the top of one non-empty pillar, the cost of this operation is $R$; move a brick from the top of one non-empty pillar to the top of another pillar, the cost of this operation is $M$. You cannot create additional pillars or ignore some of pre-existing pillars even if their height becomes $0$. What is the minimal total cost of restoration, in other words, what is the minimal total cost to make all the pillars of equal height? -----Input----- The first line of input contains four integers $N$, $A$, $R$, $M$ ($1 \le N \le 10^{5}$, $0 \le A, R, M \le 10^{4}$) — the number of pillars and the costs of operations. The second line contains $N$ integers $h_{i}$ ($0 \le h_{i} \le 10^{9}$) — initial heights of pillars. -----Output----- Print one integer — the minimal cost of restoration. -----Examples----- Input 3 1 100 100 1 3 8 Output 12 Input 3 100 1 100 1 3 8 Output 9 Input 3 100 100 1 1 3 8 Output 4 Input 5 1 2 4 5 5 3 6 5 Output 4 Input 5 1 2 2 5 5 3 6 5 Output 3
n, add, remove, move = [int(i) for i in input().split()] heights = [int(i) for i in input().split()] def cost_for_this_height(h, heights, n, add, remove, move): above = 0 below = 0 for i in range(n): if heights[i] > h: above += heights[i] - h elif heights[i] < h: below += h - heights[i] if above >= below: if move <= add + remove: cost = below * move + (above - below) * remove else: cost = below * (add + remove) + (above - below) * remove elif move <= add + remove: cost = above * move + (below - above) * add else: cost = above * (add + remove) + (below - above) * add return cost left = min(heights) - 2 right = max(heights) + 2 while True: x = int((left + right) / 2) cost_mid = cost_for_this_height(x, heights, n, add, remove, move) cost_prev = cost_for_this_height(x - 1, heights, n, add, remove, move) cost_next = cost_for_this_height(x + 1, heights, n, add, remove, move) if cost_prev >= cost_mid and cost_next >= cost_mid: print(cost_mid) break elif cost_prev >= cost_mid >= cost_next: left = x else: right = x if right == left: print(cost_mid) break
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR BIN_OP VAR VAR VAR IF VAR VAR VAR VAR BIN_OP VAR VAR VAR IF VAR VAR IF VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR IF VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR RETURN VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR VAR VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR
You have to restore the wall. The wall consists of $N$ pillars of bricks, the height of the $i$-th pillar is initially equal to $h_{i}$, the height is measured in number of bricks. After the restoration all the $N$ pillars should have equal heights. You are allowed the following operations: put a brick on top of one pillar, the cost of this operation is $A$; remove a brick from the top of one non-empty pillar, the cost of this operation is $R$; move a brick from the top of one non-empty pillar to the top of another pillar, the cost of this operation is $M$. You cannot create additional pillars or ignore some of pre-existing pillars even if their height becomes $0$. What is the minimal total cost of restoration, in other words, what is the minimal total cost to make all the pillars of equal height? -----Input----- The first line of input contains four integers $N$, $A$, $R$, $M$ ($1 \le N \le 10^{5}$, $0 \le A, R, M \le 10^{4}$) — the number of pillars and the costs of operations. The second line contains $N$ integers $h_{i}$ ($0 \le h_{i} \le 10^{9}$) — initial heights of pillars. -----Output----- Print one integer — the minimal cost of restoration. -----Examples----- Input 3 1 100 100 1 3 8 Output 12 Input 3 100 1 100 1 3 8 Output 9 Input 3 100 100 1 1 3 8 Output 4 Input 5 1 2 4 5 5 3 6 5 Output 4 Input 5 1 2 2 5 5 3 6 5 Output 3
n, a, ra, m = map(int, input().split()) h = list(map(int, input().split())) if a + ra < m: l, r = 0, 10**9 + 1 for _ in range(50): c1 = (l * 2 + r) // 3 c2 = (l + r * 2) // 3 p1 = 0 p2 = 0 q1 = 0 q2 = 0 for x in h: if c1 <= x: q1 += x - c1 else: p1 += c1 - x if c2 <= x: q2 += x - c2 else: p2 += c2 - x f1 = p1 * a + q1 * ra f2 = p2 * a + q2 * ra if f1 > f2: l = c1 else: r = c2 c1 = l + 1 p1 = 0 q1 = 0 for x in h: if c1 <= x: q1 += x - c1 else: p1 += c1 - x f1 = p1 * a + q1 * ra print(f1) else: l, r = 0, 10**9 + 1 for _ in range(55): c1 = (l * 2 + r) // 3 c2 = (l + r * 2) // 3 p1 = 0 p2 = 0 q1 = 0 q2 = 0 for x in h: if c1 <= x: q1 += x - c1 else: p1 += c1 - x if c2 <= x: q2 += x - c2 else: p2 += c2 - x if p1 > q1: f1 = q1 * m + (p1 - q1) * a else: f1 = p1 * m + (q1 - p1) * ra if p2 > q2: f2 = q2 * m + (p2 - q2) * a else: f2 = p2 * m + (q2 - p2) * ra if f1 > f2: l = c1 else: r = c2 c1 = l + 1 p1 = 0 q1 = 0 for x in h: if c1 <= x: q1 += x - c1 else: p1 += c1 - x if p1 > q1: f1 = q1 * m + (p1 - q1) * a else: f1 = p1 * m + (q1 - p1) * ra print(f1)
ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR VAR ASSIGN VAR VAR NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR IF VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR IF VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
You have to restore the wall. The wall consists of $N$ pillars of bricks, the height of the $i$-th pillar is initially equal to $h_{i}$, the height is measured in number of bricks. After the restoration all the $N$ pillars should have equal heights. You are allowed the following operations: put a brick on top of one pillar, the cost of this operation is $A$; remove a brick from the top of one non-empty pillar, the cost of this operation is $R$; move a brick from the top of one non-empty pillar to the top of another pillar, the cost of this operation is $M$. You cannot create additional pillars or ignore some of pre-existing pillars even if their height becomes $0$. What is the minimal total cost of restoration, in other words, what is the minimal total cost to make all the pillars of equal height? -----Input----- The first line of input contains four integers $N$, $A$, $R$, $M$ ($1 \le N \le 10^{5}$, $0 \le A, R, M \le 10^{4}$) — the number of pillars and the costs of operations. The second line contains $N$ integers $h_{i}$ ($0 \le h_{i} \le 10^{9}$) — initial heights of pillars. -----Output----- Print one integer — the minimal cost of restoration. -----Examples----- Input 3 1 100 100 1 3 8 Output 12 Input 3 100 1 100 1 3 8 Output 9 Input 3 100 100 1 1 3 8 Output 4 Input 5 1 2 4 5 5 3 6 5 Output 4 Input 5 1 2 2 5 5 3 6 5 Output 3
import sys input = sys.stdin.readline def bin(l, r, c): if l == r: return l m = (l + r + 1) // 2 if h[m] <= c: return bin(m, r, c) else: return bin(l, m - 1, c) def cost(c, move): res = 0 i = 0 if c >= h[-1]: i = n - 1 else: i = bin(0, n - 1, c) res += a * ((i + 1) * c - H[i + 1]) res += r * (H[-1] - H[i + 1] - (n - i - 1) * c) if move: res -= (a + r - m) * min( (i + 1) * c - H[i + 1], H[-1] - H[i + 1] - (n - i - 1) * c ) return res n, a, r, m = list(map(int, input().split())) h = list(map(int, input().split())) h.sort() H = [None] * (n + 1) H[0] = 0 for i in range(1, n + 1): H[i] = H[i - 1] + h[i - 1] move = m < a + r if not move: print(min(cost(h[i], move) for i in range(n))) else: tt = min(cost(H[-1] // n, move), cost(H[-1] // n + 1, move)) ttt = min(cost(h[i], move) for i in range(n)) print(min(tt, ttt))
IMPORT ASSIGN VAR VAR FUNC_DEF IF VAR VAR RETURN VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER IF VAR VAR VAR RETURN FUNC_CALL VAR VAR VAR VAR RETURN FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR VAR BIN_OP VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR IF VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR RETURN VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NONE BIN_OP VAR NUMBER ASSIGN VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR IF VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You have a long stick, consisting of $m$ segments enumerated from $1$ to $m$. Each segment is $1$ centimeter long. Sadly, some segments are broken and need to be repaired. You have an infinitely long repair tape. You want to cut some pieces from the tape and use them to cover all of the broken segments. To be precise, a piece of tape of integer length $t$ placed at some position $s$ will cover segments $s, s+1, \ldots, s+t-1$. You are allowed to cover non-broken segments; it is also possible that some pieces of tape will overlap. Time is money, so you want to cut at most $k$ continuous pieces of tape to cover all the broken segments. What is the minimum total length of these pieces? -----Input----- The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^5$, $n \le m \le 10^9$, $1 \le k \le n$) — the number of broken segments, the length of the stick and the maximum number of pieces you can use. The second line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le m$) — the positions of the broken segments. These integers are given in increasing order, that is, $b_1 < b_2 < \ldots < b_n$. -----Output----- Print the minimum total length of the pieces. -----Examples----- Input 4 100 2 20 30 75 80 Output 17 Input 5 100 3 1 2 4 60 87 Output 6 -----Note----- In the first example, you can use a piece of length $11$ to cover the broken segments $20$ and $30$, and another piece of length $6$ to cover $75$ and $80$, for a total length of $17$. In the second example, you can use a piece of length $4$ to cover broken segments $1$, $2$ and $4$, and two pieces of length $1$ to cover broken segments $60$ and $87$.
n, m, k = map(int, input().split()) l = list(map(int, input().split())) l1 = [] for i in range(1, n): l1 += [l[i] - l[i - 1]] l1.sort(reverse=True) s = l[-1] - l[0] + 1 i = 0 while k > 1: s -= l1[i] - 1 i += 1 k -= 1 print(s)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR VAR LIST BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You have a long stick, consisting of $m$ segments enumerated from $1$ to $m$. Each segment is $1$ centimeter long. Sadly, some segments are broken and need to be repaired. You have an infinitely long repair tape. You want to cut some pieces from the tape and use them to cover all of the broken segments. To be precise, a piece of tape of integer length $t$ placed at some position $s$ will cover segments $s, s+1, \ldots, s+t-1$. You are allowed to cover non-broken segments; it is also possible that some pieces of tape will overlap. Time is money, so you want to cut at most $k$ continuous pieces of tape to cover all the broken segments. What is the minimum total length of these pieces? -----Input----- The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^5$, $n \le m \le 10^9$, $1 \le k \le n$) — the number of broken segments, the length of the stick and the maximum number of pieces you can use. The second line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le m$) — the positions of the broken segments. These integers are given in increasing order, that is, $b_1 < b_2 < \ldots < b_n$. -----Output----- Print the minimum total length of the pieces. -----Examples----- Input 4 100 2 20 30 75 80 Output 17 Input 5 100 3 1 2 4 60 87 Output 6 -----Note----- In the first example, you can use a piece of length $11$ to cover the broken segments $20$ and $30$, and another piece of length $6$ to cover $75$ and $80$, for a total length of $17$. In the second example, you can use a piece of length $4$ to cover broken segments $1$, $2$ and $4$, and two pieces of length $1$ to cover broken segments $60$ and $87$.
import time m, n, k = (int(i) for i in input().split()) b = [int(i) for i in input().split()] start = time.time() ans = m if m > k: c = sorted([(b[i + 1] - b[i]) for i in range(m - 1)]) ans += sum(c[: m - k]) + k - m print(ans) finish = time.time()
IMPORT ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR
You have a long stick, consisting of $m$ segments enumerated from $1$ to $m$. Each segment is $1$ centimeter long. Sadly, some segments are broken and need to be repaired. You have an infinitely long repair tape. You want to cut some pieces from the tape and use them to cover all of the broken segments. To be precise, a piece of tape of integer length $t$ placed at some position $s$ will cover segments $s, s+1, \ldots, s+t-1$. You are allowed to cover non-broken segments; it is also possible that some pieces of tape will overlap. Time is money, so you want to cut at most $k$ continuous pieces of tape to cover all the broken segments. What is the minimum total length of these pieces? -----Input----- The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^5$, $n \le m \le 10^9$, $1 \le k \le n$) — the number of broken segments, the length of the stick and the maximum number of pieces you can use. The second line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le m$) — the positions of the broken segments. These integers are given in increasing order, that is, $b_1 < b_2 < \ldots < b_n$. -----Output----- Print the minimum total length of the pieces. -----Examples----- Input 4 100 2 20 30 75 80 Output 17 Input 5 100 3 1 2 4 60 87 Output 6 -----Note----- In the first example, you can use a piece of length $11$ to cover the broken segments $20$ and $30$, and another piece of length $6$ to cover $75$ and $80$, for a total length of $17$. In the second example, you can use a piece of length $4$ to cover broken segments $1$, $2$ and $4$, and two pieces of length $1$ to cover broken segments $60$ and $87$.
n, m, k = list(map(int, input().split())) b = list(map(int, input().split())) s = sorted([(b[i] - b[i - 1] - 1) for i in range(1, n)], reverse=True) mv = b[-1] - b[0] + 1 - sum(s[: k - 1]) print(mv)
ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You have a long stick, consisting of $m$ segments enumerated from $1$ to $m$. Each segment is $1$ centimeter long. Sadly, some segments are broken and need to be repaired. You have an infinitely long repair tape. You want to cut some pieces from the tape and use them to cover all of the broken segments. To be precise, a piece of tape of integer length $t$ placed at some position $s$ will cover segments $s, s+1, \ldots, s+t-1$. You are allowed to cover non-broken segments; it is also possible that some pieces of tape will overlap. Time is money, so you want to cut at most $k$ continuous pieces of tape to cover all the broken segments. What is the minimum total length of these pieces? -----Input----- The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^5$, $n \le m \le 10^9$, $1 \le k \le n$) — the number of broken segments, the length of the stick and the maximum number of pieces you can use. The second line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le m$) — the positions of the broken segments. These integers are given in increasing order, that is, $b_1 < b_2 < \ldots < b_n$. -----Output----- Print the minimum total length of the pieces. -----Examples----- Input 4 100 2 20 30 75 80 Output 17 Input 5 100 3 1 2 4 60 87 Output 6 -----Note----- In the first example, you can use a piece of length $11$ to cover the broken segments $20$ and $30$, and another piece of length $6$ to cover $75$ and $80$, for a total length of $17$. In the second example, you can use a piece of length $4$ to cover broken segments $1$, $2$ and $4$, and two pieces of length $1$ to cover broken segments $60$ and $87$.
n, m, k = [int(x) for x in input().split()] L = [int(x) for x in input().split()] L.append(2 * L[-1]) t = n i = 1 Q = [] while i < n: Q.append(L[i] - L[i - 1]) i += 1 Q.sort() for i in range(max(0, len(Q) - k + 1)): t += Q[i] - 1 print(t)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP NUMBER VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR LIST WHILE VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You have a long stick, consisting of $m$ segments enumerated from $1$ to $m$. Each segment is $1$ centimeter long. Sadly, some segments are broken and need to be repaired. You have an infinitely long repair tape. You want to cut some pieces from the tape and use them to cover all of the broken segments. To be precise, a piece of tape of integer length $t$ placed at some position $s$ will cover segments $s, s+1, \ldots, s+t-1$. You are allowed to cover non-broken segments; it is also possible that some pieces of tape will overlap. Time is money, so you want to cut at most $k$ continuous pieces of tape to cover all the broken segments. What is the minimum total length of these pieces? -----Input----- The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^5$, $n \le m \le 10^9$, $1 \le k \le n$) — the number of broken segments, the length of the stick and the maximum number of pieces you can use. The second line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le m$) — the positions of the broken segments. These integers are given in increasing order, that is, $b_1 < b_2 < \ldots < b_n$. -----Output----- Print the minimum total length of the pieces. -----Examples----- Input 4 100 2 20 30 75 80 Output 17 Input 5 100 3 1 2 4 60 87 Output 6 -----Note----- In the first example, you can use a piece of length $11$ to cover the broken segments $20$ and $30$, and another piece of length $6$ to cover $75$ and $80$, for a total length of $17$. In the second example, you can use a piece of length $4$ to cover broken segments $1$, $2$ and $4$, and two pieces of length $1$ to cover broken segments $60$ and $87$.
a = input() bb = input() aa = a.split() n = eval(aa[0]) m = eval(aa[1]) k = eval(aa[2]) b = bb.split() for i in range(len(b)): b[i] = eval(b[i]) if k >= n: print(n) else: x = n - k sub = [] for i in range(len(b) - 1): sub.append(b[i + 1] - b[i]) sub.sort() sum = 0 for i in range(x): sum += sub[i] print(sum + k)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You have a long stick, consisting of $m$ segments enumerated from $1$ to $m$. Each segment is $1$ centimeter long. Sadly, some segments are broken and need to be repaired. You have an infinitely long repair tape. You want to cut some pieces from the tape and use them to cover all of the broken segments. To be precise, a piece of tape of integer length $t$ placed at some position $s$ will cover segments $s, s+1, \ldots, s+t-1$. You are allowed to cover non-broken segments; it is also possible that some pieces of tape will overlap. Time is money, so you want to cut at most $k$ continuous pieces of tape to cover all the broken segments. What is the minimum total length of these pieces? -----Input----- The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^5$, $n \le m \le 10^9$, $1 \le k \le n$) — the number of broken segments, the length of the stick and the maximum number of pieces you can use. The second line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le m$) — the positions of the broken segments. These integers are given in increasing order, that is, $b_1 < b_2 < \ldots < b_n$. -----Output----- Print the minimum total length of the pieces. -----Examples----- Input 4 100 2 20 30 75 80 Output 17 Input 5 100 3 1 2 4 60 87 Output 6 -----Note----- In the first example, you can use a piece of length $11$ to cover the broken segments $20$ and $30$, and another piece of length $6$ to cover $75$ and $80$, for a total length of $17$. In the second example, you can use a piece of length $4$ to cover broken segments $1$, $2$ and $4$, and two pieces of length $1$ to cover broken segments $60$ and $87$.
n, m, k = map(int, input().split()) ar1 = [] ar = [int(i) for i in input().split()] for i in range(1, n): ar1.append(ar[i] - ar[i - 1] - 1) rs = n ar1.sort() for i in range(n - k): rs += ar1[i] print(rs)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
You have a long stick, consisting of $m$ segments enumerated from $1$ to $m$. Each segment is $1$ centimeter long. Sadly, some segments are broken and need to be repaired. You have an infinitely long repair tape. You want to cut some pieces from the tape and use them to cover all of the broken segments. To be precise, a piece of tape of integer length $t$ placed at some position $s$ will cover segments $s, s+1, \ldots, s+t-1$. You are allowed to cover non-broken segments; it is also possible that some pieces of tape will overlap. Time is money, so you want to cut at most $k$ continuous pieces of tape to cover all the broken segments. What is the minimum total length of these pieces? -----Input----- The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^5$, $n \le m \le 10^9$, $1 \le k \le n$) — the number of broken segments, the length of the stick and the maximum number of pieces you can use. The second line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le m$) — the positions of the broken segments. These integers are given in increasing order, that is, $b_1 < b_2 < \ldots < b_n$. -----Output----- Print the minimum total length of the pieces. -----Examples----- Input 4 100 2 20 30 75 80 Output 17 Input 5 100 3 1 2 4 60 87 Output 6 -----Note----- In the first example, you can use a piece of length $11$ to cover the broken segments $20$ and $30$, and another piece of length $6$ to cover $75$ and $80$, for a total length of $17$. In the second example, you can use a piece of length $4$ to cover broken segments $1$, $2$ and $4$, and two pieces of length $1$ to cover broken segments $60$ and $87$.
n, m, k = list(map(int, input().split())) a = list(map(int, input().split())) subtract = [] for i in range(n - 1): x = a[i + 1] - a[i] - 1 subtract.append(x) subtract.sort() sum = 0 for i in range(n - k): sum += subtract[i] print(sum + n)
ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You have a long stick, consisting of $m$ segments enumerated from $1$ to $m$. Each segment is $1$ centimeter long. Sadly, some segments are broken and need to be repaired. You have an infinitely long repair tape. You want to cut some pieces from the tape and use them to cover all of the broken segments. To be precise, a piece of tape of integer length $t$ placed at some position $s$ will cover segments $s, s+1, \ldots, s+t-1$. You are allowed to cover non-broken segments; it is also possible that some pieces of tape will overlap. Time is money, so you want to cut at most $k$ continuous pieces of tape to cover all the broken segments. What is the minimum total length of these pieces? -----Input----- The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^5$, $n \le m \le 10^9$, $1 \le k \le n$) — the number of broken segments, the length of the stick and the maximum number of pieces you can use. The second line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le m$) — the positions of the broken segments. These integers are given in increasing order, that is, $b_1 < b_2 < \ldots < b_n$. -----Output----- Print the minimum total length of the pieces. -----Examples----- Input 4 100 2 20 30 75 80 Output 17 Input 5 100 3 1 2 4 60 87 Output 6 -----Note----- In the first example, you can use a piece of length $11$ to cover the broken segments $20$ and $30$, and another piece of length $6$ to cover $75$ and $80$, for a total length of $17$. In the second example, you can use a piece of length $4$ to cover broken segments $1$, $2$ and $4$, and two pieces of length $1$ to cover broken segments $60$ and $87$.
nmk = input().split(" ") n = int(nmk[0]) m = int(nmk[1]) k = int(nmk[2]) brokens = list(map(int, input().split(" "))) if n == k: print(n) else: distances = [] for i in range(n - 1): distances.append(brokens[i + 1] - brokens[i] + 1) distances = sorted(distances) l = n j = 0 used = n while used > k and j < n - 1: l += distances[j] - 2 used -= 1 j += 1 print(l)
ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You have a long stick, consisting of $m$ segments enumerated from $1$ to $m$. Each segment is $1$ centimeter long. Sadly, some segments are broken and need to be repaired. You have an infinitely long repair tape. You want to cut some pieces from the tape and use them to cover all of the broken segments. To be precise, a piece of tape of integer length $t$ placed at some position $s$ will cover segments $s, s+1, \ldots, s+t-1$. You are allowed to cover non-broken segments; it is also possible that some pieces of tape will overlap. Time is money, so you want to cut at most $k$ continuous pieces of tape to cover all the broken segments. What is the minimum total length of these pieces? -----Input----- The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^5$, $n \le m \le 10^9$, $1 \le k \le n$) — the number of broken segments, the length of the stick and the maximum number of pieces you can use. The second line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le m$) — the positions of the broken segments. These integers are given in increasing order, that is, $b_1 < b_2 < \ldots < b_n$. -----Output----- Print the minimum total length of the pieces. -----Examples----- Input 4 100 2 20 30 75 80 Output 17 Input 5 100 3 1 2 4 60 87 Output 6 -----Note----- In the first example, you can use a piece of length $11$ to cover the broken segments $20$ and $30$, and another piece of length $6$ to cover $75$ and $80$, for a total length of $17$. In the second example, you can use a piece of length $4$ to cover broken segments $1$, $2$ and $4$, and two pieces of length $1$ to cover broken segments $60$ and $87$.
s = input() s = s.split() n = int(s[0]) m = int(s[1]) k = int(s[2]) s = input() s = s.split() b = [int(s[0])] db = [] for i in range(1, n): b.append(int(s[i])) db.append(b[i] - b[i - 1]) r = sorted(db) ans = n for i in range(n - k): ans += r[i] - 1 print(ans)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You have a long stick, consisting of $m$ segments enumerated from $1$ to $m$. Each segment is $1$ centimeter long. Sadly, some segments are broken and need to be repaired. You have an infinitely long repair tape. You want to cut some pieces from the tape and use them to cover all of the broken segments. To be precise, a piece of tape of integer length $t$ placed at some position $s$ will cover segments $s, s+1, \ldots, s+t-1$. You are allowed to cover non-broken segments; it is also possible that some pieces of tape will overlap. Time is money, so you want to cut at most $k$ continuous pieces of tape to cover all the broken segments. What is the minimum total length of these pieces? -----Input----- The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^5$, $n \le m \le 10^9$, $1 \le k \le n$) — the number of broken segments, the length of the stick and the maximum number of pieces you can use. The second line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le m$) — the positions of the broken segments. These integers are given in increasing order, that is, $b_1 < b_2 < \ldots < b_n$. -----Output----- Print the minimum total length of the pieces. -----Examples----- Input 4 100 2 20 30 75 80 Output 17 Input 5 100 3 1 2 4 60 87 Output 6 -----Note----- In the first example, you can use a piece of length $11$ to cover the broken segments $20$ and $30$, and another piece of length $6$ to cover $75$ and $80$, for a total length of $17$. In the second example, you can use a piece of length $4$ to cover broken segments $1$, $2$ and $4$, and two pieces of length $1$ to cover broken segments $60$ and $87$.
n, m, k = map(int, input().split()) b = list(map(int, input().split())) l = n p = n c = [] for i in range(n - 1): c.append(b[i + 1] - b[i] - 1) c = sorted(c) for i in range(n - k): l += c[i] print(l)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
You have a long stick, consisting of $m$ segments enumerated from $1$ to $m$. Each segment is $1$ centimeter long. Sadly, some segments are broken and need to be repaired. You have an infinitely long repair tape. You want to cut some pieces from the tape and use them to cover all of the broken segments. To be precise, a piece of tape of integer length $t$ placed at some position $s$ will cover segments $s, s+1, \ldots, s+t-1$. You are allowed to cover non-broken segments; it is also possible that some pieces of tape will overlap. Time is money, so you want to cut at most $k$ continuous pieces of tape to cover all the broken segments. What is the minimum total length of these pieces? -----Input----- The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^5$, $n \le m \le 10^9$, $1 \le k \le n$) — the number of broken segments, the length of the stick and the maximum number of pieces you can use. The second line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le m$) — the positions of the broken segments. These integers are given in increasing order, that is, $b_1 < b_2 < \ldots < b_n$. -----Output----- Print the minimum total length of the pieces. -----Examples----- Input 4 100 2 20 30 75 80 Output 17 Input 5 100 3 1 2 4 60 87 Output 6 -----Note----- In the first example, you can use a piece of length $11$ to cover the broken segments $20$ and $30$, and another piece of length $6$ to cover $75$ and $80$, for a total length of $17$. In the second example, you can use a piece of length $4$ to cover broken segments $1$, $2$ and $4$, and two pieces of length $1$ to cover broken segments $60$ and $87$.
l = [int(i) for i in input().split()] n = l[0] k = l[2] b = [int(i) for i in input().split()] gap = [] for i in range(1, n): gap.append(b[i] - b[i - 1]) gap.sort() print("{}".format(sum(gap[0 : n - k : 1]) + k))
ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL STRING BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP VAR VAR NUMBER VAR
You have a long stick, consisting of $m$ segments enumerated from $1$ to $m$. Each segment is $1$ centimeter long. Sadly, some segments are broken and need to be repaired. You have an infinitely long repair tape. You want to cut some pieces from the tape and use them to cover all of the broken segments. To be precise, a piece of tape of integer length $t$ placed at some position $s$ will cover segments $s, s+1, \ldots, s+t-1$. You are allowed to cover non-broken segments; it is also possible that some pieces of tape will overlap. Time is money, so you want to cut at most $k$ continuous pieces of tape to cover all the broken segments. What is the minimum total length of these pieces? -----Input----- The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^5$, $n \le m \le 10^9$, $1 \le k \le n$) — the number of broken segments, the length of the stick and the maximum number of pieces you can use. The second line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le m$) — the positions of the broken segments. These integers are given in increasing order, that is, $b_1 < b_2 < \ldots < b_n$. -----Output----- Print the minimum total length of the pieces. -----Examples----- Input 4 100 2 20 30 75 80 Output 17 Input 5 100 3 1 2 4 60 87 Output 6 -----Note----- In the first example, you can use a piece of length $11$ to cover the broken segments $20$ and $30$, and another piece of length $6$ to cover $75$ and $80$, for a total length of $17$. In the second example, you can use a piece of length $4$ to cover broken segments $1$, $2$ and $4$, and two pieces of length $1$ to cover broken segments $60$ and $87$.
nmk = input().split(" ") n, m, k = int(nmk[0]), int(nmk[1]), int(nmk[2]) b = list(map(int, input().split(" "))) d = [] for i in range(1, n): d.append(b[i] - b[i - 1]) d.sort() temp = n for i in range(n - k): temp += d[i] - 1 print(temp)
ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR VAR VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You have a long stick, consisting of $m$ segments enumerated from $1$ to $m$. Each segment is $1$ centimeter long. Sadly, some segments are broken and need to be repaired. You have an infinitely long repair tape. You want to cut some pieces from the tape and use them to cover all of the broken segments. To be precise, a piece of tape of integer length $t$ placed at some position $s$ will cover segments $s, s+1, \ldots, s+t-1$. You are allowed to cover non-broken segments; it is also possible that some pieces of tape will overlap. Time is money, so you want to cut at most $k$ continuous pieces of tape to cover all the broken segments. What is the minimum total length of these pieces? -----Input----- The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^5$, $n \le m \le 10^9$, $1 \le k \le n$) — the number of broken segments, the length of the stick and the maximum number of pieces you can use. The second line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le m$) — the positions of the broken segments. These integers are given in increasing order, that is, $b_1 < b_2 < \ldots < b_n$. -----Output----- Print the minimum total length of the pieces. -----Examples----- Input 4 100 2 20 30 75 80 Output 17 Input 5 100 3 1 2 4 60 87 Output 6 -----Note----- In the first example, you can use a piece of length $11$ to cover the broken segments $20$ and $30$, and another piece of length $6$ to cover $75$ and $80$, for a total length of $17$. In the second example, you can use a piece of length $4$ to cover broken segments $1$, $2$ and $4$, and two pieces of length $1$ to cover broken segments $60$ and $87$.
n, m, k = map(int, input().split()) b = list(map(int, input().split())) gaps = [] for i in range(1, n): gap = b[i] - b[i - 1] gaps.append(gap) gaps.sort() sumgaps = 0 i = n - 2 while i > n - k - 1 and i > -1: sumgaps += gaps[i] i -= 1 print(b[n - 1] - b[0] - sumgaps + k)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR NUMBER VAR VAR
You have a long stick, consisting of $m$ segments enumerated from $1$ to $m$. Each segment is $1$ centimeter long. Sadly, some segments are broken and need to be repaired. You have an infinitely long repair tape. You want to cut some pieces from the tape and use them to cover all of the broken segments. To be precise, a piece of tape of integer length $t$ placed at some position $s$ will cover segments $s, s+1, \ldots, s+t-1$. You are allowed to cover non-broken segments; it is also possible that some pieces of tape will overlap. Time is money, so you want to cut at most $k$ continuous pieces of tape to cover all the broken segments. What is the minimum total length of these pieces? -----Input----- The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^5$, $n \le m \le 10^9$, $1 \le k \le n$) — the number of broken segments, the length of the stick and the maximum number of pieces you can use. The second line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le m$) — the positions of the broken segments. These integers are given in increasing order, that is, $b_1 < b_2 < \ldots < b_n$. -----Output----- Print the minimum total length of the pieces. -----Examples----- Input 4 100 2 20 30 75 80 Output 17 Input 5 100 3 1 2 4 60 87 Output 6 -----Note----- In the first example, you can use a piece of length $11$ to cover the broken segments $20$ and $30$, and another piece of length $6$ to cover $75$ and $80$, for a total length of $17$. In the second example, you can use a piece of length $4$ to cover broken segments $1$, $2$ and $4$, and two pieces of length $1$ to cover broken segments $60$ and $87$.
n, m, k = map(int, input().split()) b = [int(i) for i in input().split()] if k == 1: print(b[-1] - b[0] + 1) else: d = [(b[i] - b[i - 1]) for i in range(1, n)] d.sort() d = d[: -k + 1] print(sum(d) + k)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
You have a long stick, consisting of $m$ segments enumerated from $1$ to $m$. Each segment is $1$ centimeter long. Sadly, some segments are broken and need to be repaired. You have an infinitely long repair tape. You want to cut some pieces from the tape and use them to cover all of the broken segments. To be precise, a piece of tape of integer length $t$ placed at some position $s$ will cover segments $s, s+1, \ldots, s+t-1$. You are allowed to cover non-broken segments; it is also possible that some pieces of tape will overlap. Time is money, so you want to cut at most $k$ continuous pieces of tape to cover all the broken segments. What is the minimum total length of these pieces? -----Input----- The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^5$, $n \le m \le 10^9$, $1 \le k \le n$) — the number of broken segments, the length of the stick and the maximum number of pieces you can use. The second line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le m$) — the positions of the broken segments. These integers are given in increasing order, that is, $b_1 < b_2 < \ldots < b_n$. -----Output----- Print the minimum total length of the pieces. -----Examples----- Input 4 100 2 20 30 75 80 Output 17 Input 5 100 3 1 2 4 60 87 Output 6 -----Note----- In the first example, you can use a piece of length $11$ to cover the broken segments $20$ and $30$, and another piece of length $6$ to cover $75$ and $80$, for a total length of $17$. In the second example, you can use a piece of length $4$ to cover broken segments $1$, $2$ and $4$, and two pieces of length $1$ to cover broken segments $60$ and $87$.
n, m, k = map(int, input().split()) arr = list(map(int, input().split())) arr2 = [] for i in range(1, len(arr)): arr2.append(arr[i] - arr[i - 1]) arr2.sort() arr2 = arr2[: n - k] print(sum(arr2) + k)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
You have a long stick, consisting of $m$ segments enumerated from $1$ to $m$. Each segment is $1$ centimeter long. Sadly, some segments are broken and need to be repaired. You have an infinitely long repair tape. You want to cut some pieces from the tape and use them to cover all of the broken segments. To be precise, a piece of tape of integer length $t$ placed at some position $s$ will cover segments $s, s+1, \ldots, s+t-1$. You are allowed to cover non-broken segments; it is also possible that some pieces of tape will overlap. Time is money, so you want to cut at most $k$ continuous pieces of tape to cover all the broken segments. What is the minimum total length of these pieces? -----Input----- The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^5$, $n \le m \le 10^9$, $1 \le k \le n$) — the number of broken segments, the length of the stick and the maximum number of pieces you can use. The second line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le m$) — the positions of the broken segments. These integers are given in increasing order, that is, $b_1 < b_2 < \ldots < b_n$. -----Output----- Print the minimum total length of the pieces. -----Examples----- Input 4 100 2 20 30 75 80 Output 17 Input 5 100 3 1 2 4 60 87 Output 6 -----Note----- In the first example, you can use a piece of length $11$ to cover the broken segments $20$ and $30$, and another piece of length $6$ to cover $75$ and $80$, for a total length of $17$. In the second example, you can use a piece of length $4$ to cover broken segments $1$, $2$ and $4$, and two pieces of length $1$ to cover broken segments $60$ and $87$.
n, m, k = map(int, input().split()) c = list(map(int, input().split())) l = k - 1 v = [] curr = c[0] for i in range(1, n): v.append(c[i] - curr - 1) curr = c[i] v.sort() tot = n for i in range(n - k): tot += v[i] print(tot)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR LIST ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
You have a long stick, consisting of $m$ segments enumerated from $1$ to $m$. Each segment is $1$ centimeter long. Sadly, some segments are broken and need to be repaired. You have an infinitely long repair tape. You want to cut some pieces from the tape and use them to cover all of the broken segments. To be precise, a piece of tape of integer length $t$ placed at some position $s$ will cover segments $s, s+1, \ldots, s+t-1$. You are allowed to cover non-broken segments; it is also possible that some pieces of tape will overlap. Time is money, so you want to cut at most $k$ continuous pieces of tape to cover all the broken segments. What is the minimum total length of these pieces? -----Input----- The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^5$, $n \le m \le 10^9$, $1 \le k \le n$) — the number of broken segments, the length of the stick and the maximum number of pieces you can use. The second line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le m$) — the positions of the broken segments. These integers are given in increasing order, that is, $b_1 < b_2 < \ldots < b_n$. -----Output----- Print the minimum total length of the pieces. -----Examples----- Input 4 100 2 20 30 75 80 Output 17 Input 5 100 3 1 2 4 60 87 Output 6 -----Note----- In the first example, you can use a piece of length $11$ to cover the broken segments $20$ and $30$, and another piece of length $6$ to cover $75$ and $80$, for a total length of $17$. In the second example, you can use a piece of length $4$ to cover broken segments $1$, $2$ and $4$, and two pieces of length $1$ to cover broken segments $60$ and $87$.
def lenta(lst, K): differences = [0] * (len(lst) - 1) for i in range(1, len(lst)): differences[i - 1] = lst[i] - lst[i - 1] return sum(sorted(differences)[: len(lst) - K]) + K n, m, k = [int(j) for j in input().split()] a = [int(x) for x in input().split()] print(lenta(a, k))
FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR BIN_OP VAR NUMBER RETURN BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You have a long stick, consisting of $m$ segments enumerated from $1$ to $m$. Each segment is $1$ centimeter long. Sadly, some segments are broken and need to be repaired. You have an infinitely long repair tape. You want to cut some pieces from the tape and use them to cover all of the broken segments. To be precise, a piece of tape of integer length $t$ placed at some position $s$ will cover segments $s, s+1, \ldots, s+t-1$. You are allowed to cover non-broken segments; it is also possible that some pieces of tape will overlap. Time is money, so you want to cut at most $k$ continuous pieces of tape to cover all the broken segments. What is the minimum total length of these pieces? -----Input----- The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^5$, $n \le m \le 10^9$, $1 \le k \le n$) — the number of broken segments, the length of the stick and the maximum number of pieces you can use. The second line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le m$) — the positions of the broken segments. These integers are given in increasing order, that is, $b_1 < b_2 < \ldots < b_n$. -----Output----- Print the minimum total length of the pieces. -----Examples----- Input 4 100 2 20 30 75 80 Output 17 Input 5 100 3 1 2 4 60 87 Output 6 -----Note----- In the first example, you can use a piece of length $11$ to cover the broken segments $20$ and $30$, and another piece of length $6$ to cover $75$ and $80$, for a total length of $17$. In the second example, you can use a piece of length $4$ to cover broken segments $1$, $2$ and $4$, and two pieces of length $1$ to cover broken segments $60$ and $87$.
n, m, k = map(int, input().split()) ls = list(map(int, input().split())) ans = ls[n - 1] - ls[0] ls1 = [] for i in range(1, n): ls1.append(ls[i] - ls[i - 1]) ls1.sort() count = 0 if k != 1: for x in reversed(ls1): ans = ans - x count = count + 1 if count == k - 1: break ans = ans + k print(ans)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER IF VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
You have a long stick, consisting of $m$ segments enumerated from $1$ to $m$. Each segment is $1$ centimeter long. Sadly, some segments are broken and need to be repaired. You have an infinitely long repair tape. You want to cut some pieces from the tape and use them to cover all of the broken segments. To be precise, a piece of tape of integer length $t$ placed at some position $s$ will cover segments $s, s+1, \ldots, s+t-1$. You are allowed to cover non-broken segments; it is also possible that some pieces of tape will overlap. Time is money, so you want to cut at most $k$ continuous pieces of tape to cover all the broken segments. What is the minimum total length of these pieces? -----Input----- The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^5$, $n \le m \le 10^9$, $1 \le k \le n$) — the number of broken segments, the length of the stick and the maximum number of pieces you can use. The second line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le m$) — the positions of the broken segments. These integers are given in increasing order, that is, $b_1 < b_2 < \ldots < b_n$. -----Output----- Print the minimum total length of the pieces. -----Examples----- Input 4 100 2 20 30 75 80 Output 17 Input 5 100 3 1 2 4 60 87 Output 6 -----Note----- In the first example, you can use a piece of length $11$ to cover the broken segments $20$ and $30$, and another piece of length $6$ to cover $75$ and $80$, for a total length of $17$. In the second example, you can use a piece of length $4$ to cover broken segments $1$, $2$ and $4$, and two pieces of length $1$ to cover broken segments $60$ and $87$.
n, m, k = map(int, input().split()) b = list(map(int, input().split())) l = b[-1] - b[0] + 1 df = [] for i in range(1, n): df.append((b[i] - b[i - 1], b[i - 1], b[i])) df = sorted(df, key=lambda x: x[0]) for i in range(k - 1): rng = df.pop() l -= rng[0] - 1 print(l)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
You have a long stick, consisting of $m$ segments enumerated from $1$ to $m$. Each segment is $1$ centimeter long. Sadly, some segments are broken and need to be repaired. You have an infinitely long repair tape. You want to cut some pieces from the tape and use them to cover all of the broken segments. To be precise, a piece of tape of integer length $t$ placed at some position $s$ will cover segments $s, s+1, \ldots, s+t-1$. You are allowed to cover non-broken segments; it is also possible that some pieces of tape will overlap. Time is money, so you want to cut at most $k$ continuous pieces of tape to cover all the broken segments. What is the minimum total length of these pieces? -----Input----- The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^5$, $n \le m \le 10^9$, $1 \le k \le n$) — the number of broken segments, the length of the stick and the maximum number of pieces you can use. The second line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le m$) — the positions of the broken segments. These integers are given in increasing order, that is, $b_1 < b_2 < \ldots < b_n$. -----Output----- Print the minimum total length of the pieces. -----Examples----- Input 4 100 2 20 30 75 80 Output 17 Input 5 100 3 1 2 4 60 87 Output 6 -----Note----- In the first example, you can use a piece of length $11$ to cover the broken segments $20$ and $30$, and another piece of length $6$ to cover $75$ and $80$, for a total length of $17$. In the second example, you can use a piece of length $4$ to cover broken segments $1$, $2$ and $4$, and two pieces of length $1$ to cover broken segments $60$ and $87$.
l = [int(y) for y in input().split()] a = [int(y) for y in input().split()] temp = [] for key in range(1, len(a)): temp.append(a[key] - a[key - 1]) temp = sorted(temp, reverse=True) pk = a[len(a) - 1] - a[0] + l[2] b = sum(temp[: l[2] - 1]) print(pk - b)
ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
You have a long stick, consisting of $m$ segments enumerated from $1$ to $m$. Each segment is $1$ centimeter long. Sadly, some segments are broken and need to be repaired. You have an infinitely long repair tape. You want to cut some pieces from the tape and use them to cover all of the broken segments. To be precise, a piece of tape of integer length $t$ placed at some position $s$ will cover segments $s, s+1, \ldots, s+t-1$. You are allowed to cover non-broken segments; it is also possible that some pieces of tape will overlap. Time is money, so you want to cut at most $k$ continuous pieces of tape to cover all the broken segments. What is the minimum total length of these pieces? -----Input----- The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^5$, $n \le m \le 10^9$, $1 \le k \le n$) — the number of broken segments, the length of the stick and the maximum number of pieces you can use. The second line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le m$) — the positions of the broken segments. These integers are given in increasing order, that is, $b_1 < b_2 < \ldots < b_n$. -----Output----- Print the minimum total length of the pieces. -----Examples----- Input 4 100 2 20 30 75 80 Output 17 Input 5 100 3 1 2 4 60 87 Output 6 -----Note----- In the first example, you can use a piece of length $11$ to cover the broken segments $20$ and $30$, and another piece of length $6$ to cover $75$ and $80$, for a total length of $17$. In the second example, you can use a piece of length $4$ to cover broken segments $1$, $2$ and $4$, and two pieces of length $1$ to cover broken segments $60$ and $87$.
from sys import stdin, stdout def inp(): return int(stdin.readline()) def minp(): return map(int, stdin.readline().rstrip().split()) def linp(): return list(minp()) def main(): n, m, k = minp() l = linp() s = 0 a = [] for i in range(1, n): a.append(l[i] - l[i - 1]) a.sort() for i in range(n - k): s += a[i] print(s + k) main()
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR
You have a long stick, consisting of $m$ segments enumerated from $1$ to $m$. Each segment is $1$ centimeter long. Sadly, some segments are broken and need to be repaired. You have an infinitely long repair tape. You want to cut some pieces from the tape and use them to cover all of the broken segments. To be precise, a piece of tape of integer length $t$ placed at some position $s$ will cover segments $s, s+1, \ldots, s+t-1$. You are allowed to cover non-broken segments; it is also possible that some pieces of tape will overlap. Time is money, so you want to cut at most $k$ continuous pieces of tape to cover all the broken segments. What is the minimum total length of these pieces? -----Input----- The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^5$, $n \le m \le 10^9$, $1 \le k \le n$) — the number of broken segments, the length of the stick and the maximum number of pieces you can use. The second line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le m$) — the positions of the broken segments. These integers are given in increasing order, that is, $b_1 < b_2 < \ldots < b_n$. -----Output----- Print the minimum total length of the pieces. -----Examples----- Input 4 100 2 20 30 75 80 Output 17 Input 5 100 3 1 2 4 60 87 Output 6 -----Note----- In the first example, you can use a piece of length $11$ to cover the broken segments $20$ and $30$, and another piece of length $6$ to cover $75$ and $80$, for a total length of $17$. In the second example, you can use a piece of length $4$ to cover broken segments $1$, $2$ and $4$, and two pieces of length $1$ to cover broken segments $60$ and $87$.
n, m, k = tuple(map(int, input().split())) A = list(map(int, input().split())) rasst = [] ans = n for i in range(1, n): rasst.append((A[i] - A[i - 1] - 1, i)) rasst.sort(key=lambda x: -x[0]) for i in range(n - k): ans += rasst.pop()[0] print(ans)
ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR EXPR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
You have a long stick, consisting of $m$ segments enumerated from $1$ to $m$. Each segment is $1$ centimeter long. Sadly, some segments are broken and need to be repaired. You have an infinitely long repair tape. You want to cut some pieces from the tape and use them to cover all of the broken segments. To be precise, a piece of tape of integer length $t$ placed at some position $s$ will cover segments $s, s+1, \ldots, s+t-1$. You are allowed to cover non-broken segments; it is also possible that some pieces of tape will overlap. Time is money, so you want to cut at most $k$ continuous pieces of tape to cover all the broken segments. What is the minimum total length of these pieces? -----Input----- The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^5$, $n \le m \le 10^9$, $1 \le k \le n$) — the number of broken segments, the length of the stick and the maximum number of pieces you can use. The second line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le m$) — the positions of the broken segments. These integers are given in increasing order, that is, $b_1 < b_2 < \ldots < b_n$. -----Output----- Print the minimum total length of the pieces. -----Examples----- Input 4 100 2 20 30 75 80 Output 17 Input 5 100 3 1 2 4 60 87 Output 6 -----Note----- In the first example, you can use a piece of length $11$ to cover the broken segments $20$ and $30$, and another piece of length $6$ to cover $75$ and $80$, for a total length of $17$. In the second example, you can use a piece of length $4$ to cover broken segments $1$, $2$ and $4$, and two pieces of length $1$ to cover broken segments $60$ and $87$.
R = lambda: map(int, input().split()) n, m, k = R() b = [*R()] print(n + sum(sorted(y - x - 1 for x, y in zip(b, b[1:]))[: n - k]))
ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR ASSIGN VAR LIST FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR FUNC_CALL VAR VAR VAR NUMBER BIN_OP VAR VAR
You have a long stick, consisting of $m$ segments enumerated from $1$ to $m$. Each segment is $1$ centimeter long. Sadly, some segments are broken and need to be repaired. You have an infinitely long repair tape. You want to cut some pieces from the tape and use them to cover all of the broken segments. To be precise, a piece of tape of integer length $t$ placed at some position $s$ will cover segments $s, s+1, \ldots, s+t-1$. You are allowed to cover non-broken segments; it is also possible that some pieces of tape will overlap. Time is money, so you want to cut at most $k$ continuous pieces of tape to cover all the broken segments. What is the minimum total length of these pieces? -----Input----- The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^5$, $n \le m \le 10^9$, $1 \le k \le n$) — the number of broken segments, the length of the stick and the maximum number of pieces you can use. The second line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le m$) — the positions of the broken segments. These integers are given in increasing order, that is, $b_1 < b_2 < \ldots < b_n$. -----Output----- Print the minimum total length of the pieces. -----Examples----- Input 4 100 2 20 30 75 80 Output 17 Input 5 100 3 1 2 4 60 87 Output 6 -----Note----- In the first example, you can use a piece of length $11$ to cover the broken segments $20$ and $30$, and another piece of length $6$ to cover $75$ and $80$, for a total length of $17$. In the second example, you can use a piece of length $4$ to cover broken segments $1$, $2$ and $4$, and two pieces of length $1$ to cover broken segments $60$ and $87$.
n, m, k = map(int, input().split()) b = list(map(int, input().split())) d = [(b[i + 1] - b[i] - 1) for i in range(n - 1)] d.sort(reverse=True) print(b[-1] - b[0] + 1 - sum(d[: k - 1]))
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER
You have a long stick, consisting of $m$ segments enumerated from $1$ to $m$. Each segment is $1$ centimeter long. Sadly, some segments are broken and need to be repaired. You have an infinitely long repair tape. You want to cut some pieces from the tape and use them to cover all of the broken segments. To be precise, a piece of tape of integer length $t$ placed at some position $s$ will cover segments $s, s+1, \ldots, s+t-1$. You are allowed to cover non-broken segments; it is also possible that some pieces of tape will overlap. Time is money, so you want to cut at most $k$ continuous pieces of tape to cover all the broken segments. What is the minimum total length of these pieces? -----Input----- The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^5$, $n \le m \le 10^9$, $1 \le k \le n$) — the number of broken segments, the length of the stick and the maximum number of pieces you can use. The second line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le m$) — the positions of the broken segments. These integers are given in increasing order, that is, $b_1 < b_2 < \ldots < b_n$. -----Output----- Print the minimum total length of the pieces. -----Examples----- Input 4 100 2 20 30 75 80 Output 17 Input 5 100 3 1 2 4 60 87 Output 6 -----Note----- In the first example, you can use a piece of length $11$ to cover the broken segments $20$ and $30$, and another piece of length $6$ to cover $75$ and $80$, for a total length of $17$. In the second example, you can use a piece of length $4$ to cover broken segments $1$, $2$ and $4$, and two pieces of length $1$ to cover broken segments $60$ and $87$.
n, m, k = map(int, input().split()) a = [*map(int, input().split())] b = [] for i in range(n - 1): b.append(a[i + 1] - a[i]) b.sort() ans = 0 for i in range(n - k): ans += b[i] print(ans + k)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
You have a long stick, consisting of $m$ segments enumerated from $1$ to $m$. Each segment is $1$ centimeter long. Sadly, some segments are broken and need to be repaired. You have an infinitely long repair tape. You want to cut some pieces from the tape and use them to cover all of the broken segments. To be precise, a piece of tape of integer length $t$ placed at some position $s$ will cover segments $s, s+1, \ldots, s+t-1$. You are allowed to cover non-broken segments; it is also possible that some pieces of tape will overlap. Time is money, so you want to cut at most $k$ continuous pieces of tape to cover all the broken segments. What is the minimum total length of these pieces? -----Input----- The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^5$, $n \le m \le 10^9$, $1 \le k \le n$) — the number of broken segments, the length of the stick and the maximum number of pieces you can use. The second line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le m$) — the positions of the broken segments. These integers are given in increasing order, that is, $b_1 < b_2 < \ldots < b_n$. -----Output----- Print the minimum total length of the pieces. -----Examples----- Input 4 100 2 20 30 75 80 Output 17 Input 5 100 3 1 2 4 60 87 Output 6 -----Note----- In the first example, you can use a piece of length $11$ to cover the broken segments $20$ and $30$, and another piece of length $6$ to cover $75$ and $80$, for a total length of $17$. In the second example, you can use a piece of length $4$ to cover broken segments $1$, $2$ and $4$, and two pieces of length $1$ to cover broken segments $60$ and $87$.
n, m, k = map(int, input().split()) p = [int(x) for x in input().split()] if k == n: print(n) else: t = n - k q = [0] * (n - 1) for i in range(0, n - 1): q[i] = p[i + 1] - p[i] q = sorted(q) s = 0 for i in range(0, t): s += q[i] - 1 print(s + n)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
You have a long stick, consisting of $m$ segments enumerated from $1$ to $m$. Each segment is $1$ centimeter long. Sadly, some segments are broken and need to be repaired. You have an infinitely long repair tape. You want to cut some pieces from the tape and use them to cover all of the broken segments. To be precise, a piece of tape of integer length $t$ placed at some position $s$ will cover segments $s, s+1, \ldots, s+t-1$. You are allowed to cover non-broken segments; it is also possible that some pieces of tape will overlap. Time is money, so you want to cut at most $k$ continuous pieces of tape to cover all the broken segments. What is the minimum total length of these pieces? -----Input----- The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^5$, $n \le m \le 10^9$, $1 \le k \le n$) — the number of broken segments, the length of the stick and the maximum number of pieces you can use. The second line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le m$) — the positions of the broken segments. These integers are given in increasing order, that is, $b_1 < b_2 < \ldots < b_n$. -----Output----- Print the minimum total length of the pieces. -----Examples----- Input 4 100 2 20 30 75 80 Output 17 Input 5 100 3 1 2 4 60 87 Output 6 -----Note----- In the first example, you can use a piece of length $11$ to cover the broken segments $20$ and $30$, and another piece of length $6$ to cover $75$ and $80$, for a total length of $17$. In the second example, you can use a piece of length $4$ to cover broken segments $1$, $2$ and $4$, and two pieces of length $1$ to cover broken segments $60$ and $87$.
import sys n, m, k = map(int, input().split()) b = list(map(int, input().split())) c = [(b[i + 1] - b[i] - 1) for i in range(n - 1)] c.sort() if k == n: ans = n print(ans) import sys sys.exit(0) else: pass ans = sum(c[: n - k]) + n print(ans)
IMPORT ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR IF VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR IMPORT EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
You have a long stick, consisting of $m$ segments enumerated from $1$ to $m$. Each segment is $1$ centimeter long. Sadly, some segments are broken and need to be repaired. You have an infinitely long repair tape. You want to cut some pieces from the tape and use them to cover all of the broken segments. To be precise, a piece of tape of integer length $t$ placed at some position $s$ will cover segments $s, s+1, \ldots, s+t-1$. You are allowed to cover non-broken segments; it is also possible that some pieces of tape will overlap. Time is money, so you want to cut at most $k$ continuous pieces of tape to cover all the broken segments. What is the minimum total length of these pieces? -----Input----- The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^5$, $n \le m \le 10^9$, $1 \le k \le n$) — the number of broken segments, the length of the stick and the maximum number of pieces you can use. The second line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le m$) — the positions of the broken segments. These integers are given in increasing order, that is, $b_1 < b_2 < \ldots < b_n$. -----Output----- Print the minimum total length of the pieces. -----Examples----- Input 4 100 2 20 30 75 80 Output 17 Input 5 100 3 1 2 4 60 87 Output 6 -----Note----- In the first example, you can use a piece of length $11$ to cover the broken segments $20$ and $30$, and another piece of length $6$ to cover $75$ and $80$, for a total length of $17$. In the second example, you can use a piece of length $4$ to cover broken segments $1$, $2$ and $4$, and two pieces of length $1$ to cover broken segments $60$ and $87$.
I = lambda: map(int, input().split()) n, m, k = I() li = list(I()) diff = [] if k >= n: exit(print(n)) for i in range(1, len(li)): t = li[i] - li[i - 1] diff.append(t) diff.sort() ans = n t = n for i in diff: t = t - 1 ans = ans + i - 1 if t == k: exit(print(ans))
ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST IF VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR VAR FOR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
You have a long stick, consisting of $m$ segments enumerated from $1$ to $m$. Each segment is $1$ centimeter long. Sadly, some segments are broken and need to be repaired. You have an infinitely long repair tape. You want to cut some pieces from the tape and use them to cover all of the broken segments. To be precise, a piece of tape of integer length $t$ placed at some position $s$ will cover segments $s, s+1, \ldots, s+t-1$. You are allowed to cover non-broken segments; it is also possible that some pieces of tape will overlap. Time is money, so you want to cut at most $k$ continuous pieces of tape to cover all the broken segments. What is the minimum total length of these pieces? -----Input----- The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^5$, $n \le m \le 10^9$, $1 \le k \le n$) — the number of broken segments, the length of the stick and the maximum number of pieces you can use. The second line contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le m$) — the positions of the broken segments. These integers are given in increasing order, that is, $b_1 < b_2 < \ldots < b_n$. -----Output----- Print the minimum total length of the pieces. -----Examples----- Input 4 100 2 20 30 75 80 Output 17 Input 5 100 3 1 2 4 60 87 Output 6 -----Note----- In the first example, you can use a piece of length $11$ to cover the broken segments $20$ and $30$, and another piece of length $6$ to cover $75$ and $80$, for a total length of $17$. In the second example, you can use a piece of length $4$ to cover broken segments $1$, $2$ and $4$, and two pieces of length $1$ to cover broken segments $60$ and $87$.
n, m, k = map(int, input().split()) b = list(map(int, input().split())) sab = [(b[i + 1] - b[i]) for i in range(len(b) - 1)] sortsab = sorted(sab) sumtape = 0 for i in range(n - k): sumtape += sortsab[i] sumtape += k print(sumtape)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR